PHY 387N: Relativity Theory II Spring 1998 Project 3
Due: Thursday, April 9, 12:30pm

Problem 1: Critical (Black-Hole-Threshold) Behaviour in Yang-Mills Collapse

1.1) Preamble:

In this project you will study the spherically symmetric gravitational collapse of an SU(2) Yang-Mills field
as described in Choptuik, Chmaj and Bizon (hereafter CCB), “Critical Behaviour in Gravitational Collapse
of a Yang-Mills Field”, Phys. Rev. Lett. 77, 424-427 (1996), also available on-line in essentially identical
form at http://xxx.lanl.gov/ps/gr-qc/9603051. This model exhibits two types of black-hole threshold
phenomena, dubbed Type I and Type II behaviour, respectively. In both cases, the threshold of black hole
formation is characterized by a special, and essentially unique, critical solution of the EYM (Einstein-Yang-
Mills) equations, which can be generated dynamically via fine-tuning of initial data. It is important to realize
that these critical solutions are unstable: for generic (i.e. non-tuned) initial data, in the asymptotic (i.e.
infinite time) limit, either all of the matter will have escaped to infinity, or some percentage of the matter
will have escaped and the rest will have been trapped in a black hole. By fine-tuning the initial conditions
we can exploit this natural “competition” to produce critical solutions which, if infinitesimally perturbed,
result in either complete dispersal or black hole formation.

The Type I critical solution is static, and was first discovered by Bartnik and McKinnon (PRL, 61, 141-144
(1988), who adopted a static ansatz for the model and then, solving the resulting set of ODEs via a shooting
technique, generated convincing evidence for a countable infinity of regular solutions labeled by an integer,
n, which counts the number of zero-crossings of the Yang-Mills potential W (r,t) (see below). Specifically
the Type I critical solution you are to study is precisely the n = 1 solution found by those authors. If
this solution is perturbed in a way which leads to collapse, rather than dispersal, a black hole with finite
mass forms. Viewing the mass as an order parameter, this is analogous to a first order phase transition in
statistical mechanics—hence the nomenclature “Type I”.

The Type II critical solution in the model is very much analogous to the original scalar field critical solution
(Choptuik, PRL, 70, 9-12 (1993)), in that it is (discretely) self-similar (so rather than having a temporal
Killing vector, as in the static Type I case, we have a “scale Killing vector”) and consequently is strong-field
to arbitrarily small spatio-temporal scales and contains a naked singularity. In this case, black hole formation
turns on at infinitesimal mass (analogous to a second order phase transition) and the masses of the black
holes which form are well-fit by a scaling law

Mgy < |p—p*|", (1)

where p is the tuning parameter, p* is the critical (threshold value), and v & 0.20 is a universal (i.e. initial
data-independent) scaling exponent. Due to the self-similar nature of the Type II solution, a detailed finite-
difference-based study requires adaptive mesh refinement, and it is primarily for this reason that we will
focus on the Type I behaviour. However, if you are interested, and if you have time, you are encouraged
to use your code to investigate the Type II behaviour in the model to whatever extent is feasible (optional
Problem 1f).

Finally note that the specific requirements for “completion” of this project are purposefully being left some-
what vague, primarily since telling you ezactly what to do, and how to do it, is obviously highly artificial
in terms of the “real-world” arena of computationally-oriented research. Also, as I have emphasized several
times in the course, you want to get your code going and tested as quickly as possible so that you are left
with as much time as possible to explore and analyze the phenomenology exhibited by the model.

1.2) Equations of Motion:

A full motivation and description of the physics and mathematics underlying this model is (a) beyond the
scope of this project, and (b) not necessary in order for you to solve the equations of motion and observe



the basic phenomenology. Those interested in the details should consult the CCB paper and references
contained therein. In brief, by combining spherical symmetry with a certain additional ansatz for the the
SU(2) Yang-Mills field (purely magnetic ansatz, Abelian gauge) and adopting polar/areal (PA) coordinates,
we can write down a simple Lagrangian for the model which is very similar in form to that for a single scalar
field with a non-trivial self-interaction, coupled to gravity.

