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About This Library

Vector Statistical Library (VSL), also called Vector Generators of Statistical Distributions, is
designed for the purpose of pseudorandom and quasi-random vector generation. VSL is an integral
part of Intel® Math Kernel Library (Intel® MKL).

VSL provides a number of generator subroutines i mplementing commonly used continuous and
discrete distributions, all of which are based on the highly optimized Basic Random Number
Generators (BRNGs) and VML, the library of vector transcendental functions, to help improve
their performance.

About This Document

This document includes a brief conceptual overview of random numbers generation problems, the
product and its capabilities, with focus on interpretation of results and the related generator figures
of merit aswell as task-oriented, procedural, and reference information. In contrast to Intel MKL
Reference Manual, VSL Notes substantially expand on the concept of random number generation
and its application as well as on the related notions and issues. The document provides extensive
comparative performance analysis of the library generators and the testing results with description
of the basic tests applied. Apart from the VSL distribution generators and service subroutines,
dealt with in the Intel MKL Reference Manual, the VSL Notes also describe testing of distribution
generators.

Those interested in general issues related to random number generators, their quality and
applications in computer simulation should refer to Randomness and Scientific Experiment,
Random Numbers, and Figures of Merit for Random Number Generators sections, which briefly
cover the relevant matters and provide references for further studies.

VSL Structure section covers the concept underlying VSL, the library structure and potential for
functionality enhancement. VSL isalibrary of high-performance random number generators. The
section describes the factors that optimize the VSL generators for Intel® processors. Special
attention is given to VSL ease of use and other advantages in parallél programming.

Testing of Basic Random Number Generators and Testing of Distribution Random Number
Generators describe a number of tests for the VSL generators of various probability distributions.

Introduction

This document does not purport to cover the fundamentals of mathematical statistics and
probability theory, nor those of the theory of numbers and statistical s mulation. Books and
articleslisted in the Bibliography section mostly cover these issues. What you will find below isa
brief overview of issues pertaining to random number generation, interpretation of the results and
the related notion of quality random number generation. To some extent, it is an attempt to justify
“thefall” of many people engaged in solving problems of randomness simulation, that is, the fall
John von Neumann meant, when he wrote: "Anyone who considers arithmetical methods of
producing random digitsis, of course, in a state of sin". (Still more and more researchersin a
variety of scientific fields are getting themsel ves involved into this kind of simulation depravity, as
simulation is becoming more and more valuable in various scientific disciplines). Computer
simulation has become a new and de-facto commonly recognized approach to scientific research
along with conventional experimentation. The latter harshly restricts a mathematical model that is
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supposed to be as sophisticated as the available conventional research methods permit. Asfor
computer simulation, with ever-growing computing power the degree of mathematical model
complexity has come to be more dependable exclusively on our own understanding of phenomena
wetry to model. Thisisarguably the key factor in ensuring the great success that computer
simulation has achieved of recent.

Randomness and Scientific Experiment

A precise definition of what the word ‘ random’ means can hardly be given, even considering the
fact that everyday life provides a variety of examples of ‘ randomness' . Randomnessis closely
related to unpredictability of observation results and impossibility to predict them with sufficient
accuracy. The nature of randomnessiis based on lack of exhaustive information about the
phenomenon under observation. As soon as we learn the origin of that phenomenon, we no longer
consider it accidental or random. On the other hand, a random phenomenon, whose origin has been
revealed, loses nothing of its random character. We may characterize randomness as a type of
relation stipulated by conditions that are inessential, superfluous, and extraneous to this particular
phenomenon. Thus, knowledge isincomplete by definition asit isimpossible to allow for all sorts
of immaterial relations.

Since our knowledge isincomplete (and it is something that can hardly be hel ped), the observation
results may prove impossible to predict with great accuracy. For instance, theinitial state of the
objects under observation may change imperceptibly for our instruments, but these small changes
may cause significant alterationsin the final results. Sophisticated nature of the observed
phenomenon may make accurate computation impossiblein practice, if not in theory. Finally, even
minor uncontrollable disturbing factors may cause serious deviations from hypothetically “true
value’.

Nevertheless, with all likelihood of ‘irregularities’ and ‘ deviations', observational or experimental
results till reveal a certain typical regularity, named statistical stability. Various forms of
statistical stability are formulated as specific rules that mathematical statistics calls laws of large
numbers. In fact, it isthis stability that the mathematical theory underlying mathematical model of
random phenomena is based upon. Thistheory iswell known as the theory of probability.

Random Numbers

A set of distinctive features characterizes experimental observations. Many of such features are of
purely quantitative nature (results of measurements, calculations, and the like) but some of them
aremainly qualitative (for example, color of the object, occurrence or non-occurrence, and so on).
In the latter case results may also be presented as quantitative if some appropriate conventions
have been devel oped and applied (this may prove to be a rather tricky task to accomplish, though).
Thus, even when theresult is a particular quality feature it can always be expressed by a certain
number, which, if the result is a random phenomenon, is called a random number.

Numerical methods consider random numbers not only as data from experimental
observations. After emergence of computers an imitation of a huge amount of random numbersis
of great interest in various computational areasaswell [11].

For historical reasons methods that utilize random numbers to perform a simulation of phenomena
are called Monte Carlo methods. Monte Carlo became a tool to perform the most complex
simulations in natural and social sciences, financial analysis, physics of turbulence, rarefied gas
and fluid simulations, physics of high energies, chemical kinetics and combustion, radiation
transport problems, and photorealistic rendering.

6
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Monte Carlo methods are intended for various numerical problems such as solving ordinary
stochastic differential equations, ordinary differential equations with random entries, boundary
value problems for partial differential equations, integral equations, and eval uation of high-
dimensional integrals including path-dependent integrals. Monte Carlo methods include also
random variables and order statistics simulation, stochastic processes as well as random samplings
and permutations.

Dueto various reasons [ 3] random number generation based on completely deterministic
algorithms has become most common. It is obvious, however, that numbers obtained in a strictly
deterministic way can not be considered truly random as they only imitate randomness and are, in
fact, pseudo-random. Ideally, pseudo-random numbersimitate ‘truly’ random ones so well that
without knowing the method of pseudo-random number generation and judging only by the output
sequence, it isimpossible to distinguish it within a reasonable time froma‘truly’ random sequence
with more than 50% probability [12]. The output sequence of most pseudorandom number
generatorsis easly predictable. Thisis acceptable because a number of practical applications do
not require strict unpredictability. However, there are certain applications for which most now
existing pseudorandom generators are useless and at times simply dangerous. Among them, for
example, are applications dealing with geometrical behavior of large random vectors. Most of
presently existing generators should never be used for cryptographic purposes.

Pseudorandom number generators imitate finite sequences of independent identically distributed
(i.i.d.) random numbers. However, some numerical methods do not really require independence
between random numbersin a sequence. For such methods (a numerical integration and
optimization, for example) the most important is to fill some space with numbers as closeto a
given distribution as possibl e to the prejudice of independence. Such sequences do not ook
random at al. For historical reasons they are called quasi-random (or low discrepancy) sequences,
respective generators are called quasi-random number generators, and Monte Carlo methods
dealing with quasi-random numbers are called Quasi-Monte Carlo methods.

Hereinafter, the term ‘ random number generator’, or RNG, refers to both pseudo- and quasi-
random number generators, unless we want to emphasize the fact that a generator produces
precisely a pseudo- or quasi-random sequence.

Figures of Merit for Random Number Generators

Uniform Probability Distribution and Basic Pseudo- and Quasi-
Random Number Generators

When considering a great variety of probability distributions, special emphasis should be laid upon
auniform distribution over a certain set U of large cardinality. Firstly, such a distribution is most
convenient for analysis. And secondly, a random number generator of uniform distribution can
always serve as a basis for an RNG of any other distribution type. That is why we use theterm
basic generators in reference to pseudorandom number generators of uniform distribution.

So the observational output sequence of a basic generator should ideally possess the same
properties as a sequence of independent variates evenly distributed over aset U, that is, it should
be able to pass various statistical tests for uniformity and independence. A pseudorandom number
generator, however, is unable to pass all sorts of statistical tests, asitisan apriori fact that the
output sequence of such generator is anything but random. In other words, afairly powerful
statistical test can always be created for any individual basic RNG, which the said generator will
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definitely fail. The situation may not look so desperate, if we consider the time required to detect
‘non-randomness’ in the generator. It makes sense to consider only those statistical tests that work
within a‘reasonable’ period of time. What exactly time period is ‘ reasonable’ ? No direct answer
is possible here, as it depends on the sphere of generator application. For example, ‘ reasonable
timein cryptography may be measured in years of testing conducted on a powerful cluster, whileit
may be significantly shorter for most of other applications.

Note: As of present, VSL contains general-purpose random number generators that are not
intended for cryptography applications!

Cryptographic RNGs are too dow for other fields; most of applications there benefit from simpler
(and faster) generators: linear congruential, multiple recursive, feedback-shift-register, add-with-
carry, €tc.

To summarize, it should be noted that checking the quality of basic RNGs requires a ‘ reasonable
set, or battery, of statistical tests. Ideally, such tests depend for their choice on types of problems
the generator is intended to solve. A suitable test battery for general-purpose RNGsllibrariesis
fairly hard to choose, as the tests it should include are supposed to be versatile and sufficient for
many simulation tasks. DIEHARD Battery of Testsby G. Marsaglia[16] isan example of a good
set of empirical tests for basic generators. Still a specific application type may require a more
compl ete generator testing.

While duly recognizing the importance and useful ness of empirical testing, we should emphasize
the significance of theoretical methods for estimating the quality of basic generators. Theoretical
research serves as the basis for better understanding of generator’s properties: its period length,
lattice structure, discrepancy, equidistribution, etc. Theoretic evaluationisthe first stagein
rejecting admittedly bad generators. Empirical tests should be applied only to make sure the
remaining generators are of acceptable quality. What makes the empirical testing just as important
isthe fact that most of results obtained with the help of theoretical testing refer to a basic generator
used over the entire period, while in practice only a small fraction of the period is (and should bel)
engaged. Good behavior of k-dimensional random number vectors over the entire period provides
us with greater confidence (yet not with a proof) that similarly good statistical behavior will be
observed over a smaller portion of the period [12].

Period of a basic generator is a most important feature that characterizes its quality. For example,
one of the VSL BRNGs — mulltiplicative congruential generator MCG31ml — has a period

length of about 2%, while its efficiency amounts to about four processor cycles per one real
number, using Intel® Itanium® 2 processor. Therefore, with the processor frequency of 1GHz, the
entire period will be covered within slightly more than 2 seconds. Taking into consideration that
good statistical behavior of the generator is observed only over afraction of its period (B.D. Ripley
[19] recommends to take no more than a square root of the period length) we may assert that such
period length is unacceptable. Such generators, however, still may be useful in certain Monte Carlo
applications (mostly due to the speed and small volume of memory engaged to keep the generator
state as well as efficient methods available for generation of random subsequences), when a
relatively little quantity of random numbers should be used. For example, while estimating a
global solution to an integral equation through Monte Carlo method, the same random numbers
should be used for different parameters[17]. Somehow or other, modern computational capacities
require BRNGs of at least 2% period length. All the other VSL BRNGs meet these requirements.

Pseudorandom number generators are commonly recursive integer sequences in modular
arithmetic, for example:

X, =X, 4 ta,X,, +..+a.X,_, (modm)
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Theoretical research aims at sel ection of such values for parametersk, a, mthat provide for good
quality properties of the output sequence in terms of period length, lattice structure, discrepancy,
equidistribution, etc. In particular, if misa prime number, and with proper coefficients a; selected,
aperiod length of order m* may be obtained. Nevertheless, m s often taken as 2° (p >1) dueto
efficient modul o m reduction. Some authors do not recommend using min the form of a power of
2 (see, for example, D. Knuth [11], P. L’ Ecuyer [12]) as the lower bits of the generated random
numbers prove to be non-random on the whole. For most of Monte Carlo applications, however,
thisisimmaterial. Moreover, even if misa prime number, great care should also be taken when
selecting random bitsin the output sequence.

For the same reasons quasi-random number generators filling some hypercube as evenly as
possible are called in VSL as Basic Random Number Generators as well. Quasi-random sequences
filling space according to a non-uniform distribution can be generated by transforming a sequence
produced by a basic quasi-random number generator. It is obvious that in most cases tests designed
for pseudorandom number generators cannot be used for quasi-random number generators. Special
batteries of tests should be designed for basic quasi-random number generators.

Figures of Merit for General (Non-Uniform) Distribution Generators

First and foremost, it should be noted that a general distribution generator greatly depends on the
quality of the underlying BRNG. Several basic approaches may be singled out to test general
distribution generators.

Random number distributions can be described with a number of measures. probability moments,
central and absol ute moments, quantiles, mode, scattering, skewness, and excess (kurtosis)
coefficients, etc. All the ordinary sample characteristics converge in probability to the
corresponding measures of distribution when the sample size tendsto infinity [6]. Commonly, the
characteristics based on the distribution moments are asymptotically normal with large sample
sizes. Some classes of sample characteristics that are not based on sampling moments are also
asymptotically normal, while others have quite different asymptotic behavior. Somehow or other,
when limit probability distribution is known, it is possible to build a statistical test to check
whether a particular sample characteristic agrees with a corresponding measure of the distribution.

Of greatest practical value for simulation purposes are sample mean and variance that are main
properties of the distribution bias and scattering. All the VSL random number generators undergo
testing for agreement between distribution sampling moments (mean and variance) and theoretical
values calculated for various sample sizes and distribution parameters.

Another class of val uable tests aims to check how well the sample distribution function agrees with
the theoretical one. The most important tests among them are chi-sguare Pearson goodness-of-fit
test (for discrete and continuous distributions) and Kol mogorov-Smirnov goodness-of-fit test (for
continuous distributions). Every VSL distribution is tested with chi-square Pearson test over
various sampl e sizes and distribution parameters.

It may be useful to transform the sequence that is being tested into one of the distributions, for
example, into auniform, normal, or multidimensional normal distribution. Then the transformed
sequence is tested using a set of statistical tests that are specific for the distribution to which the
sequence was transformed.

Tests that are based on simulation are in fact real Monte Carlo applications. Their choiceis quite
optional and should be made in accordance with the generator’ s field of application, the only
requirement being an opportunity to verify the results obtained against the theoretical value.
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A good example of such test application, which is used in checking the VSL generators for quality,
is the self-avoiding random walk [21].

VSL Structure

The VSL library of the current Intel MKL version contains a set of generators to create general
probability distributions, most commonly used in simulations, such as uniform, normal (Gaussian),
exponential, Poisson, etc. Non-uniform distributions are generated using various transformation
techniques applied to the output of a basic (either pseudo-random or quasi-random) RNG.

To generate random numbers of a given probability distribution, you have an option of choosing
one of the available V SL basic generators or of registering your own basic random number
generator. To enhance their performance, all the VSL BRNGs are highly optimized for various
architectures of Intel processors. Besides, VSL provides a number of different techniques for
transforming uniformly distributed random numbers into a sequence of required distribution.

All the random number generators that areimplemented in VSL are of vector type. Unlike scalar
type generators, for example, astandard r and() function, when the function output is a successive
random number, vector generators produce a vector of n successive random numbers of a given
distribution with given parameters.

VSL isathread-safe library convenient for parallel computing with a great variety of
configurations of parallel systems. A random streamisabasic notionin VSL. Mechanism of
streams provides simultaneous generation of several random number sequences produced by one
or more basic generators, as well as splitting of the original sequenceinto several subsequences by
the leapfrog and bl ock-split methods. Several random streams are particularly useful not only in
parallel applications but in sequential programs as well.

Why Vector Type Generators?

Dueto architectural features of modern computers vector type library subroutines often perform
much more efficiently than scalar type routines. In other words, the overhead expenses are often
comparable with the total time required for computations. Certainly, there are subroutines where
overhead expenses are negligible in comparison with the total time required for computation.
However, thisis not usually the case with highly optimized RNGs. To reduce overhead expenses,
all VSL random number generator subroutines are of vector type. User isfreeto call a vector
random number generator subroutine to generate just one random number, however, such useis
hardly efficient.

On the one hand, vector type random number generators sometimes require more careful
programming. A reward in this case is a substantial speedup in overall application performance.
On the other hand, VSL provides a number of services to make vector programming as natural as
possible. See |ndependent Streams. L eapfrogging and Block-Splitting section for further
discussion.

Disregarding possible programming issues, the vector type interface is quite natural for Monte
Carlo methods because Monte Carlo requires a lot of random numbers rather than just one.

10
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Basic Generators

Asindicated above, the basic generators may serve to obtain random numbers of various statistical
distributions. Non-uniform distribution generators strongly depend on the quality of the underlying
basic generators. Besides, as we have already mentioned, at present there is no such basic
generator that would be fully adequate for any application. Many of the current generators are
useless and simply dangerous for a certain category of tasks. In a number of applications quality
requirements for RNGs prevail over other requirements, such as speed, memory use, etc. In some
other tasks quality requirements are not that stringent and speed criterion or efficiency in
generating random number subsequences are of higher importance. Some applications use random
numbers as real ones, while others treat random numbers as a bit stream. It should be noted that,
even if a basic generator has trouble providing true randomness for lower bits, it is not necessarily
inadequate for applications using variates as real numbers.

All of the above arguments testify to the fact that alibrary of general-purpose RNGs should
provide a set of several different basic generators, both pseudo- and quasi-random. Besides, such a
library should envisage an option of including new basic generators, which you may find
preferable.

One of the important issues for computational experimentation is verification of the results.
Typically, aresearcher is unable to verify the output since the sol ution is simply unknown.
Without going into details of verification for sophisticated simulation systems, we would state that
any verification process involves testing of each structural element of the system. A random
number generator, being one of such structural elements, may bring about i nadequate results.
Therefore, to obtain more reliable results of the experiment, many authors recommend that several
different basic generators should be used in a series of computational experiments. Thisis yet
another argument favoring inclusion of several BRNGs of different typesin alibrary.

