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Abstract

The pseudospectral method is a family of numerical methods for the so-
lution of differential equations based on the expansion of basis functions
defined on a set of grid points. In this thesis, the relationship between the
distribution of grid points and the accuracy and convergence of the solution
is emphasized. The polynomial and sinc pseudospectral methods are ex-
tensively studied along with many applications to quantum and statistical
mechanics involving the Fokker-Planck and Schrödinger equations.

The grid points used in the polynomial methods coincide with the points
of quadrature, which are defined by a set of polynomials orthogonal with
respect to a weight function. The choice of the weight function plays an
important role in the convergence of the solution. It is observed that rapid
convergence is usually achieved when the weight function is chosen to be the
square of the ground-state eigenfunction of the problem. The sinc method
usually provides a slow convergence as the grid points are uniformly dis-
tributed regardless of the behaviour of the solution.

For both polynomial and sinc methods, the convergence rate can be
improved by redistributing the grid points to more appropriate positions
through a transformation of coordinates. The transformation method dis-
cussed in this thesis preserves the orthogonality of the basis functions and
provides simple expressions for the construction of discretized matrix op-
erators. The convergence rate can be improved by several times in the
evaluation of loosely bound eigenstates with an exponential or hyperbolic
sine transformation.

The transformation can be defined explicitly or implicitly. An explicit
transformation is based on a predefined mapping function, while an im-
plicit transformation is constructed by an appropriate set of grid points
determined by the behaviour of the solution. The methodologies of these
transformations are discussed with some applications to 1D and 2D prob-
lems. The implicit transformation is also used as a moving mesh method for
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Abstract

the time-dependent Smoluchowski equation when a function with localized
behaviour is used as the initial condition.
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Chapter 1

Introduction

1.1 Preliminaries

The prediction and analysis of physics phenomena often require the nu-
merical solution of differential equations subject to well defined boundary
conditions [28, 93]. The development of numerical methods for the solution
of a large variety of problems is of practical importance. Before specifying
the systems of interest in this thesis, it is useful to provide a brief summary.

One of the simplest partial differential equations is the heat equation [93].
By letting x be the position on a rod, t be time, u(x, t) be the temperature
at x, and the constant k be the diffusivity, the one-dimensional (1D) heat
equation

∂u

∂t
=

1
k

∂2u

∂x2
(1.1)

models the temperature of the rod at any time t if an initial condition
u(x, 0) and appropriate boundary conditions are provided. Different types
of boundary conditions represent different situations. For example, if the
ends of the rod are connected to heat baths of constant temperatures, the
temperatures at the end points are assumed to be constant for all t. If the
ends of the rod are insulated, there will be no heat flow at the ends of the
rod, and the boundary condition becomes ∂u/∂x = 0 at the endpoints.

For the diffusion of heat on a uniform plate or solid, the temperature
u(x, t) at the position x = [x, y] in two dimensions (2D) or [x, y, z] in three
dimensions (3D) is governed by the heat equation

∂u

∂t
=

1
k
∇2u,

where ∇2 = ∂2/∂x2 + ∂2/∂y2 in 2D or ∂2/∂x2 + ∂2/∂y2 + ∂/∂z2 in 3D is
the Laplacian. The heat equation can be generalized as a diffusion equation
which models the diffusion of a substance in a media when u is considered as
the concentration of the substance at x [81, 99, 107]. If the rate of diffusion

1



Chapter 1. Introduction

is not a constant but depends on the position or the concentration, the
diffusion equation is given by

∂u

∂y
= ∇ · (D(x, u)∇u), (1.2)

where ∇ = [∂/∂x, ∂/∂y] in 2D or [∂/∂x, ∂/∂y, ∂/∂z] in 3D is the gradient
operator, and D(x, u) is the diffusion coefficient. The study of fluid motion
in porous media [30, 38, 50, 84], tumor development [40, 48, 74], and image
noise reduction, [53, 66, 94, 106] are some of the major applications to Eq.
(1.2).

A slight variation to the heat equation, Eq. (1.1), is the reaction-diffusion
equation

∂u

∂t
= D

∂2u

∂x2
+ f(u),

where D is the diffusion coefficient, and f(u) is the reaction term [43,73,74].
As a simple example for the reaction-diffusion equation, Fisher’s equation
[67,76,100], where f(u) = au(1− bu), models the growth of the population
of a species with a net reproduction rate of a and a carrying capacity of 1/b.
The reaction term f(u) = au(1 − bu) represents the logistic growth of the
population. Fisher’s equation is widely used as a demonstration of traveling
waves occurring in combustion [25,36,85].

In many multi-component systems, the growth of one component is influ-
enced by other components in the system. The resulting reaction-diffusion
equation for each of the component will contain the reaction term, or inter-
action term, f , depending on all components. A two-component, u1(x, t)
and u2(x, t), reaction-diffusion system has the form

∂u1

∂t
= D1∇2u1 + f1(u1, u2)

∂u2

∂t
= D2∇2u2 + f2(u1, u2)

where x is any-dimensional position. One of the examples directly related to
Fisher’s equation is the Lotka-Volterra system with diffusion, which is used
for predicting the population of two competing species [32,59,74]. The inter-
action terms of the Lotka-Volterra system, f1(u1, u2) = a1u1(1−b1u1−c1u2)
and f2(u1, u2) = a2u2(1− b2u2− c2u1), model the logistic growth with com-
petition. The parameters ai, 1/bi, and ci for i = 1, 2 represent the net birth
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rates, the carrying capacities, and the abilities for competing with the other
species, respectively.

Another example related to the diffusion equation is Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1.3)

which is used for the simulation of 1D fluid flow with flow velocity u(x, t)
[18, 28, 34, 100, 105]. The first term, ∂u/∂t, represents the change of the
flow with respect to t. For a steady flow, ∂u/∂t = 0. The second term,
u(∂u/∂x), is the advection term, which represents the change of u along the
flow. The right hand side, ν(∂2u/∂x2) is the viscosity term, with ν as the
viscosity coefficient. In case of ν = 0, Eq. (1.3) is used as a simple model
for the development of shock waves. Burgers’ equation can be converted
to a heat equation ∂φ/∂t = ν∂2φ/∂x2 by the Cole-Hopf transformation
u = −2ν(∂φ/∂x)/φ [28].

In this thesis, we will focus on the numerical methods for the solu-
tions to the Fokker-Planck equation and the Schrödinger equation. Since
the Fokker-Planck equation, the Schrödinger equation, and the differential
equations discussed above are all parabolic partial differential equations,
the discussions of the numerical methods in this thesis will be useful for the
understanding of physical phenomena described by the above differential
equations.

1.2 The Fokker-Planck equation

The motion of particles influenced by an external fluctuating force is referred
to as Brownian motion. The position and the velocity of these particles can
be described by a probability distribution. The Fokker-Planck equation was
developed to study the evolution of Brownian motion in terms of a proba-
bility density function [80, 98]. Kramers explained the kinetics of chemical
reactions using Brownian motion in a potential as a model, and derived the
Kramers equation which is a 2D Fokker-Planck equation [44,57,80]. Hänggi
et al [46] and Pollak et al [78] have published reviews on the history, the
analysis, and the development of Kramers’ reaction theory.

3



Chapter 1. Introduction

Consider the 1D Brownian motion of a particle in a background fluid.
The equation of motion of the particle is given by

d2x

dt2
+ ν

dx

dt
= F (x) + Γ(t), (1.4)

where ν is the damping constant, F (x) = −dU(x)/dx is the force per unit
mass due to an external potential U(x), and Γ(t) is a randomly fluctuating
force per unit mass. Equation (1.4) is called the Langevin equation [80].
The stochastic force Γ(t) is assumed to be Gaussian distributed with zero
mean since the average motion described by Eq. (1.4) can be shown to be
independent of Γ(t). It is also assumed that the collisions of different fluid
particles are independent. In other words, the correlation of the fluctuating
force at different times t and t′ is zero, i.e. 〈Γ(t)Γ(t′)〉 = 2νεδ(t− t′), where
δt is the unit impulse function. The parameter ε controls the strength of the
fluctuation. The Langevin equation, Eq. (1.4), can be solved statistically by
simulating an ensemble of particles when it is written in the form

dx

dt
= v, (1.5a)

dv

dt
= −νv + F (x) + Γ(t), (1.5b)

and Γ(t) is generated by a random number generator.

Since the motion is influenced by a stochastic force, the motion itself
is also stochastic. The probability density function describing the position
and the velocity of the ensemble of particles, P (x, v, t), satisfies Kramers
equation

∂P

∂t
= −v

∂P

∂x
− F (x)

∂P

∂v
+ ν

∂(vP )
∂v

+ νε
∂2P

∂v2
. (1.6)

Originally, Kramers developed Eq. (1.6) for reaction kinetics, and the
position x is regarded as the reaction coordinate [57]. The potential U(x)
is often modeled with a bistable function, for example U(x) = x4/4− x2/2,
with one well corresponding to the reactants and another to the prod-
ucts [6, 12, 13, 23, 33, 41, 42, 90]. An example is given by Blackmore and
Shizgal for the trans-gauche isomerization of n-butane [14].

For large damping, ν →∞, the distribution in v is close to Maxwellian,
and the second derivative in Eq. (1.4) can be neglected. The equation of
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motion in this limit becomes
dx

dt
=

1
ν

[F (x) + Γ(t)].

The probability density function P (x, t) =
∫∞
−∞ P (x, v, t) dv satisfies the

Smoluchowski equation [80]

∂P

∂t
=

1
ν

[
−∂(FP )

∂x
+ ε

∂2P

∂x2

]
. (1.7)

A general 1D Fokker-Planck equation is given by [80]

∂

∂t
P (x, t) =

∂

∂x
[A(x)P (x, t)] +

∂2

∂x2
[B(x)P (x, t)]. (1.8)

The functions A(x) and B(x) are the drift and diffusion coefficients, re-
spectively. The Smoluchowski equation in Eq. (1.7) is an example of a
1D Fokker-Planck equation. Other uses of the Fokker-Planck equation in-
clude the studies of laser and plasma physics [31, 68, 77, 80], and climate
systems [35,75]. The equilibrium density function P0(x) of Eq. (1.8) is

P0(x) =
Kx

B(x)
exp

(
−

∫ x A(x′)
B(x′)

dx′
)

. (1.9)

with a normalization factor Kx. By setting P (x, t) =
√

P0(x)p(x, t), Eq.
(1.8) will have the self-adjoint form

∂p

∂t
=

1√
P0

∂

∂x

[
BP0

∂

∂x

(
p√
P0

)]
= LFPp. (1.10)

A classical approach to the solution of a linear parabolic partial differen-
tial equation such as the Fokker-Planck equation in Eq. (1.10) is to apply a
separation of variables. In terms of the eigenvalues, λm, and the eigenfunc-
tions, ψm(x), of the Fokker-Planck operator LFP, the solution p(x, t) is given
by p(x, t) =

∑∞
m=0 aneλmtψm(x). It can be verified that LFP is a self-adjoint

negative semi-definite operator so that · · · < λ2 < λ1 < λ0 = 0. Further-
more, the ground-state eigenfunction is given by ψ0(x) =

√
P0(x) and all

eigenfunctions are orthogonal. Therefore, the solution p can be written in
the form

p(x, t) =
√

P0(x) +
∞∑

m=1

ane−|λm|tψm(x)

5



Chapter 1. Introduction

and converges to
√

P0(x) as t →∞. The eigenvalues then provide the rate
of the evolution of the solution, and hence the study of the eigenvalue prob-
lem LFPψ = λψ is important.

It is worth noting that a Fokker-Planck equation can always be trans-
formed to another Fokker-Planck equation with a constant diffusion coef-
ficient with a suitable variable transformation [80]. If we transform x to
a new variable y =

∫ x[B(x′)]−1/2 dx′ and define the new solutions to be
p̃(y, t) = [B(x(y))]1/4p(x(y), t), Eq. (1.10) becomes

∂p̃

∂t
=

1
[
√

BP0]1/2

∂

∂y

[√
BP0

∂

∂y

(
p̃

[
√

BP0]1/2

)]
= L̃FPp̃. (1.11)

By comparing Eq. (1.11) with Eq. (1.10), the new diffusion coefficient is
B̃(y) = 1, and the new equilibrium solution is P̃0(y) =

√
B(x(y))P0(x(y)).

It follows that the new drift coefficient is Ã(y) = P̃ ′
0(y)/P̃0(y), analogous to

Eq. (1.9).

1.3 The Schrödinger equation

The time independent Schrödinger equation

Hψ = − ~
2

2µ

d2ψ

dy2
+ V (y)ψ = Eψ, (1.12)

where ~ is Planck’s constant, µ is the mass of a particle, V (y) is the potential
function, and E is the energy of the state of a system, serves as the basis of
quantum mechanics [26,79,97]. The solution ψ(y), called the wavefunction,
describes the state of the system. The Schrödinger operator H is usually
referred to as the Hamiltonian. The multi-dimensional Schrödinger equation
Hψ = −∇2ψ + V (x)ψ is used in the studies of atoms or molecules.

One of the applications for the Schrödinger equation, Eq. (1.12), is to
calculate the vibrational energy levels of diatomic molecules [3]. The Morse
potential V (y) = De[1 − exp(−αy)]2 is a simple model for approximating
the molecular potential energy when the nuclei of the atoms are displaced
away from their equilibrium position by length y [17, 72, 87]. Since the ex-
act energy levels for the Morse potential are known, it serves as both a
simple estimation of true energy levels and a benchmark for numerical tech-
niques [7, 10, 11, 15, 20, 49, 61, 64, 69, 71, 83, 87, 95, 101, 102, 104]. In Chapters
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3 and 4, we will use the Morse potential to construct the basis functions
for the calculation of vibrational energy levels when a real potential is used.
The problem can be extended to the studies of vibrations in triatomic or
polyatomic molecules [22,27,58,82].

