
AMRD Reference Manual

Frans Pretorius
Department of Physics

P-412, Avadh Bhatia Physics Laboratory

University of Alberta

Edmonton, AB, T6G 2J1

Contents

I. Introduction 1

II. Initialization 2

III. User Hook Functions 2
A. Custom generation of the initial hierarchy 3
B. Reading custom parameters 3
C. Specifying initial data 3
D. Multigrid routines 3
E. Evolution routines 4
F. Excision routines 4
G. Miscellaneous routines 4
H. Optional hook functions 5

IV. Options 5
A. Variable definition 5
B. Hierarchy definition 6
C. Parallel options 6
D. AMR/evolution options 7
E. MG options 9
F. Initial data/hierarchy options 9
G. Regridding/clustering options 10
H. Excision options 11
I. Output options 11
J. Check-pointing 11
K. Miscellaneous options 12

V. Examples 12
A. wave 12

1. Parameter Files 13
2. Source Files 13

B. nbs 13
1. Parameter Files 14
2. Source Files 14

References 14

I. INTRODUCTION

AMRD (adaptive mesh refinement driver) is a library consisting of a single function, amrd(), which implements a
Berger and Oliger (B&O) style adaptive mesh refinement (AMR) driver, with modifications to allow one to solve elliptic
equations within the B&O time stepping framework, as outlined in [1]. A standard, adaptive, full approximation
storage (FAS) multigrid (MG) algorithm is thus also provided. The user specifies the particular partial differential
equations (PDEs) to solve via a set of “hook” functions that are called by AMRD at appropriate times. AMRD is

2

built on top of PAMR [3], and so is parallel ready. AMRD is still very much under development, as is this document.
Comments, questions, bug reports (no guarantees that they will be fixed!), etc. should be sent to

fransp@phys.ualberta.ca

The description of AMRD is sub-divided into the following sections. Section II describes how to invoke the driver,
Section III lists all the hook functions, Section IV lists all the run-time parameters, and Section V describes a couple
of simple example programs included in the distribution.

At this stage only a C-language interface exits, though a fortran interface may be forthcoming. The type real used
throughout the interface is inherited from PAMR, and is currently defined as (see /include/internal opts.h)

#define real double

true and false refer to C-style booleans, namely zero for false and non-zero for true (though these are not types
defined in the PAMR headers).

Arrays are required to be indexed fortran style, i.e. first index varies most rapidly. Also, all array indicies passed to
and returned from various PAMR functions use fortran style numbering (element 1 is the first element in the array);
however example code statements below are in C and adjust these numbers to C style indexing.

II. INITIALIZATION

The driver is invoked via a single call:

void amrd(int argc, char **argv,

int (*app_id)(void),
void (*app_var_pre_init)(char *pfile),

void (*app_var_post_init)(char *pfile),
void (*app_AMRH_var_clear)(void),

void (*app_free_data)(void),
void (*app_t0_cnst_data)(void),

real (*app_evo_residual)(void),
real (*app_MG_residual)(void),

void (*app_evolve)(int iter),
real (*app_MG_relax)(void),
void (*app_L_op)(void),

void (*app_pre_io_calc)(void),
void (*app_scale_tre)(void),

void (*app_post_regrid)(void),
void (*app_post_tstep)(int L),

void (*app_fill_ex_mask)(real *mask, int dim, int *shape, real *bbox, real excised),
void (*app_fill_bh_bboxes)(real *bbox, int *num, int max_num));

The argc and argv arguments are the standard C command line information passed via main(). At this stage
the only command line argument interpreted by amrd() is the name of a parameter file. The call to amrd() starts
the driver, which then reads all the options from the parameter file, initializes the PAMR context, and then starts
the evolution. At various moments during this process, user hook functions, as specified by the app ..., arguments
are called, and are expected to perform the actual PDE specific numerics. Hook functions passed in the amrd()
parameter list that are not needed must still be defined, however they can immediately return. Since the first version
of AMRD several new hook functions have been added; they are described in Sec.III H, and must be defined prior to
the call to amrd() if used. All hook functions are described in the following section.

III. USER HOOK FUNCTIONS

AMRD uses PAMR to manage the grid hierarchy. When calling a hook function that is expected to perform
numerical operations on grid functions, AMRD initializes a sequential iterator in PAMR to loop through all the local
grids (see the section Grid-function access in the PAMR reference manual [3]), and for each grid calls the desired
hook function. Therefore, such hook functions can access all relevant grid information via the corresponding PAMR
functions, but should not use any iterator functions; i.e., the numerical hooks only operate on single grids at a time,
and do not need to know anything about grid distribution issues. In the listings below, hook functions that operate
on individual grids have a /* grid function hook */ comment.

