
INTRODUCTION TO NUMERICAL 
RELATIVITY

LECTURE 5
TOOLS OF THE TRADE 

2006 Spring School on Numerical Methods in 
Gravitation and Astrophysics

March 17, 2006, KIAS, Seoul Korea
Matthew Wm Choptuik

CIAR Cosmology & Gravity Program
Dept of Physics & Astronomy, UBC

Vancouver, BC, Canada

(Happy St Patrick’s Day!)



Lecture Plan
(see http://bh0.phas.ubc.ca/410 and

http://bh0.phas.ubc.ca/381C for more details )

• Overview of essential knowledge for dealing with 
nonlinearity in numerical treatment of many PDEs of 
mathematical physics
– Newton’s method for one unknown
– Newton’s method for systems of unknowns
– Continuation (homotopy)

• Overview of essential SOFTWARE environments, tools, 
programs, utilities, “codes”, …
– Complete solution of the KdV equation

• Glimpses of “custom” development/visualization/analysis 
tools used by “Choptuik et al” group (RNPL, xvs, DV, PAMR, 
…)



NEWTON’S METHOD 
&

CONTINUATION (HOMOTOPY)



• We will consider two cases

1. f(x) = 0 “1-dimensional”

2. f(x) = 0 “d-dimensional”

x ≡ [x1, x2, . . . , xd]

f ≡ [f1(x1, x2, . . . , xd), . . . , fd(x1, x2, . . . , xd)]

1. Solving Nonlinear Equations in One Variable

• We have briefly discussed bisection (binary search), will consider

one other technique: Newton’s method (Newton-Raphson method).

Preliminaries

• We want to find one or more roots of

f(x) = 0 (1)

We first note that any nonlinear equation in one unknown can be

cast in this canonical form.

• Definition: Given a canonical equation, f(x) = 0, the residual of

the equation for a given x-value is simply the function f evaluated

at that value.

1



• Iterative technique: Assume f(x) = 0 has a root at x = x⋆; then

consider sequence of estimates (iterates) of x⋆, x(n)

x(0) → x(1) → x(2) → · · · → x(n) → x(n+1) → · · · → x⋆

• Associated with the x(n) are the corresponding residuals

r(0) → r(1) → · · · → r(n) → r(n+1) → · · · → 0

‖ ‖ ‖ ‖ ‖

f(x(0)) f(x(1)) f(x(n)) f(x(n+1)) f(x⋆)

Locating a root ≡ Driving the residual to 0

• Convergence: When we use an iterative technique, we have to

decide when to stop the iteration. For root finding case, it is

natural to stop when

|δx(n)| ≡ |x(n+1) − x(n)| ≤ ǫ (2)

where ǫ is a prescribed convergence criterion.

• A better idea is to use a “relativized” δx

|δx(n)|
|x(n+1)| ≤ ǫ (3)

2



but we should “switch over” to “absolute” form (2) if |x(n+1)|

becomes “too small” (examples in on-line code).

• Motivation: Small numbers often arise from “unstable processes”

(numerically sensitive), e.g. f(x + h) − f(x) as h → 0, or from

“zero crossings” in periodic solutions etc.—in such cases may not

be possible and/or sensible to achieve stringent relative conver-

gence criterion

3



Newton’s method

• Requires “good” initial guess, x(0); “good” depends on specific

nonlinear equation being solved

• Refer to Numerical Recipes for more discussion; we will assume

that we have a good x(0), and will discuss one general technique

for determining good initial estimate later.