The time independent Fokker-Planck equation, Eq. (1.11), is given by

L̃FPψ̃m =
1√
P̃0

d

dy

[
P̃0

d

dy

(
ψ̃m√
P̃0

)]
= λ̃mψ̃m, (1.13)

where λ̃m is the mth eigenvalues of L̃FP, and ψ̃m(y) is the corresponding
eigenfunction. Eq. (1.13) can be directly simplified to the form

L̃FPψ̃m =
d2ψ̃m

dy2
−


1

2
P̃ ′′

0

P̃0

− 1
4

(
P̃ ′

0

P̃0

)2

 ψ̃m = λ̃mψ̃m, (1.14)

where ′ denotes d/dy. Equation (1.14) can be regarded as a Schrödinger
equation. Therefore, the Schrödinger equation is also used as an alternative
method for solving the eigenvalues of Fokker-Planck equations in Chapter
2. If ~ = 1, µ = 1/2, and V (y) = P̃ ′′

0 (y)/2P̃0(y) − (1/4)[P̃ ′
0(y)/P̃0(y)]2, the

Hamiltonian is exactly H = −L̃FP by comparing Eqs. (1.14) and (1.12). If
we let λm be the eigenvalues of LFP, then λm = λ̃m = −Em.

1.4 Overview of current numerical methods

Since the exact solutions to most differential equations cannot be represented
by simple closed forms, numerical methods are required for obtaining ap-
proximate solutions. For the solutions of eigenvalue problems such as the
Schrödinger equation, Eq. (1.12), there are two major types of numerical
methods: the shooting method, and the basis function expansion.

For the shooting method, the solution of a boundary value problem is
found by evaluating two initial value problems [2,16,47], which can be solved
by many integration schemes such as the Euler, Runge-Kutta or Numerov
methods [45]. However, since the eigenvalues are unknown, the shooting
method finds the eigenvalues by refining from initial guesses one at a time.
One way to obtain the initial guesses is to set up a matrix eigenvalue prob-
lem by applying the finite difference method to the boundary value problem

7



Chapter 1. Introduction

and solve for the eigenvalues. One of the eigenvalues will then be put back
to the boundary value problem. The solution is then integrated from both
end points using the Runge-Kutta, Numerov, or multistep methods to a
matching point. The difference from the two parts of the solution at the
matching points will be used as a parameter for the calculation of the eigen-
value correction. This procedure is repeated until the correction is within
the tolerance level [21, 49, 51, 54, 55]. The shooting method is more widely
used for quantum mechanics problems when the Schrödinger equation is rep-
resented by the Hamiltonian canonical form [52, 63, 71, 83]. This method is
referred to as the symplectic shooting method. One of the advantages for the
shooting method is that the accuracy of eigenvalues can be improved with a
relatively low increase in computational cost if explicit integration schemes
can be used, which makes it a good method for refinements of eigenvalues.
However, the shooting method can find only one eigenvalue at a time. Also,
there may be a problem for numerical stability when an explicit integration
scheme is used.

Another method for eigenvalue problems is based on basis function ex-
pansions. The differential equation is then represented (approximated) by
a matrix problem and the eigenvalues are approximated by the eigenval-
ues of the matrix. Fourier, sinc, and polynomial bases are some of the
popular bases used in eigenvalue problems [1, 8, 24, 60, 69, 70, 91, 96, 101].
These methods are in general referred to as spectral methods. If the basis
functions are defined on a grid of points, then these methods are referred
to as collocation-spectral methods, or pseudospectral methods [19]. With
pseudospectral methods, eigenvalues can be found by a single matrix di-
agonlization without the need of correction schemes. Also, the error of the
eigenvalues decrease exponentially if an appropriately chosen basis is used.
However, the computational cost increases dramatically as the number of
grid points or the number of basis functions increases. The main objec-
tive for developing an efficient pseudospectral method is to find a set of
basis function so that accurate eigenvalues can be obtained with as few grid
points as possible.

A few pseudospectral schemes have been developed independently. Light
and coworkers introduced the discrete variable representation (DVR) [61,62],
and Baye and coworkers introduced the Lagrange mesh method [9], both for
the evaluation of quantum mechanical problems. These methods are usually
based on classical polynomials, but can be applied to sinc, Fourier, and other
bases as well. Shizgal et al developed the quadrature discretization method

8



(QDM) [14, 88, 89] for the solution of Boltzmann equation, and applied the
same method to Sturm-Liouville and Fokker-Planck equations using non-
classical orthogonal polynomials. The implementation of all these methods
are equivalent, and can be generalized as pseudospectral methods with or-
thogonal interpolating basis function.

For the calculation of vibrational energy eigenstates of diatomic molecules,
polynomial methods with appropriately chosen weight functions are usually
the most efficient for eigenvalues well below the dissociation energy, as shown
in Chapter 4 and in Ref. 91. However, for eigenvalues close to the dissoci-
ation energy, the corresponding eigenfunctions are very loosely bound, and
polynomial methods become less efficient.

The efficiency of existing basis functions can sometimes be improved
with transformation of coordinates. By doing so, the grid points can be
relocated to the positions where the solution or the eigenfunctions can be
better described. The transformation method has been widely used in sinc
bases [56,65,92,104] but seldom mentioned in polynomial methods. In Chap-
ter 4, we will apply transformation methods to both the polynomial and the
sinc methods for the evaluation of eigenvalues in loosely bound states. Meth-
ods for determining suitable transformations will be developed in Chapter
5. In the following sections, we will discuss the basics of the pseudospectral
method used in this thesis.

1.5 Interpolation and quadrature

Interpolation is a method for estimating unknown values which lie within
the range of a discrete set of given data points [4, 5, 29]. Precisely, for an
unknown function g(x) with given data points {(xi, g(xi))}N

i=1, xi < xj for
i < j, one can estimate the value g(x) for x ∈ (x1, xN ) by interpolation.
A function, f(x), which interpolates g(x) using N given points is usually
written as an expansion of N basis functions {φn(x)}N

n=1 in the form

f(x) =
N∑

n=1

cnφn(x).

The expansion coefficients cn are solved by setting f(xi) = g(xi). The func-
tion f(x) is called the interpolant of g(x).

9



Chapter 1. Introduction

It is usually convenient to introduce a new set of basis functions Cj(x)
where each interpolates the data points {(xi, δij)}N

i=1, and δij is the Kro-
necker delta, and has the value 1 if i = j and 0 otherwise. The functions
Cj(x) are the interpolating functions, or the cardinal functions, and satisfy
Cj(xi) = δij , referred to as the cardinality condition. The interpolation of
g(x) with given {(xi, g(xi))}N

i=1 is represented by

f(x) =
N∑

j=1

g(xj)Cj(x).

We focus on two types of interpolations based on orthogonal polynomials
and sinc functions.

1.5.1 Orthogonal polynomials

Polynomials are often used for interpolation. If we set φn(u) = un−1, the
polynomial interpolating functions, called the Lagrange interpolating func-
tion, are given by

Ij(u) =
N∏

i=1
i6=j

u− ui

uj − ui

which are polynomials of degree N −1, denoted by PN−1 [5]. It is thus clear
that if g(u) ∈ Pk for k ≤ N − 1, the interpolation

f(u) =
N∑

j=1

g(uj)Ij(u) (1.15)

is exact, and the integral

∫ b

a
w(u)g(u) du =

N∑

j=1

wjg(uj) (1.16)

is exact for some function w(u) defined in an interval [a, b] if wj =
∫ b
a w(u)Ij(u) du.

This method of integral evaluation is a quadrature rule, and wj are the
quadrature weights.

10



The Lagrange interpolation given by Eq. (1.15) can be defined for any
choice of discrete points ui. Therefore it is possible to consider a particular
set {uj}N

j=1, and the corresponding set of weights {wj}N
j=1, which satisfies∫ b

a w(u)uk du =
∑N

j=1 wju
k
j for k = 0 . . . 2N−1. With uj and wj , the quadra-

ture rule in Eq. (1.16) gives an exact integral value for a larger family of
g(u) ∈ Pk, k ≤ 2N − 1. The actual values of uj and wj will be given later.

For w(u) ≥ 0, the polynomials Qn(u) generated by the three-term re-
currence relation

Q0(u) = 1, Q1(u) = u− α0, (1.17a)
Qn+1(u) = (u− αn)Qn(u)− βnQn−1(u), (1.17b)

where the coefficients αn and βn are given by

αn =
1
γn

∫ b

a
uw(u)[Qn(u)]2 du, βn =

γn

γn−1
, (1.17c)

γn =
∫ b

a
w(u)[Qn(u)]2 du, (1.17d)

satisfy the orthogonality
∫ b
a w(u)Qm(u)Qn(u) du = γnδmn [37, 39]. With

Eqs. (1.17a) and (1.17b), the polynomial Qn(u) can be represented in de-
terminant form

Qn+1(u) = det




u− α0 −√β1 0 · · · 0

−√β1 u− α1 −√β2
. . .

...

0 −√β2 u− α2
. . . 0

...
. . . . . . . . . −√βn

0 · · · 0 −√βn u− αn




(1.18)

Since we assume that the quadrature rule in Eq. (1.16) is exact for g(u) ∈
P2N−1 with the appropriate choice of uj and wj , the orthogonality for the
normalized polynomials Pn(u) = Qn(u)/

√
γn becomes

∫ b

a
w(u)Pm−1(u)Pn−1(u) du =

N∑

j=1

wjPm−1(uj)Pn−1(uj) = δmn

for 1 ≤ m,n ≤ N . If Tjn = √
wjPn−1(uj), then TtT = I = TTt, where the

superscript t denotes the matrix transpose. Hence, T is an orthogonal ma-
trix. By defining the Jacobi matrix Jmn =

∫ b
a w(u)uPm−1(u)Pn−1(u) du =

11



Chapter 1. Introduction

∑N
k=1 wjujPm−1(uj)Pn−1(uj) for 1 ≤ m,n ≤ N and the diagonal matrix

Uij = ujδij , the matrix J will satisfy J = TtUT, and it is clear that uj

are the eigenvalues of J. The corresponding eigenvectors vj are the column
vectors of Tt.

It is easy to show that

J =




α0
√

β1 0 · · · 0
√

β1 α1
√

β2
. . .

...

0
√

β2 α2
. . . 0

...
. . . . . . . . .

√
βN−1

0 · · · 0
√

βN−1 αN−1




.

Hence, with Eq. (1.18), uj are the roots of both QN (u) and PN (u). The nth
component of the jth eigenvector of J has the form [vj ]n = √

wjPn−1(uj).

Since P0(uj) = γ
−1/2
0 , the quadrature weights are given by wj = γ0([vj ]1)2.

The orthogonality of T gives the equality
∑N

n=1
√

wiwjPn−1(ui)Pn−1(uj) =
δij . With √wiwj replaced by wj , the polynomials

Ij(u) = wj

N∑

n=1

Pn−1(u)Pn−1(uj)

of degree N−1 satisfy both the cardinality Ij(ui) = δij and the orthogonality∫ b
a w(u)Ii(u)Ij(u) du = wjδij . If we further define the interpolating functions

as

CP
j (u) =

√
w(u)
w(uj)

Ij(u),

CP
j (u) will be orthogonal with respect to the unit weight function, i.e.∫ b
a CP

i (u)CP
j (u) du = ηjδij , where ηj = wj/w(uj). The constants ηj are

the weights of the quadrature rule

∫ b

a
g(u) du ≈

N∑

j=1

ηjg(uj).
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1.5.2 Sinc functions

Another popular type of interpolation based on the sinc function has been
well studied by Whittaker [103] and Shannon [86]. The sinc function is
defined by [65,92]

sinc(u) =





sinπu

πu
if u 6= 0,

1 if u = 0.

The integral form of the sinc function with translation j,

sinc(u) =
1
2π

∫ π

−π
exp(−iωu) dω,

indicates that the Fourier transform of sinc(u) is the characteristic function

χ[−π,π](ω) =

{
1 if −π ≤ ω ≤ π,
0 otherwise,

which follows that ∫ ∞

−∞
sinc(u) exp(iωu) du = χ[−π,π](ω). (1.19)

The orthogonality of translated sinc functions is derived by Parseval’s the-
orem ∫ ∞

−∞
sinc(u) sinc(u− j) du =

1
2π

∫ π

−π
exp(−ijω) dω = δ0j (1.20)

if j is an integer.

With these formulas, we can define the sinc interpolating functions

Sj(u) = sinc
(

u− uj

h

)

along the uniform grid of N points uj = umin+(j−1)h when the width of the
grid is h = (umax−umin)/(N−1). The interval [umin, umax] is assumed to be
the interval of interpolation. These Sj(u) satisfy the cardinality Sj(xi) = δij

by the definition of sinc function, and the orthogonality
∫∞
−∞ Si(u)Sj(u) du =

hδij by Eq. (1.20). By using the interpolation g(u) ≈ ∑N
j=1 g(uj)Sj(u), the

integral can be approximated by the quadrature rule
∫ ∞

−∞
g(u) du ≈

N∑

j=1

hg(uj)

13



Chapter 1. Introduction

since
∫∞
−∞ Sj(u) du = h which can be derived by Eq. (1.19) for ω = 0.

1.5.3 Transformation of grid points

The polynomial interpolation CP
j (u) in Section 1.5.1 and the sinc interpola-

tion Sj(u) in Section 1.5.2 are based on predefined grids uj . However, these
interpolation will be inefficient if the grid points are at the places away from
the characteristics of the function to be interpolated. As a result, it is nec-
essary to investigate the possibilities of grid redistribution.

The redistribution of grid points can be done by a transformation of co-
ordinates. With an introduction of a map u = ρ(x), a new set of grid points
xj = ρ−1(uj) is obtained [65,92]. The function g(x) can then be interpolated
over this new grid, and the efficiency will depends on the choice of the map.
To ensure ρ−1(u) exists, the map ρ(x) must satisfy ρ′(x) > 0 for all x in the
domain of interpolation.