VSL provides the foll owing basic pseudorandom number generators:
»  MCG31ml. A 31-bit multiplicative congruential generator.
X, = ax,_,(modm)
u, = X,/m
a=1132489760, m=2% -1
* R250. A generalized feedback shift register generator.
Xy = X080 X050
Uy = %,/2%,
where 0 means exclusive or operation on 32-bit integer values.
*  MRG32k3a. A combined multiple recursive generator with two components of order 3.
Xy = Ay Xaq + 3, X +43X,3(Modm,)
Yo = 1 Yaa T3 Yo t3zYas(Mmodm,)
Z, = X, ~ Yy(modm,)
U, =2z,/m,
a, =0,a,, =1403580, a,, = 810728, m, = 2% -209
a,, =527612,a,, =0,a,, = -1370589, m, = 2% — 22853

11
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«  MCG59. A 59-bit multiplicative congruential generator.
X, = ax,_, (modm)

u, = X,/m

a=13"® m=2%

*  WH. A st of 273 Wichmann-Hill combined multiplicative congruential generators.
(i=1,2, ...,273)

X, = & X, (modm, ;)

Yo =8y Y1 (mMod m2,j)

Z, = a3,jzn—l(m0d m3j)

w, =a,;w,,(modm, ;)

u, = (%, /my, +y,/m,, +2,/m,, +w,/m,  Jmod1

Note: The variables X, Yn, Z,, W, in the above equations define a successive member of integer
subsequence set by recursion. The variable uy, is the generator real output normalized to the
interval (0, 1).

In addition, two basic quasi-random number generators are availablein VSL.

* SOBOL (with Antonov-Saleev [1] modification). A 32-bit Gray code-based generator
producing low-discrepancy sequences for dimensions 1< s<40.

Xn :Xn—l 0 Vc
u, =x,/2%

Note: The value cisthe rightmost zero bitin n-1; X,, isan s-dimensional vector of 32-bit values.
The s-dimensional vectors (calculated during random streamiinitialization) v, ,i = ],?2 are
called direction numbers. The vector U, is the generator output normalized to the unit hypercube
(0,D°.

* NIEDERREITER (with Antonov-Saleev [1] modification). A 32-bit Gray code-based
generator producing low-discrepancy sequences for dimensions 1< s < 318.

Xn :Xn—l 0 Vc
u, =x,/2%

Below we discuss each basic generator in more detail and provide references for further reading.

MCG31m1

32-bit linear congruential generators, which also include MCG31m1 [14], are still used as default
RNGsin various systems mostly due to simplicity of implementation, speed of operation, and
compatibility with earlier versions of the systems. However, their period lengths do not meet the
requirements for modern basic random number generators. Neverthel ess, MCG31ml possesses

12
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good statistical properties and may be used to advantage in generating random numbers of various
distribution types for relatively small samplings.

R250

R250 is a generalized feedback shift register generator. Feedback shift register generators possess
extensive theoretical footing and were first considered as RNGs for cryptographic and
communications applications. Generator R250 proposed in [10] isfast and simplein
implementation. It is common in the field of physics. However, the generator fails a number of
tests, a 2D sdlf-avoiding random walk [21] being an example.

MRG32k3a

A combined generator MRG32k3a [13] meets the requirements for modern RNGs: good
multidimensional uniformity, fairly large period, etc. Besides, being optimized for various Intel®
architectures, this generator rivals the other VSL BRNGs in speed.

MCG59

A multiplicative congruential generator MCG59 is one of the two basic generators implemented in
NAG Numerical Libraries [18] (see www.nag.co.uk). Since the module of this generator is not
prime, its period length is not 2%°, but just 2/, if the seed is an odd number. A drawback of such
generators is well-known (for example, see[11], [12]): the lower bits of the output sequence are
not random, therefore breaking numbers down into their bit patterns and using individual bits may
cause trouble, Besides, block-splitting of the sequence over the entire period into 2° similar blocks
resultsin full coincidence of such blocksin d lower bits (see, for instance, [11], [12]).

WH

WH isaset of 273 different basic generators. It is the second basic generator in NAG libraries.
The constants g; j are in the range 112 to 127 and the constants m; j are prime numbers in the range
16718909 to 16776971, which are close to 2**. These constants have been chosen so that they give
good results with the spectral test, see[11] and [15]. The period of each Wichmann—Hill generator
would be at least 2%, if it were not for common factors between (Mg j-1), (Mz;~1), (Msj-1), and
(myj—1). However, each generator should still have a period of at least 2%, Further discussion of
the properties of these generators is given in [15], which shows that the generated pseudo-random
sequences are essentially independent of one another according to the spectral test.

SOBOL

Bratley and Fox [4] provide an implementation of the Sobol quasi-random number generator. VSL
implementati on allows generating Sobol’ s | ow-discrepancy sequences of length up to 2%, The
dimension of quasi-random vectors can vary from 1 to 40 inclusive.

NIEDERREITER

According to the results of Bratley, Fox, and Niederreiter [5] Niederreiter’ s sequences have the
best known theoretical asymptotic properties. V SL implementation allows generating
Niederreiter’s low-discrepancy sequences of length up to 2%. The dimension of quasi-random
vectors can vary from 1 to 318 inclusive.

VSL provides an option of registering one or more new basic generators that you see as preferable
or morereliable. Use them in the same way as the BRNGs available with VSL. The registration
procedure makes it easy to include a variety of user-designed generators.

Each of the VSL basic generators consists of 4 subroutines:
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=  Stream Initialization Subroutine. See the section Random Streams and RNGsin
Parallel Computation for details.

= |nteger Output Generation Subroutine. Every generated integral value (within certain
bounds) may be considered a random bit vector. For details on randomness of individual
bits or bit groups, see Basic Random Generator Properties and Testing Results.

= Single Precision Floating-Point Random Number Vector Generation Subroutine.
The subroutine generates a real arithmetic vector of uniform distribution over the
interval [a, b].

= Double Precision Floating-Point Random Number Vector Generation Subroutine.
The subroutine generates a real arithmetic vector of uniform distribution over the
interval [a, b].

Random Streams and RNGs in Parallel Computation

Initializing Basic Generator

To obtain a random number sequence from a given basic generator, you should assign initial, or
seed values. The assigning procedure is called the generator initialization (the C language function
analogous with the initialization functionissr and( seed)) instdl i b. h). Different types of basic
generators require a different number of initial values. For example, the seed for MCG31ml is an
integral number within the range from 1 to 2**-2, theinitial values for MRG32k3a are a set of two
triples of 32-hit digits, and the seed for MCG59 is an integer within the range from 1 to 2°°-1. In
contrast to the pseudorandom number generators, quasi-random generators require the dimension
parameter oninput. Thus, each BRNG, including those registered by the user, requires an
individual initialization function. However, requiring individual initialization functions within the
library interface would limit the versatility of the routines.

The basic concept of VSL isto provide an interface with universal mechanism for generator
initialization, while encapsulating details of the initialization process from the user. (Nevertheless,
the initialization processis clearly documented in VSL Notes for each library basic generator). In
line with this concept, VSL offers two subroutines to initialize any basic generator (see the
functions of random stream creation and initialization in Random Streams section). These
initialization functions can also be used to initialize user-supplied functions. One of the
subroutines initializes a given basic generator using one 32-bit initial value, which is called the
seed by tradition. If the generator requires more than one 32-bit seed, VSL initializes the remaining
initial values on the basis of the original seed. Thus, generator R250, which requires 250 initial 32-
bit values, isinitialized using one 32-bit seed by the method described in [10]. The second
subroutine is a generalization of the first one. It initializes a basic generator by passing an array of
n 32-bit initial values. If the number of theinitial values n isinsufficient to initialize a given basic
generator, the missing initial values areinitialized by default values. On the contrary, if the number
of theinitial values n is excessive, the redundant values are ignored. For details on initialization
procedure see Basic Random Generator Properties and Testing Results.

When calling initialization functions you may ignore acceptability of the passed initial valuesfor a
given basic generator. If the passed seeds are unacceptable, theinitialization procedure replaces
them with those acceptable for a given type of BRNG. See Basic Random Generator Properties
and Testing Results for details on acceptable initial values.
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If you add a new basic generator to VSL, you should implement an appropriate initialization
function, which supports the above mechanism of initial values passing, and, if required, apply the
leapfrog and bl ock-splitting techniques.

Creating and Initializing Random Streams

VSL assumes that at any moment during the program operation you may simultaneously use
several random number subsequences generated by one or more basic generators. Consider the
following scenarios:

=  Thesimulation system has several independent structural blocks of random number
generation (for example, one block generates random numbers of normal distribution,
another generates uniformly distributed numbers, etc.) Each of the blocks should
generate an independent random number sequence, that is, each block is assigned an
individual stream that generates random numbers of a given distribution.

» |tisnecessary to study correlation properties of the simulation output with different
distribution parameters. In this case it looks natural to assign an individual random
number stream (subsequence) to each set of the parameters. For example, see[17].

= Each paralle process (computational node) requires an independent random number
subsequence of a given distribution, that is, a random number stream.

A random stream means a certain abstract source of random numbers. By linking such a stream to
a specific basic generator and assigning specific initial values we predetermine the random number
sequence produced by this particular stream. In VSL a universal stream state descriptor identifies
every random number stream (in C language thisis just a pointer to the structure). The descriptor
specifies the dynamically allocated memory space that contains information on the respective basic
generator and its current state as well as some additional data necessary for the leapfrog and/or
skip-ahead method. VSL has two stream creation and initialization functions:

vsl NewSt ream( stream brng, seed )
vsl| NewSt reanEx( stream brng, n, parans )

Each of these subroutines all ocates memory space to store information on the basic generator

br ng, its current state, etc., and then calls the initialization function of the basic generator br ng
that fillsthe fields of the generator current state with relevant initial values. Theinitial values are
defined either by one 32-bit value seed (for vsl NewSt r eam) or an array of n 32-bit initial values
par ams (for vsl NewSt r eanEx). The output of vsl NewSt r eamand vs| NewSt r eanEx isthe pointer
to st r eam that is, the stream state descriptor.

Y ou can create any number of streams through multiple calls of vsl NewSt r eamor
vsl Newst r eanEx functions. For example, you can generate several thread-safe streams that are
linked to the same basic generator.

The generated streams are further identified by their stream state descriptors. Although a random
number stream is a source of random numbers produced by a basic generator, that is, a generator of
uniform distribution, you can generate random numbers of non-uniform distribution using streams.
To do this, the stream state descriptor is passed to the transformation function that generates
random numbers of a given distribution. Each function uses the stream state descriptor to produce
random numbers of a uniform distribution, which are further transformed into sequences of the
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required distribution. See the section Generating M ethods for Random Numbers of Non-Uniform
Distribution for details.

When a given random number stream is no longer needed, delete it by calling vsl Del et eSt r eam
function:

vsl Del et eStrean( stream)

This function frees the memory space related to the stream state descriptor st r eam After that, the
descriptor can no longer be used.

Creating Random Stream Copy and Copying Stream State

VSL provides an option of producing an exact copy of a generated stream by calling
vsl| CopySt r eamfunction:;

vsl CopyStream newstream srcstream)

A new stream newst r eamis created with parameters (stream descriptive information) that are
exactly the same as those of the source stream sr cst r eamat the moment of calling

vs| CopySt r eam The stream state of newst r eamwill be exactly the same as that of sr cstream
and both the streams will generate random numbers using the same basic generator.

Another service function vsl Copy St r eantst at e copies the current state of the stream:

vsl CopyStreantt at e( deststream srcstream)

The streams sr cst r eamand dest st r eamare assumed to have been created by one of the above
methods, both of the streams being related to the same basic generator. The function

vsl CopySt r eanst at e copies the information about the current stream state from sr cst r eaminto
dest st r eam Other stream-related i nformation remains unchanged.

Independent Streams. Leapfrogging and Block-Splitting

One of the basic requirements for random number streams is their mutual independence and lack
of intercorrelation. Even if you want random number samplings to be correlated, such correlation
should be controllable.

The independence of streamsis provided through a number of methods. We discuss three of them,
all supported by VSL, in more detail.

»  For each of the streams you may use the same type of generators (for example, linear
congruential generators), but choose their parameters in such a way as to produce
independent output random number sequences. Wichmann-Hill generator is a good example
here. It has 273 parameter sets, which ensure that the resulting subsequences are independent
according to the spectral test. (See[11] for the spectral test details). Thus, the WH generator
is capable of creating up to 273 independent random number streams.
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» Split the original sequence into k non-overlapping blocks, where k is the number of
independent streams. Each of the streams generates random numbers only from the
corresponding block. This method is known as block-splitting or skipping-ahead.

» Split the original sequence into k digoint subsequences, where k is the number of
independent streams, in such a way that the first stream would generate the random numbers
X1, Xk+1, Xok+1, X3k+1, .-, the second stream would generate the random numbers Xz, X+ 2,
Xok+2, X3k+2, ..., and, finally, the K" stream would generate the random numbers X, Xok,
Xak, ... This method is known as leapfrogging. Note, however, that multidimensional
uniformity properties of each subsegquence deteriorate seriously as k grows. The method may
be recommended if k isfairly small.

Karl Entacher presents data on i nadequate subsequences produced by some commonly used linear
congruential generators[7].

VSL allows you to use any of the above methods, leapfrog and skip-ahead (bl ock-split) methods
deserving special attention.

VSL implements bl ock-splitting through the function vs| Ski pAheadSt r eant
vsl Ski pAheadStrean( stream nskip )

The function changes current state of the stream st r eamso that with the further call of the
generator the output subsequence would begin with the el ement Xnsqip rather than with the current
element Xo. Thus, if you wish to split the initial sequenceinto nst r eans blocks of nski p size each,
the following sequence of operations should be implemented:

Option 1

VSLSt reantt atePtr streanfnstreans];
int k;

for ( k=0; k<nstreans; k++ )

{

vsl NewSt rean( &streanik], brng, seed );
vsl| Ski pAheadSt ream( streanik], nskip*k );

}

Option 2

VSLSt reantt at ePtr streanfnstreans];

int k;

vsl NewSt rean( &streanj0], brng, seed );
for ( k=0; k<nstreans-1; k++ )

{
vsl CopyStream &streanfk+1], streanfk] );

vsl| Ski pAheadSt ream( streanik+1], nskip );
}

VSL implements the leapfrog method trough the function vs| Leapf r ogSt r eant
vsl LeapfrogStream( stream Kk, nstreans )

The function changes the stream st r eamso that the further call of the generator would generate
the output subsequence Xk, Xi+nstreams, Xk+2nstreams, --- rather than the output sequence Xo, X,

X2, ... . Thus, if you wish to split theinitial sequenceinto nstreans subsequences, thefollowing
sequence of operations should be implemented:
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VSLSt reantt atePtr strean]nstreans];
int k;
for ( k=0; k<nstreans; k++ )
{
vsl NewSt rean( &streanik], brng, seed );
vsl LeapfrogStrean( streanfk], k, nstreanms );

}

Note that two latter splitting methods make programming with vector random number generators
more natural and easy not only in parallel applications but in a sequential programs as well.

Not all VSL BRNGs support both the methods of generating i ndependent subsequences. Leapfrog
(or Skip-Ahead) method is supported only when a BRNG provides a more efficient

impl ementation than generation of the full sequence to pick out arequired subsequence. The
following table specifies which BRNG supports what methods:

BRNG Leapfrog Skip-Ahead
MCG31ml supported supported
R250 not supported not supported
MRG32k3a not supported supported
MCG59 supported supported
WH supported supported
SOBOL supported to pick out supported

individual components of
quasi-random vectors

NIEDERREITER supported to pick out supported
individual components of
guasi-random vectors

Generating Methods for Random Numbers of Non-Uniform
Distribution

Y ou can use a source of uniformly distributed random numbers to generate both discrete and
continuous distributions, which isimplemented through a number of methods briefly described
below.

Inverse Transformation

The probability distribution of a one-dimensional variate X may be most generally presented in
terms of cumulative distribution function (CDF):

F(X)=Pr(X<Xx).
Any CDF is defined on the whole real axis and is monotonically increasing, where
F(-0) =0; F(+)=1.

In the case of continuous distribution the cumulative distribution function F(x) is a continuous one.
In what follows we assume that F(x) is steadily increasing, though assuming a non-steadily
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increasing function with a limited number of intervals where it steadily increases leads to trivial
complications and generalizations of what follows.

Assuming the CDF steadily increases, the following single-valued inverse function should exist:
x=F"'(u), 0su<l.

It is easy to prove that, if U is a variate with a uniform distribution on the interval (0, 1), then the
variate X

X=F'(U)=G(U)

is of F(x) distribution. Thus, the inverse transformation method can be implemented as follows:
1. Generate a uniformly distributed random number meeting the requirements: 0 <u < 1.
2. Assume x = G(u) as a random number of the distribution F(x).

The only drawback of this approach is that G(«) in closed form is often hard to find, while
numerical solution to the equation

F(x)—u=0
to calculate x is, as a rule, excessively time consuming.

For discrete distributions the CDF is a step function, the inverse transformation method still being
applicable. For simplicity, let us assume that the distribution has probability mass points
k=0,1,2, ... with p; probability. Then the distribution function is the sum

Lx]
F(x)= Zpk )
k=0

where LxJ = floor(x) is the maximum integer that does not exceed x. If a continuous function G(u)

exists in closed form so that
G(F(k) =k, k=0,1.2,..,

and G(u) is monotone, then generation of random numbers of the distribution F(x) can be
implemented as follows:

1. Generate a uniformly distributed random number meeting the requirements: 0 <u < 1.

2. Assume k= floor(G(u)) as a random number of the distribution F(x).
For example, for the geometric distribution

k
pe=p-(I-p).
Then G(u) does exist, as it easy to prove,
In(1-u
Guy=00=1)
In(1- p)

However, for most cases finding the closed form for G(u) function is too hard. An acceptable
solution may be found using numerical search for k proceeding from

Fk—-1)<u<F(k).
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With tabulated values of F(k), the task is reduced to table lookup. As F(k) is a monotonically
increasing function, you may use search algorithms that are considerably more efficient than
exhaustive search. The efficiency is solely dependent on the size of the table.

Inverse transformation method can be applied to the s-dimensional quasi-random vectors. The
resulting quasi-random sequence has the required s-dimensional non-uniform distribution.

Acceptance/Rejection

The cumulative distribution function, let alone the inverse one, is very often much more complex
computationally than the probability density function (for continuous distributions) and the
probability mass function (for discrete distributions).

F(x)= j f(t)dt, f(x)-— probability density function

Lx]
F(x)= z p(k), p(k)—probability mass function

k=0

Therefore, methods based on the use of density (mass) functions are often more efficient than the
inverse transformation method. We will consider a case of continuous probability distribution,
although this technique is just as effective for discrete distributions.

Suppose, we need to generate random numbers x with distribution density f{x). Apart from the
variate X, let us consider the variate Y with the density g(x), which has a fast method of random
number generation and the constant ¢ such that

f(x)<cg(x), —eo<x<Hoo.