3

A. Custom generation of the initial hierarchy

int app_id(void);

This function is called after all parameters have been read and the base level(s) 1 have been allocated. If the
return is true, then the user has created all subsequent levels in the hierarchy and appropriately initialized them,
and evolution starts immediately. Otherwise, one of AMRD’s default hierarchy initialization mechanisms is invoked.

B. Reading custom parameters

void app_var_pre_init(char *pfile);
void app_var_post_init(char *pfile);

These two hook functions are called before (app var pre init) and after (app var post init) AMRD parameters
have been read from the parameter file pfile and the base hierarchy has been initialized. Several utility functions,
listed below, are provided to read simple data structures in RNPL format [2] from the parameter file.

void AMRD_int_param(char *pfile, char *name, int *var, int size);

void AMRD_real_param(char *pfile, char *name, real *var, int size);
void AMRD_str_param(char *pfile, char *name, char **var, int size);

void AMRD_ivec_param(char *pfile, char *name, int *var, int size);

In all cases above, pfile is the parameter file name, name is the name of the parameter, var is a pointer to an array
where the result should be stored, and size refers to the expected size of the array (note that currently for integer,
real and string arrays, the size must exactly match the size of the object in the parameter file, if it is present). If
the desired parameter is not in the parameter file, nothing is written to the memory locations (so pre-initialize with
defaults).

C. Specifying initial data

void app_AMRH_var_clear(void); /* grid function hook */
void app_free_data(void); /* grid function hook */

void app_t0_cnst_data(void); /* grid function hook */

These routines allow one to initialized grid functions in the hierarchy. app AMRH var clear() is expected to
set all variables in the AMR hierarchy to their “zero” values. app free data() is called during the generation of the
initial hierarchy, and is expected to set the initial conditions for all freely specifiable fields at the initial time level
(specified via AMRD ic n). app t0 cnst data is called after every multigrid V-cycle when calculating the initial
data, and can be used to enforce algebraic (or other) constraints amongst initial data fields.

D. Multigrid routines

real app_MG_residual(void); /* grid function hook */
real app_MG_relax(void); /* grid function hook */

void app_L_op(void); /* grid function hook */

These routines are required by the built-in FAS multigrid algorithm (with V-cycling), to solve elliptic equations of
the form

L[f] = 0, (1)

1 if the maximum possible depth of the hierarchy specified via AMRD max lev is greater than 1, then ’base’ level consists of two fully

refined levels due to the self-shadow hierarchy method used to compute truncation errors

4

where L is a differential operator acting on a variable f . The FAS algorithm introduces a new right hand side Rf on
coarser levels of the hierarchy, modifying the above equation to

L[f] = Rf . (2)

app MG residual returns some norm of the residual of the MG variables, and expects the point-wise residual
L[f] − Rf to be stored in the grid function f res for each MG variable f. Rf is stored in the variable f rhs.
The function app MG relax is expected to perform one smoothing (relaxation) sweep of (2) over the grid, and
return an estimate of the norm of the residual on that grid. app L op computes the result of the differen-
tial operator acting on the each MG variable f (i.e. L[f]), in a region of the grid specified by the grid function
cmask—where cmask[i,j,...]==AMRD CMASK ON—and stores the result in f lop. Parts of the grid where
cmask[i,j,...]==AMRD CMASK OFF should not be modified by the user routine.

E. Evolution routines

void app_evolve(int iter); /* grid function hook */

real app_evo_residual(void); /* grid function hook */

app evolve is expected to perform 1 iteration of some evolution scheme, updating unknowns at the most ad-
vanced time level. The argument iter tells what the iteration (starting at 1) within the current time step is.
app evo residual returns some norm of the residual of the evolution equations.

F. Excision routines

void app_fill_ex_mask(real *mask, int dim, int *shape, real *bbox, real excised);
void app_fill_bh_bboxes(real *bbox, int *num, int max_num);

app fill ex mask is expected to set all points within excised regions in the grid function mask to excised, and
some other value outside of excised regions. NOTE: this function is not called within a PAMR sequential iterator
environment, and could be called at times when the hierarchy is undefined (in between a regrid). Thus no PAMR
functions should be called during the execution of this hook. To this end, the mask grid functions’ dimension (dim),
shape array (shape), and coordinate bounding box (bbox) are passed as arguments.

app fill bh bboxes is expected to fill an array of bounding box structures ([x 1, x 2, y 1, y 2, ...]), each de-
scribing the smallest rectangular region containing a given excised region in the domain. This is used with
the AMRD TRE sgpbh option (see section IVG below). bbox is a preallocated array of memory of size
2*dim*max num. max num is the maximum number of distinct excised regions that are supported, and upon
return num should be set to the actual number of excised regions.

void AMRD_repopulate(int n, int def_order);

AMRD repopulate is not a hook function; rather it is a utility routine that can be used to “repopulate” grid points
if the excision mask moves during evolution. When this function is called, all hyperbolic (at all times) and elliptic
variables, over all levels, are extrapolated n grid-points in from the existing excision boundary (using def order-order
extrapolation by default, but this can be changed on a variable-by-variable basis via the ex repop1 vars,... excision
options—see Sec.IVH). After the extrapolation, all rg diss vars are smoothed if rg diss eps > 0 (see Sec.IVG).