Suppose the original interpolating functions, for example CP
j (u) or Sj(u),

are represented by a generic notation Cj(u). Then with a simple substitution
u = ρ(x), the orthogonality of Cj(u) becomes

ηjδij =
∫ b

a
Ci(u)Cj(u) du =

∫ ρ−1(b)

ρ−1(a)
Ci(ρ(x))Cj(ρ(x))ρ′(x) dx

The new interpolating functions

Ĉj(x) =

√
ρ′(x)
ρ′(xj)

Cj(ρ(x))

will satisfy cardinality Ĉj(xi) = δij and orthogonality
∫ ρ−1(b)
ρ−1(a)

Ĉi(x)Ĉj(x) dx =
η̂jδij , where η̂j = ηj/ρ′(xj). The new quadrature rule becomes

∫ ρ−1(b)

ρ−1(a)
g(x) dx ≈

N∑

j=1

η̂jg(xj).

After mapping, the polynomial basis function becomes

Ĉj(x) =

√
ρ′(x)w(ρ(x))

ρ′(xj)w(ρ(xj))
Ij(ρ(x))
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with quadrature weights η̂j = wj/[ρ′(xj)w(ρ(xj))], and the sinc basis func-
tion becomes

Ĉj(x) =

√
ρ′(x)
ρ′(xj)

Sj(ρ(x))

with quadrature weights η̂j = h/ρ′(xj).

1.6 Pseudospectral method

The spectral method for the solution of a differential equation Lψ(x) = g(x)
defined on the domain R with homogeneous boundary conditions involves
an expansion of basis functions {φn(x)}∞n=1 in the form [19]

ψ(x) =
∞∑

n=1

cnφn(x).

Spectral convergence is achieved if the magnitudes of the expansion coeffi-
cients cn decreases exponentially. The truncated expansion

∑N
n=1 cnφn(x)

will give a good approximation to ψ(x) if cn are small enough for all n > N .
If φn(x) are normalized and satisfy the same homogeneous boundary condi-
tions, the coefficients cn can then be solved by the Galerkin method, which
requires that for all m ≤ N ,

∫
R φm(x)Lψ(x) dx =

∫
R φm(x)g(x) dx, or with

the expansion,

N∑

n=1

cn

∫

R
φm(x)Lφn(x) dx =

∫

R
φm(x)g(x) dx. (1.21)

Equation (1.21) is a simple matrix equation Lc = g, where Lmn =
∫
R φm(x)Lφn(x) dx

is a matrix element of the differential operator L, and gm =
∫
R φm(x)g(x) dx.

For simplicity, quadrature rules are used for the evaluation of the inte-
grals. The quadrature points are regarded to as the grid points for which
the values of the solution are defined. The spectral method with quadra-
ture evaluation of integral is referred to as the pseudospectral method. The
main difference between spectral and pseudospectral methods is that spec-
tral method is based on the expansion of basis functions, while pseudospec-
tral method is based on a grid of points.
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The basis functions used in pseudospectral methods are usually interpo-
lating functions Cj(x), mapped or unmapped, which satisfy the cardinality
Cj(xi) = δij at the quadrature points xi. With normalized basis Cj(x)/√ηj ,
the solution of the differential equation Lψ(x) = g(x) is expanded in the
form

ψ(x) =
N∑

j=1

√
ηjψ(xj)

(
Cj(x)√

ηj

)
.

When the integral from the Galerkin method,

∫

R

Ci(x)√
ηi

Lψ(x) dx =
∫

R

Ci(x)√
ηi

g(x) dx,

is evaluated by quadrature, the resulting equation becomes Lψ(x)|x=xi =
g(xi). Hence, the pseudospectral method is often considered as a collocation
method.

Eigenvalue problems Lψ(m)(x) = λψ(m)(x) are solved in a similar way by
pseudospectral method. After evaluation of matrix elements by quadrature,
the eigenvalue problem becomes

N∑

j=1

Lij
√

ηjψ
(m)(xj) = λm

√
ηiψ

(m)(xi),

where Lij = (ηiηj)−1/2
∫
R Ci(x)LCj(x) dx. The eigenvalues λm are found by

diagonalizing L. The corresponding eigenvectors are √ηjψ
(m)(xj).

For time dependent problem ∂ψ(x, t)/∂t = Lψ(x, t), the expansion

ψ(x, t) =
N∑

j=1

aj(t)
(

Cj(x)√
ηj

)
.

is used, where aj(t) = √
ηjψ(xj , t). With the pseudospectral method, the

differential equation become a′j(t) =
∑N

j=1 Lijaj(t). Time integration can
be done with other methods such as the backward Euler or Runge-Kutta
methods.
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1.7 Thesis objective

One of the main objectives of this thesis is to present the equivalence of all
the different pseudospectral methods discussed in Section 1.4 from a sin-
gle approach. Although these pseudospectral methods have different back-
grounds and theories, they are all equivalent to a method involving the ex-
pansion of orthogonal interpolating functions discussed in Sections 1.5 and
1.6. This method will serve as the central principle in all developments and
calculations in the rest of the thesis.

Another objective is to study the performance of the pseudospectral
method for different problems using different basis functions. In Chapter 2,
I will provide detailed comparisons between polynomial and sinc methods
using applications to Fokker-Planck and Schrödinger eigenvalue problems
including electron thermalization in a background gas, bistable models for
chemical reactions, and vibrational states of I2 approximated by the Morse
potential. The exact ground-states eigenfunctions of all these problems are
known, and the weight functions of the orthogonal polynomials can there-
fore be chosen to be the square of the ground-state eigenfunctions. Wei
claimed that the sinc method yields a faster rate of convergence to the exact
eigenvalues than these polynomial methods. I will show in Chapter 2 that
my results are opposite to Wei’s conclusion.

For vibrational states of noble gas diatoms studied in Chapters 3 or 4, the
ground-state eigenfunctions are unknown. Because the potential functions
of these systems are close to the Morse potential with appropriately fitted
parameters, we will see that polynomials based on the Morse ground-state
eigenfunction gives better convergence rates than other classical methods
for the lower-states eigenvalues of noble gas systems.

The last objective is to study the improvements of the performance of
existing basis functions with a transformation of coordinates. This can be
understood as the redistribution of interpolation grid points. In Chapter
3, I will show that for highly excited vibrational states of I2 where the
eigenfunctions are loosely bound, a linear mapped (scaling and translation)
polynomial basis yields a much faster convergence rate over the same set
of polynomials without mapping. The idea of transformation is extended
to nonlinear mappings in Chapter 4. With a hyperbolic sine mapping, the
convergence rates for eigenvalues obtained in He2 system are more than ten
times faster than without mapping.
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Chapter 1. Introduction

In Chapter 5, we will discuss the optimization of explicitly defined trans-
formations such as the hyperbolic sine mapping. A new flexible type of adap-
tive transformation will also be introduced, which depends only on the shape
of the function to be interpolated. I will apply this adaptive transformation
to a time-dependent problem and develop an adaptive moving mesh scheme
for the psuedospectral method. Furthermore, the possibility of applying this
adaptive transformation to eigenvalue problems will be presented.
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Chapter 2

Spectral convergence of the
quadrature discretization
method in the solution of the
Schrödinger and
Fokker-Planck equations:
Comparison with sinc
method

2.1 Introduction

The solution of the Fokker-Planck and Schrödinger equation with a dis-
cretization of the wave function on a grid of points has been of ongo-
ing interest for over two decades [1, 4, 5, 13, 17, 21, 23, 27, 32, 33, 38, 47, 50,
53, 57, 62, 63, 66, 68–70]. Shizgal and co-worker [53, 57, 62, 63] developed
a discrete ordinate method later referred to as the quadrature discretiza-
tion method (QDM), which is a pseudospectral (collocation) method based
on nonclassical polynomials. For the solution of the Schoödinger equa-
tion, Light and co-workers introduced the discrete variable representation
(DVR) [27,38], which is often based on classical polynomials including Gaus-
sian and Fourier basis functions [1, 9, 64] and has been used exclusively by
several researchers [23, 32, 50, 72]. The basic ideas of Fourier methods have
been reviewed by Kosloff [33]. Wei introduced the discrete singular con-
volution (DSC) approach for solutions of the Fokker-Planck [68, 69] and
Schrödinger equations [70]. Although Wei’s DSC-sinc method is discussed

A version of this chapter has been published. Joseph Lo and Bernie D. Shizgal. J.
Chem. Phys., 125:194108, 2006.
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in terms of wavelets and signal analysis it is the same as the sinc collo-
cation method (SCM) presented recently by Amore [1]. A Lagrange mesh
method was introduced by Baye et al [5]. Other approaches for quantum
problems include the work by Balint-Kurti and Pulay [4] and the Fourier
based method of Colbert and Miller [17]. These discrete methods employed
by different researcher have similar features but also many subtle differences.
Mazziotti recently introduced a new class of spectral difference method that
yield sparse matrices and spectral convergence [42].

The most important feature of any numerical methodology is the rate of
convergence of the solution versus the number of grid points or the number
of basis functions. The main objective of the present chapter is to provide
a detailed study of the rate of convergence of the QDM [53, 57, 62, 63] for
the Fokker-Planck and Schrödinger equations. We compare the results with
the sinc method by Wei [68]. Boyd [10] has recently compared the efficiency
of DSC-sinc [68] and related Fourier based methods with finite difference
algorithm. In this chapter, we provide a demonstration of the spectral
convergence of the eigenvalues obtained with the QDM for several model
systems and provide some insight as to the origin of the rapid convergence.
Spectral convergence refers to the exponential convergence of solutions of
differential equations versus the number of basis functions or the number of
grid points. The mathematical background of spectral methods is discussed
at length elsewhere [9, 12,26,30,46].

The use of a Gaussian quadrature was developed by Shizgal [54–56,60] to
efficiently discretize the integral operator in the Boltzmann equation anal-
ogous to techniques in neutron transport theory [24] and radiative trans-
port [14] introduced over half a century ago. The evaluation of the matrix
elements of the linear Boltzmann collision operator in some basis set (typ-
ically Laguerre or Hermite polynomials) leads to a cumbersome algebraic
problem and the final expressions involve considerable round-off errors in
their numerical evaluation [31, 40, 59, 67]. The quadrature approach is far
more efficient and accurate. As the Boltzmann equation is an integrodif-
ferential equation, Shizgal and Blackmore [8, 57] extended the formalism to
the discretization of derivative operators. This technique was later applied
to the Schrödinger equation [62] and the Fokker-Planck equation [63] and
referred to as the QDM. Fokker-Planck equations arise as a limit of the
Boltzmann equation [3, 59] and in many problems in nonequilibrium statis-
tical mechanics [48].
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The QDM differs from the other approaches in that it is based on non-
standard polynomials orthogonal with respect to nonclassical weight func-
tions. It originates from an interest in the solution of kinetic theory prob-
lems [54–57,60] and was later applied to quantum problems. The important
distinction between these classes of problems is that in kinetic theory the
“ground state” eigenvalue λ0 = 0, and the corresponding eigenfunction is
the equilibrium Maxwellian distribution. The QDM was developed for the
solution of a Fokker-Planck equation for the relaxation of electrons in inert
gas moderators [52]. The traditional approach for such kinetic theory prob-
lems is to consider the expansion of the distribution function in Laguerre (or
Sonine) polynomials. For this application, with the small electron to mod-
erator mass ratio, the expansion in the Laguerre polynomials in the electron
energy converges extremely slowly. Shizgal [52] showed that if the “speed”
polynomials orthogonal with respect to weight function w(x) = x2 exp(−x2),
where x is the reduced particle speed, are chosen as basis functions, the con-
vergence of the eigenvalues of the Fokker-Planck operator is extremely rapid.
The reason provided in Ref. 52 was that the reduced particle speed was the
more appropriate independent variable than the reduced energy as discussed
earlier [49, 51]. Moreover, the matrix representation of the Fokker-Planck
operator is tridiagonal in this new set, and thus rapid convergence is antic-
ipated. The essential philosophy of the QDM stems from the observation
that the choice of the equilibrium distribution function as a weight function
in the definition of basis set leads to a rapid convergence of the eigenval-
ues of the Fokker-Planck operator. The actual implementation of the QDM
was later based on a grid defined by the quadrature associated with a non-
classical weight function. The method is thus classified as a pseudospectral
(collocation) method [8, 63].

The eigenfunction for the ground state of the Fokker-Planck operator is
the equilibrium distribution, which is known. The excited state eigenvalues
are then determined by using the square of the ground state eigenfunction
as the weight function. Orthogonal polynomials and associated quadrature
points are then constructed from this weight function. The choice of the
weight function in the determination of the eigenfunctions of the Schrödinger
equation is motivated by the relationship with the Fokker-Planck equation.
The Schrödinger equations that are derived from a Fokker-Planck equation
belong to the class of quantum problems in supersymmetric quantum me-
chanics for which the ground state is known [18,29].

This chapter considers the solution of 1D Fokker-Planck and the Schrödinger
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eigenvalue problems. The study of 1D problems has been and continues
to be of interest [1, 4, 19, 27, 36, 38, 41, 45, 47, 68, 73, 74] with the objective
that any acceleration of the convergence for 1D problems would yield in-
creased efficiencies for higher-dimensional problems. Many applications to
multi-dimensional systems employ the tensor product of 1D basis sets and
the use of symmetries to reduce the dimensionality of the matrices to be
diagonalized. There have been several discussions of the importance of the
choice of 1D basis functions for direct product bases in applications to multi-
dimensional problems [36, 38, 45, 47]. The QDM has the potential to pro-
vide efficient basis functions (or quadrature points) in each dimension of
a multi-dimensional problems so as to significantly reduce the size of the
final matrices involved. The QDM has previously been applied to the clas-
sic 2D Henon-Heiles problem [62] and performs as well as or better than
other methods [11, 47, 68]. It was also applied to the solutions of Kramers
equation [7] and to other 2D or 3D problems in kinetic theory and fluid
dynamics [16,58,76,77].