• First consider a rather circuitous way of solving the “trivial” equa-

tion

ax = b −→ f(x) = ax − b = 0 (4)

Clearly, f(x) = 0 has the root

x⋆ =
b

a
(5)

4



• Consider, instead, starting with some initial guess, x(0), with resid-

ual

r(0) ≡ f(x(0)) ≡ ax(0) − b (6)

Then we can compute an improved estimate, x(1), which is actually

the solution, x⋆, via

x(1) = x(0) − δx(0) = x(0) − r(0)

f ′(x(0))
= x(0) − f(x(0))

f ′(x(0))
(7)

“Proof”:

x(1) = x(0) − r(0)

a
= x(0) − ax(0) − b

a
=

b

a
(8)

5



• Graphically, we have

f(x)

xx   (0)

f(x   )(0)

Rise = f(x   ) = r(0) (0)

Run = x    −  x (1)(0)

Slope = a = df/dx(x   ) = Rise / Run(0)

ax − b

x    = x(1) *

6



• Summary

x(1) = x(0) − δx(0) (9)

where δx(0) satisfies

f ′(x(0))δx(0) = f(x(0)) (10)

or

f ′(x(0))δx(0) = r(0) (11)

• Equations (9-10) immediately generalize to non-linear f(x) and,

in fact, are precisely Newton’s method.

7



• For a general nonlinear function, f(x), we have, graphically

f(x)

x

f(x   ) = r(0) (0)

f(x   ) = r(1) (1)

f(x   ) = r(2) (2)

x   (0)x   (1)x   (2)x   (3)

8



• Newton’s method for f(x) = 0: Starting from some initial guess

x(0), generate iterates x(n+1) via

x(n+1) = x(n) − δx(n) (12)

f ′(x(n))δx(n) = r(n) ≡ f(x(n)) (13)

or more compactly

x(n+1) = x(n) − f(x(n))

f ′(x(n))
(14)

• Convergence: When Newton’s method converges, it does so rapidly;

expect number of significant digits (accurate digits) in x(n) to

roughly double at each iteration (quadratic convergence)

9



• Example: “Square Roots”

f(x) = x2 − a = 0 −→ x⋆ =
√

a (15)

Application of (14) yields

x(n+1) = x(n) − x(n)2 − a

2x(n)

=
2x(n)2 −

(

x(n)2 − a
)

2x(n)

=
x(n)2 + a

2x(n)

which we can write as

x(n+1) =
1

2

(

x(n) +
a

x(n)

)

(16)

• Try it manually, compute
√

2 = 1.414 2135 6237 using 12-digit

arithmetic (hand calculator)

Iterate Sig. Figs

x(0) = 1.5 1

x(1) = 1
2
(1.5 + 2.0/1.5) = 1.416 6666 6667 3

x(2) = 1
2
(1.416 · · · + 2.0/1.416 · · ·) = 1.414 2156 8628 6

x(3) = 1
2
(1.4142 · · · + 2.0/1.4142 · · ·) = 1.414 2135 6238 11

10



Alternate Derivation of Newton’s Method (Taylor series)

• Again, let x⋆ be a root of f(x) = 0, then

0 = f(x⋆) = f(x(n)) + (x⋆ − x(n))f ′(x(n)) + O((x⋆ − x(n))2) (17)

Neglecting the higher order terms, we have

0 ≈ f(x(n)) + (x⋆ − x(n))f ′(x(n)) (18)

Now, treating the last expression as an equation, and replacing

x(n) with the new iterate, x(n+1), we obtain

0 = f(x(n)) + (x(n+1) − x(n))f ′(x(n)) (19)

or

x(n+1) = x(n) − f(x(n))

f ′(x(n))
(20)

as previously.

11



2. Newton’s Method for Systems of Equations

• We now want to solve

f(x) = 0 (21)

where

x = (x1, x2, . . . , xd) (22)

f = (f1(x), f2(x), . . . , fd(x)) (23)

• Example (d = 2):

sin(xy) =
1

2
(24)

y2 = 6x + 2 (25)

In terms of our canonical notation, we have

x ≡ (x, y) (26)

f ≡ (f1(x), f2(x)) (27)

f1(x) = f1(x, y) = sin(xy) − 1

2
(28)

f2(x) = f2(x, y) = y2 − 6x − 2 (29)

12



• The method is again iterative, we start with some initial guess,

x(0), then generate iterates

x(0) → x(1) → x(2) → · · · → x(n) → x(n+1) → · · · → x⋆

where x⋆ is a solution of (21)

• Note: The task of determining a good initial estimate x(0) in the

d-dimensional case is even more complicated than it is for the

case of a single equation—again we will assume that x(0) is a

good initial guess, and that f(x) is sufficiently well-behaved that

Newton’s method will provide a solution (i.e. will converge).