G. Miscellaneous routines

void app_pre_io_calc(void); /* grid function hook */
void app_scale_tre(void); /* grid function hook */

void app_post_regrid(void); /* grid function hook */
void app_post_tstep(int L);

app pre io calc is called prior to any output of grid functions to disk, to allow one to calculate any diagnostic grid
functions outside of the evolution loop. app scale tre gives the user the option to manipulate the standard truncation
error (TE) estimates for the set of variables for which such estimates are computed. Two global variables can be of

5

help in this regard: AMRD num f tre vars is an integer describing the number of TE variables, and AMRD f tre
is an array of AMRD num f tre vars pointers to the corresponding grid function data. After app scale tre is
called, the actual TE estimate used by AMRD is calculated as the point-wise ℓ2 norm of this set of TE estimate
variables. app post regrid is called after regridding. app post tstep is called after each evolution step has been
completed. The level number of the most recent step is passed in L.

H. Optional hook functions

Some hook functions are not specified in the amrd() argument list, but can be declared prior to the call to amrd()
(this is the mechanism that should have been used to declare all hook functions, though for “historic” reasons only
newer hooks are specified as such). The function amrd set xxx hook is used to define the xxx hook function.

void amrd_set_app_pre_tstep_hook(void (*app_pre_tstep_f)(int L));
void app_pre_tstep(int L);

app pre tstep is called prior to taking a time step on level L.

void amrd_set_app_user_cp_hook(void (*app_pre_tstep_f)(int save_restore, char *data), int cp_data_size);

void app_user_cp(int save_restore, char *data);

app user cp is used for check-pointing (see Sec.IV J). Prior to saving to a check-point file, app user cp is
called with save restore equal to AMRD CP SAVE, and the user program can fill in a block of memory
pointed to by data, of size cp data size, with any local state information that cannot be read from the param-
eter file. After restarting from a previously saved check-point file, app user cp is called with save restore equal to
AMRD CP RESTORE, and data will point to a block of memory containing the data previously saved.

IV. OPTIONS

The following describe all of AMRD’s options, specified in the input parameter file. These options include specifying
the number and type of variables, and controlling various aspects of the AMR/MG algorithms. Most of the options
are declared as global variables (with an AMRD prefix that does not appear in the parameter file names), and so
can be accessed by the user programs during execution (see the amrd.h header file).

NOTE: RNPL is used to read parameters from the file, and currently it cannot handle array parameters of unknown
length. Therefore, for any such parameter p that is in the input file, there is a corresponding integer parameter num p,
that must be specified and tells how large the array p is.

The format of the parameter listings below are as follows:

name (type, default=...):

Current scalar types include real, integer, string and ivec. Array types are shown as real[size], integer[size] and
string[size]. The size is either a constant, or as discussed above, a integer size variable that must be declared elsewhere
in the parameter file. Some parameters do not have defaults, and are required to be present in the input file.

A. Variable definition

The following parameters tell AMRD what variables to define over the grid hierarchy. Variable options (such as
the kind of interpolation, restriction, etc.) are discussed in later sections.

hyperbolic vars (string[num hyperbolic vars], default=[]): The list of “hyperbolic” variables. They are defined
in both the AMR (for all num evo tl time levels) and MG hierarchies, but are assumed to play the role of
passive ”source” functions during MG.

elliptic vars (string[num elliptic vars], default=[]): The list of “elliptic” variables. They are defined in both
the AMR (for all num evo tl time levels) and MG hierarchies, but are assumed to play the role of passive
”source” functions during evolution time steps. For each elliptic variable f that is defined here, AMRD will
create the following list of additional variables (see Sec. III D for a description of the MG variables; the extra
AMR variables are used to implement the “extrapolation and delayed solution” technique to deal with elliptics

6

in Berger and Oliger AMR, as discussed in [1]): f rhs (in MG hierarchy), f res (MG), f lop (MG), f rhs (MG),
f brs (AMR, one time level only), f extrap tm1 (AMR, one time level only), f extrap tm2 (AMR, one time
level only).

elliptic vars t0 (string[num elliptic vars t0], default=[]): The list of “elliptic” variables that only exist at t = t0
for the purposes of initial data calculation. They are only defined in the MG hierarchy.

AMRH work vars (string[num AMRH work vars], default=[]): The list of AMR “work” variables; i.e. vari-
ables that are only defined in the AMR hierarchy at one time level.

MGH work vars (string[num MGH work vars], default=[]): The list of MG “work” variables; i.e. variables
that are only defined in the MG hierarchy.