We limit the objectives of this chapter to the study of spectral conver-
gence for nonclassical polynomials for several 1D problems. We thus focus
our attention on the 1D problems previously studied by Wei [68] so as to
study the spectral convergence of the QDM and to compare with this DSC-
sinc method. This approach is exactly the same as the one described in
the recent paper by Amore [1] referred to as the SCM and we prefer this
nomenclature. The first problem considered arises from the relaxation of
electrons in atomic moderators assuming a hard sphere cross section for the
electron-atom momentum transfer cross section [61]. This Fokker-Planck
eigenvalue problem can be transformed to an equivalent Schrödinger equa-
tion. We solve both eigenvalue problems with nonclassical weight functions
as done previously [7, 61–63] but here present results showing the spectral
convergence of the QDM in comparison with the convergence rates obtained
with the SCM. It is important to note that the rate of convergence of the
eigenvalues is generally more rapid for the lower states and slower for the
higher states [62, 63]. Wei [68, 69] did not show a comparison of the rates
of convergence but suggested that the SCM is superior to the QDM (Table
1 of Ref. 68 and the discussion after Eq. (42)). Table 1 in this paper by
Wei [68] suggests that 70 quadrature points are required to achieve the con-
vergence shown for all the eigenvalues. The value of λ1 = 4.86340 in this
table is taken from Ref. 62, where it is clearly shown that only six speed
polynomial basis functions and not 70 are required to get convergence to six
significant figures. Wei compares the QDM value in his Table 1 and shows
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λ1 = 4.683395 with N = 60 for the DSC-Sinc method. The tabulation of
these results in this way suggests that the SCM is marginally superior to the
QDM, which it is not. The purpose of this chapter is to illustrate the rapid
convergence of the QDM and the much slower convergence of the SCM.
Since the SCM is designed for problems with x ∈ (−∞,∞), it is anticipated
that the results for the electron relaxation problem will not provide spectral
convergence even though the boundary condition at x = 0 is satisfied. The
Morse potential has often been used as a benchmark of numerical methods
in the solution of the Schrödinger equation [4, 6, 11, 15, 39, 65, 70–73]. We
also study in this chapter the rates of convergence of the QDM and SCM
method as applied to the vibrational states of I2 with a Morse potential.

Another application is concerned with the Fokker-Planck operator for
the so-called quartic potential [8, 63] for which the equilibrium distribution
is bimodal. The corresponding Schrödinger equation is characterized by
a triple well potential. This and similar bimodal systems are of consid-
erable interest in modeling dynamical evolutionary problems and chemical
reactions [20, 22, 28, 34, 35]. The emphasis in this chapter, not discussed
previously, is on the dependence of the rate of convergence on the choice of
basis functions and thus on the distribution of grid points. We show that the
discussions by Wei [68–70] are incomplete and that the convergence of the
QDM, with a nonuniform grid distribution, is considerably faster than the
SCM, with a uniform grid distribution, for solutions of the Fokker-Planck
equation on [0,∞). The SCM can provide convergence rates comparable
with the QDM for solutions of the Schrödinger equation on (−∞,∞) in
some instances. A complete comparison is provided in this chapter.

In Section 2.2, we briefly review the discretization procedures for the
Fokker-Planck and Schrödinger eigenvalue problems. The specific applica-
tions to the electron relaxation problem, the vibrational states in the Morse
potential for I2, and the quartic bistable potential are discussed in Sections
2.3 – 2.5. We present the numerical results in Section 2.6. In Section 2.7 we
provide a discussion concerning the interpretation of the QDM in terms of
the phase space coverage of the basis sets used, the structure of the result-
ing matrix representatives of the operators considered, and the fundamental
reason for the rapid spectral convergence of the eigenvalues and eigenfunc-
tions.
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2.2 Discretization of the Fokker-Planck and
Schrödinger eigenvalue problems

As the basic methodology of the calculations reported in this chapter have
been presented in previous papers [7, 8, 61–63], only a very brief summary
of the final results are provided here. Thus, the first problem considers the
determination of the eigenvalues, λm, and eigenfunctions, φm(x), of the 1D
Fokker-Planck eigenvalue problem of the form

Lφm = A(x)
dφm

dx
−B(x)

d2φm

dx2
= λmφm, (2.1)

where A(x) and B(x) are the drift and diffusion coefficients and take on
different explicit forms in each application. The time dependent Fokker-
Planck equation for the probability density, P (x, t), can be solved in terms
of these eigenvalues and eigenfunctions. The QDM is based on a grid of
quadrature points associated with a set of polynomials, {Fn(x)}, orthogonal
with respect to weight function w(x). If {xi}N

i=1 are the quadrature points
defined by FN (xi) = 0, then the discrete representation of the operator L
is [8, 63]

LQDM
ij = −

N∑

k=1

B(xk)[Dki + h(xk)δki][Dkj + h(xk)δkj ],

where the QDM representation of the derivative operator is given by [63]

Dij =
√

wiwj

N∑

n=1

F
′
n−1(xi)Fn−1(xj),

and

h(x) =
w′(x)
2w(x)

− P ′
0(x)

2P0(x)
,

where P0(x) = exp[− ∫
[A(x′)/B(x′)]dx′ − lnB(x)] is the equilibrium prob-

ability density [62]. The operator L is self-adjoint with the scalar product
defined with the weight function w(x) = P0(x) for which h(x) = 0. For
this choice of weight function, the eigenvalues are given by the numerical
diagonalization of the symmetric matrix

L̂QDM
ij = −

N∑

k=1

B(xk)DkiDkj . (2.2)
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The eigenvalue problem, Eq. (2.1), can be transformed to a Schrödinger
equation [63] with the transformation y =

∫ x[B(x′)]−1/2dx′ and we get

Hψm(y) = −d2ψm(y)
dy2

+ V (y)ψm(y) = λmψm(y), (2.3)

where V (y) is defined in terms of A(x) and B(x) and given explicitly by
Eqs. (10) – (12) of Ref. 63. As shown in Refs. 62 and 63, the discrete
representation of the Hamiltonian H in Eq. (2.3) is

HQDM
ij =

N∑

k=1

DkiDkj + [V (yi)− V0(yi)]δij ,

where

V0(y) =
1
2

w′′(y)
w(y)

− 1
4

(
w′(y)
w(y)

)2

. (2.4)

If the weight function w(y) is derived from the “superpotential” [18, 29]
associated with the ground state eigenfunction [63] so that V0(y) = V (y),
the discrete representation of the Hamiltonian reduces to

ĤQDM
ij =

N∑

k=1

DkiDkj . (2.5)

with no explicit reference to the potential.

The SCM [1, 9, 17, 50, 68–70] is based on a uniform grid with spacing h,
xj = jh, and basis functions chosen to be the sinc interpolation function
Sj,h(x) = sinc(π(x − jh)/h) = sin[π(x − jh)/h][π(x − jh)/h] for x 6= xj

and unity for x = xj . For the problems considered here on the infinite and
semi-infinite domains, the interval is cutoff at appropriate values xmin and
xmax. The first and second matrix derivative operators on this uniform grid
are given by,

D
(1)
ij = S

′
j,h(xi) =

{
(−1)i−j

(i−j)h if i 6= j,

0 if i = j,
(2.6)

and

D
(2)
ij = S

′′
j,h(xi) =

{
−2(−1)i−j

(i−j)2h2 if i 6= j,

− π2

3h2 if i = j.
(2.7)

which are the same expressions as given by Amore [1]. The explicit expres-
sions, Eqs. (2.6) and (2.7), were not provided by Wei in his papers [68–70].
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Chapter 2. Spectral convergence of quadrature discretization method

The sinc functions are a set of basis functions orthogonal with unit weight
function. The matrix representation of the Fokker-Planck operator, LSCM

ij ,
is

LSCM
ij =

1
h

∫ ∞

−∞
Si,h(x)LSj,h(x) dx

and thus the discrete representation is given by

LSCM
ij = −A(xi)D

(1)
ij + B(xi)D

(2)
ij , (2.8)

which is not symmetric. However, the discrete representation of the Hamil-
tonian is given by

HSCM
ij = −D

(2)
ij + V (xi)δij (2.9)

and is symmetric. Even though the SCM is simple to use, it may not be an
efficient numerical scheme as the infinite or semi-infinite domains have to
be made finite with N grid points in [xmin, xmax] that are uniform and not
related to the potential.

2.3 Electron relaxation

One particular application arises for the relaxation of electrons in gases [61]
for which the electron-atom cross section is taken to be a hard sphere and
B(x) = x and A(x) = 2x2−3 where the reduced speed is x =

√
mv2/2kBTb,

x ∈ [0,∞), where v is the electron speed, Tb is the temperature of the back-
ground gas, and kB is the Boltzmann constant. The speed polynomials,
orthogonal with weight function w(x) = x2 exp(−x2) for which h(x) = 0
provide a very rapid convergence of the eigenvalues [52] calculated from the
numerical diagonalization of Eq. (2.2).

The potential in the Schrödinger equation for this model, V (y) = y6/64−
y2 + 15/4y2, is bounded and there are an infinite number of bound states.
The weight function w(y) = y5 exp(−y4/16) can be derived from the su-
perpotential [18, 29] associated with the ground state eigenfunction for this
potential [63]. Thus the eigenvalues can also be calculated from the numer-
ical diagonalization of Eq. (2.5). In principle, the eigenvalues defined by
Eqs. (2.1) and (2.3) are isospectral although the convergence rates of the
eigenvalues determined from Eqs. (2.2) and (2.5) will be different. The dis-
tribution of quadrature points for these weight functions is nonuniform. The
calculation of the eigenvalues for this problem was considered by Wei [68]
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with the SCM in comparison with the earlier studies. The work by Wei did
not consider a complete study of the convergence properties of the SCM in
comparison with the QDM which is presented in this chapter.

2.4 Vibrational states of I2

A model for the vibrational states of diatomic molecules that has been
employed as a benchmark of numerical methods for the solution of the
Schrödinger equation [6, 11,15,39,42,65,71–73] is the Morse potential

V (y) = D(1− exp(−αy))2.

For I2, the potential parameters are D = 0.0224 a.u. and α = 0.9374 a.u.
In the Schrödinger equation,−(~2/2µ)(d2ψm/dx2) + V ψm = λmψm, we take
Planck’s constant ~ = 1 a.u. and a reduced mass µ = 119406 a.u. This
potential has 77 eigenvalues given exactly by

λm =
~2α2

2µ

(
m +

1
2

)(
2
√

2µD

~α
−

(
m +

1
2

))

for m ≥ 0. The QDM uses the square of the ground state eigenfunction

ψ0(y) = exp
[
−
√

2µD

~

(
y +

exp(−αy)
α

)
+

αy

2

]
(2.10)

as the weight function, i.e. w(y) = [ψ0(y)]2. Thus the discretized Hamilto-
nian with the QDM is

HQDM
ij =

~2

2µ

N∑

k=1

DkiDkj + λ0δij ,

where λ0 = V − ~2
2µV0 and V0 arises from the weight function given by Eq.

(2.4). The SCM discretization is performed in the computational domain
[xmin, xmax] so the grid points are given by xj = xmin + (j − 1)h, where
h = (xmax − xmin)/(N − 1). Wei [70] has reported the application of the
SCM to this system and chose xmin = −1.4 and xmax = 1.4. This compu-
tational domain is appropriate for lower eigenvalues but larger xmax values
are required for the calculation of the higher eigenvalues, namely λ30 and
λ50. In the previous papers by Wei, the eigenvalues only up to m = 20 [71]
and m = 24 [70] were calculated.
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2.5 The quartic bistable system

The steady distribution for the time dependent Fokker-Planck equation
∂P (x, t)/∂t = LP (x, t) with the drift and diffusion coefficients defined by,
A(x) = x3 − x and B(x) = ε with x ∈ (−∞,∞), is P0(x) = exp[−x4

4ε + x2

2ε ]
[8, 63]. In the limit ε → 0, the steady distribution is bimodal with narrow
peaks at x = ±1. This quartic bistable system finds useful applications as a
model for reactive systems [8,20,22,28,29,34,35,48,68]. The eigenfunctions
of the linear Fokker-Planck operator, Eq. (2.1), are highly localized and the
convergence of the eigenvalues versus N can be slow especially for small ε.
The eigenvalue spectrum was calculated with the QDM by Blackmore and
Shizgal [8] with a weight function corresponding to the equilibrium proba-
bility density, wa(y) = P0(y)/ exp(1/4ε). The matrix representation of the
Fokker-Planck operator with the polynomials defined by the weight function
wa(x) is pentadiagonal, Eq. (B.3), and from the structure of the matrix, Eq.
(B.4), it is clear that there is no coupling between eigenfunctions of even
and odd symmetries. The corresponding Schrödinger equation is

Hψm(y) = −ε
d2ψm(y)

dy2
+ V (y)ψm(y) = λmψm(y) (2.11)

with

V (y) =
(y3 − y)2

4ε
− 3y2 − 1

2
(2.12)

and there is a factor of ε in front of the second derivative operator in
Eq. (2.11). The potential is characterized by three wells at y = 0 and
at y = ±

√
6 + 3

√
1 + 18ε/3 → ±1 as ε → 0. Owing to the symmetry of the

potential, the eigenvalues occur as a series of singlets and triplets with eigen-
functions of even and odd symmetries (see Eqs. (B.5) and (B.6)) [8,34,35,48].
In the limit ε → 0, the eigenvalue spectrum coincides with the harmonic os-
cillator states, λ̂m = m and those for m even are triply degenerate except for
m = 0 which is doubly degenerate. For small values of ε, the calculation of
the splitting of these degenerate levels is a difficult computational problem.
Shizgal and Chen [63] employed nonclassical weight functions to improve the
rate of convergence. These authors showed that the addition of a Gaussian
weight function centered at y = 0, that is wc(y) = wa(y) + exp(−y2/2ε),
is required to resolve the eigenvalues localized in the middle well. Wei [68]
applied the SCM to this system and presented an incomplete comparison
with these previous works. The main purpose of the present study is to pro-
vide a detailed comparison of the QDM and SCM with particular attention
paid to the rate of convergence. In the present work, we introduce a novel
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technique for calculating the eigenvalues corresponding to eigenfunctions of
even or odd symmetry by using weight functions over the semi-infinite in-
terval [0,∞). For the even eigenstates, we use we

b(y) = wa(y), y ∈ [0,∞),
and for the odd eigenstates, wo

b (y) = y2wa(y), y ∈ [0,∞). We occasion-
ally refer collectively to both weight functions as wb(y). We focus on the
five lowest eigenvalues, namely λ1 – λ5. The first nonzero eigenvalue λ1,
which becomes very small as ε decreases, is related to the rate coefficient for
the passage of particles from one side of the quartic potential to the other
side [8, 20, 22, 28, 34, 35, 48]. This eigenvalue, nearly degenerate with the
eigenvalue λ0 = 0, represents the rate coefficient for the reaction modeled
with this potential. The eigenvalue λ2 is a singlet state and tends to λ̂1 = 1
as ε → 0. The states λ3, λ4 and λ5 make up a triplet which are degenerate
for ε → 0 and tend to λ̂2 = 2. The remainder of the eigenvalue spectrum
then alternates between singlet and triplet states. The rate of convergence
versus the size of the basis set or equivalently the number of grid points
is not uniform for all the eigenvalues. The convergence is sensitive to the
nature of the eigenfunctions and in particular their symmetry.