• As we did with the scalar (1-d) case, with any estimate, x(n), we

associate the residual vector, r(n), defined by

r(n) ≡ f(x(n)) (30)

• The analogue of f ′(x) in this case is the Jacobian matrix, J, of

first derivatives. Specifically, J has elements Jij given by

Jij =
∂fi

∂xj
(31)

13



• For our current example we have

f1(x, y) = sin(xy) − 1

2

f2(x, y) = y2 − 6x − 2

J =















∂f1/∂x ∂f1/∂y

∂f2/∂x ∂f2/∂y















=















y cos(xy) x cos(xy)

−6 2y















• We can now derive the multi-dimensional Newton iteration, by

considering a multivariate Taylor series expansion, paralleling what

we did in the 1-d case:

0 = f(x⋆) = f(x(n)) + J[x(n)] · (x⋆ − x(n)) + O((x⋆ − x(n))2) (32)

where the notation J[x(n)] means we evaluate the Jacobian matrix

at x = x(n).

Dropping higher order terms, and replacing x⋆ with x(n+1), we

have

0 = f(x(n)) + J[x(n)](x(n+1) − x(n)) (33)

14



Defining δx(n) via

δx(n) ≡ −(x(n+1) − x(n)) (34)

the d-dimensional Newton iteration is given by

x(n+1) = x(n) − δx(n) (35)

where the update vector, δx(n), satisfies the d × d linear system

J[x(n)] δx(n) = f(x(n)) (36)

• Again note that the Jacobian matrix, J[x(n)], has elements

Jij[x
(n)] =

∂fi

∂xj

∣

∣

∣

∣

∣

∣

∣

x=x(n)

(37)

• At each step of the Newton iteration, the linear system (36) can, of

course, be solved using an appropriate linear solver (e.g. general,

tridiagonal, or banded).

15



General Structure of a Multidimensional Newton Solver

x: Solution vector

res: Residual vector

J: Jacobian matrix

dx: Update vector

x = x(0)

do while ‖dx‖2 > ǫ

do i = 1 , neq

res(i) = fi(x)

do j = 1 , neq

J(i,j) = [∂fi/∂xj](x)

end do

end do

dx = solve(J dx = res)

x = x - dx

end do

16



Finite Difference Example: Non-Linear BVP

• Consider the nonlinear two-point boundary value problem

u(x)xx + (uux)
2 + sin(u) = F (x) (38)

which is to be solved on the interval

0 ≤ x ≤ 1 (39)

with the boundary conditions

u(0) = u(1) = 0 (40)

• As we did for the case of the linear BVP, we will approximately

solve this equation using O(h2) finite difference techniques. As

usual we introduce a uniform finite difference mesh:

xj ≡ (j − 1)h j = 1, 2, · · ·N h ≡ (N − 1)−1 (41)

17



• Then, using the standard O(h2) approximations to the first and

second derivatives

ux(xj) =
uj+1 − uj−1

2h
+ O(h2) (42)

uxx(xj) =
uj+1 − 2uj + uj−1

h2
+ O(h2) (43)

the discretized version of (38-40) is

uj+1 − 2uj + uj−1

h2
+ (uj)

2




uj+1 − uj−1

2h





2

+ sin(uj) − Fj = 0 ;

j = 2 . . . N − 1 (44)

u1 = 0 (45)

uN = 0 (46)

Note that we have cast the discrete equations in the canonical

form f(u) = 0

• In order to apply Newton’s method to the algebraic equations (45-

46), we must compute the Jacobian matrix elements of the system.

• We first observe that due to the “nearest-neighbor” couplings of

the unknowns uj via the approximations (42-43), the Jacobian

matrix is tridiagonal in this case.