Then, it is easy to conclude that the following algorithm provides generation of random numbers x
with the distribution F(x):

1. Generate a random number y with the distribution density g(x).

2. Generate a random number u (independent of ) that is uniformly distributed over the
interval (0, 1).

3. Ifu< f(y)/cg(y),accepty as arandom number x with the distribution F(x); else go
back to Step 1.

The efficiency of this method greatly depends on degree of complexity of random number
generation with distribution density g(x), computational complexity for the functions f{x) and
2(x), as well as on the constant ¢ value. The closer c is to 1, the lower the necessity to reject the
generated ).

Note: Since quasi-random sequences are non-random, great care should be taken when using
quasi-random basic generators with acceptance/rejection methods.

Mixture of Distributions

Sometimes it may be useful to split the initial distribution into several simpler distributions:
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k
F(X) = pFR(X) + pF(¥) +..+ pF(X), 2 p =1,

i=1
so that random numbers for each of the distributions Fi(x) are easy to generate. Then the
appropriate algorithm may be as follows:

1. Generate arandom number I with the probability p;.
2. Generate arandom number Yy (independent of i) with the distribution Fi(X).
3. Accept y as arandom number X with the distribution F(X).

Thistechniqueis most common in the acceptance/rej ection method, when for the whole range of
acceptable X val ues a density g(X), which would approximate the function f(X) well enough, is
hard to find. In this case the range is divided into sections so that g(X) looks relatively simplein
each of the sub-ranges.

Note: Since quasi-random sequences are non-random, great care should be taken when using
guasi-random basic generators with mixture methods.

Special Properties

The most efficient algorithms, though based on the general methods described in the previous
sections, should, neverthel ess, make use of special properties of distributions, if possible. For
example, the inverse transformation method is inapplicable for normal distribution directly.
However, use of polar coordinates for a pair of independent normal variates makes it possible to
develop an efficient method of random number generation based on 2D inverse transformation,
which is known as the Box-Muller method:

X, =4/~ 2In(u,) sSin27m,
X, =+/=2In(u,) cos2rm,

Generating s-dimensional normally distributed quasi-random sequences with 2D inverse
transformation (VSL nameis the Box-Muller2 method), when sis odd, seems to be problematic
because quasi-random numbers are generated in pairs. One of the optionsisto generate (s+1)-
dimensional normally distributed quasi-random numbers from (s+1)-dimensional quasi-random
numbers produced by a basic quasi-random generator and then ignore the last dimension.

Another option isto use the method that produces one normally distributed number from two
uniform ones (VSL name is the Box-Muller method). In this case to generate s-dimensional
normally distributed quasi-random numbers, use 2s-dimensional quasi-random numbers produced
by a basic quasi-random generator.

For abinomial distribution with parameters m, p, the probability mass function is found as follows:
Prp(K) =Crp* (- p)™".

For p > 0.5, it is convenient to make use of the fact that

Prn,p (K) = Py (M—K) .

To summarize, we note that a uniform distribution can be converted to a general distribution by a
number of methods. Also, two different transformation techniques implemented for one and the

21



Vector Satistical Library Notes

same uniform distribution produce two different sequences of a general distribution, though
possessi ng the same statistical properties.

Let us consider asimple example. If U;, U, are two independent random values uniformly
distributed over theinterval (0, 1), that is, with the distribution function F(x) = x, 0 <x < 1, then
the variate X = max(U1, U,) hasthe distribution F(x) -F(x). Thus, on the one hand, the random
number X1 with maximum distribution from two independent uniform distributions may be derived
either froma pair of uniformly distributed random numbers Uy, Uz as X3 = max(Uz, Uy) or from
one uniform random number U; as X; = sqrt(uy) by applying the inverse transformation method. It
is obvious that applying two different methods to one and the same sequence Uy, Uz, Us, ... will
give two absol utely different sequences X;.

Transformation into non-uniform distribution sequences may be accomplished in a variety of ways
with no fastest or most accurate method existing, as arule. The inverse transformation method may
be preferable over the acceptance/rejection method for some applications and architectures, while
reverse preference is common for others. Taking thisinto account, the VSL interface provides
different options of random number generation for one and the same probability distribution. For
example, a Poisson distribution may be transformed by two different methods: the first, known as
PTPE [20], is based on acceptance/re ection and mixture of distributions techniques, while the
second one is implemented through transformation of normally distributed random numbers. The
method number calls a method for a specified generator, for example:

vi RngPoi sson( VSL_METHCD | POl SSON _PTPE, stream n, r, |anbda ) —calling PTPE
method by passing the method number VSL_METHOD_| PO SSON_PTPE.

vi RngPoi sson( VSL_METHCD | PO SSON_POI SNORM stream n, r, |anmbda ) —calling
transformation from normally distributed random numbers by passing the method number
VSL_METHOD_| PO SSON_PO SNORM

For details on methods to be used for specific distributions see Test Results for Continuous
Distributions and Test Results for Discrete Distributions sections.

Example of VSL Use
A typical algorithm for VSL generatorsisasfollows:

1. Createandinitialize streanVstreams. Functionsvs| NewSt r eam vsl NewSt r eanex,
vsl CopySt ream vsl CopySt r eantt at e, vsl Leapf rogSt r eam vsl Ski pAheadSt ream

2. Cadl oneor more RNGs.
3. Processthe output.
4. Deetethe streamystreams. Function vsl Del et eSt r eam

Note: You may reiterate steps 2-3. Random number streams may be generated for different
threads.

The following example demonstrates generation of two random streams. The first of them isthe
output of the basic generator MCG31m1 and the second one is the output of the basic generator
R250. The seeds are equal to 1 for each of the streams. The first streamis used to generate 1,000
normally distributed random numbers in blocks of 100 random numbers with parametersa = 5 and
sigma = 2. The second stream is used to produce 1,000 exponentially distributed random numbers
in blocks of 100 random numbers with parameters a = —3 and beta = 2. Delete the streams after
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completing the generation. The purposeis to calculate the sample mean for normal and exponential
distributions with the given parameters.

i ncl ude <stdio. h>

i ncl ude “nkl.h”

float rn[100], re[100]; /* buffers for random nunbers */
float sn, se; /* averages */

VSLStreantt atePtr streann, streane;

int i, j;
/* Initializing */
sn = 0. 0f;
se = 0.0f;

vsl NewSt rean( &streamn, VSL_BRNG MCG31, 1 );
vsl NewSt rean( &streane, VSL_BRNG R250, 1 );
/* Generating */
for ( i=0; i<10; i++)
{
vsRngGaussi an( VSL_METHOD_SGAUSSI AN_BOXMULLERZ,
streamm, 100, rn, 5.0f, 2.0f );
vsRngExponenti al (VSL_METHOD SEXPONENTI AL_| CDF,
streanme, 100, re, -3.0f, 4.0f );
for ( j=0; j<100; j++ )
{

sn +=rn[j];
se +=re[j];
}

}
sn /= 1000. Of;

se /= 1000. Of;

/* Deleting the streans */

vsl Del et eStreanm &stream );

vsl Del et eStreanm &streane );

/* Printing results */

printf( “Sanple nmean of normal distribution = %\n", sn);
printf( “Sanpl e nmean of exponential distribution = %\n", se );

When you call a generator of random numbers of normal (Gaussian) distribution, use the named
constant VSL_METHOD_SGAUSSI AN_BOXMULLER? to invoke the Box-Muller2 generation method. In
the case of a generator of exponential distribution assign the method by the named constant
VSL_METHOD_SEXPONENTI AL_| CDF.

The following example generates 100 3-dimensional quasi-random vectorsin the (2,3)3
hypercube using Sobol BRNG.

i ncl ude <stdio. h>

i ncl ude “nkl.h”

float r[100]1[3]; /* buffer for quasi-random nunbers */
VSLStreantt atePtr stream

/* Initializing */
vsl NewSt ream &stream VSL_BRNG SOBOL, 3 );
/* Generating */
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vsRngUni form( VSL_METHOD_SUNI FORM STD,

stream 100*3, (float*)r, 2.0f, 3.0f );
/* Deleting the streans */
vsl Del eteStrean( &stream);

Testing of Basic Random Number Generators

Three implementations are available for every basic generator:
* integer implementation (output is a 32-bit integer sequence)
* real (Single precision)
» real (double precision).

Y ou can use the basic generator integer output to obtain random bits or groups of bits. However,
when you interpret the output of a generator, you should take into consideration the characteristics
of each basic generator in general and its bit precision in particular. For detailed information on
implementations of each basic generator see Basic Random Generator Properties and Testing
Results.

All VSL basic generators are tested by a number of specially designed empirical tests. These tests
are applied either for floating-point sequences or for integer-valued sequences.

The set of tests for basic generators can be divided into three categories:
» teststoanalyze the randomness of bits/groups of bits
* teststo analyze the randomness of real random numbers normalized to theinterval (0, 1)

* teststo analyze conformance to the template.

First Category

Y ou can only use the first category tests to eval uate the basic generator integer i mplementation.
The function vi RngUni f or nBi t s corresponds to the integer i mplementation on the interface level.
The testing in this category of testsis made with regard to characteristics of each basic generator
and its bit precisionin particular. Y ou can subsequently use the results of the teststo decide if you
can apply this particular basic generator to obtain random bits or groups of bits. A failed test does
not mean that the generator is bad but rather that the interpretation of theinteger output as the
stream of random bits may result in an inadeguate simulation outcome. Also, this category
includes a set of tests to determine the degree of randomness of upper, medium and lower bits. For
example, upper bits may prove to be much more random than lower. Thus some tests may indicate
which bits or groups of bits are better for use as random ones.

Second Category

The second category contains different tests for basic generator normalized output. Y ou can apply
all these tests for real implementation of both single and double precision. Moreover, in most
cases, the testing results are identical for both implementations, which proves that non-randomness
of lower bitsin the original integer sequence does not have practical influence on the randomness
of thereal basic generator output normalized to the (0, 1) interval. The functions vsRngUni f or m
and vdRngUni f or m for single and double precision respectively, correspond to real
implementations on the interface level.
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Third Category

The third category contains tests to check how a basic generator output conforms to the template.
Template tests variations check if the leapfrog and skip-ahead methods generate subseguences of
random numbers correctly. These tests are particularly important because, if any current member
of the integer sequence differs from the template in a single bit only, the resulting sequence will be
totally different from the template sequence. Also, the statistical properties of such sequence are
worse than those of the template sequence. This assumption is based on the fact that in a variety of
sequences there are a very small number of “ sufficiently random” sequences. As Knuth suggests,
“random numbers should not be generated with a method chosen at random” [11]. However,
situations are possible, where the random choice of the method of generation is not a result of
personal preference but rather the curse of a bug.

Interpreting Test Results

Testing of a generator for all possible seeds and sampling sizesis hardly practicable. Therefore we
actually test only a few subseguences of various lengths.

Testing arandom number sequence Ui, Uy, ..., U, gives a p-value that falls within the range from
0to 1. Being afunction of arandom sampling, this p-valueis a random number itself. For the
sequence Uy, Uy, ..., Uy of truly random numbers the resulting p-value is supposed to be uniformly
distributed over the interval (O, 1). Significant p-val ue deviation from the theoretical uniform
distribution may indicate a defect in the tested sequence. For example, we may consider the
sequence Uy, Uy, ..., Uy suspicious, if the resulting p-val ue falls outside the interval (0.01, 0.99).
The chancetorgect a‘good’ sequencein this caseis 2%.

Multiple testing of different subsequences of the sequence makes the statistical conclusion about
the sequence randomness more substantiated with several options to arrive at such a conclusion.

One-Level (Threshold) Testing

When we test K subsequences Uy, Uy, ..., Un; Un+1, Un+2, «.oy Uzn; ooo U-)n+ 1, UK-Dn2y oo
Ukn of the original sequence, we compute p-values Py, Pz, ..., Pk. For a subsequence Ug-1)n+1,
UG -yn+2, ..., Ujn thetest j isfailed, if the value p; falls outside the interval (pi, pr) O (0, 1). We
consider the sequence Uz, Uy, ..., Ukn Suspicious when r or more test iterations failed.

We have conducted threshold testing for the VSL generators with 10 iterations (K=10), the interval
(P1, Pn) equal to (0.05, 0.95), and r = 5. The chanceto reject a‘good’ sequenceinthiscaseis
0.16349374% [J0.2%.

Two-Level Testing

When we test K subsequences Uy, Uy, ..., Un; Un+1, Un+2, «.o Uzn; oo U-)n+ 1, UK-Dn2y oo
Ukn of the original sequence, we compute p-values p1, Pz, - .., Px. Since the resulting p-val ues for
the sequence Uz, Uy, ..., Ukn Of truly random numbers are supposed to be uniformly distributed
over theinterval (0, 1), we may subject those p-values to any uniformity test, thus obtaining p-
value q; of the second level. After going through this procedure L times we obtain L p-values of
the second level Q1, O, ... , Q. that we subject to threshold testing.

We have conducted threshold second level testing for the VSL generators with 10 iterations (L=10)
and applied the K olmogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to
evaluate p1, Pz, ..., Pk uniformity.
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BRNG Tests Description

Most of empirical tests that are used for testing the VSL BRNGs are well documented (for
example, see[16], [21]). Nevertheless, we find it useful to describe them and the testing procedure
in greater detail here since tests may vary asto their applicability and implementation for a
particular basic generator. We also provide figures of merit that are used to decide on passing vs.
failurein one- or two level testing. For ideas underlying such criteria see Interpreting Test Results
section.

3D Spheres Test

Test Purpose

The test uses simulation to evaluate the randomness of the triplets of sequential random numbers
of uniform distribution. The stable response is the volume of the sphere. The radius of the sphereis
equal tothe minimal distance between the generated 3D points.

First Level Test

The test generates the vector U;j of 12,000 random numbers (i =0, 1, ... , 11999), which are
uniformly distributed in the (0, 1000) interval. The test forms 4,000 triplets of random numbers X
= (Usk, Usk+1, Usk+2) (K=0, 1, ..., 3999) situated in the cube R = (0, 1000)x(0, 1000)x(0, 1000).
Further, the test calculates dmi n= d(X, X1) (I ZK), where d(X, y) isthe Euclidean distance
between x and y. In this case, the volume of the sphere with the dnin radius should have the
distribution close to the exponential onewith a =0, 8= 40rparameters. Thus, the distribution of
the p = 1 — exp(—(drin)¥/30) value should be close to the uniform distribution. The p-valueisthe
result of thefirst level test.

Second Level Test

The second level test performs the first level test tentimes. Thep-valuep;, j =1, 2, ..., 10isthe
result of each first level test. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistic to the obtained set of pj (j = 1, 2, ..., 10). If theresulting p-valueis
p<0.05 or p>0.95, the test fails.

Final Result Interpretation

The final result isthe FAIL percentage for the failed first level tests. The test performs the second
level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application

vsRngUniform applicable
vdRngUniform applicable
viRngUniform not applicable
viRngUniformBits applicable

Note: The test transforms the integer output into the real output within the interval (0, 1) for the
function vi RngUni f or nBi t s. For detailed information about the normalization of the integer
output see the description of the given basic generator.
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Birthday Spacing Test

Test Purpose

The test uses simulation to evaluate the randomness of groups of 24 sequential bits of the integer
output of basic generator. Thetest analyzes all possible groups of the kind, that is, for example,
from 0 to 23 hit, from 1 to 24 hit, etc.

First Level Test

Thefirst level test selects at random m = 2™ “ birthdays’ froma“year” of n = 2% days. Then the
test computes the spacing between the birthdays for each pair of sequential birthdays. The test then
uses the spacings to determine the K val ug, that is, the number of pairs of sequential birthdays with
the spacing of more than one day. In this case K should have the distribution close to the Poisson
distribution with the A = 16 parameter. Thefirst level test determines 200 valuesof K (j = 1, 2, ...,
200). To obtain the p-value p, the test applies the chi-square goodness-of-fit test to the determined
values.

Theinteger output lists different interpretations for each basic generator.

1a\[€] Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

The test generates the dates of the birthdays in the following way:

« Sdectsthebs, bsi1, ..., Dst23 bits fromthe next WS-bit integer of the integer output of
vi RngUni fornBi ts.

» Treatsthe selected bits as a 24-bit integer, that is, the number of the date on which the
next birthday takes place and thus generates a birthday.

* Thetest performsthe steps 1 and 2 m times to generate m birthdays taken that the year
consists of n days. Thelegitimate values s are different for each base generator (seethe
table above): 0<s< NB -24.

Second Level Test

The second level test performsthe first level test ten times for the fixed s. The test applies the
Kol mogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtai ned set of
pi(=12,...,10).If theresulting p-valueiis p<0.05 or p>0.95, the test fails for the given's.
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Final Result Interpretation

The second level test performsten timesfor each 0 < s< NB — 24. The test computes the FAI L
percentage for the failed second level tests. The final result isthe minimal percentage of the failed
tests FAIL = min(FAILo, FAILy, ..., FAILNg24) for 0< s< NB —24. The applicable result isthe
value of FAIL<50%. Thus, the test determines if it is possible to select 24 random bits from every
element of theinteger output of the generator.

* Theinteger output for the WH generator is the quadruples of the 32-bits values (X, Vi, Z,
W,). In each 32-bit value only the lower 24 bits are significant.

» Thesecond level test performs ten times for the X; element. Then the test computes the
FAIL percentage the failed second level tests.

» Thesecond level test performs ten times for the y;. Then the test computes the FAILy
percentage for the failed second level tests.

»  Thetest performs the same procedure to compute the FAIL; and FAIL,y values.

The final result is the minimal percentage of the failed tests FAIL = min(FAILy, FAILy, FAIL,
FAILy). The acceptable result is the value of FAIL < 50%.

Thetest determinesiif it is possible to select 24 random bits from the fixed element X, y, zor wfor
each element of the integer output of the generator.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

Bitstream Test

Test Purpose

The test uses simulation to check if it is possible to interpret the integer output of the basic
generator as a sequence of random bits.

Note: The bit precision of a basic generator defines the sequence of random bits formation. For
example, only 59 lower bits take part in the bit stream formation for the MCG59 generator, and
only 31 lower bitsfor the MCG31 generator.