2.6 Convergence of eigenvalues; discussion of
results

We have applied the QDM and the SCM to a solution of the Fokker-Planck
and Schrödinger equations for several model systems as described in the pre-
vious sections. We present in this section a detailed comparison of the two
discretization methods. As discussed in Section 2.2, the quadrature points
with the QDM based on nonclassical weight functions are non-equidistant.
The choice of basis functions and thus the distribution of the quadrature
points play an important role on the rate of convergence of the solution.
One requires the appropriate weight function in order to construct an ac-
curate and rapidly convergent numerical scheme. For the Fokker-Planck
equation, a good choice of weight function is the equilibrium solution, that
is, w(x) = P0(x). Since h(x) = 0 for this weight function, the eigenval-
ues are calculated from the numerical diagonalization of Eq. (2.2). For
the Schrödinger equation, the weight function w(y) is chosen such that
V0(y) = V (y) and the matrix representative of the Hamiltonian given by
Eq. (2.5) is diagonalized. We study the rate of convergence of the eigenval-
ues for the electron relaxation problem, the vibrational states for I2 modeled
with a Morse potential and the quartic bistable system. The exact eigenval-
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Chapter 2. Spectral convergence of quadrature discretization method

ues, λexact
m , used to evaluate the error are calculated to over 20 significant

figures in extended precision with up to 150 quadrature points for the QDM.
As a measure of the accuracy of the eigenvalues for a particular N we report

ε(N)
m = log

∣∣∣∣∣
λ

(N)
m − λexact

m

λexact
m

∣∣∣∣∣ ,

which is approximately equal to the number of significant figures in λ
(N)
m .

For ease of notation, we henceforth write λ
(N)
n and ε

(N)
n as λn and εn, re-

spectively. Although we compute the eigenvalues from a diagonalization of
the discrete representations, LQDM

ij , Eq. (2.2), and HQDM
ij , Eq. (2.5), it is

often instructive to transform to the polynomial basis representation. If the
matrix representatives in the polynomial basis sets are diagonally dominant
and sparse, then rapid convergence is anticipated.

The eigenvalue spectrum of the electron relaxation problem is completely
discrete and there is an infinite number of bound states. Figure 2.1 shows
a comparison of the rates of convergence of λ1 and λ6 for the electron re-
laxation problem with the QDM and the SCM. We choose these eigenvalues
as representative of the lower order eigenvalues. The convergence with the
QDM for the Fokker-Planck equation (triangles) and Schrödinger equation
(squares) is similar and spectral [9], and machine accuracy is achieved with
approximately 20 basis functions, although accurate values with less preci-
sion are obtained with fewer basis functions. We discuss the spectral conver-
gence of λ1 in Section 2.7. Also shown in Fig. 2.1 (the curve labeled RV) are
the results with the representation of Fokker-Planck operator in Laguerre
basis set in the speed variable as derived by Risken and Voigtlaender [49].
This representation also depends on a scaling variable, which we choose as
α = 0.5. A discussion of the use of such scaling factors was presented else-
where [2, 25, 37, 61]. For the Fokker-Planck operator, the weight function
used is w(x) = x2 exp(−x2), whereas for the Schrödinger equation we use
w(y) = y5 exp(−y4/16). The matrix representative of the Fokker-Planck op-
erator with the nonclassical polynomials defined with w(x) = x2 exp(−x2)
is a diagonally dominant tridiagonal matrix [52] as shown in Eq. (A.8) and
(A.9) in Appendix A. The discretization of the Fokker-Planck eigenvalue
problem with the SCM yields a non-symmetric matrix, Eq. (2.8), which
possesses many complex eigenvalues. Hence the rate of convergence is very
slow and we restrict our comparisons with the SCM to those based on the
Schrödinger equation. The convergence of the eigenvalues with the SCM (di-
agonalization of Eq. (2.9)) is clearly considerably slower. The main reason
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Figure 2.1: Variation of εm versus the number of quadrature points N for
the electron thermalization problem for (A) m = 1 and (B) m = 5. The SCM
results are for the Schrödinger equation (denoted by filled circles, xmax = 6).
The QDM results are for the Schrödinger equation (se, denoted with squares)
and the Fokker-Planck equation (fpe, denoted with triangles). The curve
labeled RV is the result with the Laguerre polynomials in speed [49].
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for the slow convergence of the SCM is that the sinc functions are orthogonal
with respect to the unit weight function on (−∞,∞), and for the electron
relaxation problem the domain is [0,∞). With the QDM, we need N = 7
to get λ1 = 4.683395 converged to seven significant figures and N = 17 for
λ6 = 40.05238. Table 1 in the paper by Wei [68] suggesting that N = 70
is required for the convergence of these eigenvalues is incorrect. We confirm
Wei’s results [68] that to calculate these eigenvalues to seven significant fig-
ures requires N = 60 for the SCM. The results in Fig. 2.1 show the rapid
decrease in the error versus N for the QDM and the much slower conver-
gence with the SCM. The superiority of the QDM over the SCM for this
application is thus clear. The plus symbols in Fig. 2.1 correspond to the re-
sults obtained with the Laguerre basis set in speed and appropriately scaled.

The convergence of the QDM and the SCM for the vibrational states
of I2 modeled with the Morse potential is shown in Fig. 2.2. The conver-
gence for the QDM with the square of the ground state eigenfunction as
the weight function w(y), Eq. (2.10), is extremely rapid for λ1. For λ10,
the QDM requires only 24 points to reach machine precision. It is consider-
ably faster than the convergence for SCM with the computational domain
[−1.4, 1.4] used by Wei [70]. The convergence for λ30 is somewhat faster
with QDM than with the SCM and it is about the same for λ50. Although
it is useful to show the spectral convergence to machine accuracy in Fig. 2.2,
it is the convergence to moderate accuracy for smaller N that is of practi-
cal interest. To achieve six significant figures for these vibrational states,
λ1 = 8.52997 × 10−4, λ10 = 5.62326 × 10−3, λ30 = 1.40897 × 10−2, and
λ50 = 1.96125 × 10−2 a.u. require N = 4, 19, 58 and 119 with the QDM.
The corresponding values for the SCM are N = 33, 48, 84 and 133. The
QDM is clearly superior to the SCM for the lower and moderately excited
states, but the results become comparable for the highest state studied. In
the previous papers by Wei, the eigenvalues only up to m = 20 [71] and m
= 24 [70] were calculated. We also find that the differences λm − λexact

n for
m = 1, 10, and 30 are at machine accuracy with N = 6, 24, and 70, respec-
tively. This convergence is faster than the result reported by Mazziotti [42].

Figure 2.3 shows the variation of the potential in the Schrödinger, Eq.
(2.12), and the distribution of the grid points for the quartic bistable prob-
lems. For ε = 0.1 in Fig. 2.3A, there are two moderately deep wells in the
vicinity of y = ±1 and a shallow well at y = 0. The quadrature points for the
supersymmetric weight function wa(y) = exp[−(y4/4 − y2/2)/ε]/ exp(1/4ε)
are almost uniformly distributed but with some localization in the vicinity

42



0 10 20 30 40 50
N

-16

-12

-8

-4

0

SCM [-1.4, 1.4]

QDM

A

ε
1

20 40 60 80 100
N

-16

-12

-8

-4

0
SCM [-1.4, 2.4]

QDM

C

ε
3
0

0 20 40 60
N

-16

-12

-8

-4

0
SCM [-1.4, 1.4]

QDM

B

ε
1
0

40 80 120 160
N

-16

-12

-8

-4

0

SCM [-1.4, 3.9]

QDM

D

ε
5
0

Figure 2.2: Variation of εm for (A) m = 1, (B) m = 10, (C) m = 30, and
(D) m = 50 versus the number of quadrature points N for the I2 Morse
potential. The computational domain [xmin, xmax] for the SCM are also
shown.
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Figure 2.3: Variation of the potential, V (y) = (y3 − y)2/4ε − (3y2 − 1)/2,
in the Schrödinger equation for the quartic bistable system: (A) ε = 0.1,
(B) ε = 0.01, (C) ε = 0.001. The distributions of grid points are shown
for the SCM and the QDM for the different weight functions: (a) wa(y) =
exp[−(y4/4 − y2/2)/ε]/ exp(1/4ε), y ∈ (−∞,∞), (b) we

b(y) = wa(y), y ∈
[0,∞) and (c) wc(y) = wa(y) + exp(−y2/2ε), y ∈ (−∞,∞).
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of y = ±1. The grid points for the SCM are uniform as shown. By contrast,
for ε = 0.01 in Fig. 2.3B, there are three deep wells in the vicinity of y = ±1
and at y = 0. The quadrature points with wa(y) are concentrated near the
outermost potential wells and less dense near the potential about y = 0.
For we

b(y) = wa(y), y ∈ [0,∞) the quadrature points are denser near the
origin and in the potential well near y = 1. The SCM points are distributed
uniformly. In Fig. 2.3C with ε = 0.001, the quadrature points with the su-
persymmetric weight function, wa(y), are concentrated only in the regions
near the left and right wells of the potential. There are no quadrature points
in the middle well in the vicinity of y = 0. To redistribute some quadra-
ture points in this region, a Gaussian function is added so that the weight
function becomes wc(y) = wa(y) + exp(−y2/2ε) [15], with the result that
the quadrature points are redistributed from the outermost potential wells
to the well about the origin.

We show the rate of convergence of the eigenvalues for the quartic
bistable system in Tables 2.1 – 2.3 and in Figs. 2.4 and 2.5 for ε = 0.1,
0.01, and 0.001. The computational domain is [−xmax, xmax]. A portion of
the results in Tables 2.1 and 2.2 for QDMa appeared in [8], but here we
closely follow the convergence of the triplet, λ3, λ4 and λ5, and emphasize
the rate of convergence in terms of the error εm. The convergence rates of
the eigenvalues calculated with the QDM and the SCM for ε = 0.1 are simi-
lar, as shown in Table 2.1. For this value of ε, λ1 is not too small and λ3, λ4

and λ5 are well separated. As shown in Appendix B, the calculation of the
eigenvalues associated with the eigenfunctions of even and odd symmetries
can be uncoupled and calculated separately. So the values of N for wa(y) in
Table 2.1 can be considered effectively as N/2 and the convergence is anal-
ogous to that shown for wb(y). It is surprising that λ2 converges as quickly
as shown in the table since with wb(y) the vanishing of the eigenfunction at
the origin is not consistent with the actual boundary condition. In Table
2.1, we show that the value of λ1 is converged to 7 significant figures for the
QDM with N = 26 for wa(y) and N = 12 for wb(y) whereas we find that
N = 32 is required for the SCM to get comparable accuracy. The manner
in which Wei [68] compares the convergence (see Table II of his paper) is
inappropriate. He lists the converged values of a number of selected eigen-
values and lists one value of N for all. He incorrectly suggests that N = 60
is required to get the specified precision for λ1 with the QDM.

For ε = 0.01, the calculation of the eigenvalues becomes more difficult
owing to the smallness of λ1 and the near degeneracy of the eigenvalues

45



Chapter 2. Spectral convergence of quadrature discretization method

Table 2.1: Convergence of the eigenvalues for the quartic potential, ε = 0.1.

