1. Problems from Gilat, Ch. 1.10
1.2 a) Calculate

$$
23\left(-8+\frac{\sqrt{607}}{3}\right)+\left(\frac{40}{8}+4.7^{2}\right)^{2}
$$

INPUT

```
res2a = 23 * (-8 + sqrt(607)/3) + (40/8 + 4.7^2) ^2
res2b = nthroot(509,3) - 4.5^2 + log(200)/1.5 + sqrt(75)
```

OUTPUT

```
res2a = 738.75
res2b = -0.073190
```

1.4 a) Calculate

$$
\cos \left(\frac{5 \pi}{6}\right) \sin ^{2}\left(\frac{7 \pi}{8}\right)+\frac{\tan \left(\frac{\pi}{6} \ln 8\right)}{\sqrt{7}+2}
$$

INPUT

```
res4a}=\operatorname{cos}(5*\textrm{pi}/6)*\operatorname{sin}(7*\textrm{pi}/8)^2 + tan(pi/6*log(8)) / (sqrt(7) + 2)
res4b = cos(3*pi/5)^2 + tan(pi*log(6)/5) / (8*7/2)
OUTPUT
res4a = 0.28462
res4b = 0.17038
```

1.6 a) Define the variables $x$ and $z$ as $x=5.3$, and $z=7.8$, then evaluate:

$$
\frac{x z}{(x / z)^{2}}+14 x^{2}-0.8 z^{2}
$$

INPUT
$\mathrm{x}=5.3$
$z=7.8$
res6a $=(x * z) /(x / z)^{\wedge} 2+14 * x^{\wedge} 2-0.8 * z^{\wedge} 2$
res6b $=x^{\wedge} 2 * z-z^{\wedge} 2 * x+(x / z)^{\wedge} 2-\operatorname{sqrt}(z / x)$
OUTPUT
$\mathrm{x}=5.3000$
$z=7.8000$
res6a $=434.13$
res6b $=-104.10$
1.10 a) The following is a trignonometric identity:

$$
\sin (3 x)=3 \sin x-4 \sin ^{3} x
$$

Verify that the identity is correct by calculating each side of the equation, substituting $x=7 \pi / 20$.

INPUT
$\mathrm{x}=7 * \mathrm{pi} / 20$
lhsa $=\sin (3 * x)$
rhsa $=3 * \sin (x)-4 * \sin (x)^{\wedge} 3$
res10a = lhsa - rhsa
format long
lhsa
rhsa
format short
OUTPUT
$\mathrm{x}=1.0996$
lhsa $=-0.15643$
rhsa $=-0.15643$
res10a $=-4.4409 \mathrm{e}-16$
lhsa $=-0.156434465040231$
rhsa $=-0.156434465040230$
1.16) The distance $d$ from a point $\left(x_{0}, y_{0}\right)$ to a line $A x+B y+C=0$ is given by:

$$
d=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}
$$

Determine the distance of the point $(-3,4)$ from the line $2 x-7 y-10=0$. First define the variables $A, B, C$, $x_{0}$ and $y_{0}$, and then calculate $d$. (Use the abs and sqrt functions).

INPUT
$\mathrm{A}=2$
$B=-7$
$C=-10$
$\mathrm{x} 0=3$
$y 0=-4$
$d=a b s(A * x 0+B * y 0+C) / \operatorname{sqrt}\left(A^{\wedge} 2+B^{\wedge} 2\right)$
OUTPUT
$\mathrm{A}=2$
$B=-7$
$\mathrm{C}=-10$
$\mathrm{x} 0=3$
$y 0=-4$
$\mathrm{d}=3.2967$

## 2. Problems from Gilat, Ch. 2.11

2.1 Create a row vector that has the elements $6,8 \cdot 3,81, e^{2.5}, \sqrt{65}, \sin (\pi / 3)$ and 23.05 .

INPUT
res1 $=[68 * 381 \exp (2.5) \operatorname{sqrt}(65) \sin (\mathrm{pi} / 3) 23.05]$
OUTPUT
res1 =
6.00000
24.00000
81.00000
12.18249
8.06226
0.86603
23.05000
2.2 Create a column vector that has the elements $44,9, \ln (51), 2^{3}, 0.1$ and $5 \tan \left(25^{\circ}\right)$.

INPUT
res2 $=[44 ; 9 ; \log (51) ; 2 \wedge 3 ; 0.1 ; 5 * \operatorname{tand}(25)]$

OUTPUT
res2 $=$
44.00000
9.00000
3.93183
8.00000
0.10000
2.33154
2.4 Create a column vector in which the first element is 18 , the elements decrease with increments of -4 , and the last element is -22 . (Recall that a column vector can be created by the transpose of a row vector.)

INPUT
res4 = [18:-4:-22],

OUTPUT
res4 =

18
14
10
6
2
-2
-6
-10
-14
-18
$-22$
2.8 Create a vector, name it Afirst, that has 13 elements in which the first is 3 , the increment is 4 and the last element is 51. Then, using the colon symbol, create a new vector, call it Asecond, that has seven elements. The first four elements are the the first four elements of the vector Afirst, and the last three are the last three elements of the vector Afirst.