Specifically, the space-time metric is
ds? = —a?(r,t) dt* + a®(r,t) dr* + r*dQ*, (2)

(PA coordinates), and the matter content is described by a single function, W = W (r, t)—which we will call
the Yang-Mills potential —with a Lagrangian scalar, Lj;:

2
gV WY1 (1-W?)
Ly = — ( MTZ + 3 i . (3)

It must be stressed that Lj; should be viewed as valid only within the context of our particular coordinate
system—i.e. (3) will generate the correct equations of motion in PA coordinates, but (naive) extensions to
the case of other coordinate systems may not yield the appropriate Lagrangian.

Recall that the minimal coupling procedure dictates that the total Lagrangian density, £, is
L=Lg+ayLly =+v—g (R + aMLM) , (4)

where Ljs is the matter Lagrangian scalar and ajs is some coupling constant with arbitrary magnitude. If
we now define the stress tensor, 7),,, via

@ oL 1
TMV = 8_17\1'4 <_ M + _gMVLM> ) (5)

then extremization of the action with respect to variations of g"” yields the Einstein fields equations:
G = 81Ty, , (6)

while variation with respect to the matter fields produces the matter equations of motion. Also recall that
the definition (5) guarantees, by virtue of the contracted Bianchi identity, that T},, is conserved

VG =0 — VAT, =0. (7)

Problem 1a): Setting the coupling constant
av =4, (8)

derive the following equations of motion for the Yang-Mills potential and the geometric variables:

- ). o
I = (%@) SW(-w?), (10)
%’ N a22;1_1<¢2+n2+%(1—w2)2):0, (11)
o e LRl *
0 = QTqu), (13)



where

= W, (14)
n o= 2w, (15)
and W (r,t) is to be regarded as a “derived” quantity:
W(r,t) =Wy +/ (7, t) dr. (16)
0

As usual, overdots and primes denote partial differential differentiation with respect to time and space,
respectively. Note that (11) is the Hamiltonian constraint, (12) is the polar slicing condition, and (13) is
the evolution equation for a, wherein the momentum constraint has been used to eliminate the extrinsic
curvature component, K7,.. In deriving (11-13), you may find it useful to first derive the non-vanishing
stress-tensor components T}, from (5), then compute the 3+1 quantities

p = nn"T,,, (17)
ji = _n,uTHi ) (18)
St = %Sy ="y, (19)

and, finally, use the appropriate equations discussed in class for the case of a general matter source in PA
coordinates.

Note that we have included the evolution equation (13) for a for completeness, and for use in the consistency
check described below. It should not be used to update a in your dynamical evolutions of the model.

Problem 1b): Perform the following non-trivial consistency check of equations (9-15): Solve the Hamilto-
nian constraint for a', differentiate the result with respect to time and show that one gets the same result by
differentiating the right hand side of (13) with respect to r. In showing this equality of (¢)" and (a'), you will
want to eliminate o', o/, ®, II, W and W’'—wherever they appear—using the full set of equations (9-15).
Hint: Although it is certainly possible to do this check by hand, it is clearly a job ideally suited for a symbolic
manipulation package such as Maple.

1.3) Vacuum States and Regularity Conditions:

In contrast to the case of a massless scalar field, where ¢(r,t) and ¢(r, t) + k, for arbitrary constant k, are
identical solutions physically, and where any constant solution

¢(r,t) = constant , (20)
is a quiescent, or vacuum, solution, the Yang-Mills matter field has precisely two (discrete) vacuum states:
Wi(r,t) = £1. (21)

This fact is at least partly responsible for much of the interesting phenomenology in the model, including
the existence of the Bartnik-McKinnon static solutions. During an evolution, we demand that W remain in
specific vacuum states both at r = 0 and at r — co. Without loss of generality, we can set (see (16))

W(0,t) =Wy =+1, (22)
but then we can have either
li}m W(r,t) = +1, (23)
or
rll>ngo W(r,t) =—-1. (24)

It can be shown that regularity of the Yang-Mills field at the origin requires

lir% W(r,t) = Wo + r*Wy(t) + O(r*). (25)
T



(note that Wy is a constant, not a function of t), while the regularity /local-flatness conditions on the geometric
variables at r = 0 are the usual ones:

lima(rt) = aolt) +ras(t) + O) = 1+ ras(t) + O, (26)
lima(r1) = ao(t) +ras(t) + 004, (27)

or equivalently

a(0,t) = 1, (28
a(0,t) = 0, (29
o' (0,8) = (30

1.4) Boundary and Initial Conditions

Examination of the structure of equations (9-13) shows that we can set up initial data for an evolution by
specifying (a) W (r,0) (subject to the conditions that W (0,0) = 1, W(c0,0) = +1)—from which we can
immediately compute ®(r,0)—and (b) II(r,0).