First Level Test

Thefirst level test initially forms the sequence of bits bg, b1, by, ... from theinteger output of the
basic generator and then forms 20-bit overlapping words Wo = bp bs...b19, Wi = by by... by, ...
from the sequence. From the total number of 20% formed words the test computes the quantity K
of the missed 20-bit words. For the truly random sequence the K statistic distribution should be
very close to normal with mean a = 141,909 and standard deviation g = 428. The test denotes the
cumulative function of the normal distribution with these parameters as F(x). Theresult isthat the
distribution of the p-value p = F(K) should be uniform within the interval of (0, 1).
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BRNG Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

The test selects only NB of lower bits from each WS-hit integer to form a bit sequence. The test
selects only NB of lower bits from each of four WS-bit elements for WH generator.
Second Level Test

The second level test performsthe first level test 20 times. The result of each first level test isthe
p-vauep;, ] =1, 2, ..., 20. The test applies the K olmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of p; (j =1, 2, ..., 20). If theresulting p-valueis
p<0.05 or p>0.95, the test fails.

Final Result Interpretation

The final result of thetest isthe FAIL percentage of the failed second level tests. The second level
test performsten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The lower bits are not random for multiplicative congruential generators where the moduleisthe
power of two (for example, MCG59), thus, the Bitstream Test fails for such generators.

Rank of 31x31 Binary Matrices Test

Test Purpose

The test evaluates the randomness of 31-bit groups of 31 sequential random numbers of the integer
output. The stable responseis the rank of the binary matrix composed of the random numbers. The
test performsiiterations for all possible 31-bit groups of bits (0-30, 1-31, ...) for the generators
with more than 31 bit precision.

First Level Test

Thefirst level test selects, with s fixed, groups of bits bs, Ds+1, ..., Ds+30 from each element of the
integer output and forms a binary matrix 31x31 in size from these 31 groups. Thefirst level test
composes 40000 of such matrices out of sequential elements of the integer output of the generator.
Then the test computes the number of matrices with the rank of 31, the number of matrices with
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the rank of 30, the number of matrices with the rank of 29, and the number of matrices with the
rank less than 29. For the truly random sequence, the probability of composing a 31 rank matrix is
0.289, a 30 rank matrix is 0.578, a 29 rank matrix is 0.128, and a less than 29 rank matrix is 0.005.
Therefore, the test divides all possible matrix ranks into four groups. Thetest makesa V dtatistic
with a chi-square distribution with three degrees of freedom for these four groups. Then the first
level test applies the chi-sguare goodness-of-fit test to the groups. The testing result is the p-value.

Note: The acceptable values of 0 ='s <NB — 31 are specific for each basic generator. The test is
not applicable for the basic generator WH.

BRNG Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

Thetest selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test

The second level test performsthe first level test ten times for the fixed s. The result is the set of p-
valuesp;, j =1, 2, ..., 10 .The test applies the K olmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of p; j = 1, 2, ..., 10. If the resulting p-valueis
p<0.05 or p>0.95, thetest failsfor the s.

Final Result Interpretation

The second level test performsten times for each 0 < s< NB — 31. Thetest computes the FAIL
percentage of the failed second level tests. The final result isthe minimal percentage of the failed
tests FAIL = min(FAILo, FAILy, ..., FAlLyg-3;) for 0< s< NB —31. The acceptable result is the
value of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 31
random bits out of each element of generator integer output such that 31 random numbers of 31
bits each have a random enough behavior under this particular test.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The Rank of 31x31 Binary Matrices Test cannot be applied to the generator WH as each element
of this generator is only 24-hit.

30



Vector Satistical Library Notes

Rank of 32x32 Binary Matrices Test

Test Purpose

The test evaluates the randomness of 32-bit groups of 32 sequential random numbers of the integer
output. The stable responseis the rank of the binary matrix composed of the random numbers. The
test performsiiterations for all possible 32-bit groups of bits (0-31, 1-32,...) for the generators with
the bit precision of more than 32 bits.

First Level Test

Thefirst level test selects, with s fixed, groups of bits bs, bs+1, ..., Ds+31 from each element of the
integer output. Then it forms a binary matrix 32x32 in size from these 32 groups. Thefirst level
test composes 40000 of such matrices out of sequential e ements of the integer output of the
generator. Then the test computes the number of matrices with the rank of 32, the number of
matrices with the rank of 31, the number of matrices with the rank of 30, and the number of
matrices with the rank less than 30. For the truly random sequence the probability of composing a
30 rank matrix is 0.289, a 31 rank matrix is 0.578, a 30 rank matrix is 0.128, and a less than 30
rank matrix is 0.005. Therefore, the test divides all possible matrix ranks into four groups. The test
makes a V statistics with a chi-square distribution with three degrees of freedom for these three
groups. Then thefirst level test applies the chi-square goodness-of-fit test to the groups. The
testing result is the p-val ue.

Note: The acceptable values of 0 ='s <NB-32 are specific for each basic generator. The test is not
applicable for basic generators MCG31 and WH.

1a\[€] Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

Thetest selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test

The second level test performsthe first level test ten times for the fixed s. The result is the set of p-
valuesp;, j =1, 2, ..., 10 .Thetest applies the K olmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj, j =1, 2, ..., 10. If the resulting p-valueis
p<0.05 or p>0.95, thetest failsfor the s.

Final Result Interpretation

The second level test performsten times for each 0 < s< NB — 32. The test computes the FAIL
percentage of the failed second level tests. The final result isthe minimal percentage of the failed
tests FAIL = min(FAILo, FAILy, ..., FAILyg-32) for 0 < s< NB —32. The acceptable result is the
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value of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 32
random bits out of each element of generator integer output such that 32 random numbers of 32
bits each have a random enough behavior under this particular test.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The Rank of 32x32 Binary Matrices Test cannot be applied to the WH generator as each element
of this generator is only 24-hit.

The Rank of 32x32 Binary Matrices Test cannot be applied to the MCG31generator as each
element of this generator is only 31-hit.

Rank of 6x8 Binary Matrices Test

Test purpose

The test evaluates the randomness of the 8-bit groups of 6 sequential random numbers of the
integer output. The stable responseis the rank of the binary matrix composed of the random
numbers. The test checks all possible 8-bit groups. 0-7, 1-8, ...

First Level Test

Thefirst level test selects, with s fixed, groups of bits bs, Ds+1, ..., Ds+7 from each element of the
integer output and forms a binary matrix 6x8 in size from these 6 groups. Thefirst level test
composes 100000 of such matrices out of sequential e ements of the integer output of the
generator. Then the test computes the number of matrices with the rank of 6, the number of
matrices with the rank of 5, and the number of matrices with the rank lessthan 5. For the truly
random sequence the probability of composing a 6 rank matrix is 0.773, a5 rank matrix is 0.217,
and alessthan 5 rank matrix is 0.010. Therefore, the test divides all possible matrix ranks into
three groups. The test makes a V statistic with a chi-square distribution with two degrees of
freedom for these three groups. Then the first level test applies the chi-square goodness-of -fit test
to the groups. The testing result is the p-value.

Note: The acceptable values of 0 ='s <NB — 8 are specific for each basic generator. The test
checks each of the 4 elements of the integer output for the WH basic generator.

1a\[€] Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.

R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.

MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.

MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
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WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

The test selects only NB of lower bits from each W5-bit integer to form a bit sequence.

Second Level Test

The second level test performsthe first level test ten times for the fixed s. The result is a set of p-
valuesp;, j =1, 2, ..., 10. The test applies the Kolmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained set of pj, j =1, 2, ..., 10. If the resulting p-valueis
p<0.05 or p>0.95, thetest failsfor the s.

Final Result Interpretation

The second leve test performs ten times for each 0 < s< NB-8. The test computes the FAIL
percentage of the failed second level tests. The final result isthe minimal percentage of the failed
tests FAIL = min(FAILg, FAILy, ..., FAlLygg) for 0 < s< NB-8. The acceptable result is the value
of FAIL < 50%. Therefore the test indicates whether it is possible to single out at least 8 random
bits out of each element of generator integer output such that six random numbers of eight bits
each have a random enough behavior under this particular test.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The Rank of 6x8 Binary Matrices Test checks each element of the WH generator separately as
different multiplicative generators produce its el ements.

Count-the-1's Test (stream of bits)

Test Purpose

The test evaluates the randomness of the overlapping random five-letter words sequence. The five-
letter words have the specified distribution of the probabilities of obtaining the specified letter. The
test forms the random |etters from the integer output of the basic generator. The test regards the
integer output as a sequence of bits.

First Level Test

Thefirst level test assumes that the integer output is a sequence of random bits. The test interprets
this bit sequence as a sequence of bytes, that is, a sequence of 8-hit integer numbers. The number
of 1'sin every random byte should have a binominal distribution with m= 8, p = 1/2 parameters.

Therefore, the probability of getting k 1'sin abyteis equal to 27 CE'; . Thefirst level test regards a
random variable c that takes five possible val ues:

¢ =0, if the number of 1'sinarandom byteis less than three,
¢ =1, if the number of 1'sin arandom byteisthree,
¢ = 2, if the number of 1'sin arandom byteis four,

¢ = 3, if the number of 1'sinarandom byteisfive,
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¢ = 4, if the number of 1'sin arandom byteis more than five.

The probability distribution of ¢ isthe following:
g =2°(Co +Ch +Ci}q, =2 °Clia, =2°Cliq, =27Cliq, =27°(CE +C] +CF).

Thetest interprets ¢ as a selection of a random letter from the alphabet {a, b, ¢, d, €} with the
probabilities q,,0,,0d,,0;,0, respectively. Thus, the sequence of random bytes bo, by, by, ...

corresponds with the defined sequence of random letters o, |1, |2, ... . Thetest forms overlapping
words of length four: vi = I 1o |3 |4, Vo=1o |3 I4 |5, ... and length five: wy = I11o |3 I4 |5, wo = 1o
I31415 g, ... fromthis sequence. The test computes the frequencies of getting each of 625 of
possible four-letter words and of 3,125 of possible five-letter words for 2,560,000 of the obtained
words. According to these frequencies, the test makes the chi-sguare statistics V; and V. for the
four- and five-letter words respectively. The test takes into account the covariance of the
frequencies of the fallouts of four-letter and five-letter words and performs the chi-square test for
the V, -V, statistic. The V, -V, statistic is asymptotically normal with a mean a = 2500 and
standard deviation o= 70.71. The result of the first level test is the p-value.

BRNG Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.

Thetest selects only NB of lower bits from each WS-bit integer to form a bit sequence.

Second Level Test

The second level test performsthe first level test ten times. The test applies the Kolmogorov-
Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtained p-values of pj, j = 1,
2, ..., 10. If theresulting p-valueis p < 0.05 or p > 0.95, the test fails.

Final Result Interpretation

The second level test performs ten times. The test computes the FAIL percentage of the failed
second level tests. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The WH generator uses all the four elements to form a bit sequence.
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Count-the-1's Test (stream of specific bytes)

Test Purpose

The test evaluates the randomness of the overlapping random five-letter words sequence. The five-
letter words have the specified distribution of the probabilities of obtaining the specified letter. The
test forms the random |etters from the integer output of the basic generator. The test selects only 8
sequential bits from each element, starting with a certain fixed bit s.

First Level Test

Thetest selectsthe dg, ds:1, ..., Osi7 bits determining the next random byte from each element of
the integer output, where 0 < s< NB-8 (see the table below). The number of 1'sin every random
byte should have a binominal distribution with m =8, p = 1/2 parameters. Therefore, the

probability of getting k 1'sin abyteis equal to2° CE'; . Thefirst level test regards arandom
number that takes five possible values:

¢ =0, if the number of 1'sinarandom byteis less than three,

¢ =1, if the number of 1'sin arandom byteisthree,

¢ = 2, if the number of 1'sin arandom byteis four,

¢ = 3, if the number of 1'sinarandom byteisfive,

¢ = 4, if the number of 1'sin arandom byteis more than five.

The probability distribution of ¢ isthe following:
g =2°(C¢ +Cl +C2)q, =2°Cliq, =2°Cf0, =27°Cliq, =2°(CE +C] + ).

Thetest interprets ¢ as a selection of arandom letter from the alphabet {a, b, ¢, d, €} with the
respective probabilities q,,0;,,0,,ds,d, . Thus, the sequence of random bytes bo, by, by, ...

corresponds with the defined sequence of random letters|o, |1, I2, ... . Thetest forms overlapping
words of length four: vi = I11o |3 |4, Vo= 1, |3 I4 |5, ... and length five: wy = I11o |3 I4 |5,

W =12 13141516, ... fromthis sequence. The test computes the frequencies of getting each of 625
of possible four-letter words and of 3,125 of possible five-letter words for 256,000 of the obtained
words. According to these frequencies, the test makes the chi-sguare statistics V; and V. for the
four- and five-letter words respectively. The test takes into account the covariance of the
frequencies of the fallouts of four-letter and five-letter words and performs the chi-square test for
the V, -V, statistic. The V, -V, statistic is asymptotically normal with a mean a = 2500 and
standard distribution o= 70.71. Theresult of the first level test isthe p-value.

1a\[€] Integer Output Interpretation

MCG31m1 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-30. NB=31, WS=32.
R250 Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MRG32k3a Array of 32-bit integers. Each 32-bit integer uses the following bits:
0-31. NB=32, WS=32.
MCG59 Array of 64-bit integers. Each 64-bit integer uses the following bits:
0-58. NB=59, WS=64.
WH Array of quadruples of 32-bit integers. Each 32-bit integer uses the following
bits: 0-23. NB=24, WS=32.
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Second Level Test

The second level test performsthe first level test ten times for the fixed 0 < s< NB-8. The test
applies the K olmogorov-Smirnov goodness-of-fit test with Anderson-Darling statistics to the
obtained p-values of pj, j =1, 2, ..., 10. If the resulting p-valueis p < 0.05 or p > 0.95, the test fails
for thes.

Final Result Interpretation

The second leve test performsten times for each of 0 < s< NB-8. The test computes the FAIL
percentage of the failed second level tests. The final result isthe minimal for 0 < s< NB-8
percentage of the failed tests FAIL = min(FAILo, FAIL4, ..., FAlLyg-g). The acceptable result isthe
value of FAIL < 50%. Therefore, the test determines whether it is possible to select at least 8
random bits from each element of the integer output of the generator.

Tested Generators

Function Name Application

vsRngUniform not applicable
vdRngUniform not applicable
viRngUniform not applicable
viRngUniformBits applicable

The test checks each of the four elements separately for the WH generator.

Craps Test

Test Purpose

The test evaluates the randomness of the output sequence of random numbers of the uniform
distribution that imitates the process of dice tossing when gambling Craps. The stable responseis
the number of tosses of the pair of dice necessary to complete the game and the frequency of wins
inthe game.

First Level Test

The test forms a sequence of random numbers equiprobably taking the values from 1 to 6 from the
output sequence of random numbers. The test treats every number as a number of spots on the face
of adie. Thusthetest regards a pair of numbers as the result of atoss of two dice. If onthefirst
throw of dice the sum of the spots on the faces of dice equalsto 7 or 11, it isawin; if the sum
equals 2, 3or 12, itisaloss. In other casesit is necessary to make additional throws to define the
result of the game.

The test performs additional throws until the sum of the spots equalsto 7 or coincides with the sum
thrown on the first throw. If the sum equalsto 7, itisaloss, otherwise, itisawin.

The theoretical probability of the win is 244/495, that is, alittle lessthan 0.5. Further, the
frequency of winswith the K-multiple repeats of the game, when K = 200,000, has a very close to
normal distribution with mean a = K*244/495 and standard deviation o= a* 251/495.

The number of throws necessary to complete the game can take the 1,2, ... values. On K-multiple
iterations of the game, the test computes the frequencies of gettingc=1,c=2, ...,c =20, ¢ > 20.
Based on these frequencies, the test makes the chi-square statistics V with the chi-square
distribution with 20 degrees of freedom.
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The result of the first level test is the pair of p-values p and g for the number of tosses and the
frequency of wins respectively.

Second Level Test

The test performsthefirst level test ten times. The result of each iteration of the first level test is
the pair of p-valuespjand g, j = 1, 2, ..., 10. The test applies the K olmogorov-Smirnov goodness-
of-fit test with Anderson-Darling statistics to the obtained p-valuesof p;, j = 1, 2, ..., 10. If the
resulting p-valueisp < 0.05 or p > 0.95, the test fails. Similarly, the test applies the Kolmogorov-
Smirnov goodness-of-fit test with Anderson-Darling statistics to the obtained p-values of g, j = 1,
2, ..., 10. If theresulting p-valueis g < 0.05 or g > 0.95, the stest fails. Thetest passesin all other
cases.

Final Result Interpretation

The final result of thetest isthe percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application

vsRngUniform applicable
vdRngUniform applicable
viRngUniform applicable
viRngUniformBits applicable

Parking Lot Test

Test Purpose

The test evaluates the randomness of two-dimensional random points uniformly distributed in the
square with a side of length 100. The stable response is the number of successfully “parked” points
from the 12,000 random two-dimensional points.

First Level Test

The test assumes a next random point (X, y) successfully “parked”, if it is far enough from every
previous successfully “parked” point. The sufficient distance between the points (X1, Y1) and

(X2, Y2) is minﬂx1 = Xo|\|y; = y2|) > 1. Numerous experiments prove that out of 12,000 of truly
random points only 3,523 points park successfully in average. Moreover, the K val ue of points
successfully parked after 12,000 attempts haves close to normal distribution with mean a = 3,523

and standard deviation o= 21.9. Consequently, (K—a)/ g should have a close to standard normal
distribution with the ®(x) cumulative distribution function. The result of the test is the p-value

p=®(K-a)/o).

Second Level Test

The test performsthefirst level test ten times. The result of each iteration of the first level test is
the p-value pj, j = 1, 2, ..., 10. The test applies the K olmogorov-Smirnov goodness-of-fit test with
Anderson-Darling statistics to the obtained p-values of pj, ] =1, 2, ..., 10. If the resulting p-value
isp<0.05o0r p>0.95, thetest fails.
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Final Result Interpretation

The final result of thetest isthe percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.

Tested Generators

Function Name Application

vsRngUniform applicable
vdRngUniform applicable
viRngUniform not applicable
viRngUniformBits applicable

2D Self-Avoiding Random Walk Test

Test Purpose

The test eval uates the randomness of the output vector of the generator. The stable responseisthe
frequency of achieving the upper side of the lattice by the point walking randomly along the sites.