N λ1 × 102 λ2 λ3 λ4 λ5 ε1 ε2 ε3 ε4 ε5
QDMa

12 3.365796 0.939670 1.705240 2.743490 4.004819 -2.5 -1.9 -1.8 -1.2 -1.1
18 3.354699 0.927646 1.680910 2.601742 3.747467 -4.3 -3.5 -3.4 -2.6 -2.4
24 3.354531 0.927376 1.680273 2.595936 3.734290 -6.2 -5.4 -5.2 -4.4 -4.1
26 3.354529 0.927373 1.680266 2.595849 3.734062 -6.9 -6.0 -5.9 -5.0 -4.7
28 0.927372 1.680264 2.595827 3.734003 -7.6 -6.7 -6.5 -5.6 -5.3
30 0.927372 2.595822 3.733989 -8.3 -7.4 -7.2 -6.2 -5.9
32 2.595821 3.733986 -9.0 -8.1 -7.9 -6.9 -6.6

QDMb

3 3.367516 1.007699 1.764537 3.237921 4.994304 -2.4 -1.1 -1.3 -0.6 -0.5
6 3.355525 0.927402 1.684458 2.631757 3.807057 -3.5 -2.9 -2.6 -1.9 -1.7
9 3.354543 0.927372 1.680328 2.596849 3.735433 -5.4 - 4.5 -4.4 -3.4 -3.4
12 3.354529 1.680264 2.595835 3.733999 -7.5 -6.4 -6.5 -5.3 -5.4
15 2.595820 3.733985 -9.8 -8.5 -8.7 -7.3 -7.6

SCMc

12 6.825052 0.957566 1.817707 2.974622 4.093426 0.0 -1.5 -1.1 -0.8 -1.0
18 3.427580 0.926484 1.679049 2.597213 3.750052 -1.7 -3.0 -3.1 -3.3 -2.4
24 3.355037 0.927361 1.680236 2.595783 3.734026 -3.8 -4.9 -4.8 -4.8 -5.0
28 3.354524 0.927372 1.680265 2.595824 3.733991 -5.9 -6.4 -6.1 -5.9 -5.8
30 3.354531 1.680264 2.595821 3.733986 -6.1 -7.6 -7.7 -7.6 -6.7
32 3.354529 2.595820 3.733985 -7.8 -8.1 -7.8 -7.5 -7.2
a wa(y) = exp[−(y4/4− y2/2)/ε]/ exp(1/4ε), y ∈ (−∞,∞).
b For the even eigenstates, we

b(y) = wa(y), y ∈ [0,∞). For the odd eigenstates, wo
b (y) =

y2wa(y), y ∈ [0,∞).
c xmax = 2.2.
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Table 2.2: Convergence of the eigenvalues for the quartic potential, ε = 0.01.

N λ1 λ2 λ3 λ4 λ5 ε1 ε2 ε3 ε4 ε5
QDMa

12 5.0833(-8) 1.866176 1.865861 3.9 -3.1 -4.2
24 3.6651(-11) 1.865757 1.865753 0.7 -3.2 -6.9
36 7.0354(-12) 1.388230 1.865752 1.865758 2.664871 -0.8 -0.4 -3.2 -5.6 -0.4
48 6.1809(-12) 0.994289 1.865735 1.865754 1.956370 -2.4 -1.6 -3.2 -6.6 -1.3
60 6.15499(-12) 0.968472 1.865337 1.869329 -2.8 -3.2 -3.4 -7.9 -2.9
72 6.15466(-12) 0.967870 1.864560 1.866993 -4.5 -5.3 -5.0 -9.8 -5.0
84 6.15465(-12) 0.967865 1.864542 1.866975 -3.4 -7.6 -7.3 -12.1 -7.3
90 0.967864 -2.5 -8.9 -8.5 -13.0 -8.5

QDMb

12 6.4259(-12) 1.256087 1.865747 1.865757 2.113341 -1.4 -0.5 -3.2 -5.7 -0.9
15 6.1656(-12) 0.990778 1.865720 1.865754 1.913825 -3.0 -1.6 -3.2 -6.8 -1.6
18 6.1405(-12) 0.969092 1.865601 1.875631 -2.5 -2.9 -3.2 -7.5 -2.3
24 6.1424(-12) 0.967879 1.864549 1.866982 -2.6 -4.8 -5.4 -9.6 -5.4
27 6.1436(-12) 0.967865 1.864542 1.866975 -2.6 -6.5 -6.6 -11.2 -6.6
30 6.1427(-12) 0.967864 -2.6 -7.4 -7.7 -12.6 -7.7

SCMc

12 7.4085(-1) 1.076821 3.336192 3.321671 1.574892 11.1 -0.9 -0.1 -0.1 -0.8
24 3.3865(-3) 0.967915 1.931199 1.930972 1.865051 8.7 -4.3 -1.4 -1.5 -3.0
36 -4.8093(-5) 0.967864 1.864066 1.864927 1.866629 6.9 -9.6 -3.6 -3.4 -3.7
48 1.7533(-8) 1.864542 1.865754 1.866975 3.5 -13.7 -6.8 -6.5 -6.8
60 7.9956(-12) -0.5 -13.6 -10.8 -10.5 -10.8
66 6.1435(-12) -2.6 -13.6 -12.6 -12.2 -12.5
a wa(y) = exp[−(y4/4 − y2/2)/ε]/ exp(1/4ε), y ∈ (−∞,∞); λ1 is calculated by diagonalizing the

matrix Lodd of dimension N/2×N/2 defined by Eqs. (B.3) and (B.6).
b For the even eigenstates we

b(y) = wa(y), y ∈ [0,∞). For the odd eigenstates, wo
b (y) = y2wa(y), y ∈

[0,∞).
c xmax = 1.5.
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Table 2.3: Convergence of the eigenvalues for the quartic potential, ε =
0.001.

N λ2 λ3 λ4 λ5 ε2 ε3 ε4 ε5
QDMa

6 0.9980526 2.0000470 2.0200067 2.0694590 -3.0 -2.2 -1.8 -1.4
12 0.9969809 1.9878205 1.9880010 1.9881554 -6.1 -4.5 -4.3 -3.9
18 0.9969817 1.9878873 1.9878903 1.9878937 -7.1 -5.9 -6.5 -5.7
24 1.9878896 1.9878896 1.9878893 -8.3 -8.2 -8.5 -6.8
30 1.9878896 -8.7 -9.8 -8.9 -7.7

SCMb

12 3.4140030 21.7611343 21.7517512 3.4979300 0.4 1.0 1.0 -0.1
24 1.2875835 8.5716393 8.5704015 1.6476678 -0.5 0.5 0.5 -0.8
36 1.0279928 4.1568953 4.1569000 1.7776398 -1.5 0.0 0.0 -1.0
48 0.9984717 2.5344712 2.5345542 1.9649680 -2.8 -0.6 -0.6 -1.9
60 0.9970079 2.0928734 2.0928574 1.9872886 -4.6 -1.3 -1.3 -3.5
72 0.9969819 1.9995592 1.9995565 1.9878842 -6.8 -2.2 -2.2 -5.6
84 0.9969817 1.9884160 1.9884156 1.9878896 -9.4 -3.6 -3.6 -8.0
96 1.9878838 1.9878838 -12.3 -5.5 -5.5 -10.9
108 1.9878884 1.9878884 -13.2 -6.2 -6.2 -13.8
120 1.9878896 1.9878896 -13.9 -7.8 -7.8 -13.5
a wc(y) = exp[−(y4/4− y2/2)/ε]/ exp(1/4ε) + exp(−y2/2ε), y ∈ (−∞,∞).
b xmax = 1.2.
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Figure 2.4: Variation of εm for (A) m = 2, (B) m = 3, (C) m = 4, and (D)
m = 5 versus the number of quadrature points N for the bistable system
with ε = 0.01. For QDM(a), wa(y) = exp[−(y4/4 − y2/2)/ε]/ exp(1/4ε),
y ∈ (−∞,∞). For the QDM(b), we

b(y) = wa(y), y ∈ [0,∞) for the even
eigenstates and wo

b (y) = y2wa(y), y ∈ [0,∞) for the odd eigenstates. For
the SCM, xmax = 1.5.
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Figure 2.5: Variation of εm for (A) m = 2, (B) m = 3, (C) m = 4, and (D)
m = 5 versus the number of quadrature points N for the bistable system
with ε = 0.001. For QDM weight functions, see the caption for Fig. 2.4. For
the SCM, xmax = 1.2.
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λ3, λ4 and λ5. In the limit ε → 0, λ2 → 1 and λ3, λ4 and λ5 → 2. The
variation of some of the lower order eigenfunctions for this quartic bistable
system were shown in Fig. 1 in Ref. 63. Owing to the symmetry of the
problem [8, 34, 35], the eigenfunctions are either concentrated in the two
outside wells near y = ±1, the central well at y = 0 or in all three. The
eigenfunction associated with λ2 is localized in the middle well whereas the
eigenfunction associated with λ4 is concentrated in the two outer wells and
those of λ3 and λ5 are concentrated in all three wells. The results for the
convergence of these eigenvalues are summarized in Table 2.2 and in Fig.
2.4. The eigenvalues converge very differently and no one value of N suffices
for all the eigenvalues. As mentioned previously, the values of N in the table
for wa(y) are effectively N/2 because of the separability of the eigenvalue
problem into odd and even eigenfunctions. In Table 2.2, the most noticeable
features of the results is that the convergence of λ1 is far more rapid with
the QDM than for the SCM. The λ1 value is close to machine accuracy and
reliable values cannot be calculated in double precision for ε . 0.008. The
values reported for QDMa were determined by diagonalizing the matrix of
dimension N/2 ×N/2 in Eq. (B.3) in Appendix B for the odd eigenstates.
While the lower order estimates for this eigenvalue with the QDM are close
to the converged value, the lower order estimates with the SCM are very
poor. As can be seen from the results in the table, we can calculate λ1

with wo
b (y) to three significant figures with N = 18 whereas the estimates

with the SCM are unconverged until N = 66. The value converged to 8
significant figures is λ1 = 6.1546530× 10−12 with 45 nonclassical basis func-
tions based on wa(y). Wei [68] reports λ1 = 1.278 ×10−10 in Table 2.3 of
his paper with N = 52 which is 2 orders of magnitude too large. In the
text, Wei incorrectly compares a value of λ1 = 1.28 ×10−8 with λ1 = 6.077
×10−8 reported by Shizgal and Chen [63] (their Table I) which was clearly
stated as being unconverged. The footnote to that table mentions that a
value of λ1 = 6.16 ×10−12 was obtained with N = 80. The value of λ1 =
6.154650×10−12 in Table III in Wei’s paper [68] is taken from Table III of
Blackmore snd Shizgal [8] and is for N = 70 rather than N = 100 as stated
by Wei. The results with the SCM (for the Schrödinger equation) depend on
the choice of xmax. The values of xmax in the tables and figure captions are
chosen as a compromise between a fast convergence and the attainability of
a converged eigenvalue close to machine precision.

Figure 2.4 summarizes the spectral convergence of these lower order
eigenvalues for ε = 0.01. In each case the half-range weight function wb(y)
(open squares) outperforms the other choices, except for the unattainability
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of machine accuracy for λ2. The initial convergence is comparable with the
SCM but, owing to the imposition of the incorrect boundary condition at
the origin, machine accuracy is not achieved. The convergence with wb(y)
is very rapid and faster than the SCM for the other eigenvalues. For λ3, the
initial estimates with wa(y) are good but the convergence is very flat until
about N = 60. The SCM performs better than the QDM with wa(y) for this
eigenvalue. However, the weight function wo

b (y) provides rapid convergence
for this case because there is a node for the corresponding eigenfunction at
the origin. This is not the case for the eigenfunction associated with λ2.
The SCM does not perform as well although it achieves machine accuracy
for smaller N than the QDM with wa(y). For λ4, the QDM with wa(y) pro-
vides initially good estimates but then achieves machine accuracy slowly.
The QDM with wa(y) doe not provide a rapid convergence for λ5 and SCM
performs better, but the QDM with wo

b (y) provides the best convergence.
The numerical results shown in Table 2.3 complement the results in Fig. 2.4.

Table 2.3 and Fig. 2.5 show a comparison of the convergence of the lower
order eigenvalues with ε = 0.001, for the QDM, with the weight function
wc(y) and wb(y) in comparison with the results for the SCM. Wei [68] did
not report results for this value of ε. The quadrature points generated by
the supersymmetric weight function, wa(y), are localized in the left and
right wells. Since there are no quadrature points near the middle well, the
eigenvalues associated with the eigenfunctions ψ2(y) and ψ5(y) which have
major characteristics in the vicinity of y = 0 [63] are not found. There is a
somewhat similar behaviour for the half-range polynomials defined by wb(y)
for which eigenvalues λ2 and λ5 are calculated but only with N greater than
about 80, and the ensuing convergence is slow. To calculate these eigen-
values efficiently, one requires a different weight function, wc(y), with an
additional Gaussian centered at y = 0. The convergence with this weight
function shown in Table 2.3 and in Fig. 2.5 is very rapid. With wc(y) the
number of quadrature points in the vicinity of y = 0 increases significantly
at the expense of some points in the outer wells. Thus the eigenvalues con-
verge faster than with wa(y) or with wb(y). The convergence of λ3 and λ4

is extremely rapid for the QDM and all three weight functions. The SCM is
based on a uniform grid and does not resolve well the details of the localized
eigenfunctions and the convergence rate is not comparable to the rate with
the QDM.
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2.7 Interpretation of the numerical results

The main objective of the present chapter is to compare the rates of con-
vergence of the solutions of the Fokker-Planck and Shrödinger equations
obtained with the QDM and the SCM. These results have been compared
and discussed in the previous section. In this section, we are interested in
the analysis of the spectral convergence of the QDM as shown in Figs. 2.1,
2.2, 2.4, and 2.5. Spectral convergence as mentioned in the introduction
refers to the exponential decrease of the errors in the eigenvalues versus the
size of the basis set or the number of quadrature points, N , that is,

|λ(N)
m − λexact

m | ≈ 10−qN . (2.13)

Spectral convergence has been demonstrated in the results for which log |λ(N)
m −

λexact
m | varies linearly with N . The convergence is from above the exact

eigenvalue as shown in the tables consistent with a Rayleigh-Ritz varia-
tional approach [30]. We consider here an analysis based on the polynomial
basis set representation of the operators. It is important to keep in mind
the definitions of the matrix representatives of the Fokker-Planck operator
and the Hamiltonian as given by Eq. (A.3) and (C.1) in Appendices A and
C, respectively. For the Fokker-Planck operator for the electron relaxation
problem and the bistable system, the matrix representatives can be eval-
uated analytically as shown in Eqs. (A.8) and (B.3) in Appendices A and
B. There is a unitary transformation between the basis set representation,
Eq. (A.8), and the pseudospectral representation, Eq. (2.2). Although the
pseudospectral representation (equivalently collocation or DVR) is an effi-
cient numerical methodology, an analysis of the numerical results from the
basis set representation of the operators is, in fact, the more fundamental
and insightful approach.