Problem 1c): Derive expressions for ®(r,0) and II(r,0) in terms of
WO(T) = W(Tv 0) ’ (31)

and derivatives of Wy, so that, as much as possible, the Yang-Mills field is initially in-going only. Also
derive approximate outgoing radiation boundary conditions for ®(r,t) and II(r,¢). When solving the slicing
constraint, use a boundary condition based on the requirement:

1
li ) = ——, 32
lim a(rt) = o (32)
which, as discussed in class, follows from identification of (2) with the usual (static) Schwarzschild line
element (Birkhoff’s theorem), and the demand that ¢ measure proper time of coordinate stationary observers
as r — oo.

1.5) Solution of the Equations of Motion
Use RNPL to generate an O(h?) finite-difference code called eym to solve (9-12,16) with boundary and initial
conditions as described above. Your code should employ the following techniques and features:

1. Crank-Nicholson differencing—with implicit Kreiss-Oliger-style dissipation—of equations (9) and (10)
(see supplementary notes for descriptions of these techniques and the online project resources for an
example).

2. Approximate outgoing radiation conditions.

3. Hand-coded solvers for the Hamiltonian constraint (11) and the slicing condition (12), incorporated
into RNPL using the UPDATE statement (see my RNPL solution of the EMKG model, available online,
for an example—I encourage you to write your own solvers “from scratch”, but you can also borrow
code “wholesale” from my example if you so desire).

4. Bullet proofing of the Hamiltonian constraint solver, so that if the solver fails, the program exits
gracefully with an appropriate error message.

5. Computation of the “black hole” function, Z(r,t)

20ty = 20 (33)

where m(r,t) is the usual PR mass-aspect function:

m = %r (1-a™?). (34)



6. Monitoring of the instantaneous maximum of Z(r,t) with a graceful program exit when a user-
specified threshold value (presumably indicating imminent black hole formation) is exceeded during
an evolution—you will need to determine an appropriate value for the threshold empirically.

7. Flat-spacetime option: Use an RNPL parameter flatspace, which, if set to a non-zero value, results
in
a(r,t) =a(r,t) =1, (35)

so that the propagation of the YM potential in flat-spacetime can also be studied with your program.

You may find it more convenient to incorporate your computation of m, Z etc. into your constraint-solving
code, rather than having RNPL generate the code for you. As usual, check your code carefully for convergence
and for physically reasonable behaviour—you can be sure that I will do the same!

1.6) Critical Behaviour

Consider the following initial data
1+ (r§ —r?) /6?

Wo(r;re,0) = :
(L + 03 =r2) /62 +4r2)

1/2 ? (36)

where 1y and § are adjustable parameters. Provided that 0 << ry << rmax, where rmax is the radius at
the outer edge of the computational domain, this data describes a “kink”, centred at r = rp, with a “kink-
width” controlled by 6. As § decreases, the kink steepens, and the configuration becomes more strongly
self-gravitating. Note that II(r,0) is to be specified (as you computed above), so that the kink is, as much
as possible, initially in-going.

Problem 1d): Use your code with the above initial data to study the Type I critical behaviour in the
model. In your write-up, be sure to include a description of your basic methodology, (e.g. how you found
the critical solution) along with qualitative and, where possible, quantitative discussions of your findings.
Make some .mpeg or .gif movies showing key features and post them on your web page.

Note: If you have time, you may want to write an LSODA-based program to compute the n = 1 Bartnik-
McKinnon solution using a shooting technique. However, I will supply the profile in machine-readable form
(i.e. in an .sdf file). This will allow you to directly verify that you are, indeed, generating the n = 1
bartnikon as the critical solution. See the online resources for details.

Problem 1le): Generate the Type I critical solution again, this time using a family of initial data of your
own design. (No trivial modifications of (36)!).

Problem 1f): OPTIONAL!: Study the Type II critical behaviour in the model.