TRE vars (string[num TRE vars], default=[]): A subset of the list of hyperbolic vars that will be used for
truncation error estimated. For each variable f listed here, a one time level AMR variable f tre will be created
to hold the corresponding variable’s truncation error estimate (only calculated prior to regridding).

B. Hierarchy definition

The following parameters define basic properties of the grid hierarchy.

dim (integer): The spatial dimension, which currently can be 1,2 or 3.

num evo tl (integer): The number of time levels in the AMR hierarchy.

ic n (integer, default=2): Which time level is considered t = t0 for initial data calculation.

base shape (integer[dim], default=[3,3,...]): The base grid shape.

base bbox (real[2*dim], default=[-1,1,-1,1,...]): The base grid coordinate bounding box.

max lev (integer, default=1): The maximum depth of the AMR hierarchy. max lev=1 is therefore unigrid,
and note that because of the “self-shadow hierarchy” technique used to compute truncation error estimates, if
max lev>1 level 2 is always fully refined, hence the first two levels effectively become the base level in an AMR
evolution.

t0 (real, default=0.0): The initial time.

rho sp (integer, default=2): This variable sets the spatial refinement ratio for all levels in the hierarchy to the
same value rho sp.

rho tm (integer, default=2): This variable sets the temporal refinement ratio for all levels in the hierarchy to
the same value rho tm.

rho sp all (integer[max lev], default=[2,...]): rho sp all[i-1] defines the spatial refinement ratio of level i
(taking precedence over any rho sp declaration).

rho tm all (integer[max lev], default=[2,...]): rho tm all[i-1] defines the spatial refinement ratio of level i
(taking precedence over any rho tm declaration).

periodic (integer[dim], default=[0,...]): If set to a number other than 0, the corresponding spatial boundary is
considered periodic, and PAMR will take care of properly enforcing periodic boundary conditions.

lambda (real, default=1.0): The local CFL factor; i.e. dt=lambda*min(dx,dy,...).

C. Parallel options

ghost width (integer[dim], default=[2,...]): The size of the ghost region to add along interior grid boundaries
that are created by PAMR when splitting a grid across several nodes.

7

gdm grid by grid (integer, default=[0,...]): The grid distribution method. Currently only two options are
supported, level-by-level (default) and grid-by-grid (gdm grid by grid!=0). With level-by-level, PAMR will
try to split the volume taken up by all the grids at a given level into N pieces, where N are the number of
nodes partaking in the run. With grid-by-grid, PAMR will try to split the volume taken up by each grid into
N pieces.

gdm align (integer, default=[0,...]): If non-zero then ghost regions are padded so that all local child grid
boundaries lie on parent grid-lines.

gdm no overlap (integer, default=[0,...]): If non-zero, then all overlapping grids in the hierarchy, prior to
distribution in a parallel environment, are clipped to remove the overlap (option not yet implemented in PAMR).

min width (integer[dim], default=[3,...]): The minumum size that a grid could get split into.

D. AMR/evolution options

steps (integer, default=1): The number of coarse level (1) time steps to perform.

evo max iter (integer, default=50): The maximum number of iterations per time step.

evo min iter (integer, default=1): The minimum number of iterations per time step.

evo tol (real, default=0.0): The tolerance for the hyperbolic equations during the evolution step; i.e. if the
residual returned by the hook function app evolve is less than or equal to evo tol the equations are considered
solved.

evo ssc (integer, default=1): This flag, when non-zero, specifies separate stopping criteria for hyperbolic and
elliptic equations on the finest level on an evolution step. This means that if the hyperbolic residual drops below
evo tol while the elliptic residual is still above MG tol, then subsequent iterations only call the MG routines,
and vice-versa. If evo ssc=0, then the MG and hyperbolic evolution routines are called until both residuals
drop below their respective tolerances.

np1 initial guess (real, default=0): How the advanced time level tn+1 is initialized prior to the evolution step.
Current options are 0 and 1. np1 initial guess=0 means “do nothing”, and since time-levels are cyclically
switched from one time step to the next, the advanced time level will contain data from the most retarded time
level of the previous time step. np1 initial guess=1 copies the data from tn to tn+1.