18



• For the interior grid points, j = 2 . . . N , corresponding to rows

2 . . . N of the matrix, we have the following non-zero Jacobian

elements:

Jj , j = − 2

h2
+ 2uj





uj+1 − uj−1

2h





2

+ cos(uj) (47)

Jj , j−1 =
1

h2
− (uj)

2 uj+1 − uj−1

2h2
(48)

Jj , j+1 =
1

h2
+ (uj)

2 uj+1 − uj−1

2h2
(49)

• For the boundary points, j = 1 and j = N , corresponding to the

first and last row, respectively, of J, we have

J1,1 = 1 (50)

J1,2 = 0 (51)

and

JN,N = 1 (52)

JN,N−1 = 0 (53)

19



• Note that these last expressions correspond to the “trivial” equa-

tions

f1 = u1 = 0 (54)

fN = uN = 0 (55)

which have associated residuals

r
(n)
1 = u

(n)
1 (56)

r
(n)
N = u

(n)
N (57)

• Observe that if we initialize u
(0)
1 = 0 and u

(0)
N = 0, then we will

automatically have δu
(n)
1 = δu

(n)
N = 0, which will yield u

(n)
1 = 0

and u
(n)
N = 0 as desired.

• This is an example of the general procedure we have seen previ-

ously for imposing Dirichlet conditions; namely the conditions are

implemented as “trivial” (linear) equations (but it is, of course,

absolutely crucial to implement them properly in this fashion!)

20



• Testing procedure: We adopt the same technique used for the

linear BVP case—we specify u(x), then compute the function

F (x) that is required to satisfy (38); F (x) is then supplied as

input to the code, and we ensure that as h → 0 we observe second

order convergence of the computed finite difference solution û(x)

to the continuum solution u(x).

• Example: Taking

u(x) = sin(4πx) ≡ sin(ωx) (58)

then

F (x) = uxx + (uux)
2 + sin(u) (59)

= −ω2 sin(ωx) + ω2 sin2(ωx) cos2(ωx) + sin(sin(ωx))

• We note that due to the nonlinearity of the system, we will actually

find multiple solutions, depending on how we initialize the Newton

iteration; this is illustrated with the on-line code nlbvp1d.

21



3. Determining Good Initial Guesses: Continuation

• It is often the case that we will want to solve nonlinear equations

of the form

N(x; p̄) = 0 (60)

where we have adopted the notation N(· · ·) to emphasize that

we are dealing with a nonlinear system. Here x = (x1, x2 . . . xd)

is, as previously, a vector of unknowns, with x = x⋆ a solution

of (60).

• The quantity p̄ in (60) is another vector, of length m, which

enumerates any additional parameters (generally adjustable) that

enter into the problem; these could include: coupling constants,

rate constants, “perturbation” amplitudes etc.

• The nonlinearity of any particular system of the form (60) may

make it very difficult to compute x⋆ without a good initial estimate

x(0); in such cases, the technique of continuation often provides

the means to generate such an estimate.

22



• Continuation: The basic idea underlying continuation is to “sneak

up” on the solution by introducing an additional parameter, ǫ (the

continuation parameter), so that by continuously varying ǫ from 0

to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already

have a solution.

to

2. The problem of interest.

23



• Schematically we can sketch the following picture:

"Solution space"

ε = 0

ε = 1

x
❉
0

x
❉
1 x

❉
=

• Note that we thus consider a family of problems

Nǫ(x; p̄) = 0 (61)

with corresponding solutions

xǫ = x⋆
ǫ (62)

24



• The efficacy of continuation generally depends on two crucial

points:

1. N0(x; p̄) has a known or easily calculable root at x⋆
0.

2. Can often choose ∆ǫ judiciously (i.e. sufficiently small) so that

x⋆
ǫ−∆ǫ

is a “good enough” initial estimate for

Nǫ(x; p̄) = 0

25



• Again, schematically, we have

ε = 0

ε = 1

where we note that we may have to adjust (adapt) ∆ǫ as the

continuation proceeds.