First Level Test

A random particle walks along the sites of a square lattice. With each new step, the particle moves
in one of possible directions one step forward cornerwise. A square lattice has two types of sides:
the lower and | eft-hand sides are totally reflecting, while the upper and right-hand sides are totally
adsorbing. Reaching the lower and |eft-hand sides, the vector of the movement direction makes a
90-degree bend. The upper and right-hand sides adsorb the particle when it reaches them and the
walking process completes. The particle starts its movement from the lower |eft-hand site of the
lattice in the northeast direction. If the particle encounters an unvisited site, it changes the direction
vector with a2 probability clockwise or counter-clockwise by 90 degrees and continues the
walking process. If the particle encounters an already visited site of the lattice, it definesthe
movement direction according to the conditions of inadmissibility of re-tracing at least a part of the

passed path.

Dueto the symmetry of the task, either upper or the right-hand side should equiprobably adsorb
the particle. The test determines the frequency of the achievement of the upper side of the lattice
by the result of 500 iterations of the walking process. If M isthe number of attempts when the
particle reaches the upper side, then K = (2M - 500)/ v/500 hasthe close to standard normal
distribution ®(x) . The result of the first level test isthe p-value p=®(K) .

Second Level Test
The test performsthefirst level test ten times. The result of each iteration of the first level test is
the p-value pj, j = 1, 2, ..., 10. The test applies the K olmogorov-Smirnov goodness-of-fit test with

Anderson-Darling statistics to the obtained p-values of pj, | =1, 2, ..., 10. If the resulting p-value
isp<0.050r p>0.95, thetest fails.

Final Result Interpretation

The final result of thetest isthe percentage FAIL of the failed second level tests. The test performs
the second level test ten times. The acceptable result is the value of FAIL < 50%.
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Tested Generators

Function Name Application

vsRngUniform applicable
vdRngUniform applicable
viRngUniform not applicable
viRngUniformBits applicable

Template Test

Test Purpose

The test evaluates the conformity of the generator output with the template sequence of random
numbers. The test forms the specified output integer sequence X, X, ,...X, , X,,;,... fromthe
recurrence specifying initial conditions. The parameters of the recurrences are selected such that
the output sequences possess “ good” properties (good multidimensional uniformity, large period,
etc.). If the test computes any member of sequence x, incorrectly, that resultsin incorrect
computing of the other members X,,,,... of the sequence. Moreover, if X, differsfrom the correct

(template) sequencein one bit, the subseguent members of sequence may differ significantly from
the template sequence. In this connection the quality of the obtained sequenceis highly probable to
be much worse than the quality of the template sequence. That iswhy all the basic generators of
the VSL undergo thorough tests for template sequences conformity.

The test also checks the basic generators with the random output numbers U, U, ,...,U,, U,y ...,
uniformly distributed over the (a,b) interval for the template output conformity.

Obviously, the output sequences are different for real arithmetic of single and double precision.
Other from the integer output where every member should coincide bitwisely with the template
member, it is not necessary for the real output members. The lower bits of mantissa of the real
output do not influence randomness, these are the upper bits that determine the quality of the

output sequence. For example, the coincidence of the upper binary digits of mantissais sufficient
enough for most applications. (See the chapter Spectral Testin[11]).

Thistest is also used to validate VSL basic quasi-random number generators

Final Result Interpretation

The final result isthe number of the sequence members that do not coincide with the template
members. The value should be equal to O.

For real sequences the test assumes that the sequence member coincides with the template
member, if at least 8 upper binary digits of mantissa coincide.

Tested Generators

Function Name Application

vsRngUniform applicable
vdRngUniform applicable
viRngUniform not applicable
viRngUniformBits applicable
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Basic Random Generator Properties and Testing Results

This section contains the empirical testing results for the VSL basic generators described in the
BRNG Test Description section and other information on the properties of basic generators and the
rules of the output vector interpretation.

MCG31m1l

Thisisa 31-bit multiplicative congruential generator
X, = ax,_,(modm)

u, = X,/m

a=1132489760,m=2" -1

MCG31mil belongs to linear congruential generators with the period length of approximately 2%.
Such generators are till used as default random number generators in various software systems,
mainly due to the simplicity of the portable versionsimplementation, speed and compatibility with
the earlier systems versions. However, their period length does not meet the requirements for
modern basic generators. Still, the MCG31ml generator possesses good statistic properties and
you may successfully use it to generate random numbers of different distributions for small
samplings.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values U, U, ,...

Integer Implementation

The output vector of 32-bit integers X, X, ,...

Stream Initialization by the Function vsl NewSt r eam

MCG31ml generates the stream and initializes it specifying the input 32-bit parameter seed :
e AssumeXg=seed nod O0x7FFFFFFF
e Ifxo=0, assumexp = 1.

Stream Initialization by the Function vsl NewSt r eanEx

MCG31ml generates the stream and initializes it specifying thearray n of 32-bit integers
parans[]:

* Ifn =0,assumex,= 1
» OtherwiseassumeXxy, = paranms[0] nod Ox7FFFFFFF
0 |If xg=0, assumexg=1.

Subsequences Selection Methods
vsISkipAheadStream supported

vslLeapfrogStream supported
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Generator Period

0=2"-2=21x10°.

Lattice Structure
Mg=0.72771, M= 0.61996, M3, = 0.61996 (for more details see [12]).

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (10% errors) | OK (10% errors) N/A OK (10% errors)
Birthday Spacing Test N/A N/A N/A OK (0% errors)
Bitstream Test N/A N/A N/A OK (10% errors)
Rank of 31x31 Binary N/A N/A N/A OK (10% errors)
Matrices Test
Rank of 32x32 Binary N/A N/A N/A N/A
Matrices Test
Rank of 6x8 Binary N/A N/A N/A OK (0% errors)
Matrices Test
Counts-the-1's Test N/A N/A N/A OK (20% errors)
(stream of bits)

Counts-the-1's Test N/A N/A N/A OK (0% errors)
(stream of specific

bytes)

Craps Test OK (20% errors) | OK (20% errors) | OK (20% errors) OK (20% errors)
Parking Lot Test OK (10% errors) | OK (10% errors) N/A OK (10% errors)
2D Self-Avoiding OK (20% errors) | OK (20% errors) N/A OK (20% errors)
Random Walk Test

Note:
* N/A meansthat thetest is not applicable to this function.

» Thetabulated datais obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in lessthan 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

» Thestreamtested is generated by calling the function vsI NewSt r eamwith
seed=7,777,777.

R250

Thisis a generalized feedback shift register generator
Xy = Xn-108 H X250

u, = X,/2%
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Feedback shift register generators possess ampl e theoretical foundation and first were intended for
cryptographic and communication applications. The physicists widely use R250 generator, asitis
simple and fast in implementation. However, it fails some types of tests, one of whichisthe 2D
Sdf-Avoiding Random Walk Test.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values U, U, ,...

Integer Implementation

The output vector of 32-bit integers X, X, ,...

Stream Initialization by the Function vsl NewSt r eam

R250 generates the stream and initializes it specifying the input 32-bit integer parameter seed.
The stream condition isthe array of 250 32-bit integers X_,g;, X_pyq1---, X_;, iNitialized in the
following way:

e |fseed =0, assumeseed =1. AssUme Xos0= seed.

« Initialize X_yq,-..-, X, according to recurrent correlation X, ,, = 69069x, (mod2%) .

* Interpret thevalues X,,_,,,, K =0J1,...,31 asabinary matrix of size 32x32 and
perform the following: set the diagonal bitsto 1, and the under-diagonal bitsto O.

Stream Initialization by the Function vs| NewSt r eamex
R250 generates the stream and initializes it specifying the array n of 32-bit integer par ans[ ] :

e Ifn >0, assume X250 = paranms[ k], k=0, 1, .., 249.

If n =0, assumeseed =1, and performtheinitialization as described in the above section on
stream initialization by the function vs| NewSt r eam

Subsequences Selection Methods
vsISkipAheadStream not supported

vslLeapfrogStream not supported

Generator Period

0 =2 =18x10".
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Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (0% errors) OK (0% errors) N/A OK (0% errors)
Birthday Spacing Test N/A N/A N/A OK (0% errors)
Bitstream Test N/A N/A N/A OK (25% errors)
Rank of 31x31 Binary N/A N/A N/A OK (10% errors)
Matrices Test
Rank of 32x32 Binary N/A N/A N/A OK (0% errors)
Matrices Test
Rank of 6x8 Binary N/A N/A N/A OK (0% errors)
Matrices Test
Counts-the-1's Test N/A N/A N/A OK (30% errors)
(stream of bits)

Counts-the-1's Test N/A N/A N/A OK (0% errors)
(stream of specific

bytes)

Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (20% errors)
Parking Lot Test OK (0% errors) OK (0% errors) N/A OK (0% errors)
2D Self-Avoiding FAIL (70% errors) FAIL (80% errors) N/A FAIL (80% errors)
Random Walk Test

Note:
* N/A meansthat the test is not applicable to this function.

» Thetabulated datais obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in less than 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

» Thestreamtested is generated by calling the function vsI NewSt r eamwith
seed=7,777,777.

MRG32k3a

Thisis a 32-bit combined multiple recursive generator with 2 components of order 3:

Xy = Q3 Xo + 35, X0, + 3%, 5(Modm, )

Yo =8 Yna t8n Ve T ax3Y,5(Mmodm,)

z, = X, ~ ¥,(modm,)

Uy = z,/m,

a, =0,a,, =1403580, a,, = -810728, m, = 2% —209

a,, =527612,a,, =0,a,, = -1370589, m, = 2% — 22853

MRG32k3a combined generator meets the requirements for modern RNGs, such as good

multidimensional uniformity, long period, etc. Optimization for various Intel® architectures makes
it competitive with the other VSL basic generators in terms of speed.
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Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values u,u,,...

Integer Implementation

The output vector of 32-bit integers z, Z;,...

Stream Initialization by the Function vs1NewStream

MRG32k3a generates the stream and initializes it specifying the 32-bit input integer parameter
seed. The stream condition is the two triplets of 32-bit integers (X_;,X_,,...,X_5 and

Y_1»Y_5seeesY_3), initialized in the following way:
e Assume x.3 = seed.

e  Assume the other values equal to 1, thatis, X , =x_ =y =y, =y, = 1.

Stream Initialization of the Function vs1NewStreamEx

MRG32k3a generates the stream and initializes it specifying the array n of 32-bit integer

params []:

e Ifn =0,assumex , =x,=x_,=y,=y,=y, =1
e Ifn =1,assumex3 = params[0] mod my, X , =X, =y 3 =Y, =Y, =1.

o Ifn =2,assume x3 = params[0] mod m;, Xp = params[1l] mod m,,
X, =Ys3=y,=y,=1

o Ifn =3,assume X3 = params[0] mod m;, X = params[1] mod m;, X.| =
params[2] mod m;, Y s =Yy, =Y = 1. If the values prove tobe x3=x,=x.1=0,

assume x3=1.

o Ifn =4,assume x3= params[0] mod m;, X» = params[1] mod m;, X.|=
params [2] mod m;, y.3= params[3] mod m,, y_, =1y , =1l.If the values prove

tobex3=x,=x1=0, assume x5 = 1.

o Ifn =5,assume X3 = params[0] mod m;, X = params[1] mod m;, X|=
params [2] mod m;, Y.3= params[3] mod m,, Y. = params[4] mod m,,

Yy, = 1. If the values prove to be x3=x,=x.;1 =0, assume x.3 = 1.

o Ifn > 6,assume X3 = params[0] mod m;, X2 = params[1] mod m;, X.|=
params [2] mod m;, Y.3= params[3] mod m,, Y.2= params[4] mod m,, Y.1=
params [5] mod m,. If the values prove to be x.3= x5 = x1 =0, assume x.3 = 1. If the

values prove tobe y3=y,=y1=0, assume y3=1.

Subsequences Selection Methods
vsISkipAheadStream supported

vslLeapfrogStream not supported
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Generator Period

0 =2""=3.1x10".

Lattice Structure
Mg= 0.68561, M= 0.63940, Mz, = 0.63359.

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform

viRngUniformBits

3D Spheres Test OK (10% errors) OK (10% errors) N/A OK (10% errors)
Birthday Spacing Test N/A N/A N/A OK (0% errors)
Bitstream Test N/A N/A N/A OK (20% errors)
Rank of 31x31 Binary N/A N/A N/A OK (20% errors)
Matrices Test
Rank of 32x32 Binary N/A N/A N/A OK (10% errors)
Matrices Test
Rank of 6x8 Binary N/A N/A N/A OK (0% errors)
Matrices Test
Counts-the-1's Test N/A N/A N/A OK (20% errors)
(stream of bits)
Counts-the-1's Test N/A N/A N/A OK (0% errors)
(stream of specific bytes)
Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (20% errors)
Parking Lot Test OK (10% errors) OK (10% errors) N/A OK (10% errors)
2D Self-Avoiding Random OK (20% errors) OK (20% errors) N/A OK (20% errors)
Walk Test

Note:

* N/A meansthat the test is not applicable to this function.

» Thetabulated datais obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in lessthan 5 runs out of 10. The

run is failed when p-value falls outside the interval [0.05, 0.95].

» Thestreamtested is generated by calling the function vs| NewSt r eamwith

seed=7,777,777.
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MCG59

Thisisa59-bit multiplicative congruential generator
X, = ax,_,(modm)

u, = X,/m

a=13"® m=2%

Multiplicative congruential generator MCG59 is one of the two basic generators implemented in
the NAG Numerical Libraries. Asthe module of the generator is not prime, the length of its period
isnot 2°°but only 2%, if theinitial value (seed) is not an even number. The drawback of these
generatorsiswell known, (see, for example, [6], [7]): the lower bits of the generated sequence of
pseudo-random numbers are not random and thus breaking numbers down into their bit patterns
and using individual bits may cause trouble. Besides, block-splitting an entire period sequence into
2% identical blocks leads to their full identity in d lower bits.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values U, U, ,...

Integer Implementation
The output vector of the 32-bit integersis X, mod 2%, LXO /2% J, x, mod 2%, Lxl /2% J, .

Thus, the output vector stores practically every 59-bit member of the integer output as two 32-bit
integers. For example, to get a vector from n 59-bit integers the size of the output array should be
large enough to store 2n 32-bit numbers.

Stream Initialization by the Function vsl NewSt r eam

MCG59 generates the stream and initializes it specifying the 32-bit input integer parameter seed.
e AssumeXg= seed nod 2.
e |fXp=0, assumeXp = 1.

Stream Initialization of the Function vsl NewSt r eanEx

MCG59 generates the stream and initializes it specifying the array n of 32-bit integer par ans[ ] :
e Ifn=0, assumexy= 1.

e Ifn =1, assumeseed = parans[ 0], follow theinstructions described in the above
section on stream initialization by the function vsl NewSt r eam

» Otherwiseassumeseed = par ans[ 0] +23**par ans[ 1] , follow the instructions
described in the above section on stream initialization by the function vsl NewSt r eam

Subsequences Selection Methods

vsISkipAheadStream supported

vslLeapfrogStream supported
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Generator Period

p=2"=14x10".

Lattice Structure
$=0.84; $=0.73; $§=0.74; $=0.58; $=0.63; $;= 0.52; = 0.55; S= 0.56.

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (10% errors) OK (10% errors) N/A OK (10% errors)
Birthday Spacing Test N/A N/A N/A OK (0% errors)1
Bitstream Test N/A N/A N/A OK (45% errors)
Rank of 31x31 Binary N/A N/A N/A OK (0% errors)?
Matrices Test
Rank of 32x32 Binary N/A N/A N/A OK (0% errors)®
Matrices Test
Rank of 6x8 Binary N/A N/A N/A OK (0% errors)*
Matrices Test
Counts-the-1's Test N/A N/A N/A FAIL (100% errors)
(stream of bits)

Counts-the-1's Test N/A N/A N/A OK (0% errors)5
(stream of specific bytes)
Craps Test OK (10% errors) OK (10% errors) OK (10% errors) OK (10% errors)
Parking Lot Test OK (20% errors) OK (20% errors) N/A OK (20% errors)
2D Self-Avoiding Random OK (20% errors) OK (10% errors) N/A OK (10% errors)
Walk Test

Note:

* N/A meansthat thetest is not applicable to this function.

» Thetabulated datais obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in lessthan 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

» Thestreamtested is generated by calling the function vsI NewSt r eamwith
seed=7,777,777.

! The generator failsthetest for bit groups 0-23, 1-24, 2-25, 3-26, 5-28.

2 The generator failsthetest for bit groups 0-30, 1-31.

3 The generator failsthetest for bit groups 0-31, 1-32.

* The generator failsthetest for bit groups 0-7, ..., 9-16, 11-18, 32-39, ..., 37-44, 39-46, ..., 41-48.

® The generator failsthetest for bit groups 0-7, ..., 11-18, 13-20, ..., 15-22.
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WH

Thisisaset of 273 Wichmann-Hill’ s combined multiplicative congruential generators(j =1, 2, ...,
273)

Xp =8 X, (modm, ;)

Yo =8y Yo (mod m2,j)

z,=a,,2,,(modm, ;)

W, =a,;W,_,(modm, ;)

u, = (xn/mLj +y,/m,; +2,/my, +wn/m4,j)mod1

WH isaset of 273 different basic generators. This generator is the second basic generator in the
NAG libraries. The constants g;j range from 112 to 127, the constants m j are prime numbers
ranging from 16,718,909 to 16,776,971, close to 2%*. These constant should show good resultsin
the spectral test (see Knuth [11] and Maclaren [15]). The period of each Wichmann-Hill generator
may be equal to 2% if not for common factors between (My j—1), (Mpj~1), (Mgj—1) and (My—1).
However, each generator should still have a period of at least 2%°. The generated pseudo-random
sequences are essentially independent of one another according to the spectral test (for detailed
information about properties of these generators see Maclaren [15]).

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values U, U, ,...

Integer Implementation
The output vector of 32-bit integers X,, Yo, Zy, Wy, X;, Y15 Z, W, ...
Thus, the output vector stores practically every quadruple (X, Y, z, W) of members of theinteger

output as four 32-bit integers. For example, to get a vector from n quadruples (X, Y, Z, W), the size
of the output array should be large enough to for storage of 4n 32-bit numbers.