MG extrap method (integer, default=0): (experimental ... leave at the default for now)

eps diss (real, default=0): Kreiss-Oliger style dissipation parameter for both tn diss vars and tnp1 diss vars.

tn eps diss (real, default=0): Kreiss-Oliger style dissipation parameter for tn diss vars; overrides the
eps diss if present.

tnp1 eps diss (real, default=0): Kreiss-Oliger style dissipation parameter for tnp1 diss vars; overrides the
eps diss if present.

diss bdy (integer, default=0): Set to 1 to extend the dissipation stencil all the way to grid boundaries (following
[4] otherwise only interior points are smoothed.

tnp1 diss vars (string[num tnp1 diss vars], default=[]): The list of most-advanced time level (tn+1) grid func-
tions to smooth after an evolution step has completed.

tn diss vars (string[num tn diss vars], default=[]): The list of next-to-most-advanced time level (tn) grid func-
tions to smooth before an evolution step has begun.

diss all past (integer, default=0): If non-zero, specifies that all past time levels of variables in tn diss vars
should be smoothed (using tn eps diss) prior to the evolution step, not only level tn.

tnp1 liipb vars (string[num tnp1 liipb vars], default=[]):

tnp1 liiab vars (string[num tnp1 liiab vars], default=[]):

8

tnp1 liibb vars (string[num tnp1 liibb vars], default=[]):

Experimental ... reinitialize these variables via linear interpolation next to (1 grid point in from) AMR
(tnp1 liiab vars), physical (tnp1 liipb vars) or both (tnp1 liibb vars) boundaries after each iteration of
the hyperbolic equations.

interp AMR bdy vars (string[num interp AMR bdy vars], default=[]): Experimental (intended for MG vari-
ables) ... initialize these variables at their AMR boundaries, at points that have no parent point, via interpolation
from points that do, before the evolution step.

interp AMR bdy order (integer, default=4): The order of interpolation to use for interp AMR bdy vars.

max t interp order (integer, default=2): The (maximum) order of temporal interpolation to use to set coarse
level, AMR boundary conditions. At this stage only second and third order interpolation is supported, and
third order interpolation requires at least 3 time levels.

re interp width (integer, default=0): If > 0, then after fine level evolution, but just before the fine-to-coarse
level injection step, a region of size re interp width points on the fine level adjacent to AMR boundaries are
reinterpolated from the parent (coarse) to child (fine) grids.

amr inject (string[num amr inject], default=[]): The list of variables to be injected from a fine level to the
next coarser levels, as per the B&O scheme.

amr interp2 (string[num interp2], default=[]): The list of variables that will have their AMR boundaries set
via 2nd order interpolation in space and time from the next coarser level, as per the B&O scheme.

amr interp4 (string[num interp4], default=[]): The list of variables that will have their AMR boundaries set
via 4th order interpolation in space and 2nd order interpolation in time from the next coarser level, as per the
B&O scheme.

amr sync (string[num sync], default=[]): The list of variables that need to have their ghost regions synchronized
after each iteration of the evolution equations.

amr transfer2 (string[num transfer2], default=[]): The list of variables that will be initialized on a new patch
of fine level after a regrid, either by copying data from an existing overlapping patch on the same level, or by
2nd order spatial and temporal interpolation from the next coarser level.

amr transfer4 (string[num transfer4], default=[]): The list of variables that will be initialized on a new patch
of fine level after a regrid, either by copying data from an existing overlapping patch on the same level, or by
4th order spatial and 2nd order temporal interpolation from the next coarser level.

The following options define lists of variables that have even or odd character across a given physical boundary. At
this stage these flags are only utilized when applying dissipation.

even vars x0min (string[num even vars x0min], default=[]):

even vars x0max (string[num even vars x0max], default=[]):

even vars x1min (string[num even vars x1min], default=[]):

even vars x1max (string[num even vars x1max], default=[]):

even vars x2min (string[num even vars x2min], default=[]):

even vars x2max (string[num even vars x2max], default=[]):

odd vars x0min (string[num odd vars x0min], default=[]):

odd vars x0max (string[num odd vars x0max], default=[]):

odd vars x1min (string[num odd vars x1min], default=[]):

odd vars x1max (string[num odd vars x1max], default=[]):

odd vars x2min (string[num odd vars x2min], default=[]):

odd vars x2max (string[num odd vars x2max], default=[]):

9

E. MG options

min mg cwidth (integer[dim], default=[3,...]): The minimum grid size for the coarsest level in the MG hier-
archy (independent of parallelization issues).

MG max iter (integer, default=50): The maximum number of vcycles to perform.

MG min iter (integer, default=1): The minimum number of vcycles to perform.

MG pre swp (integer, default=3): The number of pre CGC (coarse-grid-correction) smoothing sweeps to
perform.

MG pst swp (integer, default=3): The number of post CGC smoothing sweeps to perform.

MG tol (real, default=0.0): The tolerance for the MG equations i.e. if the residual returned by the hook
function app MG residual is less than or equal to MG tol the equations are considered solved.

MG crtol (real, default=1.0e-3): Currently AMRD “solves” the coarsest grid equations using relaxation. The
parameter MG crtol specifies how much the residual on the coarsest level should be reduced by relative to the
current next-to-coarsest residual, for the coarse grid problem to be considered solved.

MG w0 (real, default=1.0): An “under-relaxation” parameter. The residuals driving the RHS’s of the coarser
grid differential operators are multiplied by MG w0, and correspondingly the coarse grid corrections are mul-
tiplied by 1/MG w0 before being applied to the finer level. A value of MG w0 on the order of 0.9 to 0.95 is
useful for certain PDEs.