26



Continuation: Summary and Comments

• Solve sequence of problems with ǫ = 0, ǫ2, ǫ3 . . . 1 using previous

solution as initial estimate for each ǫ 6= 0.

• Will generally have to tailor idea on a case-by-case basis.

• Can often identify ǫ with one of the pi (intrinsic problem parame-

ters) per se.

• The first problem, N0(x, p̄) = 0, can frequently be chosen to

be linear, and therefore “easy” to solve, modulo sensitivity/poor

conditioning.

• For time-dependent problems, time evolution often provides “nat-

ural” continuation; ǫ → t, and we can use x⋆(t−∆t) as the initial

estimate x(0)(t).

27



SOLUTION OF THE
THE KORTEWEG & DE VRIES (KDV) 

EQUATION



Introduction to Numerical Relativity
Lecture 6

Solving the KdV Equation

Matthew W. Choptuik
CIAR Cosmology & Gravity Program
Department of Physics & Astronomy

University of British Columbia
Vancouver BC

Spring School in
Computational Methods for Relativity & Astrophysics

KIAS, Seoul, Korea

March 17?, 2006



The Korteweg and de Vrie (KdV) Equation

• Consider the Korteweg and de Vries (KdV) equation for u ≡ u (x, t):

ut + ux + 12 u ux + uxxx = 0 (1)

on the domain −xmax ≤ x ≤ xmax, 0 ≤ t ≤ tmax, and with initial and
boundary conditions

u (x, 0) = u0 (x) (2)

and

u (−xmax, t) = u (xmax, t) = 0 (3)

respectively

1



The KdV Equation

• The KdV equation admits propagating “particle-like” solutions, called solitons,
that propagate in one direction (−xmax → xmax; i.e. “to the right”). The
“vacuum” (or quiescent) state is u = κ, for an arbitrary real constant κ, which,
without loss of generality, we can choose to be κ = 0.

• The boundary conditions (BCs) are thus compatible with quiescence, and we
will always ensure that the initial conditions, u0 (x), are likewise compatible
(i.e. u0 (x) should always satisfy—at least to well within the level of truncation
error—u0 (−xmax) = u0 (xmax) = 0)

• The right BC is not compatible with disturbances impinging on x = xmax; thus,
once any signal has reached x = xmax, the “well-posedness” of the evolution is
questionable, and one can expect “strange things” to happen.

• This problem could be remedied by working on a periodic domain (i.e. by
identifying −xmax and xmax), but this would also complicate the
finite-difference solution of the equation.

2



Finite Differencing
• We use an O(h2) Crank-Nicholson finite-difference scheme combined with a

multi- dimensional Newton iteration to approximately solve (1)

• Specifically, we use a difference scheme centred at t = tn+1/2 ≡ tn +4t/2 and
of the form

un+1
j − un

j

4t
+ µt

(
Dxu

n
j

)
+ 12

(
µt u

n
j

)
µt

(
Dxu

n
j

)
+ µt

(
Dxxxu

n
j

)
= 0 (4)

• Here, µt, is the time averaging operator

µt v
n
j ≡

1
2

(
v

n
j + v

n+1
j

)
(5)

and Dx and Dxxx are centred, O(h2) FD approximations of ∂x and ∂xxx

respectively

Dxvj ≡
vj+1 − vj−1

2h
(6)

Dxxxvj ≡
vj+2 − 2vj+1 + 2vj−1 − vj−2

2h3
(7)

3



Solving the Algebraic Equations
• The discretization defined above yields a set of nonlinear equations for the

interior unknowns

F j

[
u

n+1

j′

]
= 0 j = 3, 4, . . . , nx− 2 ; j′ = 1, 2, . . . , nx (8)

to which we adjoin the following 4 equations:

u
n+1
1 = u

n+1
2 = u

n+1
nx−1 = u

n+1
nx = 0 (9)

• We then have a set of J equations in the J unknowns un+1
j , j = 1, 2, . . . , J .