In this section, we provide some insights as to why the QDM provides
in many instances a very rapid convergence. We cannot hope to provide in
this chapter a detailed analysis for all the examples studied. The numerical
analysis of the results is very difficult for the nonclassical polynomial basis
functions used here as there is very little known concerning their mathemat-
ical properties. We focus our attention on the electron relaxation problem
from both the Fokker-Planck and Schrödinger equations. In Appendix A,
we show, for the electron relaxation problem, the details of the derivation
of the tridiagonal matrix representative of the Fokker-Planck operator, Eq.
(A.8), in the speed polynomial basis set based on w(x) = x2 exp(−x2). The
numerical values of the lower order matrix elements are also shown in Eq.
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(A.9) and it is clear that the matrix is diagonally dominant. Much of the
analysis of the spectral convergence presented here is based on this tridiag-
onal matrix.

Appendix B provides the details of the calculation of the matrix represen-
tative of the Fokker-Planck operator for the bistable system with the bimode
weight function wa(x) = P0(x)/ exp(1/4ε) and P0(x) = exp[−(x4/4ε) +
(x2/2ε)]. We evaluate analytically the matrix representative of this Fokker-
Planck operator in terms of the recurrence coefficients in the three-term
recurrence relations for these polynomials. From the structure of the matrix
shown in Eq. (B.3) in Appendix B the N × N matrix, Eq. (B.4), can be
split into two N/2×N/2 matrices, Eqs. (B.5) and (B.6), that are diagonally
dominant. Diagonalization of these matrices gives separately the eigenfunc-
tions of odd and even symmetries and the corresponding eigenvalues. One
might expect that the convergence will be rapid since these matrices are
diagonally dominant with diagonal elements close to the converged values
of the eigenvalues. While this is the case for some of the eigenvalues, the
convergence of the degenate eigenfunctions for small ε of the order of 0.01 is
particularly slow with the weight function wa(y) = P0(y). For this reason,
two sets of half-range polynomials based on we

b(y) = wa(y), y ∈ [0,∞), and
wo

b (y) = y2wa(y), y ∈ [0,∞), were employed. These basis sets yield the
diagonally dominant matrices in Eqs. (C.4) and (C.5) in Appendix C. The
first basis set is for the even eigenfunctions and the second basis set is for the
odd eigenfunctions. The rapid convergence of the eigenvalues for these basis
sets is shown in Table 2.2. The convergence of the nearly degenerate eigen-
values λ3 and λ5 is faster with this basis set than the one defined with wa(y).

All of the examples considered here lead to matrix representatives that
are diagonally dominant, and we would expect a rapid convergence of the
eigenfunctions and eigenvalues. For the Fokker-Planck equation and a dif-
fusion coefficient, B(x), which is a polynomial, the matrix representative
is banded. For the electron relaxation problem, B(x) = x and the matrix
representative is tridiagonal, Eqs. (A.8) and (A.9). If the diagonal and off-
diagonal matrix elements of this tridiagonal matrix are denoted by an and
cn respectively, the eigenvalues for order N are determined as the roots of
the characteristic polynomial, PN (λ) = 0, where the polynomials Pn(λ) can
be determined by iteration of a three-term recurrence relation, that is,

Pn(λ) = (λ− an)Pn−1 − c2
n−1Pn−2

with P0 = 1 and P1 = λ − a1. We focus on λ1 and find that it can be

54



0 10 20 30
n

-16

-12

-8

-4

0

lo
g 

|d
n(m

) |

m = 1

A

m = 3

m = 5

0 10 20 30
n

-16

-12

-8

-4

0

lo
g 

|d
n(m

) |

m = 1

B

m = 3

m = 5

Figure 2.6: Variation of the expansion coefficients d
(m)
n versus n of the mth

eigenfunction of the Fokker-Planck operator (A) and the Hamiltonian in the
Schrödinger equation (B) for the electron relaxation problem; m = 1, 3, and
5.

55



Chapter 2. Spectral convergence of quadrature discretization method

represented as a continued fraction [75] of the form

λ1 = a1 +
c2
1

λ1 − a2 − c2
2

λ1 − a3 − c2
3

λ1 − a4 − ···

. (2.14)

The other eigenvalues do not have a similar continued fraction representa-
tions except for λN . The Nth approximation to λ1 is obtained by truncating
the continued fraction with the term in c2

N+1. The numerical value of λ
(N)
1

can be determined by starting with the initial estimate λ
(1)
1 = a1 and cal-

culating successive approximations by substituting for λ1 on the right hand
side of Eq. (2.14). The rate of convergence of this iterative process to λ

(N)
1

is analogous to the convergence of λ
(N)
1 to λ1 versus N . With Eq. (2.14), we

obtain the approximation

λ
(2)
1 − λ

(3)
1 ≈ c2

1c
2
2

(λ1 − a3)(λ1 − a2)2
,

where on the right hand side of the continued fraction we have set λ
(2)
1 ≈

λ
(3)
1 = λ1. Similarly we can calculate

λ
(3)
1 − λ

(4)
1 ≈ c2

1c
2
2c

2
3

(λ1 − a4)(λ1 − a3)2(λ1 − a2)2
.

With the spectral convergence given by Eq. (2.13), we can estimate q with
the ratio

λ
(3)
1 − λ

(4)
1

λ
(2)
1 − λ

(3)
1

=
c2
3

(λ1 − a4)(λ1 − a3)
= 10−q. (2.15)

With Eq. (2.15) and the value of λexact
1 = 4.68340, we find that q = 1.05 is

in very good agreement with the slope of the linear portion of the graph in
Fig. 2.1, which is q = 0.990. One can show by induction that the rate of
convergence depends on the quantity limN→∞ c2

N−1/|(λ1 − aN )(λ− aN−1)|,
which we estimate to be 0.088 and with this we get q = 1.06. We have
demonstrated explicitly spectral convergence albeit for such tridiagonal ma-
trices was discussed in the appendix of the paper by Meyer et al [43]. These
authors prove convergence if c2

N−1/|(λ1 − aN )(λ− aN−1)| ≤ 1.5. The rapid
convergence of the QDM is related to the small values of the off-diagonal
elements relative to the diagonal elements [44]. In Fig. 2.6A, we show the
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variation of the nth elements in the mth eigenvectors, d
(m)
n , which serve as

the expansion coefficients of the mth eigenfunction, with m = 1, 3, and 5.
The very rapid linear decrease of the expansion coefficients shown in the fig-
ure is a demonstration of spectral convergence. The expansion coefficients
for the eigenvectors, d

(m)
n , can also be represented as continued fractions.

For our purposes here, we consider a simple estimate of the slope of the
graph in Fig. 2.6A for m = 1, and we have that the eigenvector expansion
coefficients satisfy a three-term recurrence relation given by

cn−1d
(1)
n−1 + and(1)

n + cnd
(1)
n+1 = λexact

1 d(1)
n .

If the coefficient d
(1)
n+1 is neglected, we have the approximation

d
(1)
n

d
(1)
n−1

=
cn−1

λexact
1 − an

.

The slope of the graph in Fig. 2.6 is thus log(cn−1/|λexact
1 −an|), the asymp-

totic value of which we estimate to be −0.53, in good agreement with the
slope in Fig. 2.6 (for m = 1) which is −0.52.

In Appendix C, we show the numerical values of the lower order ma-
trix elements of the full matrix representative of the Schrödinger equa-
tion for the same electron relaxation problem with the weight function
w(y) = y5 exp(−y4/16), Eqs. (C.2) and (C.3). Although the matrix is full,
the off-diagonal elements are much smaller than the diagonal elements and
the convergence of the eigenvalues is actually very similar to that for the
tridiagonal matrix. The two matrices give the same eigenvalues in the limit
N → ∞. A similar demonstration of spectral convergence is shown in Fig.
2.6B for the corresponding eigenfunctions of the Schrödinger equation for
the electron relaxation problem in Section 2.2.

There have been numerous discussions in the literature regarding the
“phase space” coverage of a chosen basis set [13, 23, 32, 33, 36, 45, 47] rela-
tive to the phase space extent of the classical Hamiltonian corresponding
to the quantum Hamiltonian operator. These analyses have been consid-
ered for the most part for Fourier basis functions or harmonic oscillator
eigenfunctions (Hermite polynomials). In this chapter, there is no defining
Hamiltonian problem for the basis sets used and thus a direct phase space
analysis cannot be considered. We can mention that for the basis sets used
here the coverage is exact for the ground state and thus it should be fairly
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good for the excited states. That the representation of the operators is in
some sense “optimal” is seen from the diagonally dominant matrices that
result and the rapid spectral convergence that is obtained. One method for
easily optimizing basis sets is to scale the independent variable [1, 2, 25, 61]
or equivalently the quadrature points and weights. Scaling of the Laguerre
polynomials in speed as discussed by Risken and Voigtlaender [49] is es-
sential to get the spectral convergence shown in Fig. 2.1. A scaling of the
Fourier-Hermite solutions of the Vlasov equation [25] is required to obtain
convergent solutions. Some researchers have developed criterion for the best
choice of scaling parameters [1, 2]. Further work concerning the choice of
basis functions in this chapter and in what sense they are optimal is ongoing.

2.8 Summary

We have demonstrated in this chapter for three model problems the spec-
tral convergence of the QDM, a collocation (pseudospectral) methods based
on nonclassical polynomial basis functions. With the appropriate choice of
the weight function, the convergence of the eigenvalues of the Schrödinger
equation can be extremely rapid. For the potential in the Schrödinger equa-
tion corresponding to the electron relaxation problem as well as for the
Morse potential for I2 the QDM [62,63] outperforms the SCM proposed by
Wei [68]. For the quartic bistable problem, the nature of the eigenfunctions
in the triple well potential parameterized by a diffusion coefficient ε in the
corresponding Fokker-Planck equation varies considerably so that no one
weight function in the QDM can provide a rapid convergence for all the
eigenvalues. For ε > 0.1, the weight function corresponding to the equilib-
rium distribution, P0(y), provides rapid convergence for a large number of
eigenvalues. For intermediate values, ε ≈ 0.01, a half-range weight function,
wb(y), y ∈ [0,∞) provides a rapid convergence of the eigenvalues for which
the corresponding eigenfunctions possess a node at the origin. For ε ≈ 0.001
a weight function with a Gaussian about the origin added to P0(y) provides
very rapid convergence. We have also provided an analysis of the spectral
convergence of λ1 and the associated eigenfunction for the electron relax-
ation problem.
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Chapter 3

Pseudospectral methods of
solution of the Schrödinger
equation

3.1 Introduction

There has been an ongoing effort by numerous researchers to develop ac-
curate and efficient algorithms for the calculation of the eigenvalues of the
1D Schrödinger equation for several different potentials. Although these 1D
calculations are not computationally intensive, their improvement will find
useful application to multi-dimensional problems. Examples of this research
endeavor are the papers by Simos and coworkers that are concerned with
either higher order algebraic methods [42], and direct integrations with a Nu-
merov [20], Runge-Kutta [1,21] or symplectic methods [30,31]. Other meth-
ods include a Ricatti-Pade approach [16], a Chebyshev-Lanczos method [6]
and a Hill determinant method [50] to mention just a few. Other references
to similar studies were provided in previous papers [9, 10]. Pseudospectral
methods include the quadrature discretization method [9,39,40], the discrete
variable representation [24], and the Lagrange mesh method [2–4]. Other
pseudospectral methods based on classical bases have also been discussed
by Taşeli and coworkers [44,45].

The pseudospectral methods evaluate the eigenfunctions on grid of points
which coincide with the quadrature points for the weight function chosen.
The diagonalization of the discrete matrix representative of the Hamiltonian
of dimension N2 gives N eigenvalues of which a subset corresponds to the
discrete eigenvalues for the problem. The spectral convergence of the eigen-
values refers to the exponential decrease of the error in the approximate

A version of this chapter has been accepted for publication. Joseph Q. W. Lo and
Bernie D. Shizgal. J. Math. Chem., available online at http://dx.doi.org/10.1007/s10910-
007-9341-8
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Chapter 3. Pseudospectral methods of solution of the Schrödinger equation

eigenvalues versus N . Spectral convergence has been demonstrated recently
by Lo and Shizgal [28] for several 1D problems. The present chapter is a con-
tinuation of these earlier studies but we here consider a shift and scaling of
the quadrature points which we demonstrate can accelerate the convergence.

Shizgal and coworkers [28, 35, 40] have demonstrated that rapid conver-
gence of the eigenvalues of the Fokker-Planck equation can be obtained with
a basis set defined by the equilibrium probability density as the weight func-
tion. The Fokker-Planck equation can be transformed to a Schrödinger equa-
tion with a potential such that the Hamiltonian belongs to the class of su-
persymmetric quantum mechanics for which the ground state is known [39].
Chen and Shizgal [9] and Lo and Shizgal [28] obtained rapid convergence
of the eigenvalues of the Hamiltonian operator when the square of the
ground-state eigenfunction is used for the weight function. Occasionally
modifications of these weight functions are still required to improve conver-
gence [9, 28]. In most applications, such nonclassical basis sets were used.
This method is referred to as the quadrature discretization method (QDM)
since it is implemented as a pseudospectral (collocation) method. The QDM
is generally based on quadrature points defined by nonclassical polynomials
orthogonal with respect to a specific weight function.