MG eps c (real, default=1.0): A “correction” to apply to the extrapolation of MG variables on the coarser
levels during a constrained evolution—see Section 2.70 of [1].

mg interp2 (string[num mg interp2], default=[]): The list of variables that will have linearly interpolated
coarse grid corrections applied during the vcycle.

mg hw restr (string[num mg hw restr], default=[]): The list of variables that will be restricted to coarser levels
in the MG hierarchy via half-weight restriction.

mg fw restr (string[num mg fw restr], default=[]): The list of variables that will be restricted to coarser levels
in the MG hierarchy via full-weight restriction.

mg sync (string[num mg sync], default=[]): The list of variables that need to have their ghost regions synchro-
nized after each smoothing sweep.

F. Initial data/hierarchy options

id method (integer, default=0): The method used to generate the initial hierarchy. Current options are

0: use truncation error estimates of TRE vars variables, calculated by taking a set of single coarse-step
evolutions;

1: use a truncation error estimate of the elliptic equations from the initial MG solve.

id pl method (integer, default=0): The method used to initialize past time levels. Current options are

0: first order extrapolation (i.e. straight copy);

1: first order extrapolation, then evolve the entire hierarchy backwards, then forwards one coarse step via
the B&O time-stepping scheme;

2: evolve all levels of the hierarchy backwards in time by id pl steps “small” steps (as specified by
a time step id pl lambda*dx f, where dx f is the smallest mesh spacing in the hierarchy), and then
extrapolate/interpolate the solution to the initial retarded time levels.

3: no nothing (or user will do it somewhere else, such as via app t0 cnst data). Do not use this option
with constrained evolution, as the past data needed to extrapolate the MG variables will not be initialized.

id pl steps (integer, default=1): see id pl method

10

id pl lambda (real, default=0.1): see id pl method

MG cnst data vars (string[num MG cnst data vars], default=[]): The list of variables that will be set via
app t0 cnst data following each vcycle.

MG cnst data vars (string[num MG cnst data vars], default=[]):

init depth (integer, default=2, maximum=10):

init bbox # (real[2*dim]):

init bbox b # (real[2*dim]):

is a number between 3 and init depth. If init depth is greater than 2, then an initial guess to the
grid structure of levels 3..init depth can be specified via bounding boxes init bbox # (required) and
init bbox b # (optional). Thus, at present two initial grids per level can be specified. Note that it is
the users responsibility to make sure that the bounding boxes “fit” into the hierarhcy; i.e., no bounds
checking, nor grid alignment is performed. Also, depending on the initial hierarchy construction options,
the specified structure may not be the one that is actually used for the initial hierarchy (you can freeze
this initial hierarchy in by using the regrid min lev option, setting it to init depth).

G. Regridding/clustering options

TRE max (real, default=0.0): The maximum estimated truncation error. The truncation error at each point
is calculated as the ℓ2 norm of the estimated trunction errors of all the variables specified in TRE vars. This
is then used, modulo buffers, to determine the set of grids in the hierarchy. The estimated truncation error of
a given variable is calculated using the self-shadow hierarchy technique, as described in [1].

TRE norm (integer, default=0): If non-zero, then the TE estimate of each variable is divided by an approximate
ℓ2 norm of the magnitude of the corresponding variable.

TRE buffer (integer, default=0): The number of buffer cells (relative to the parent level) to add to the region
of high TE.

TRE ibc buffer (integer, default=0): The number of buffer cells adjacent to AMR boundaries in which to
clear (zero) the TE estimate.

TRE ibcp buffer (integer, default=0): Experimental ... the same as TRE ibc buffer, except the calculation
is performed locally; i.e. TRE ibcp buffer clears the TRE adjacent to parallel interior boundaries in addition
to AMR boundaries, and hence the result could depend rather strongly on the number of nodes and grid
distribution.

TRE exc buffer (integer, default=0): The number of buffer cells around excised regions in which to clear
(zero) the TE estimate, on levels greater than or equal to TRE exc buffer lmin

TRE exc buffer lmin (integer, default=0): see above

regrid interval (integer, default=4): How often, in steps, to regrid on each level.

regrid min lev (integer, default=2): The minimum level beyond which regridding can occur (in other words,
levels 1..regrid min lev are fixed in time).

cls method (integer, default=0): Clustering method. Currently the only method offered is to cover regions of
high TE with minimal rectangles.

cls merge dist (integer, default=0): If clusters are within cls merge dist grid points of one another, then
merge them into a single encompassing cluster.

cls align mode (integer, default=0): MG imposes restrictions on child grid alignment; if
cls align mode=0(1) clusters are shrunk (expanded), if necessary, to conform to MG’s requirements.