2) SUPPLEMENTARY NOTES

2.1) Crank-Nicholson Differencing

Consider a general first-order-in-time PDE
u(xv t) = L[u(xv t)] ) (37)

where L is some purely spatial differential operator (such as 0., 9.4, €tc.). Assuming, as usual, a uniform
discretization of space and time—(z,t) — (z;,t") = (zo + jAz, 1 + nAt) = (xo + jh, t° + nAh), where X is
held fixed as h — 0—we define the Crank-Nicholson scheme for (37) as follows:

B a;b _ 1 T [an+1 T ran

~n—+1
Yj

Further assuming that L is an O(h?) approximation of L, it is easy to see (by considering Taylor-series
expansions about (t”+%,xj)) that this scheme has O(h?) truncation error. Note that the term “Crank-
Nicholson” (hereafter CN), named for researchers who originally wrote down such a scheme for the diffusion
equation, refers (only) to

e The centering of the discrete time derivative at ¢ = t"*2 using the standard O(h?) approximation of
a first derivative.

e The centering of the discrete spatial differential operators at ¢ = tnts using an averaging procedure.

In particular, note that the nomenclature CN (at least as I'm defining it) implies nothing about the specific
form of L, except that we will assume L = L + O(h?).

For example, consider the ordinary wave equation (' = 9,)

o=9¢", (39)

written in first-order form (® = ¢/, I = ¢):
> = 1IU, (40)
n = o. (41)

Using the usual O(h?) approximation for d,, a CN form of (40-41) is

n+1 n n+1 n+1 n n
¢ -7 1 (W 1G5 MG, — T, (42)
At 2 2Ax 2Ax ’
n+1 n n+1 n+1 n n
e A T ) 1 ) B UNL o R TR (43)
At 2 2Ax 2Ax

Note that, like all CN methods, this scheme is implicit: i.e. we can not solve (42)-(43) explicitly for
the advanced values ®"! and II""!. Although there are more efficient ways of solving such systems,
for hyperbolic systems RNPL’s built-in iterative update procedure will usually solve such equations quite
satisfactorily.

Defining difference operators, AY,, pf, and A§ by

n+1 n
t,n — Uy — uj
n 1 n n
phuy = 3 (ul*t +uf) (45)
u™, , —u”
AZy? = J+1 Jj—1 46
OU’] INL ’ ( )



we can rewrite (42)-(43) in a form which is readily translated into RNPL:

ALe = b (AFTD) (47)
AiH = ,ui (AF®) . (48)
At least for simple hyperbolic systems such as (39), one also finds that outgoing radiation boundary conditions
can be incorporated into a CN scheme in the obvious way. Thus, for example, at £ = Ty.x, a continuum

outgoing condition on @ is given by: )
d+d' =0. (49)

Introducing the O(h?) backwards difference approximation of 9., denoted D* :

n_ gyn n
_ Suf i tug,

- 2Ax ’ (50)
a suitable approximation of (49) is
AL®+ pf (D*@) =0. (51)

2.2) Implicit “Kreiss-Oliger” Dissipation

We begin with a general discussion concerning the motivation for the addition of “Kreiss-Oliger” (KO)
dissipation terms to finite-difference approximations of hyperbolic systems. In brief, KO dissipation is used
to control the stability of such difference schemes. Now, the notion of stability is crucially important in FD
(finite-difference) solutions of time-dependent problems, and is a subject which we will not be able to discuss
in class in any detail. However, the basic ideas are quite easy to understand. (I should also point out at
this juncture that is purely from stability considerations that I am suggesting that you use CN differencing
rather than leap-frog to solve the EYM equations—you might want to see what happens/goes wrong with
leap-frog). We begin by writing our difference scheme in the rather abstract form:

@ =Gl (52)

where we will call G the update operator. Note that the discrete approximation, @, will, in general, be a
vector of unknowns at each mesh point. Also note that there is no loss in generality in stipulating that
our scheme is 2-level (i.e. couples only t" and ¢"*! unknowns) since multi-level schemes can be recast in
2-level form via the introduction of auxiliary variables in a fashion completely analogous to the conversion
of high-order differential equations to first order form. Finally note that (52) encompasses implicit schemes
as well as implicit ones—a typical implicit scheme can be written as

Gy [a"] = Gola"] (53)
where Gy and GG; are some operators; then assuming G is invertible, we have

"t = (G) LGy [a"] = G "] . (54)

If we know (as is the case for many hyperbolic systems) that the norm (size) of the continuum solution
u(x,t) at any time ¢ is O(1) times the norm of the initial data u(zx,0), then in order for this feature to be
reflected in the difference solution we must have, roughly speaking, that spectrum of G lie on or within the
unit circle in the complex plane. Indeed, by iterating (52), we have

a" =G [a°] , (55)

where G™ is the n-fold application of the operator G. Clearly then, if the largest eigenvalue (~ spectral
radius) of G has modulus larger than unity, our difference scheme will “blow up” (i.e. be unstable) as we
iterate. Unfortunately, this situation occurs all too frequently in practice!

