Solving the EOM of Schwarzchild metric

Roland Stevenson*

January 27, 2004

This is work done in answering question 1 of Matt Choptuik's PHY387 course at UT Austin.

We are given the Schwarzchild metric:

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2} \tag{1}
\end{equation*}
$$

We are told to calculate the equations for geodesic motion of a massive test-particle in teh equatiorial plane. The equatorial plane allows us to assume we are in the plane defined by $\theta=\frac{\pi}{2}$. This simplifies the equations a bit, since we know $d \theta=0$. I think you can also say something about a killing vector along the theta direction, but I don't know too much about this yet.

So to solve for the geodesic equations, you calculate the Euler-Lagrange equations:

$$
\begin{equation*}
\frac{\partial}{\partial s}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}^{\alpha}}\right)-\frac{\partial \mathcal{L}}{\partial x^{\alpha}}=0 \tag{2}
\end{equation*}
$$

for each of the variables (t, r, θ, ϕ) and get the following 3 equations (no θ since $d \theta=0$):

$$
\begin{gather*}
-\left(1-\frac{2 M}{r}\right) \frac{d t}{d s}=K 1 \tag{3}\\
r^{2} \frac{d \phi}{d s}=K 2 \tag{4}
\end{gather*}
$$

And then this behemoth:

$$
\begin{equation*}
\frac{d^{2} r}{d s^{2}}=\frac{\alpha}{r(1-\alpha)}\left(\frac{1}{2}\left(\frac{d r}{d s}\right)^{2}-\frac{K 1^{2}}{2}\right)+(1-\alpha) \frac{K 2^{2}}{r^{3}} \tag{5}
\end{equation*}
$$

where $\alpha=\frac{2 M}{r}$
K2 it turns out is just the angular momentum, L. This can be seen in Eq. 6.
K1 squared is the Energy squared. As is noted in Wald's Eq. 6.3.14, the E (our K1) can be calculated in terms of $\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{M}$, and L :

$$
\begin{equation*}
\frac{1}{2} E=\frac{1}{2} \dot{r}^{2}+\frac{1}{2}\left(1-\frac{2 M}{r}\right)\left(\frac{L^{2}}{r^{2}}+1\right) \tag{6}
\end{equation*}
$$

Note: kappa in Wald equals 1 since we are dealing with timelike geodesics (the ones ordinary matter travels on). Null geodesics are for light.