11

TRE sgpbh (integer, default=0): If non-zero specifies a single grid (before parallel distribution) per black hole
when excising.

skip frg (integer, default=1): If non-zero then skips the first regrid.

rg diss vars (string[num rg diss vars], default=[]): A list of variables to apply standard Kreiss-Oliger dissipa-
tion to after regridding.

rg eps diss (real, default=0.0): The amount of dissipation to apply to rg diss vars variables.

regrid script (integer, default=0): The grid hierarchy can be recorded (regrid script=2) to an ASCII file
during evolution, or read (regrid script=1) from such a file to by-pass the TE-based hierarchy mechanism.
This allows one to (for instance) do a “standard” convergence test. NOTE: when reading the hierarchy structure
from a script, no checking is done to ensure that the grids are consistent with MG, are properly nested, etc. So
modify such scripts at your own risk!

regrid script name (string, default=[]): The file name to read or write a regrid script, if regrid script!=0.

H. Excision options

do ex (integer, default=0): If > 0, then turn on PAMR’s excision support functions. Furthermore, a variable
called “chr” will be defined to store the excision characteristic mask, where a point is excised if the corresponding
value in chr is set to ex below. special value: if do ex< 0, then excision is turned on, and “chr” will be used as
the “eps” array with dissipation

ex (real, default=1.0):

ex repop# vars (string[num ex repop1 vars], default=[]): During a call to AMRD repopulate, the list of
variables that will be extrapolated using #-order extrapolation (currently # can be between 1 and 4), over-riding
the def order parameter of AMRD repopulate (see Sec.III F).

I. Output options

save tag (string, default=[]): A character string to attach to front all output variable file names.

save ivec (ivec, default=[]): An index vector specifying the set of coarse grid times to save the desired grid
functions on all levels of the hierarchy to disk (in the current directory).

save mg vars (string[num save mg vars], default=[]): The list of MG variables to save.

save # vars (string[num save # vars], default=[]): The list of AMR variables to save, where the # refers to
the time level number. Note that for a 2 or more time level scheme, grid functions are saved to disk when time
level 2 is the most advanced time (specifically ,the time sequence is 2,3,4,...,bf num evo tl,1).

save ivec # (ivec, default=[]): Index vectors specifying the set of times to save level # grid functions to disk.

J. Check-pointing

The following flags control PAMR/ARMD’s checkpointing mechanism:

cp save fname (string, default=“”): A file name tag for saving new check-point files.

cp restore fname (string, default=“”): A file name tag for restoring the state from an existing set of check-
point files.

cp restart (boolean, default=false): If true, then evolution is continued from a prior set of check-point files,
with tag cp restore fname. The number of nodes in the new run does not need to be the same as the run
that created the check-point data.

cp first delta t hrs, (integer, default=0): If greater than zero, the approximate amount of run-time to ellapse
before the first check-point.

12

cp delta t hrs, (integer, default=0): If greater than zero, the approximate amount of run-time between check-
points (except possibly the first one, with can be set with cp first delta t hrs above).

When check-pointing during an n node parallel run, the internal state of the entire hierarchy is saved to a set of
files cp save fname X #.sdf, cp save fname AMRD X #.sdf, where X ∈ A..Z, a..z is a letter labelling the particular
check-point, and # ∈ 0..(n − 1) is the rank of the node. X starts at A, and after each checkpoint is “incremented”.
After Z, the label changes to a, and after z the label resets to A. Thus, at present, a maximum of 52 unique
check-point files can be written per run, and after the label wraps around old check-point files will be
over-written.

When restarting a run, many of the parameters are retrieved from the parameter file. Care should be taken when
changing parameters upon a restart. For example, it is “safe” to change dissipation parameters, truncation error
estimate thresholds, the maximum depth of the hierarchy (the change will only take effect after the next regrid), the
list of output variables, and similar parameters. Others, such as the grid resolution, the CFL factor (if during an
AMR evolution with more than one time level and the temporal refinement ratio is greater than 1), etc., should not
be altered (the changes will either be ignored, or could have unpredictable effects).

Internal user parameters can be saved/restored using the app user cp hook; see Sec.III H.

K. Miscellaneous options

The ... DV trace options below will eventually allow one to save variables at intermediate points in an iteration
for debugging purposes, though at this stage these options are not fully supported yet.

echo params (integer, default=1): If non-zero, then all parameters are echoed to the screen at run time, in
addition to the list of PAMR variables that have been defined.

pamr trace lev (integer, default=0): see the PAMR reference manual [3]

MG trace (integer, default=0):

MG DV trace (integer, default=-1):

MG DV trace t on real, default=1.0e-15):

MG DV trace t off real, default=1.0e-15):

ID DV trace (integer, default=0):

evo DV trace (integer, default=0):

evo DV trace t on real, default=1.0e-15):

evo DV trace t off real, default=1.0e-15):

evo trace (integer, default=0): Set from 0...3 to have the program output less...more information on the
iteration during each evolution step.

calc global var norms (integer, default=0): descriptions to follow

calc global var norm type (integer, default=1):

calc global var norm floor (real, default=1.0):

V. EXAMPLES

This section describes the two example programs wave and nbs included in the distribution.