A basic rule of thumb regarding the stability of FD approximations to hyperbolic systems is that is usually
the high-frequency, or short-wavelength components which govern the overall stability of the scheme—i.e.



stability is largely a high-frequency phenomenon. In addition, if one looks at the dispersion relation for
standard O(h?) approximations of such systems (such as (42)-(43)), one finds that the phase velocities of
high frequency components are usually grossly inaccurate. Thus, Kreiss and Oliger conclude, since high
frequency components are potentially troublesome for stability, and tend to be poorly treated by standard
diference schemes, it is not at all unreasonable to “go in by hand” and attempt to damp them. This is
precisely what KO-style dissipation does.

Consider, for example, the model equation

w=u, (56)
discretized using the O(h?) leap-frog scheme:
IAL;“+1 B a?*1 — a?+1 B ayfl (57)
24t 20z

In this case KO dissipation is added by modifying (57) as follows
7 = (1- ottt (58)
Here, € is an adjustable positive parameter which (somewhat ironically), must satisfy

e<1, (59)

for the modified scheme to be stable. The difference operator D* in (58) is defined by

D' = (A7) (ar)?, (60)

U - — U
Ay, = I+ 7 61
+u] Ax ) ( )

. U; —U; 4
A7“]’ = # ) (62)

and is an O(h?) approximation to Opzzs:

D*u(z,t) = Oppeou(z,t) + O(R?). (63)

Explicitly, we have

no 4 n_ 4y n
Dy = tit? dujiy +6uj —duj, tuj,
7 N

The modification (58) is motivated by the following facts:

1. It damps high frequency components effectively—in effect acting as a low-pass filter with quite a sharp
cut-off.

2. The difference scheme is stable provided A = At/dz < 1 and € < 1.
3. The difference scheme remains O(h?) accurate.

Facts (1) and (2) can be established by performing a Von Neumnann stability analysis of the difference
scheme. You can find details concerning this technique in any good textbook on the numerical solution of
time-dependent PDEs, but basically, one adopts the “normal mode” ansatz:

ﬂ;l, — 'uneiija: , (65)

(1 is complex in general), plugs it into the difference scheme, derives a characteristic equation which is
polynomial in u
P(p) =0, (66)



then investigates under what conditions the roots, i, of (66) lie on or within the unit circle for all values of
w which can be represented on the mesh. In particular, one finds that for high-frequency components (large
w), the corresponding u,’s are well-within the unit circle, and hence will suffer significant damping.

Fact (3) can be seen as follows: from (57) and (58) we have
€

AN T nn T ¢ o
Aé’u,] = AO — 32AtAx4 D4Uj = AO — @Alﬁ D4Uj s (67)

so the truncation error of the modified difference scheme is

t _ Az € AL3pe),, — t _aw € 33 p4), _ 2
(AO A0+32)\AxD>u (AO A0+32)\hD)u o(h?), (68)

since from (63)
D*u = 0yprpu + O(h?) (69)

i.e. to leading order, D*u is O(1). Thus, KO dissipation modifies the truncation error at the O(h®) level, so
the overall order of the scheme remains unchanged at O(h?), as claimed.

Finally, the same type of operator can be used to add dissipation to CN (and other implicit schemes).
However, we now modify both ﬂ;‘“ and @7. Thus, if our CN diff of (56) is

artt —qn
= (A (70)
we modify the scheme via (be careful with the signs!)
~nt1 € 474\ sntl
a — (1+§Aaz D )u] ) (71)
- (1 - 3—62Ax4D4> ar (72)

Explicitly we have

(1+eAa*D?/32) 0! — (1 — eAx*D*/32) 47

N = W (AzaT) (73)
which can be re-written as
At An t € 64An t AzAn 74
+Uj = 1\ T1ead W + ph (A%aT) (74)
where I have defined the fourth-undivided-difference operator, §*:
64u§‘ = (Ax4D4) u? = u?+2 - 4u§‘+1 + 6u;7‘ - 4u;7;1 + u;‘fz . (75)

Again, we generally need € < 1 for stability—I typically use € = 0.5, but this is something you’ll generally
want to experiment with. See the online resources for this project for an example of this technique applied
to CN differencing of the wave equation (39).