• Jacobian matrix of system is 5-diagonal (pentadiagonal)

• At each time step then, we solve for the un+1
j using an J-dimensional Newton

method, and the LAPACK banded-solver, dgbsv, to solve the linear systems
which arise in the

4



Convergence Criterion for Newton Iteration

• The specific convergence criterion used for the Newton iteration is

‖δu‖2
‖u‖2

≤ 1.0−10 (10)

which ensures that, at the resolutions we are apt to be using, that the residuals
with respect to the Newton iteration are far below the level of truncation error
when convergence is achieved.

5



Initial Data
• For illustrative purposes, we initialize the solution at the initial time using the

known, closed form soliton solutions

u0(x) =
np∑
i=1

Π (x; ai, x0i) (11)

wher where

Π (x; a, x0) =
1
4
a2 cosh−2

[
1
2
a (x− x0)

]
(12)

• Note that Π (x; a, x0) is a “pulse” profile whose maximum amplitude scales
with a and which is centred at x = x0.

• Thus 11 generically represents the superposition of np separate pulses.

• One of interesting features of these solitons is that their propagation speed
depends on their amplitude (“taller” solitons move more rapidly)

6



The Code
c===========================================================
c Solves 1-dimensional KdV equation
c
c u_t + u_x + 12 u u_x + u_xxx = 0
c
c 0 <= x <= 1 u(0,t) = u(1,t) = 0
c
c using second-order finite difference techniques,
c Newton’s method and LAPACK banded solver DGBSV
c===========================================================

program kdv

implicit none
.
.
.

7



The Code
c===========================================================
c Updates KdV difference equations.
c===========================================================

subroutine update(unp1,un,nx,dx,dt,
& jacb,res,ipiv,ldjacb,
& tol,mxiter,rc)

implicit none

real*8 dvnrm2

real*8 drelabs

integer nx, ldjacb
real*8 jacb(ldjacb,nx),

& unp1(nx), un(nx), res(nx)
integer ipiv(nx)
real*8 dx, dt, tol
integer mxiter, rc

real*8 dtm1, hdxm1, qdxm1,
& hdxm3, qdxm3,
& t0, t1, t2, t3

integer iter , i, j

real*8 nrmu, nrmdu
integer info

logical ltrace_newt
parameter ( ltrace_newt = .false. )

8



The Code
c-----------------------------------------------------------
c ’rc’ is return code, 0 for success, -1 if linear
c solve fails, -2 if Newton iteration does not
c converge.
c-----------------------------------------------------------

rc = 0

c-----------------------------------------------------------
c Define some useful constants.
c-----------------------------------------------------------

dtm1 = 1.0d0 / dt
hdxm1 = 0.5d0 / dx
qdxm1 = 0.5d0 * hdxm1
hdxm3 = 0.50d0 / (dx**3)
qdxm3 = 0.25d0 / (dx**3)

9



The Code
c-----------------------------------------------------------
c B E G I N N E W T O N L O O P
c-----------------------------------------------------------

do iter = 1 , mxiter
c-----------------------------------------------------------
c Set up Jacobian and evaluate residuals ...
c-----------------------------------------------------------

c-----------------------------------------------------------
c Left boundary conditions (Dirichlet).
c-----------------------------------------------------------

i = 1
do j = 1 , 3

if( i .eq. j ) then
jacb(5 + i - j,j) = 1.0d0

else
jacb(5 + i - j,j) = 0.0d0

end if
res(i) = 0.0d0

end do

i = 2
do j = 1 , 4

if( i .eq. j ) then
jacb(5 + i - j,j) = 1.0d0

else
jacb(5 + i - j,j) = 0.0d0

end if
res(i) = 0.0d0

end do

10



The Code
c-----------------------------------------------------------
c Interior equations.
c-----------------------------------------------------------

do i = 3 , nx - 2
t0 = dtm1 * (unp1(i) - un(i))
t1 = 1.0d0 + 6.0d0 * (unp1(i) + un(i))
t2 = qdxm1 * ( unp1(i+1) - unp1(i-1) +

