Introduction to Maple's 2D plotting facilities

See ?plot and related topics for full information

Generate a basic plot using a built-in mathematical function.
In such cases, Maple determines an appropriate "sampling density" in the independent variable to produce a smooth looking plot.
> plot(sin(x), x=-2.5*Pi..2.5*Pi);

Generate the same plot but this time use "point style" rather than "line style" and use a "box" for the plotting symbol. Also, add a title to the plot, and use "boxed" axes.

```
> plot(sin(x), x=-2.5*Pi..2.5*Pi, title="Plot of sin(x)",
> style="point", symbol="box", axes="boxed");
Plot of \(\sin (x)\)
```


Generate some numeric values for x and $\sin (x)$ over the range $-2.5 * P i$ to $2.5 * P i$ and plot as above. Note the difference in the appearance of the plots due to Maple's "adaptive" sampling of $\sin (x)$ in the first plot, versus the "uniform in x " sampling in the second plot.

> nx := 50;
> vx := [seq(evalf(-2.5*Pi)..evalf(2.5*Pi), evalf(5.0*Pi/(nx -1)))]:
> vsinx := map(sin, vx):
> plot(vx, vsinx, title="Plot of sin(x) [fixed sampling interval]",
> style="point", symbol="box", axes="boxed");

Plot of $\sin (x)$ [fixed sampling interval]

Generate a plot with multiple dependent variables, using line style (detault). Include a title and a legend.
> plot([sin(x), sin(2*x), sin(3*x)], x=-2.5*Pi..2.5*Pi, axes=boxed, > title="Plot of multiple functions",
> legend=["sin(x)", "sin(2x)", "sin(3x)"]);
$>$
Plot of multiple functions

x
$\sin (x)$
$\sin (2 x)$
$\sin (3 x)$

Generate a plot of the area under the curve $\exp \left(-x^{\wedge} 2\right)$ on the interval $x=-10 . . x 1$, and with $x 1$ ranging from -10 to 10 . Note how Maple makes sense of all the occurrences of ' x ', which would normally drive your calculus "nuts"!
$>\operatorname{plot}\left(i n t\left(\exp \left(-x^{\wedge} 2\right), x=-10 . . x\right), x=-10 . .10\right)$;

