
Introduction to Maple Programming

Example Maple procedure that operates on two lists

> #---
ladd: Returns list lres[i] such that lres[i] = l1[i] + l2[i]
#---
ladd := proc(l1::list(algebraic), l2::list(algebraic))

>
> # Declare local vbl for building up SEQUENCE of values
> # that will then be converted to a list and returned,
> # and a loop vbl.
>
> local sres, i;
>
> # Check that the lists have the same length. If not, invoke
> # error to print message and exit.
>
> if nops(l1) <> nops(l2) then
> error("Input lists l1 and l2 are not of the same length");
> end if;
>
> # NULL is a special value that evaluates to a null (empty)
> # expression sequence.
>
> sres := NULL;
>
> # Loop over all of the elements in l1, l2 ...
>
> for i from 1 to nops(l1) do
>
> # Build up the sequence.
>
> sres := sres , (l1[i] + l2[i]);
>
> end do;
>
> # Convert the built up sequence to a list and return the
> # list using Maple's default mechanism for returning a value
> # from a procedure.
>
> [sres]
>

> end proc;

ladd ,::l1 ()list algebraic ::l2 ()list algebraicproc() :=
local ;,sres i

if then end if ≠ ()nops l1 ()nops l2 error "Input lists l1 and l2 are not of the same length" ;
 := sres NULL;

for to do end doi ()nops l1 := sres ,sres + []l1 i []l2 i ;
[]sres

end proc

Usage examples: valid input

> list1 := [2, 4*x^2, 3.0, 6*cos(y)^2];

 := list1 [], , ,2 4 x2 3.0 6 ()cos y 2

> list2 := [z, 2*x^2, 5, 6*sin(y)^2];

 := list2 [], , ,z 2 x2 5 6 ()sin y 2

> ladd(list1, list2);

[], , , + 2 z 6 x2 8.0 + 6 ()cos y 2 6 ()sin y 2

How could we modify ladd so that the fourth element in the above list was simplified to
6?

> ladd([], []);

[]

> ladd(list1, list1);

[], , ,4 8 x2 6.0 12 ()cos y 2

> ladd(list1, [1, 2, 3, 4]);

[], , ,3 + 4 x2 2 6.0 + 6 ()cos y 2 4

Usage examples: invalid input

> list3 := [a, b, c];

 := list3 [], ,a b c

> list4 := [a, b, c, [d, e]];

 := list4 [], , ,a b c [],d e

> ladd(list1,list3);
Error, (in ladd) Input lists l1 and l2 are not of the same length

> ladd(list1,list4);
Error, invalid input: ladd expects its 2nd argument, l2, to be of type
list(algebraic), but received [a, b, c, [d, e]]

Illustration of Maple's built in tracing (debugging) facility

See ?trace for full details.

Enable tracing of procedure ladd

> trace(ladd);

ladd

> ladd(list1, list2);
{--> enter ladd, args = [2, 4*x^2, 3.0, 6*cos(y)^2], [z, 2*x^2, 5, 6*sin(y)^2]

 := sres
 := sres + 2 z

 := sres , + 2 z 6 x2

 := sres , , + 2 z 6 x2 8.0

 := sres , , , + 2 z 6 x2 8.0 + 6 ()cos y 2 6 ()sin y 2

[], , , + 2 z 6 x2 8.0 + 6 ()cos y 2 6 ()sin y 2

<-- exit ladd (now at top level) = [2+z, 6*x^2, 8.0, 6*cos(y)^2+6*sin(y)^2]}

[], , , + 2 z 6 x2 8.0 + 6 ()cos y 2 6 ()sin y 2

Note that in addition to the input arguments, and output return value, the tracing output
includes the return value of all of the statement body that were terminated with a
semi-colon (which is all of the statements).

Had any of the statements been terminated with a colon, they would not have been
traced, so if you want to use the trace facility to full advantage, be sure to use
semi-colons rather than colons when coding procedures.

Disable tracing of the procedure

> untrace(ladd);

ladd

Using the op command to display the definition of a procedure

Example:

> op(ladd);

,::l1 ()list algebraic ::l2 ()list algebraicproc()
local ;,sres i

if then end if ≠ ()nops l1 ()nops l2 error "Input lists l1 and l2 are not of the same length" ;
 := sres NULL;

for to do end doi ()nops l1 := sres ,sres + []l1 i []l2 i ;
[]sres

end proc

By default, op will not display the full definition of most standard Maple commands/procedures

> op(sin);

proc() ... end proc::x algebraic

> op(diff);

proc() end procoption ;, = builtin diff remember

The interface command

Quoting from the help page for interface: ... this function is used to set and
query all variables that affect the format of the output, but do not affect the
computation.

General syntax:

interface(<name>=<value>)

or

interface(<name>)

Example 1: Viewing the definition of standard Maple commands

> interface(verboseproc=2);

1

Note that interface always returns the old value of the interface variable that is

being set; i.e. verboseproc = 1 is the default (initial setting)

> op(sin);

proc() ... end proc::x algebraic

The diff command is a "builtin", meaning that it is not coded in Maple, but
rather in the implementation language for the Maple system itself (which is C).

Thus, the output from op(diff) is still not very revealing

> op(diff);

proc() end procoption ;, = builtin diff remember

Example 2: Changing the way Maple outputs expressions (useful for
Homework 2, Problem 5)

Setting prettyprint=0 produces "flat" (i.e. 1-dimensional) output

> interface(prettyprint=0);
3

> (x+y)^3;
(x+y)^3

> exp(2000.0);
.3881180194e869

Restore the default value

> interface(prettyprint=3);

0

> (x+y)^3;

() + x y 3

> exp(2000.0);

0.3881180194 10869

The sprintf function (useful for Homework 2, Problem 4)

See ?sprintf for full details: this function will be familar to you if you
know some C (or C++)

Usage of sprintf is best illustrated by way of an example

> expr1 := 2*cos(x)*sin(x);

 := expr1 2 ()cos x ()sin x

The first argument to sprintf is a string in which "formatting specifications",
which begin with a %, are embedded. Each additional argument to sprintf
should be a Maple expression, and for each extra argument, there should be a
corresponding formatting specification.

Each of the supplied Maple expressions is then converted to a string according
to its formatting specification, and the resulting string replaces the the formatting specification
in the string that is returned by sprintf. (Confused yet?)

For our purposes, the most useful formatting specification for use with
sprintf is %a, which will convert any Maple expression into a string,
as the following example illustrates.

> string1 := sprintf("The value of expr1 is %a", expr1);

 := string1 "The value of expr1 is 2*cos(x)*sin(x)"

Note that the string returned by sprintf can then be manipulated using any/all
of the facilities that Maple provides for string processing. For example, we can
use the cat command to prepend another string to string1

> cat("I've said it before: ",string1);

"I've said it before: The value of expr1 is 2*cos(x)*sin(x)"

Although the %a format specification will suffice for the purposes of Homework 2,
should you want to use Maple to display and/or output numerical data, it is well
worth learning about some of the other format specifications such as %d for
integers and %f, %e and %g for floating point values.

We will return to this in this afternoon's lab where we will code a Maple procedure
that writes some output to a file.

Finally, note that we could also have converted expr1 to a string using the convert
command:

> convert(expr1,string);

"2*cos(x)*sin(x)"

However, I introduced the sprintf command here, and recommend its use

in Homework 2, in part due to its intimate relationship to the commands
1) printf, which gives you much more control over the appearance of
Maple output, especially for numeric values, than that provided by print and
2) fprintf, which you need to use should you want to perform output to
a file from Maple.