Stream Initialization by the Function vsl NewSt r eam

WH generates the stream and initializes it specifying the 32-bit input integer parameter seed :
e AssumeXp= seed nmod m.If Xg=0, assume Xg= 1.
e AssumeYo=1,72=1 Wpo=1

WH generator is a set of 273 basic generators. The test selects a WH generator adding an offset to
the named constant VSL_BRNG WH:  VSL_BRNG WH0, VSL_BRNG W1, ,

VSL_BRNG WH+272. The following exampleillustrates the initialization of the seventh (of 273) WH
generator:

vsl NewSt ream (&stream VSL_BRNG WH6, seed)

Stream Initialization of the Function vsl NewSt r eanEx

WH generates the stream and initializes it specifying the array n of 32-bit integer par ans[] :
e Ifn =0,assumeXp=1,Y¥o=1,2=1, Wo=1.

e Ifn =1,assumeXp=paranms[ 0] nod m,Yo=1,2=1, Wo= 1. If Xg=0, assume Xp
=1.
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* Ifn =2, assumeXp= parans[0] nmod m,Yo= parans[1] nod m, Z0=1, Wy =
1. If Xo=0, assumeXo= 1. If yo=0, assume Yyp= 1.

e Ifn =3, assumeXp= parans[0] nmod m,Yo= parans[1l] nod m, 2=
parans[ 2] mod my, Wo=1. If Xg=0, assume Xp= 1. If Y= 0, assumeYp= 1. If Zo=0,
assume o= 1.

e Ifn >4,assumeXp= parans[0] nmod m,Yo= parans[1] nmod m, Zp=
parans[ 2] nmod my, Wo= parans[3] nmod m. If Xo=0, assumeXp= 1. If yp=0,
assumeyYo=1.If Zp=0, assumezy= 1. If Wp=0, assume Wp= 1.

Subsequences Selection Methods
vsISkipAheadStream supported

vslLeapfrogStream supported

Generator Period

p=2%=12x10".

Empirical Testing Results Summary

Test Name vsRngUniform vdRngUniform viRngUniform viRngUniformBits
3D Spheres Test OK (0% errors) OK (0% errors) N/A OK (0% errors)
Birthday Spacing Test N/A N/A N/A FAIL (60% errors)
Bitstream Test N/A N/A N/A OK (10% errors)
Rank of 31x31 Binary N/A N/A N/A N/A
Matrices Test
Rank of 32x32 Binary N/A N/A N/A N/A
Matrices Test
Rank of 6x8 Binary N/A N/A N/A OK (0% errors)®
Matrices Test
Counts-the-1's Test N/A N/A N/A OK (10% errors)
(stream of bits)

Counts-the-1's Test N/A N/A N/A OK (0% errors)
(stream of specific bytes)
Craps Test OK (20% errors) OK (20% errors) OK (20% errors) OK (10% errors)
Parking Lot Test OK (10% errors) OK (10% errors) N/A OK (10% errors)
2D Self-Avoiding Random OK (10% errors) OK (0% errors) N/A OK (20% errors)
Walk Test

Note:

* N/A meansthat the test is not applicable to this function.

® The component y of the generator fails the test for bit group 1-8.
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» Thetabulated datais obtained using the one-level (threshold) testing technique. The OK
result indicates FAIL < 50%, that is, when FAILs occur in lessthan 5 runs out of 10. The
run is failed when p-value falls outside the interval [0.05, 0.95].

» Thestreamtested is generated by calling the function vsI NewSt r eamwith
seed=7,777,777.

SOBOL

Thisis a 32-bit Gray code-based quasi-random number generator

X, =Xp OV,

u, =x,/2%

Note: The value cisthe rightmost zero bitin n-1; X,, iss-dimensional vector of 32-bit values. The

s-dimensional vectors (calculated during random streamiinitialization) v, ,i = ],?2 are called

direction numbers. The vector U, isthe generator output normalized to the unit hypercube (0,1)°.

Bratley and Fox [3] provide an implementation of the Sobol quasi-random number generator. VSL
implementati on allows generating Sobol’ s | ow-discrepancy sequences of length up to 2%, The
dimension of quasi-random vectors can vary from 1 to 40 inclusive.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values Uy, U,,..., where elements
Ug,Uy,...,Ug correspond to the U, Ug,qq,Ugyo,...,Uyg COrrespond to the U, , and so on.

Integer Implementation
The output vector of 32-bit integers X, X,,..., where elements X, X,,...,Xg correspond to the

X1s Xg411r Xgi21---, Xpg COrrespond to the X, , and so on.

Stream Initialization by the Function vsl NewSt r eam

SOBOL generates the stream and initializes it specifying theinput 32-bit parameter seed
(dimension di nen of a quasi-random vector):

e Assumedi men =seed
e |fdinen<21ordinen>40,assumedi nen = 1.

Stream Initialization by the Function vsl NewSt r eamEx

SOBOL generates the stream and initializes it specifying the array n of 32-bit integers
par anms[ ] to set the dimension di men of a quasi-random vector:

e |fn =0,assumedinen= 1
e Otherwise assumedi men = par ams[ 0]

o Ifdinmen<1ordinmen>40,assumedi nen = 1.
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Subsequences Selection Methods

vsISkipAheadStream supported
vslLeapfrogStream supported
Note:

*  The skip-ahead method skips individual components of quasi-random vectors rather than
whole s-dimensional vectors. Hence, to skip N s-dimensional quasi-random vectors, call
vsl Ski pAheadSt r eamsubroutine with parameter nski p equal to the Nxs.

* Theleapfrog method works with individual components of quasi-random vectors rather
than with s-dimensional vectors. In addition, its functionality allows picking out a fixed
quasi-random component only. In other words, nst r eans parameter should be equal to s,
and k parameter should indicate the index of a component of s-dimensional quasi-random
vectorsto bepicked out (0 <k <s).

Generator Period
p=2%=42x10°.
Dimensions

1<s<40.

NIEDERREITER

Thisis a 32-bit Gray code-based quasi-random number generator

X, =Xpq OV,

u, =x,/2%

Note: The value cisthe rightmost zero bitin n-1; X,, iss-dimensional vector of 32-bit values. The

s-dimensional vectors (calculated during random streamiinitialization) v, ,i = ],?2 are called

direction numbers. The vector U, isthe generator output normalized to the unit hypercube (0,1)°.

According to the results of Bratley, Fox, and Niederreiter [5] Niederreiter sequences have the best
known theoretical asymptotic properties. VSL implementation allows generating Niederreiter |ow-
discrepancy sequences of length up to 2%. The dimension of quasi-random vectors can vary from 1
to 318 inclusive.

Real Implementation (single and double precision)

The output vector is the sequence of the floating-point values Uy, U,,..., where elements
Ug,Uy,...,Ug correspond to the U, Ug,qq,Ugyo,...,Uyg COrrespond to the U, , and so on.

Integer Implementation

The output vector of 32-bit integers X, X,,..., where elements X, X,,...,Xg correspond to the

X1+ Xg411r Xgi21---, Xpg COrrespond to the X, , and so on.
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Stream Initialization by the Function vsl NewSt r eam

NIEDERREITER generates the stream and initializes it specifying the input 32-bit parameter seed
(dimension di men of a quasi-random vector):

e Assumedi men =seed
e |fdinen<1ordinen> 318, assumedi men = 1.

Stream Initialization by the Function vsl NewSt r eamex

NIEDERREITER generates the stream and initializes it specifying the array n of 32-bit integers
par ans[ ] to set the dimension di men of a quasi-random vector:

e |fn =0,assumedinen= 1
e Otherwise assumedi men = par ams|[ 0]

o Ifdinen<1ordinen> 318, assumedi men = 1.

Subsequences Selection Methods

vsISkipAheadStream supported
vslLeapfrogStream supported
Note:

*  The skip-ahead method skips individual components of quasi-random vectors rather than
whole s-dimensional vectors. Hence, to skip N s-dimensional quasi-random vectors, call
vsl Ski pAheadSt r eamsubroutine with parameter nski p equal to the Nxs.

*  Theleapfrog method works with individual components of quasi-random vectors rather
than with s-dimensional vectors. In addition, its functionality allows picking out a fixed
quasi-random component only. In other words, nst r eans parameter should be equal to s,
and k parameter should indicate the index of a component of s-dimensional quasi-random
vectorsto bepicked out (0 <k <s).

Generator Period
p=2%=42x10°.
Dimensions

1<s<318.

Testing of Distribution Random Number Generators

VSL generators are tested with a testing suite comprising a set of tests to control the quality of
random number sequences of general discrete and continuous distributions.

Random numbers of discrete and continuous distributions are generated by transforming random
numbers of uniform distribution. A source of uniformly distributed random numbersis a random
stream produced by a basic generator. Quality of the random number sequences with non-uniform
distribution greatly depends on the quality of the respective basic generator. Therefore, generators
of discrete and continuous distributions are tested for each individual basic generator.
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VSL can provide several methods of random number generation for any probability distribution.
For example, two methods are implemented for Poisson distribution: PTPE acceptance/rejection
algorithm and PoisNorm inverse transformation al gorithm, based on transformation of normal
distribution. The generator istested for each of the implemented methods.

VSL offerstwo different implementations for each of continuous distributions:
» single-precision real arithmetic
» double-precision real arithmetic.

Single-precision generator implementation is, asarule, faster than that for double-precision
implementation. Moreover, single-precision implementation is quite sufficient for most
applications. VSL offers only oneimplementation for discrete distributions.

Apart from the above-mentioned factors, RNGs are dependent for their quality on distribution
parameters. For example, different transformation techniques may be used for different parameters.
Therefore, generators are al so tested for different parameter sets.

Interpreting Test Results

Test results for general distribution generators are interpreted almost in the same way as for basic
generators. For reliable results, either one-level (threshold) or two-level testing is performed.

Description of Distribution Generator Tests

Confidence Test

Test Purpose

The test checks how well each output member corresponds to the valid range of possible val ues.
For example, for an exponential distribution with parameters a and S al the output members x;
should liewithintherange a < X; <co. A value X; <a isimpossible, that is, the fact that the

variate X of exponential distribution with parameters a and S acquires avalue lessthan aisan
impossible event (not to be confused with a null event). Any output member lying outside the valid
range constitutes the case of an error.

Such atest is necessary because statistical tests (for example, distribution momentstest or chi-
sguare test) are unable to detect a small number (if compared with the total sample size) of X
values falling outside the valid range.

Interpreting Final Results

The test gives a certain quantity K of random numbers that lie outside the valid range of val ues.
Thetest is considered passed, if K = 0, and failed otherwise.

Distribution Moments Test

Test Purpose

The test verifies that sample moments of a given distribution agree with theoretical moments.
Sample mean (first order moment) and sample variance (central moment of the second order) are
considered as stable response.

53



Vector Satistical Library Notes

First Level Test

The generated random number sequence is used to compute the sample mean M and the sample
variance D that are of an asymptomatically normal distribution. Proceeding from this asymptotic,

p-values p and p° arefound using the values of M and D.

Second Level Test

Thefirst level test is run 10 times, each run producing a pair of p-values p}" and p{,j=12, ...,
10. The Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling’ s statistics is applied to
the obtained p-values pJM ] =1,2,...,10. If theresulting p-value p'vI <0.050r p'vI > 0.95, the
test is considered failed for the sample mean. The same procedure is performed for p-values ij vl
=1,2,...,10, andif p-value pD <0.050r pD > 0.95, thetest is considered failed for the sample
variance.

Interpreting Final Results

10 runs of the second level test provide the percentage FAILy of failed tests for the sample mean
and the percentage FAILp of failed tests for the sample variance. The final result of thetest isthe
percentage FAIL = max(FAILy, FAILp ). The value of FAIL < 50% is considered acceptable.

Chi-Squared Goodness-of-Fit Test

Test Purpose

The test verifies that the sampl e distribution function agrees with the hypothesized distribution. A
chi-squared V statistic with the number of degrees of freedom that is minus one from the number
of theintervals of partition is considered a stable response.

First Level Test

For a given parameter set and a given sample size the test computes the partition of the distribution
domain into digjoint intervals so that the a priori quantity of random numbers from each interval is
of order 100.

The test computes the actual number of random values within each interval of the generated
sample and then cal culates chi-square of the statistic V. Since V is asymptotically of chi-squared
distribution Fy_1(X) with k — 1 degrees of freedom, where k is the number of theintervals, p-value,
whichis equal to Fx_1(V), should be of a distribution that is close to uniform.

Second Level Test

Thefirst level test isrun 10 times, each run producing a p-value p; , j=1,2,...,10.The

Kolmogorov-Smirnov goodness-of-fit test with Anderson-Darling’s statistics is applied to the
obtained p-values p;, j=1,2,...,10. If theresulting p-value p'vI <0.050r p'vI > 0.95, thetest is

considered failed.

Interpreting Final Results

The final result of thetest is the percentage FAIL of failed second level tests. The second level test
isrun 10 times. The value of FAIL < 50% is considered acceptable.
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Performance
The following factors influence the performance of an RNG of a given distribution:
» architecture and configuration of the hardware and software
» performance of the underlying BRNG
» method of transformation
» number of random numbers to be generated (size of the output vector)
» parameters of agiven probability distribution.

VSL random number generators are optimized for Intel® Pentium® 4 processor and Intel®
[tanium® 2 processor. See specific tables for generator performance for each individual processor.
For earlier Intel processors VSL generators are fully functional, yet not specifically optimized.

The value of CPE (Clocks Per Element), which is independent from the processor clock rate, is
selected as a unit of measurement.

For example, if the generator performanceis equal to 10 CPE and the processor rateis 1 GHz, then
the generator will produce 108 random numbers per second.

The VSL BRNGs differ from each other in speed, therefore data on performance of general
(discrete and continuous) distribution generatorsis given separately for each BRNG used as an
underlying generator to produce uniformly distributed random numbers.

Performance of a general distribution generator also depends on a method chosen for transforming
a uniform distribution to a given non-uniform one. This requires specifying the applied
transformation method as well.

Thelength of a generated vector is another factor influencing the performance of the VSL vector
type generators. Calling generators on short vector lengths may prove highly ineffective. See the
figure for the typical interdependence between the generator performance and the vector length.

The tables of RNG performance provide speed data obtai ned using the most indi cative vector
length of 1000 elements. For other vector lengths the performance of any generator behaves
approximately in the same way as shown in the following graph.

Performance vs. Yector Length
vs BngUniform
— 03
1400
1200 \ MR 320 34,
1000 59
A —
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o \
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Finally, the generator performance may vary according to probability distribution parameters. The
tables provide performance data only for fixed parameter values (or fixed intervals of parameter
variations). Table footnotes contain parameters with which a given performance is obtained. For
some transformation methods the performance is approximately the same on a wide range of
parameters, such methods being called uniformly fast, while for others the performance may vary
considerably with variation in the distribution parameters, for example, in PTPE method for an
RNG of Poisson distribution. When the latter is the case, graphs of interdependence between the
performance and the distribution parameters are provided.

Test Results for Continuous Distributions

Uniform (VSL_METHOD_SUNIFORM_STD/
VSL_METHOD_DUNIFORM_STD)

Random number generator of uniform distribution over the real interval [a,b]. You may identify
the underlying BRNG by passing the random stream descriptor stream as a parameter. Then
Uniform function calls real implementation (of single precision for vsRngUniform and of double
precision for vdRngUni form) of this basic generator.

Test Results Summary

Performance
Pre(l:iF;ion BRNG Confidence Moments Chi-Square Intel® e In;if::sesnc::'uv:;:@h ’
Pentium® 4 Itanium® 2 Streaming SIMD
processor Processor e tensions 3 (SSE3)
MCG31m1 OK OK OK 11.51 3.89 12.38
R250 OK OK OK 9 3.26 117
MRG32k3a OK OK OK 37.29 8.92 63.83
single MCG59 OK OK OK 14.65 3.83 17.52
WH OK OK OK 51.03 17 59.5
SOBOL OK N/A N/A 12.34 4.34 14.2
NIEDERR OK N/A N/A 12.66 4.27 14.2
MCG31m1 OK OK OK 10.19 4.02 11.51
R250 OK OK OK 9.72 3.44 11.63
MRG32k3a OK OK OK 35.55 9.06 56.64
double MCG59 OK OK OK 14 .47 3.96 16.38
WH OK OK OK 49.16 17.2 56.88
SOBOL OK N/A N/A 12.78 4.33 14.37
NIEDERR OK N/A N/A 12.74 4.24 14.26
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FP

Precision

single

Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data is obtained for the parameters —10<a <0,0.1< 5 <10.

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Intel® Pentium® 4 processor — Pentium® 4 processor, 1.5 GHz; Intel® Itanium® 2
processor — Itanium® 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.

Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Gaussian (VSL_METHOD_SGAUSSIAN_BOXMULLER/

VSL_M

ETHOD_DGAUSSIAN_BOXMULLER)

Random number generator of normal (Gaussian) distribution with the parameters a and 6. You
mat obtain any successive random number x of the standard normal distribution according to the
formula (for details, see [2])

where u,

X =,/=2Inu, sin2mu,,

u, are a pair of successive random numbers uniformly distributed over the interval (0, 1).

The normal distribution with the parameters a and O is transformed to the random number y by

scaling and the shift y = oOx+a.

Test Results Summary

Performance
BRNG Intel® Pentium® 4
Confidence Moments Chi-Square Intel® ) processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)
MCG31m1 OK OK OK 62.11 37.4 69.12
R250 OK OK OK 55.57 36 64.25
MRG32k3a OK OK OK 109.73 47.4 167.16
MCG59 OK OK OK 69.05 37.2 79.65
WH OK OK OK 140.93 63.6 162.89
SOBOL OK N/A N/A 64.81 38.3 73.54
NIEDERR OK N/A N/A 64.98 38.2 733
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MCG31m1 OK OK OK 115.61 42 .4 132.97
R250 OK OK OK 113.7 413 130.67
MRG32k3a OK OK OK 162.44 52.4 218.99
double MCG59 OK OK OK 124.39 423 142.93
WH OK OK OK 196.88 68.7 222.99
SOBOL OK N/A N/A 123.61 43.1 139.78
NIEDERR OK N/A N/A 125.83 43 139.59
Notes:

e FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

e The data is obtained for the parameters —10 < a <10, 0.5 < o <10 (for single precision)
and —100<a £100,0.1 < ¢ <10 (for double precision).

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors of multidimensional
(uncorrelated) normal distribution.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Gaussian (VSL_METHOD_SGAUSSIAN_BOXMULLER?2 /
VSL_METHOD_DGAUSSIAN_BOXMULLER2)

Random number generator of normal (Gaussian) distribution with the parameters a and 6. You
may produce a successive pair of the random numbers x1, x; of the standard normal distribution
according to the formula (for details, see [2])

X, =4/—2Inu, sin2mu,
X, =+/—2Inu, cos2mu,

where u;, u, are a pair of successive random numbers uniformly distributed over the interval (0, 1).