& un (i+1) - un (i-1) )
t3 = qdxm3 * ( unp1(i+2) - 2.0d0 * unp1(i+1) +

& 2.0d0 * unp1(i-1) - unp1(i-2) +
& un (i+2) - 2.0d0 * un (i+1) +
& 2.0d0 * un (i-1) - un (i-2) )

res(i) = t0 + t1 * t2 + t3
j = i - 2
jacb(5 + i - j,j) = -qdxm3
j = i - 1
jacb(5 + i - j,j) = -qdxm1 * t1 + hdxm3
j = i
jacb(5 + i - j,j) = dtm1 + 6.0d0 * t2
j = i + 1
jacb(5 + i - j,j) = +qdxm1 * t1 - hdxm3
j = i + 2
jacb(5 + i - j,j) = +qdxm3

end do

11



The Code
c-----------------------------------------------------------
c Right boundary conditions (Dirichlet).
c-----------------------------------------------------------

i = nx - 1
do j = nx - 3 , nx

if( i .eq. j ) then
jacb(5 + i - j,j) = 1.0d0

else
jacb(5 + i - j,j) = 0.0d0

end if
res(i) = 0.0d0

end do

i = nx
do j = nx - 2 , nx

if( i .eq. j ) then
jacb(5 + i - j,j) = 1.0d0

else
jacb(5 + i - j,j) = 0.0d0

end if
res(i) = 0.0d0

end do

12



The Code
c-----------------------------------------------------------
c Solve linear system.
c-----------------------------------------------------------

call dgbsv( nx, 2, 2, 1, jacb, ldjacb, ipiv,
& res, nx, info )

c-----------------------------------------------------------
c Update unknown vector if solution linear solve
c succeeded, otherwise return.
c-----------------------------------------------------------

if( info .eq. 0 ) then
call dvvs(unp1,res,unp1,nx)
if( iter .eq. 1 ) then

nrmu = dvnrm2(unp1,nx)
end if
nrmdu = dvnrm2(res,nx)
if( ltrace_newt ) then

write(0,*) iter, drelabs(nrmdu,nrmu,1.0d-10)
end if

c-----------------------------------------------------------
c Return if convergence achieved.
c-----------------------------------------------------------

if( drelabs(nrmdu,nrmu,1.0d-10) .le. tol )
& return

else
write(0,*) ’update: dgbsv() failed, info = ’,

& info
rc = -1
return

end if

13



The Code

c-----------------------------------------------------------
c E N D N E W T O N L O O P
c-----------------------------------------------------------

end do

c-----------------------------------------------------------
c Non-convergence return.
c-----------------------------------------------------------

write(0,*) ’update: Newton iteration failed’
rc = -2
return

end

14



References

[1] Choptuik, MW. Problem handout for Phys 381C, UT Austin, 1997

15


	INTRODUCTION TO NUMERICAL RELATIVITY��LECTURE 5�TOOLS OF THE TRADE 
	Lecture Plan�(see http://bh0.phas.ubc.ca/410 and   �http://bh0.phas.ubc.ca/381C for more details )
	2006-03-Korea-5-cover.pdf
	INTRODUCTION TO NUMERICAL RELATIVITY��LECTURE 5�TOOLS OF THE TRADE 
	Lecture Plan�(see http://bh0.phas.ubc.ca/410 and   �http://bh0.phas.ubc.ca/381C for more details )

	Nonlin-cover.pdf
	NEWTON’S METHOD �&�CONTINUATION (HOMOTOPY)

	KdV-cover.pdf
	SOLUTION OF THE�THE KORTEWEG & DE VRIES (KDV) EQUATION

	2006-03-Korea-5-cover.pdf
	INTRODUCTION TO NUMERICAL RELATIVITY��LECTURE 5�TOOLS OF THE TRADE 
	Lecture Plan�(see http://bh0.phas.ubc.ca/410 and   �http://bh0.phas.ubc.ca/381C for more details )