INPUT
Afirst $=3: 4: 51$
Asecond(1:7) = [Afirst(1:4) Afirst(11:13)]
OUTPUT

## Afirst =

$\begin{array}{lllllllllllll}3 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51\end{array}$
Asecond =

| 3 | 7 | 11 | 15 | 43 | 47 | 51 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2.9 Create the matrix shown below by using the vector notation for creating vectors with constant spacing and/or the linspace command when entering the rows.

$$
B=\left[\begin{array}{cccccccc}
0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
69 & 68 & 67 & 66 & 65 & 64 & 63 & 62 \\
1.4 & 1.1 & 0.8 & 0.5 & 0.2 & -0.1 & -0.4 & -0.7
\end{array}\right]
$$

INPUT
$B=[0: 4: 28 ; 69:-1: 62 ;$ linspace (1.4,-0.7,8)]
OUTPUT
$B=$
Columns 1 through 7:

| 0.00000 | 4.00000 | 8.00000 | 12.00000 | 16.00000 | 20.00000 | 24.00000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 69.00000 | 68.00000 | 67.00000 | 66.00000 | 65.00000 | 64.00000 | 63.00000 |
| 1.40000 | 1.10000 | 0.80000 | 0.50000 | 0.20000 | -0.10000 | -0.40000 |
|  |  |  |  |  |  |  |
| Column 8: |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 62.00000 |  |  |  |  |  |  |
| -0.700000 |  |  |  |  |  |  |

2.10 Using the colon symbol, create a $3 \times 5$ matrix (assign to a variable named msame) in which all of the elements are the number 7 .

INPUT
msame (1:3, $1: 5)=7$
OUTPUT
msame $=$

| 7 | 7 | 7 | 7 | 7 |
| :--- | :--- | :--- | :--- | :--- |
| 7 | 7 | 7 | 7 | 7 |
| 7 | 7 | 7 | 7 | 7 |

2.14 Create the following matrix, $A$ :

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{array}\right]
$$

INPUT
$A=\operatorname{reshape}(1: 15,5,3) \quad$,
output
$\mathrm{A}=$

| 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 |

Use the matrix $A$ to:
a) Create a five-element row vector named va that contains the elements of the first row of $A$.
input
$\mathrm{va}=\mathrm{A}(1,:)$
OUTPUT
va $=$
$1 \begin{array}{llll}1 & 2 & 3 & 5\end{array}$
b) Create a three-element row vector named vb that contains the elements of the third column of $A$. inPut
$\mathrm{vb}=\mathrm{A}(:, 3)$
OUTPUT
$\mathrm{vb}=$
3
8
13
c) Create an eight-element row vector names vc that contains the elements of the second row of $A$ and the fourth column of $A$.

INPUT
$\mathrm{vc}=\left[\mathrm{A}(2,:) \mathrm{A}(:, 4)^{\prime}\right]$
OUTPUT
$\mathrm{vc}=$

| 6 | 7 | 8 | 9 | 10 | 4 | 9 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

d) Create a six-element row vector named vd that contains the elements of the first and fifth columns of $A$. INPUT
$\operatorname{vd}=\left[A(:, 1)^{\prime} A(:, 5)^{\prime}\right]$
OUTPUT
vd $=$

| 1 | 6 | 11 | 5 | 10 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- |

2.18 Using the zeros, ones and eye commands, create the following arrays:
a)

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

INPUT
$a=[\operatorname{zeros}(2,3)$ ones $(2,3)]$
OUTPUT
$\mathrm{a}=$

| 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 | 1 | 1 |

b)

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

INPUT
$b=[\operatorname{ones}(4,1)$ eye(4) zeros $(4,1)]$
OUTPUT
$\mathrm{b}=$

| 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |

c)
$\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1\end{array}\right]$

INPUT
$c=[$ ones $(1,2) ; \operatorname{zeros}(2,2) ;$ ones $(1,2)]$

OUTPUT
c $=$

11
00
00
11
3. Writing simple octave/MATLAB functions and scripts

3b) threeoutargs:
Create a MATLAB function threeoutargs which has two input arguments, $x$ and $y$, and which returns three output arguments which are $x+y, x-y$ and $(x+y) / 2$, respectively. Ensure that you save the definition of your function as the file threeoutargs.m.

## Sample implementation

```
function [res1 res2 res3] = threeoutargs (x, y)
    res1 = \(\mathrm{x}+\mathrm{y}\);
    res2 \(=\mathrm{x}-\mathrm{y}\);
    res3 \(=(x+y) / 2 ;\)
end
```

3c) sintaylor
The Taylor series expansion for $\sin x$ is given by

$$
\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

Create a MATLAB function sintaylor with a header as follows
function res $=$ sintaylor $(x, n m a x, ~ e p s i)$
and which computes an approximation of $\sin (x)$ using the following truncated version of the series

$$
\sin x=\sum_{n=0}^{n_{\max }} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}
$$

sintaylor should return as soon as either one of the conditions have been met

- All of the terms in the truncated series have been evaluated.
- An individual term in the series has an absolute value that is $\leq$ epsi (but include that term in the sum)

Save your code in the file sintaylor.m

## Sample implementation

```
function res = sintaylor(x, nmax, epsi)
%% sintaylor(x, nmax, epsi)
%%
%% Evaluates Taylor series for sin(x) about x=0 using
%% a maximum of nmax + 1 terms, or until the current
%% term in the expansion has an absolute value <= epsi
%%
    res = 0;
    for n = 0:nmax
        term = ((-1)^n/factorial( 2*n + 1)) * x^(2*n + 1);
        res = res + term;
        if abs(term) <= epsi
            break;
        end
    end
end
```