The normal distribution with the parameters a and O is transformed to the random number y by
scaling and the shifty = Ox+a.
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In VSL you can safely call this method even when the random numbers are generated in blocks
with the size aliquant to 2. Consider the following example.

Suppose, you use the method vSL_METHOD DGAUSSIAN BOXMULLER2 to generate a pair of random
numbers of the standard normal distribution.

Option 1. Single call of the method vSI, METHOD DGAUSSIAN BOXMULLER2 with the vector length
equal to 2:

double x[2];

vdRngGaussian (VSL METHOD DGAUSSIAN BOXMULLER2, stream, 2, x, 0.0, 1.0);

In this case you generate the random numbers x[0], x[1] by the formula

x[0]=+/—2Inu, sin2mu,
x[1]=+/—2Inu, cos2mu,

Option 2. Double call of the method vSL_METHOD DGAUSSIAN BOXMULLER2 with the vector
length equal to 1:

double x[2];

vdRngGaussian (VSL METHOD DGAUSSIAN BOXMULLER2, stream, 1, &x[0], 0.0, 1.0);
vdRngGaussian (VSL METHOD DGAUSSIAN BOXMULLER2, stream, 1, &x[1], 0.0, 1.0);

At the first call of vdRngGaussian you produce the random number x[0] by the formula

x[0]=+/—2Inu, sin27u,

At the second call of vdrngGaussian the vector length, over which you initially called the
function to generate the random stream, is recognized as odd (equal to 1 in this case). Then the
random number x[1] is generated by the formula

x[1]=+/—2Inu, cos2mu,

and not by the formula

x[1]=/=2Inu, sin2m,,

as it might be supposed.
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Test Results Summary

Performance
FP -
L. BRNG Intel® Pentium® 4
Precision Confidence = Moments  Chi-Square Intel® Ll processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)

MCG31m1 OK OK OK 38.16 36 41.36

R250 OK OK OK 35.8 35.4 40.82
MRG32k3a OK OK OK 64.24 41 93.06

single MCG59 OK OK OK 41.47 36 46.62
WH OK OK OK 78.06 49.2 88.68

SOBOL OK N/A N/A 39.14 36.5 43.35

NIEDERR OK N/A N/A 39.21 36.5 43.6

MCG31m1 OK OK OK 68.32 39.1 76.43

R250 OK OK OK 67.66 38.6 76.44
MRG32k3a OK OK OK 93.94 44 1 121.28

double MCG59 OK OK OK 72.59 39.1 81.15
WH OK OK OK 107.31 52.3 121.7

SOBOL OK N/A N/A 71.24 395 79.44

NIEDERR OK N/A N/A 71.24 39.5 79.41

Notes:

e FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

e The data is obtained for the parameters —10 < a <10, 0.5 < ¢ <10 (for single precision)
and —100 < a £100,0.1 < ¢ <10 (for double precision).

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors of multidimensional
(uncorrelated) normal distribution.
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e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

GaussianMV (VSL_METHOD_SGAUSSIANMV_BOXMULLER /
VSL_METHOD_DGAUSSIANMV_BOXMULLER)

Random number generator of d-variate (correlated) normal distribution with the parameters a and
T. You may obtain any successive random vector X according to the formula

x,=Tz, +a,
where Z, is a d-dimensional vector of random numbers from standard normal distribution, T is a
lower triangular dxd matrix — Cholesky factor of variance-covariance matrix.

Random numbers from standard normal distribution are generated by the method

VSL METHOD SGAUSSIAN BOXMULLER/VSL METHOD DGAUSSIAN BOXMULLER.

Test Results Summary

Performance
FP -
e BRNG Intel® Pentium® 4
Precision Confidence Moments Chi-Square Intel® [ processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 OK OK OK 94.98 84.6 107.42
R250 OK OK OK 87.4 83.4 102.56
MRG32k3a OK OK OK 141.68 94.7 205.54
single | MCG59 OK OK OK 100.59 84.5 117.55
WH OK OK OK 172.8 111 201.23
SOBOL OK N/A N/A 96.59 85.7 111.17
NIEDERR OK N/A N/A 96.63 856 111.5
MCG31m1 OK OK OK 149.12 88.7 175.22
R250 OK OK OK 147.23 87.6 172.64
MRG32k3a OK OK OK 196.21 98.8 260.49
double MCG59 OK OK OK 157.5 88.6 184.76
WH OK OK OK 229.51 115 264.98
SOBOL OK N/A N/A 156.3 89.4 181.24
NIEDERR OK N/A N/A 157.18 89.3 180.95
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Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.

Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors of multivariate (correlated)
normal distribution.

Sobol (SOBOL) and Niederreiter (NIEDERR) basic generators are initialized at
dimension = 8.

GaussianMV performance is measured at dimension = 4. VSL_ MATRIX STORAGE_ FULL iS
used.

Performance Graphs

vsRngGaussianMV, VSL_METHOD_SGAUSSIANMV_BOXMULLER,

Performance vs. Dimension
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Performance vs. Dimension
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Performance vs. Dimension
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Performance vs. Dimension
vdRngGaussianMV, VSL_METHOD_DGAUSSIANMV_BOXMULLER,
VSL_MATRIX_STORAGE_FULL
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GaussianMV (VSL_METHOD_SGAUSSIANMV_BOXMULLER2 /
VSL_METHOD_DGAUSSIANMV_BOXMULLER?2)

Random number generator of d-variate (correlated) normal distribution with the parameters a and
T. You may obtain any successive random vector X according to the formula

x, =Tz, +a,
where Z, is a d-dimensional vector of random numbers from standard normal distribution, T is a
lower triangular dxd matrix — Cholesky factor of variance-covariance matrix.

Random numbers from standard normal distribution are generated by the method

VSL METHOD SGAUSSIAN BOXMULLER2/VSL METHOD DGAUSSIAN BOXMULLER2.
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Test Results Summary

Performance
F_f'" BRNG Intel® Pentium® 4
Precision Confidence = Moments  Chi-Square el Intel® I ——
Pentium® 4 Itanium® 2 Streaming SIMD
processor Processor ' Extensions 3 (SSE3)
MCG31m1 OK OK OK 69.41 83.1 79.53
R250 OK OK OK 67.69 82.5 79.65
MRG32k3a OK OK OK 95.94 88.2 131.15
single MCG59 OK OK OK 72.88 83.1 84.6
WH OK OK OK 110.15 96.3 126.77
SOBOL OK N/A N/A 71.54 83.8 81.72
NIEDERR OK N/A N/A 70.72 83.7 81.44
MCG31m1 OK OK OK 101.31 85.3 117.32
R250 OK OK OK 99.6 84.8 117.4
MRG32k3a OK OK OK 126.52 90.3 162.2
double MCG59 OK OK OK 105.74 853 122.14
WH OK OK OK 141.74 98.5 172.44
SOBOL OK N/A N/A 106.36 85.7 120.36
NIEDERR OK N/A N/A 105.1 85.6 120.37
Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.

Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors of multivariate (correlated)
normal distribution.
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e Sobol (SOBOL) and Niederreiter (NIEDERR) basic generators are initialized at
dimension = 8.

e GaussianMV performance is measured at dimension = 4. VSL_ MATRIX STORAGE FULL is
used.

Performance Graphs

Performance vs. Dimension
vsRngGaussianMV, VSL_METHOD _SGAUSSIANMV_BOXMULLER2,
VSL_MATRIX_STORAGE_FULL
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Performance vs. Dimension
vsRngGaussianMV, VSL_METHOD_SGAUSSIANMV_BOXMULLER2,
VSL_MATRIX_STORAGE_FULL
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Performance vs. Dimension

vsRngGaussianMV, VSL_METHOD_SGAUSSIANMV_BOXMULLER2,

VSL_MATRIX_STORAGE_FULL
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Exponential (VSL_METHOD_SEXPONENTIAL_ICDF/
VSL_METHOD_DEXPONENTIAL_ICDF)

Random number generator of the exponential distribution with the parameters a and . You may

generate any successive random number x of the exponential distribution by the inverse
transformation method from the formula:

x=—-FBIn(u)+a,

where u is a successive random number of a uniform distribution over the interval (0, 1).

Test Results Summary

Performance
FP :
e BRNG Intel® Pentium® 4
Precision Confidence Moments | Chi-Square Intel® Intel® processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 OK OK OK 26.58 14 32.24
R250 OK OK OK 24.11 13.3 31.67
MRG32k3a OK OK OK 52.3 18.9 83.78
single MCG59 OK OK OK 207 13.9 37.44
WH OK OK OK 66.14 271 79.31
SOBOL OK N/A N/A 27.59 14.4 34.18
NIEDERR OK N/A N/A 27.42 14.4 34.13
MCG31m1 OK OK OK 37.58 16.6 45.77
R250 OK OK OK 37.1 16 45.98
MRG32k3a OK OK OK 63.4 217 90.85
double MCG59 OK OK OK 41.85 16.6 50.59
WH OK OK OK 76.58 29.8 91.18
SOBOL OK N/A N/A 40.71 16.9 48.75
NIEDERR OK N/A N/A 40.65 16.8 48.79
Notes:

e FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

e The data is obtained for the parameters —10 < a <10, 0.5 < £ <10 (for single precision)
and —100 <4 <100,0.1< B <10 (for double precision).

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.
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e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at

dimension = 2.

Laplace (VSL_METHOD_SLAPLACE_ICDF/
VSL_METHOD_DLAPLACE_ICDF)

Random number generator of the Laplace distribution with the parameters @ and /. You may

generate any successive random number x of the Laplace distribution by the inverse transformation

method from the formula:

{

- fIn(u)+a, u,<1/2

PBln(u,)+a,

u, >1/2

>

where u1, U is a pair of successive random numbers of a uniform distribution over the interval

(0, 1).

Test Results Summary

Performance
PreziF;ion Confidence  Moments  Chi-Square Intel® Lt In;ﬁ::s'::lﬁi )
Pentium® 4 Itanium® 2 i
processor processor Streaming SIMD
Extensions 3 (SSE3)
MCG31m1 OK OK OK 45.43 19.2 51.19
R250 OK OK OK 38.34 18.5 46.79
MRG32k3a OK OK OK 92.73 29.2 149.24
single MCG59 OK OK OK 51.94 19.1 61.66
WH OK OK OK 123.99 452 144.89
SOBOL OK N/A N/A 47.19 20.1 55.28
NIEDERR OK N/A N/A 47.33 20.1 54 .87
MCG31m1 OK OK OK 58.22 22,5 71.9
R250 OK OK OK 55.08 22 69.3
MRG32k3a OK OK OK 105.04 325 157.23
double | MCG59 OK OK oK 66.94 224 81.32
WH OK OK OK 139.32 48.6 161.64
SOBOL OK N/A N/A 66.25 23.3 78.06
NIEDERR OK N/A N/A 66.22 23.3 77.91
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Notes:

e FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

e The data is obtained for the parameters —10 < a <10,0.5 < £ <10 (for single precision)

and —-100 <4 £100,0.1< B <10 (for double precision).

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be used with great care
with mixture methods.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Weibull (VSL_METHOD_SWEIBULL_ICDF/
VSL_METHOD_DWEIBULL_ICDF)

Random number generator of the Weibull distribution with the parameters & , @ and . You may

generate any successive random number x of the Weibull distribution by the inverse
transformation method from the formula

x=f(~In(w))"* +a,

where u is a successive random number of a uniform distribution over the interval (0, 1).
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Test Results Summary

Performance
Pre:iz,ion BRNG Confidence Moments Chi-Square e s In;li::sr::lwiﬁ )
Pentium® 4 Itanium® 2 Streaming SIMD
processor S Extensions 3 (SSE3)

MCG31mf OK OK oK’ 27.46 15.4 33.28
R250 OK OK OK 24.98 14.7 32.68
MRG32k3a OK OK oK® 53.39 20.4 85

single | MCG59 OK OK OK® 30.6 15.3 38.57
WH OK OK OK 67.03 28.5 80.35
SOBOL OK N/A N/A 28.2 15.8 35.14
NIEDERR OK N/A N/A 28.23 15.7 35.21
MCG31m1 OK OK OK 38.39 18.7 47.96
R250 OK OK OK 38.16 18.1 48.2
MRG32k3a OK OK OK 64.09 23.7 93.25

double | MCG59 OK OK OK 42.94 18.6 52.86
WH OK OK OK 77.57 31.9 93.37
SOBOL OK N/A N/A 41.64 19 50.92
NIEDERR OK N/A N/A 42.56 18.9 51.09

Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data is obtained for the parameters

a=2,00=3,08<a<10,-10<a<10,0.5< 5<10.

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

TFAIL (80%) for &=0.8,a =3.33, § = 0.5, sample size 100000; FAIL (50%) for & =0.8,a=3.33, f =6.83,

sample size 100000.

8 FAIL (60%) for o¢=0.8,a =3.33, 8 =0.5, sample size 100000.

® FAIL (50%) for ¢ =0.8,a =3.33, B = 0.5, sample size 100000.
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e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Cauchy (VSL_METHOD_SCAUCHY_ICDF/
VSL_METHOD_DCAUCHY_ICDF)

Random number generator of the Cauchy distribution with the parameters @ and /. You may

generate any successive random number x of the Cauchy distribution by the inverse transformation
method from the formula

x=ftanu+a,

where 1 is a successive random number of a uniform distribution over the interval (—7t/2, 7/2).

Test Results Summary

Performance
F.P q Intel® Pentium® 4
Precision Confidence  Moments Chi-Square In.tel® |r_1te|® processor with
Pentium® 4 Itanium® 2 .
processor processor Streal.mlng SIMD
Extensions 3 (SSE3)

MCG31m1 OK N/A OK 31.45 17.2 38.47
R250 OK N/A OK 29 17.4 37.81
MRG32k3a OK N/A OK 5714 23.1 901

single MCG59 OK N/A OK 34.62 171 43.63
WH OK N/A OK 71 30.3 85.64
SOBOL OK N/A N/A 32.24 15 4017
NIEDERR OK N/A N/A 32.32 14.9 40.46
MCG31m1 OK N/A OK 60.28 16.7 70.96
R250 OK N/A OK 59.84 16.1 71.04
MRG32k3a OK N/A OK 85.93 21.7 116.14

double MCG59 OK N/A OK 64.57 16.6 75.9
WH OK N/A OK 99.32 29.8 116.29
SOBOL OK N/A N/A 63.22 17 73.89
NIEDERR oK N/A N/A 63.07 16.9 73.81
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Notes:

e FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

e The data is obtained for the parameters —10<a <10,0.5< <10 (for single precision)

and —100< ¢ <100,0.1< <10 (for double precision).

e The data on passing Chi-Square test is obtained using the one-level (threshold) testing
technique.

e Confidence and Chi-Square tests are performed for samples of size 1000, 10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Rayleigh (VSL_METHOD_SRAYLEIGH_ICDF/
VSL_METHOD_DRAYLEIGH_ICDF)

Random number generator of the Rayleigh distribution with the parameters a and . You may

generate any successive random number x of the Rayleigh distribution by the inverse
transformation method from the formula

x=pN-Inu+a,

where u is a successive random number of a uniform distribution over the interval (0, 1).

Test Results Summary

Performance
FP i
e BRNG Intel® Pentium® 4
Precision Confidence  Moments Chi-Square Intel® Intel® processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 OK OK OK 32.44 20.1 38.47
R250 OK OK OK 29.9 19.5 37.79
MRG32k3a OK OK OK 58.19 25.1 90.54
single MCG59 OK OK OK 35.58 20.1 43.51
WH OK OK OK 72.01 33.3 85.41
SOBOL OK N/A N/A 33.1 20.6 40.27
NIEDERR OK N/A N/A 33.17 205 4018
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MCG31m1 OK OK OK 58.44 25.2 70.38
R250 OK OK OK 58.04 24.6 70.46
MRG32k3a OK OK OK 84 .1 30.2 115.3

double MCG59 OK OK OK 62.5 25.1 75.1
WH OK OK OK 97.52 38.4 115.71
SOBOL OK N/A N/A 61.74 25.6 73.3
NIEDERR OK N/A N/A 62.56 254 73.3

Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data is obtained for the parameters —10<a <10,0.5< <10 (for single precision)

and —100< 4 <100,0.1< B <10 (for double precision).

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.

Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Lognormal (VSL_METHOD_SLOGNORMAL_ICDF/
VSL_METHOD_DLOGNORMAL_ICDF)

Random number generator of the lognormal distribution with the parameters @, o, band 3. You

may generate any successive random number x of the lognormal distribution by the inverse

transform

ation method from the formula

x=fexp(y) +5,

where ) is a successive random number of a normal (Gaussian) distribution with the parameters a

and O .

The random numbers of the normal distribution are generated using the method
VSL_METHOD_SGAUSSIAN BOXMULLER?2 /

VSL_METHOD_DGAUSSIAN BOXMULLER2.
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Test Results Summary

Performance
FP f
. . BRNG Intel® Pentium® 4
Precision Confidence Moments Chi-Square Intel® D processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)

MCG31m1 OK OK OK 48.57 419 53.36

R250 OK OK OK 45.98 41.3 52.84
MRG32k3a OK OK OK 74.14 46.9 104.78

single MCG59 OK OK OK 51.56 41.9 58.64
WH OK OK OK 87.88 55.1 100.85

SOBOL OK N/A N/A 49.44 42.5 55.66

NIEDERR OK N/A N/A 49.48 425 55.59

MCG31m1 OK OK OK 89.08 47.2 98.74

R250 OK OK OK 88.56 46.7 98.6
MRG32k3a OK OK OK 114.88 52.3 143.95
double MCG59 OK OK OK 93.56 47.2 103.29
WH OK OK OK 130.86 60.5 143.97
SOBOL OK N/A N/A 93.01 476 101.67
NIEDERR OK N/A N/A 93.06 477 101.52

Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data is obtained for the parameters
-0.1£a<0.1,08<0<1.2,-10<5<10,0.1< 5<10.
The data on passing Moments and Chi-Square tests is obtained using the one-level

(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.
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FP

Precision

single

e Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors of multidimensional

(uncorrelated) lognormal distribution.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at

dimension = 2.

Gumbel (VSL_METHOD_SGUMBEL_ICDF/
VSL_METHOD_DGUMBEL_ICDF)

Random number generator of the Gumbel distribution with the parameters a and /. You may

generate any successive random number x of the Gumbel distribution by the inverse

transformation method from the formula

and f=1.

The random numbers of the exponential distribution are generated using the method

x=pfIn(y)+a,

where y is a successive random number of an exponential distribution with the parameters a=0

VSL_METHOD_ SEXPONENTIAL ICDF/ VSL METHOD DEXPONENTIAL ICDF.