A. wave

wave is located in the directory

13

.../pamr/examples/wave/

This program solves a 1,2 or 3D flat space wave equation �Φ = 0 in a rectangular domain, with either Dirichlet
or period boundary conditions. A 3 time-level, second order accurate leap frog style discretization scheme is used.
The following subsections describe the parameter and code files in a bit more detail, though I think the best way to
understand how things work is to peruse the source files (which are relatively simple in this case).

1. Parameter Files

For conceptual clarity, the input parameters are split into two files, the fixed parameters in

.../pamr/examples/wave/wave.fparam

and the run-time dependent parameters (the ellipsis ... in the above path name denote the directory where pamr was
installed). Three run-time parameter files, for a 1, 2 and 3d sample, are included in

.../pamr/examples/wave/run_1d/wave.rtparam

.../pamr/examples/wave/run_2d/wave.rtparam

.../pamr/examples/wave/run_3d/wave.rtparam

The fixed parameter file defines parameters that should be the same for all evolutions. This includes the number of
time levels, the variable definition (which in this case is the single scalar field variable phi), interpolation, injection
and synchronization options. The run-time parameter file defines parameters that could change from run to run, such
as the number of time steps, scalar field initial data, regridding intervals, etc. AMRD expects a single parameter file,
thus to run a simulation a sequence of commands such as the following could be used:

> cd .../pamr/examples/wave/run_1d/
> cat ../wave.fparam wave.rtparam > wave.param

> mpirun -np 2 ../wave wave.param

2. Source Files

The source is split into two main files plus a header file:

.../pamr/examples/wave/wave.c

.../pamr/examples/wave/wave.h

.../pamr/examples/wave/sf_evo.f

wave.c is the main program, which calls amrd() and contains all the required hook functions. Note the usage of
the PAMR library functions, in particular in the function ldptr(), which is called for all grid based hook functions
and queries the library about information pertaining to the current grid. The actual numerics are performed in the
fortran file sf evo.f—see the comments in the file for more details.

B. nbs

nbs is located in the directory

.../pamr/examples/nbs/

This program solves the Schroedinger equation with Newtonian potential in 3D flat space (and can in principle be
used to solve for Newtonian boson stars, hence the name; however, neither the initial nor boundary conditions are
setup for doing so at this stage).

i
∂Φ

∂t
= −

1

2
∇

2Φ + V Φ (3)

∇
2V = ΦΦ̄, (4)

where Φ is a complex field (with Φ̄ its complex conjugate) and V is a real potential. Dirichlet boundary conditions
are used for both Φ and V . In the code Φ is represented by its real and imaginary components Φ ≡ Φr + iΦi.

14

The above is a coupled elliptic-parabolic system of equations, however in the code the parabolic Schroedinger
equation is treated as a hyperbolic equation (solved using a two step Crank-Nicholson like scheme). This imposes a
rather restrictive CFL condition on the time step, and requires that the temporal refinement ratio be greater than the
spatial one. Thus the code is not very useful for doing physics, however the purpose of this example is to demonstrate
how to solve coupled elliptic/hyperbolic systems with AMRD.

1. Parameter Files

As with wave (see Sec.VA1), the input parameters are split into two files, the fixed parameters in

.../pamr/examples/nbs/nbs.fparam

and the run-time dependent parameters

.../pamr/examples/nbs/run/nbs.rtparam

nbs is run in the same way as wave:

> cd .../pamr/examples/nbs/run/

> cat ../nbs.fparam nbs.rtparam > nbs.param
> mpirun -np 2 ../nbs nbs.param

2. Source Files

The source is split into two main files plus a couple of include files:

.../pamr/examples/nbs/nbs.c

.../pamr/examples/nbs/nbs.h

.../pamr/examples/nbs/num.f

.../pamr/examples/nbs/cmask.inc

The structure of the code is very similar to that of wave (see Sec.VA2); nbs.c is the main program interfacing to
the libraries, and num.f contains the numerical routines.

[1] F. Pretorius, “Numerical Simulations of Gravitational Collapse”, Univ. of British Columbia Ph.D. Thesis (2002)
[2] R.L. Marsa and M.W. Choptuik, “The RNPL User’s Guide”,

http://laplace.physics.ubc.ca/Members/marsa/rnpl/users guide/users guide.html (1995)
[3] F. Pretorius, “PAMR Reference Manual”, (2004).
[4] G. Calabrese, L. Lehner, O. Reula, O. Sarbach, M. Tiglio “Summation by parts and dissipation for domains with excised

regions”, gr-qc/0308007