Test Results Summary

Performance
Intel® Pentium® 4
Confidence  Moments Chi-Square e L processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 OK OK OK 41.47 23.6 51.97
R250 OK OK OK 38.97 22.9 51.44
MRG32k3a OK OK OK 67.25 28.5 103.27
MCG59 OK OK OK 44.59 235 57.12
WH OK OK OK 80.96 36.7 99.28
SOBOL OK N/A N/A 42.2 24 54.01
NIEDERR OK N/A N/A 42 .28 239 53.92

78



Vector Statistical Library Notes

MCG31m1 OK OK OK 64.9 29.3 79.99
R250 OK OK OK 64.36 28.7 80.07
MRG32k3a OK OK OK 90.5 34.3 124.99
double MCG59 OK OK OK 69.17 292 84.76
WH OK OK OK 103.88 425 125.26
SOBOL OK N/A N/A 67.83 29.6 82.85
NIEDERR OK N/A N/A 67.58 29.5 82.87
Notes:

FP Precision — Floating-point precision of the output vector random numbers in
accordance with Standard IEEE-754.

The data is obtained for the parameters —10<a <10,0.5< <10 (for single precision)

and —100< 4 <100,0.1< B <10 (for double precision).

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured over the vector length of 1000 elements.

Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Test Results for Discrete Distributions

Uniform (VSL_METHOD_IUNIFORM_STD)

Uniform discrete distribution over the integer interval [a@,b) . You may generate any successive

random number k of the uniform distribution by the formula:

k=|_uj,

where u is a successive random number of a uniform (continuous) distribution over the interval

[a,b)and |_xj stands for the operation £1oor (x) that produces the maximum integer, which

does not exceed x.
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Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square Intel® oA processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)
MCG31m1 OK OK OK 19.24 6.83 20.72
R250 OK OK OK 18.64 6.28 20.8
MRG32k3a OK OK OK 44.83 11.9 65.65
MCG59 OK OK OK 23.64 6.77 25.49
WH OK OK OK 58.38 20 66.08
SOBOL OK N/A N/A 21.88 7.08 23.74
NIEDERR OK N/A N/A 22.86 7.11 23.58
Notes:

e The data is obtained for the parameters —10<a <0,2< b5 <10.

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

UniformBits

Random number generator of uniform distribution that produces an integer (non-normalized to the
interval (0, 1)) sequence. You may identify the underlying BRNG by passing the random stream
descriptor stream as a parameter. Then UniformBits function calls integer implementation of
this basic generator.

Basic generators differ in bit capacity and structure of the integer output, therefore you should
interpret the output integer array of the function viRngUniformBits correctly. The following
table provides rules for interpreting 32-bit integer output 7{i] for each VSL basic generator.
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Integer Recurrence Interpretation of 32-bit integer

output array r{i] after calling
viRngUniformBits

x; = ax;_;(modm) I’[i] =X,
MCG31m1 | u, =x;/m
a=1132489760,m =2 —1
R250 X = X105 D X950 rli]=x,
u; = x,-/232
X; =y X; .y +apX; ) a3, 5(modm,) rli]= z,
Vi =ayYi +anyi, +ayy, s(modm,)
- =x,—y,(modm
MRG32k3a | T )
u, =z, [/m
a,, =0,a,, =1403580, a,; =—810728, m, = 2** =209
a, =527612, a5 =0, a,, =—1370589, m, = 2** —22853
x, = ax,_,(modm) r[2i]= Lo(x,),
MCG59 | u, =x,/m r[2i+1]= Hi(x,)
a=13"m=2%
x, =a, ;x,(modm, ;) 7’[4i] =X,
Y =05y, (modms ;) H4i+1]=y,
WH z, =as;z,(modms ;) 4i+2]= z,
w, =a, ;w,(modm, ;) .
( B “” r[4i+3]=w,
u, =x,/m; +y,[my,; +z,[my; +w,[m, )modl
X, =X, ®Dv, rli—1]=x,
_ 32
u, = Xn/2 ’
SOBOL where
X, = (xs(n—1)+l ’ xs(n—1)+2 ""’xsn) >
u, = (us(n—1)+19us(n—l)+2 s Uy
and s is the dimension of quasi-random vector.
X, =X, ®@v, rli—1]=x;
_ 32
u, = x”/2 ,
NIEDERR | Where
X, = (xs(n—1)+l7xs(n—l)+2 oo Xy ) s
U, = (Ui Ug(notyra oees Uon)
and s is the dimension of quasi-random vector.
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Notes:
e Lo(x) means obtaining lower 32 bits of the 64-bit unsigned integer x, that is,

Lo(x)=xmod2*.
e  Hi(x) means obtaining upper 32 bits of the 64-bit unsigned integer x, that is,
Hi(x)=|x/2% |.

So, when you generate an integer sequence of n elements, the output array 7{7] of the function
viRngUniformBits comprises:

e 1 clements for the basic generators MCG31m1, R250, MRG32k3a, SOBOL, and
NIEDERR

e 2n elements for the basic generator MCG59
e 4p elements for the basic generator WH.

You may use the integer output, in particular, for fast generation of bit vectors. However, in this
case some bits (or groups of them) may happen to be non-random. For example, lower bits
produced by linear congruential generators are less random than their higher bits. Note that quasi-
random numbers are not random at all. Thoroughly check the integer output bits and bit groups for
randomness before forming bit vectors from 7{7] array.

Test Results Summary

Performance

Intel® Pentium® 4
Intel® Intel®

Confidence Moments Chi-Square processor with
Pentium® 4 Itanium® 2 A
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 N/A N/A N/A 6.59 2.64 7.01
R250 N/A N/A N/A 4.09 21 55
MRG32k3a N/A N/A N/A 33.42 7.72 53.77
MCG59 N/A N/A N/A 8.56 258 8.87
WH N/A N/A N/A 21.13 10.8 27.4
SOBOL N/A N/A N/A 4.46 4.49 5.43
NIEDERR N/A N/A N/A 4.47 468 5.44
Notes:

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

82



Vector Statistical Library Notes

Bernoulli (VSL_METHOD_IBERNOULLI_ICDF)

Bernoulli distribution with the parameter p. You may generate any successive random number k of
the Bernoulli distribution by the formula:

where u is a successive random number of a uniform distribution over the interval [0, 1).

Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square e LS processor with
Pentium® 4 Itanium® 2 .
Streaming SIMD
processor processor Extensions 3 (SSE3)
MCG31m1 OK OK OK 12.58 5.99 13.55
R250 OK OK OK 10.1 5.36 12.89
MRG32k3a OK OK OK 38.42 11 64.99
MCG59 OK OK OK 15.73 5.93 18.68
WH OK OK OK 52.14 19.2 60.7
SOBOL OK N/A N/A 13.57 6.44 15.27
NIEDERR OK N/A N/A 13.47 6.36 15.39
Notes:

e The data is obtained for the parameters 0.1< p <0.9.
e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.
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Geometric (VSL_METHOD_IGEOMETRIC_ICDF)

Geometrical distribution with the parameter p. You may generate any successive random number k
of the geometrical distribution by the formula:

=)

where u is a successive random number of a uniform distribution over the interval [0, 1).

Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square e el processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)
MCG31m1 OK OK OK 31.61 15.6 37.84
R250 OK OK OK 29.19 15 37.18
MRG32k3a OK OK OK 57.33 20.6 88.85
MCG59 OK OK OK 34.79 15.6 43.04
WH OK OK OK 71.26 28.8 85.11
SOBOL OK N/A N/A 32.52 16 39.94
NIEDERR OK N/A N/A 32.48 16 39.94
Notes:

e The data is obtained for the parameters 0.1< p <0.9.

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.
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Binomial (VSL_METHOD_IBINOMIAL_BTPE)

Binomial distribution with the parameters ntrial and p. If ntrial - min(p,1 — p) = 30, random

numbers of the binomial distribution are generated by BTPE method (see [8] for details), otherwise
combination of inverse transformation and table lookup methods is used. BTPE method is a
variation of the acceptance/rejection method that uses linear (on the fractions close to the
distribution mode) and exponential (at the distribution tails) functions as majorizing functions. To
avoid time consuming acceptance/rejection checks, areas with zero probability of rejection are
introduced and squeezing technique is applied.

Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square Intel® L=t processor with
Pentium® 4 Itanium® 2 Streamina SIMD
processor processor . 9
Extensions 3 (SSE3)
MCG31m1 OK OK OK 218.65 132 273.36
R250 OK OK OK 217.3 131 2791
MRG32k3a OK OK OK 301.84 151 428.58
MCG59 OK OK oK™ 238.09 138 297.93
WH OK OK OK 347.38 175 418.29
SOBOL OK N/A N/A 215.84 150 217.22
NIEDERR OK N/A N/A 216.8 150 217.81
Notes:

e The data is obtained for the parameters 1 < ntrial <10000000, 0.001< p <0.999.

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured with ntrial =100, p = 0.5, over the vector length of 1000
elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) quasi-random number generators should
be used with great care with acceptance/rejection and mixture methods.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

10 FAIL(50%) for ntrial = 60, p = 0.9, sample size 10000
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Performance Graphs

Performance vs. Parameter
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CPE
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Hypergeometric (VSL_METHOD_IHYPERGEOMETRIC_H2PE)

Hypergeometric distribution with the parameters /, s, and m. If M —k, >40 and k, <k, ,
where M =|min(s + 1,/ —s +1)-min(m + 1,/ —m +1)/(1 +2) |,

k, = max(0, min(s, — s) — max(m,/ —m)), k, = min(min(m,! —m), min(s,/ — s)), the
random numbers are generated by H2PE method (see [9] for details), otherwise by the inverse
transformation method in combination with the table lookup method. H2PE method is a variation
of the acceptance/rejection method that uses constant (on the fraction close to the distribution

mode) and exponential (at the distribution tails) functions as majorizing functions. To avoid time
consuming acceptance/rejection checks, squeezing technique is applied.
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Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square e el processor with
Pentium® 4 Itanium® 2 Streaming SIMD
processor processor ea_ 9
Extensions 3 (SSE3)
MCG31mf1 OK OK OK 185.57 106 295.63
R250 OK oK' OK 175.03 98.7 215.25
MRG32k3a OK OK' OK 257.35 118 367.13
MCG59 OK oK™ OK 192.02 105 235.27
WH OK OK OK 283.6 138 339.24
SOBOL OK N/A N/A 147.04 101 152.13
NIEDERR OK N/A N/A 144.79 101 152.89
Notes:

e The data is obtained for the parameters

40 </ <80000, 2 <5 <40000, 2 < m <40000.

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured with / =1000, s = 250, m = 500, over the vector length of
1000 elements.

e Sobol (SOBOL) and Niederreiter (NIEDERR) quasi-random number generators should
be used with great care with acceptance/rejection and mixture methods.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

" FAIL(50% for distribution mean) for /= 162, s =2, m = 56, sample size 100000
12 FAIL(50%, for distribution mean) for [ = 1666, s = 495, m = 400, sample size 100000

13 FAIL(50%, for distribution variance) for / = 1000, s = 447, m = 483, sample size 1000, FAIL(50%, for
distribution mean) for / = 20000, s = 4952, m = 4833, sample size 1000.
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Performance Graphs

Performance vs. Parameter
viRngHypergeometric, VSL_METHOD_IHYPERGEOMETRIC_H2PE
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Poisson (VSL_METHOD_IPOISSON_PTPE)

Poisson distribution with the parameter A.If A > 27, random numbers are generated by PTPE
method (see [20] for details), otherwise combination of inverse transformation and table lookup
methods is used. PTPE method is a variation of the acceptance/rejection method that uses linear
(on the fraction close to the distribution mode) and exponential (at the distribution tails) functions
as majorizing functions. To avoid time consuming acceptance/rejection checks, areas with zero
probability of rejection are introduced and squeezing technique is applied.
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Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square Lt Lt processor with
Pentium® 4 Itanium® 2 A
Streaming SIMD
processor processor .
Extensions 3 (SSE3)
MCG31m1 OK OK OK 152.05 93.2 175.2
R250 OK OK OK 145.7 91.8 173.19
MRG32k3a OK OK OK 210.45 104 287.83
MCG59 OK OK OK 144.97 94.8 170.93
WH OK OK OK 237.73 122 274.96
SOBOL OK N/A N/A 171.53 93.9 182.88
NIEDERR OK N/A N/A 219.22 94 184.38
Notes:

The data is obtained for the parameters 0.1 < A <10000 .

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured with A = 500, over the vector length of 1000 elements.

Sobol (SOBOL) and Niederreiter (NIEDERR) quasi-random number generators should
be used with great care with acceptance/rejection and mixture methods.

Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.
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Performance Graphs

CPE
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viRngPoisson, VSL_METHOD_IPOISSON_PTPE

——MCG3T
——R250
MRG32K3A
MCG59
256 - iy ——WH
—soBOL

fa¥atial (AT Ly ——NIEDERR
',me ‘ ’

Performance is measured on

/ Pentium 4 processor
'1|ﬁﬁ ———
(ﬂ Vector length = 1000

0.1 1 10 100 1000
Lambda

CPE

Performance vs. Parameter
viRngPoisson, VSL_METHOD_IPOISSON_PTPE

——MCG 31
160 ——R250
MRG 32K 34
MCG 59
—WH
—_SOBOL
— NIEDERR

Performance is measured on
[tanium 2 processor

Vector length = 1000

10 100 1000
Lambda

0.1

—

92




Vector Statistical Library Notes

CPE

Performance vs. Parameter
viRngPoisson, VSL_METHOD_IPOISSON_PTPE
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Poisson (VSL_METHOD_IPOISSON_POISNORM)

Poisson distribution with the parameter A .If A <1, the random numbers are generated by
combination of inverse transformation and table lookup methods. Otherwise they are produced
through transformation of the normally distributed random numbers.

The VSL_ METHOD_ SGAUSSIAN_BOXMULLER2 method is used to generate random numbers
of normal distribution.

Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments = Chi-Square Intel® Intel® processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor .
Extensions 3 (SSE3)

MCG31m1 OK OK OK 4517 40.3 48.66
R250 OK OK OK 42.93 39.7 48.03
MRG32k3a OK OK OK 71.21 45.4 100.3
MCG59 OK OK OK 48.52 40.3 53.88
WH OK OK OK 84.76 53.6 95.93
SOBOL OK N/A N/A 46.1 40.9 50.58
NIEDERR OK N/A N/A 46.71 40.9 50.75
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Notes:
e The data is obtained for the parameters 0.1 < 4 <10000 .

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e  Performance is measured with A = 500, over the vector length of 1000 elements.

e Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

Performance Graphs

CPE
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CPE

Performance vs. Parameter
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PoissonV (VSL_METHOD_IPOISSONV_POISNORM)

Poisson distribution with the parameter A.If 4 < 0.0625, the random numbers are generated by
inverse transformation method. Otherwise they are produced through transformation of normally
distributed random numbers.

The VSL_ METHOD SGAUSSIAN_BOXMULLER2 method is used to generate random numbers
of normal distribution.

Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments | Chi-Square Intel® Intel® processor with
Pentium® 4 Itanium® 2 i
Streaming SIMD
processor processor Extensions 3 (SSE3)
MCG31m?1 OK OK OK 152.3 94.7 177.32
R250 OK OK OK 150.67 94.1 178.57
MRG32k3a OK OK OK 178.82 99.8 230.78
MCG59 OK OK OK 156.41 94.7 184.19
WH OK OK OK 191.94 108 226.11
SOBOL OK N/A N/A 153.34 95.4 181.13
NIEDERR OK N/A N/A 153.51 95.4 179.82
Notes:
e The data is obtained for the parameters 0.1<41<0.9; 1< 4<100;
101 < 41 <10000.

e The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

e Confidence, Moments, and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

e  Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

e Performance is measured over the vector length of 1000 elements.

e Dimension of Sobol (SOBOL) and Niederreiter (NIEDERR) BRNGs should be
appropriately selected to generate quasi-random vectors.

e Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.
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Performance Graphs

Performance vs. Parameter
viRngPoissonV, VSL_METHOD_IPOISSONV_POISNORM
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Performance vs. Parameter
viRngPoissonV, VSL_METHOD_IPOISSONV_POISNORM
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NegBinomial (VSL_METHOD_INEGBINOMIAL_NBAR)
Negative binomial distribution with the parameters @ and p. If (a —1)(1— p)/ p =100, the

random numbers are generated by NBAR method, otherwise by combination of inverse
transformation and table lookup methods. NBAR method is a variation of the acceptance/rejection
method that uses constant and linear functions (on the fraction close to the distribution mode) and
exponential functions (at the distribution tails) as majorizing functions. To ensure that the
majorizing functions are close to the normalized probability mass function, five 2D figures are
formed from the majorizing and minorizing functions as well as from other auxiliary curves. To
avoid time-consuming acceptance/rejection checks, areas with zero probability of rejection are
introduced.
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Test Results Summary

Performance
Intel® Pentium® 4
Confidence Moments Chi-Square Intel® i) processor with
Pentium® 4 Itanium® 2 Streaming SIMD
processor processor ea_ J
Extensions 3 (SSE3)
MCG31m1 OK OK OK 214.36 115 252.14
R250 OK OK OK 205.92 109 243.63
MRG32k3a OK OK OK 280.46 127 375.1
MCG59 oK OK oK™ 227.06 117 270.98
WH OK OK OK 308.04 144 364.35
SOBOL OK N/A N/A 206.7 124 219.27
NIEDERR OK N/A N/A 207.83 123 2201
Notes:

The data is obtained for the parameters 0.1 < a <10000,0.1<p <0.9.

The data on passing Moments and Chi-Square tests is obtained using the one-level
(threshold) testing technique.

Confidence, Moments and Chi-Square tests are performed for samples of size 1000,
10000, 100000.

Subcolumns in the column Performance stand for the following hardware configurations:
Pentium 4 processor — Pentium 4 processor, 1.5 GHz; Itanium 2 processor —
Itanium 2 processor, 900 MHz.

Performance is measured with @ =1000, p = 0.5, over the vector length of 1000
elements.

Sobol (SOBOL) and Niederreiter (NIEDERR) quasi-random number generators should
be used with great care with acceptance/rejection and mixture methods.

Sobol (SOBOL) and Niederreiter (NIEDERR) performance is measured at
dimension = 2.

4 FAIL(50%) for a = 50.95, p = 0.5, sample size 10000.
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Performance Graphs
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CPE
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