There has been a long history of the application of numerical pseudospec-
tral methods [8, 32]. Shizgal [36] developed a pseudospectral method based
on a Gaussian quadrature to accurately discretize the integral operator in
the Boltzmann equation. By contrast, the calculation of the matrix elements
of the Boltzmann collision operator in the basis set can lead to considerable
round-off errors [27]. Shizgal and Blackmore [37] then applied this method
to the solution of differential equations. The approach follows on previous
works employing similar methods in neutron transport [17]. The (QDM)
has been used to solve the time dependent Fokker-Planck equation [5, 40],
the Poisson equation [10], the advection-diffusion equation [38], and the
Schrödinger equation [9, 28,39].

An alternate method developed by Light and coworkers [24–26], which
is referred to as the discrete variable representation (DVR), was originally
based on the numerical evaluation of matrix elements of the potential in the
Schrödinger equation [12, 19]. If V (x) is the potential in a 1D Schrödinger
equation, then the matrix elements of V (x) can be determined with a Gaus-
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sian quadrature, that is,

Vmn =
∫ b

a
φm(x)V (x)φn(x) dx ≈

N∑

k=1

ηkφm(xk)V (xk)φn(xk), (3.1)

where {φn} is a set of orthonormal basis functions, and {xk} and {ηk} are
appropriate sets of quadrature points and weights, respectively [11]. The
DVR is also a pseudospectral method in which the solution is evaluated at a
set of grid points analogous to the QDM. The DVR was thus introduced by
Light et al [25,26] and applied to several quantum problems [14,22,24,34,43].

We consider a set of polynomials Pn(x) orthogonal with respect to a
weight function w(x),

∫

R
w(x)Pm(x)Pn(x) dx = δmn,

where R denotes the domain for x. With wk = ηkw(xk), there is a unitary
transformation, Tkn =

√
wkPn−1(xk), between the representation of a func-

tion in a basis set (that is the coefficients cn in ψ(x) =
∑

n cnφn(x) with
φn(x) =

√
w(x)Pn−1(x)) and the discrete representation, ψ(xk). The trans-

formation of Vmn, Eq. (3.1), with T gives the diagonal representation of the
potential in the discrete representation, that is, V (xk). Further details are
provided in [5, 39,40] and Section 3.2.

Thus the QDM was developed originally for kinetic theory problems
whereas the DVR was introduced for the accurate evaluation of potential
matrix elements. In Section 3.2, we briefly explain the variational princi-
ple and spectral convergence. Section 3.3 discusses the formulation of the
pseudospectral method and the differences between QDM and DVR. Several
applications are presented in Sections 3.4 to 3.6 with discussions of results
in 3.7.

3.2 Spectral convergence

The solution of the Schrödinger equation

Hψ = − ~
2

2µ

d2ψ

dx2
+ V ψ = Eψ
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Figure 3.1: Variation of the expansion coefficients c
(m)
n versus n for ψm(x)

of the I2 system for m = 1 and 10 for both QDM and Hermite. (A): QDM
with b = 0; (B): Hermite with b = 0.
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is generally considered with the expansion of the eigenfunctions in a basis
set,

ψ(x) ≈
√

w(x)
N∑

n=1

cnPn−1(x). (3.2)

The matrix representation of the Hamiltonian in this basis set is Hmn =
(~2/2µ)Kmn + Vmn, where

Kmn = −
∫

R

√
w(x)Pm−1(x)

d2

dx2

[√
w(x)Pn−1(x)

]
dx, (3.3a)

Vmn =
∫

R
w(x)Pm−1(x)V (x)Pn−1(x) dx. (3.3b)

The expansion coefficients cn in Eq. (3.2) can be considered as linear vari-
ational parameters. The extremum of

∫
R ψ(x)Hψ(x) dx/

∫
R ψ(x)ψ(x) dx

with respect to cn is equivalent to the diagonalization of the finite matrix
Hmn [15]. Thus, we can refer to this basis set as the variational basis repre-
sentation (VBR) as proposed by Light et al [25]. The eigenvalue estimates
converge monotonically to the exact eigenvalues from above. Spectral con-
vergence refers to the exponential decrease of the coefficients cn versus n as
shown in Fig. 3.1 and in Fig. 6 of Ref. 28.

3.3 Pseudospectral method

Pseudospectral methods were popularized by researchers interested in the
numerical solution of problems in fluid dynamics [8, 32]. The set of poly-
nomials orthogonal with respect to a chosen weight function, w(x) can be
generated with the algorithm as described elsewhere [17, 18]. These poly-
nomials define the quadrature points xk and weights wk for the quadrature
rule ∫

R
w(x)f(x) dx ≈

N∑

k=1

wkf(xk). (3.4)

If the coefficients cn in Eq. (3.2) are evaluated with the quadrature rule
in Eq. (3.4), the expansion of ψ(x) is written as

ψ(x) ≈
N∑

k=1

Ik(x)

√
w(x)
w(xk)

ψ(xk),
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where the interpolating polynomial, Ik(x), is given by

Ik(x) = wk

N∑

n=1

Pn−1(xk)Pn−1(x)

and Ik(xj) = δjk satisfies the cardinality. The expansion of ψ(x) in terms of
normalized interpolating functions as basis functions was discussed by Baye
and coworkers [2, 4], and is referred to as a Lagrange mesh.

The QDM considers the symmetric kinetic energy matrix elements that
results from an integration by parts, that is,

Kmn =
∫

R

d

dx

[√
w(x)Pm−1(x)

] d

dx

[√
w(x)Pn−1(x)

]
dx

provided that the boundary term vanishes. After the derivatives are evalu-
ated and one of the cross terms is integrated by parts, Kmn can be written
as

Kmn =
∫

R
w(x)P ′

m−1(x)P ′
n−1(x) dx−

∫

R
w(x)Pm−1(x)Ṽ (x)Pn−1(x) dx,

where

Ṽ (x) =
1
2

w′′(x)
w(x)

− 1
4

[
w′(x)
w(x)

]2

is a reference potential [39]. The Hamiltonian matrix is therefore

Hmn =
~2

2µ

∫

R
w(x)P ′

m−1(x)P ′
n−1(x) dx

+
∫

R
w(x)Pm−1(x)

[
V (x)− ~2

2µ
Ṽ (x)

]
Pn−1(x) dx. (3.5)

As shown elsewhere [9,39], the discrete representation of the Hamiltonian is
obtained with Hmn and the transformation T and we have that

HQDM
ij =

~2

2µ

N∑

k=1

DkiDkj +
[
V (xi)− ~2

2µ
Ṽ (xi)

]
δij , (3.6)

where

Dij =
√

wiwj

N∑

n=1

P ′
n−1(xi)Pn−1(xj)
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is the discrete representation of the first derivative operator. Szalay [43] has
provided explicit formulas for Dij =

∫
R w(x)Pi(x)P ′j(x) dx and

∑N
k=1 DkiDkj =∫

R w(x)P ′i(x)P ′j(x) dx where Pi(x) = w
−1/2
i Ii(x) (Table 1 of Ref. 43).

For the QDM, the reference potential, Ṽ (x), written in terms of the
weight function forms an important aspect of the development. If w(x) can
be chosen such that V (x) ≡ (~2/2µ)Ṽ (x), the discrete representation of the
Hamiltonian reduces to HQDM

ij = (~2/2µ)
∑N

k=1 DkiDkj , and is calculated
exactly with the quadrature. Thus, the QDM preserves the variational as-
pects of the VBR. By contrast, applications with the DVR can lead to errors
arising from the inexactness of the quadrature, Eq. (3.1), and “ghost” levels
have been reported [48,49]. There is a class of Schrödinger equations that are
isospectral with equivalent Fokker-Planck equations [33,39]. The eigenfunc-
tion of the Fokker-Planck equation with zero eigenvalue is the equilibrium
distribution function which is known, Peq(x) = exp

(− ∫ x
W (x′) dx′

)
. For

these problems, the ground-state of the Schrödinger equation is ψ0(x) =√
Peq(x). The function W is the superpotential in supersymmetric quan-

tum mechanics [13, 39]. If there is no convenient choice for w(x) such that
V (x) = (~2/2µ)Ṽ (x), one can choose a w(x) so that (~2/2µ)Ṽ (x) is close to
V (x).

It has been shown [3] that scaling and translating of x can often improve
the convergence of the eigenvalues. The scaled and translated Hamiltonian
is given by

HQDM
ij =

~2

2µ

1
s2

N∑

k=1

DkiDkj +
[
V (sxi + b)− ~2

2µ

1
s2

Ṽ (xi)
]

δij , (3.7)

where xi has been multipled by the scaling factor s and translated by b.

3.4 The vibrational states of the Morse oscillator

The Morse potential for I2 has been well studied [4,6,28,29]. The potential
is defined by

VMorse(x) = De [1− exp(−α(x− xe))]
2 −D, (3.8)
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where De = 0.0224, D = 0, α = 0.9374, xe = 0, ~2 = 1, µ = 119406, and
x ∈ (−∞,∞), all in atomic units. The exact eigenvalues are given by

Em =
~2

2µ
α2

(
m +

1
2

)(
2
α

√
2µ

~2
De −

(
m +

1
2

))
−D (3.9)

for 0 ≤ m ≤ 77. The ground state eigenfunction is

ψMorse
0 (x)

= exp

[
−

√
2µ

~2
De

(
x− xe +

exp(−α(x− xe))
α

)
+

α(x− xe)
2

]
. (3.10)

The Morse potential belongs to the family of shape invariant potentials of
supersymmetric quantum mechanics [13]. If the weight function for the poly-
nomial expansion is chosen to be w(x) = [ψMorse

0 (x)]2, the effective potential
in Eq. (3.6) is simply (~2/2µ)Ṽ (xi) = VMorse(xi) − E0. With this choice of
weight function, the discrete representation of the Hamiltonian, Eq. (3.6),
reduces to HQDM

ij = (~2/2µ)
∑N

k=1 DkiDkj + E0δij .

With scaling s and translation b, the QDM representation of the Hamil-
tonian is given by Eq. (3.7), where V (sxi +b) = VMorse(sxi +b). This scaling
and translation of the grid points was not used in Ref. 28.

The QDM is almost always considered with nonclassical polynomials,
whereas the DVR approach often uses classical bases (Fourier, Hermite, La-
guerre, etc). It is this different choice of basis set that distinguishes the two
methods. Thus a typical DVR approach to this problem is to choose a classi-
cal polynomial basis such as Hermite polynomials. The DVR representation
of the discrete Hamiltonian is

HHerm
ij =

~2

2µ

1
s2

KHerm
ij + VMorse(sxi + b)δij (3.11a)

with the kinetic energy operator

KHerm
ij = −

{
δij

[
−2(N − 1)

3
− 1

2
+

x2
i

3

]

+(1− δij)
[
1
2
− 2

(xi − xj)2

]}
. (3.11b)

reported by Szalay [43]. Thus it is clear that the QDM and the DVR
are pseudospectral methods of solution of the Schrödinger equation but are
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based on different weight functions and quadrature points. A comparison
of the application of both methods to this system is presented in Section 3.7.

3.5 The vibrational states of Ar2

The Cahill and Parsegian Ar2 potential [7]

V (x) = a exp(−bx)(1− cx)− d

x6 + ex−6
(3.12)

where x ∈ [0,∞) is the radial coordinate in Å and V (x) in eV. The pa-
rameters in Eq. (3.12) are a = 1720 eV, b = 2.6920 Å−1, c = 0.2631
Å−1, d = 37.943 eV·Å6, e = 177588 Å12, ~2 = 0.0041801588 eV·u·Å2,
and µ = 20 u. This potential has eight bound states. The weight function
is chosen by approximating this potential with a Morse potential in Eq.
(3.8) such that the x-intercept and the minimum of the well coincides with
Eq. (3.12). We thus get the parameters De = 0.01239309488 eV, D = De,
α = 1.685967091 Å−1, and xe = 3.761961562 Å. The weight function is
thus w(x) = [ψMorse

0 (x)]2 defined on x ∈ [0,∞). With this weight function,
the QDM representation of the Hamiltonian is given by Eq. (3.7), where
(~2/2µ)Ṽ (xi) = VMorse(xi) + D − α

√
De~2/2µ + (~2/2µ)(α2/4).

For the DVR, the classical Laguerre polynomials defined on x ∈ [0,∞)
and orthogonal with respect to w(x) = x2 exp(−x) are used. The Hamilto-
nian in the Laguerre basis is given by

HLag
ij =

~2

2µ

1
s2

KLag
ij + V (sxi + b)δij , (3.13a)

where the discrete symmetric matrix representative of the kinetic energy is
given by [2]

KLag
ij =

{
9/4x2

i + Sii if i = j,

(−1)i−j [(3/2)(xixj)−1/2(x−1
i + x−1

j ) + Sij ] if i 6= j,
(3.13b)

and

Sij =
√

xixj

N∑

k=1,k 6=i,j

1
xk(xk − xi)(xk − xj)

. (3.13c)
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3.6 Woods-Saxon potential

As a third sample problem, we also consider the calculation of the bound
states of the Woods-Saxon potential which is defined by

V (x) =
u0

1 + t
− u0t

a0(1 + t)2
,

where t = exp((x − xe)/a0), u0 = −50, xe = 7, a0 = 0.6, ~2 = 1, µ = 0.5,
and x ∈ [0,∞). This potential has been considered by Simos [41] with
an improved finite difference scheme, by Wang [46, 47] using an improved
Numerov method, and by Zakrzewski [51] using a power series method.
Since this potential has a shape close to the square well potential

Vsq(x) =

{
u0 if 0 ≤ x < L,

0 if x ≥ L,

when L = 6.2, we consider the square of the ground-state eigenfunction of
Vsq(x) as the weight function, i.e. w(x) = [ψsq

0 (x)]2, where

ψsq
0 (x) =

{
c1 sin(c2x) if 0 ≤ x < L,

exp(c3x) if x ≥ L,
(3.14)

c1 = exp(c3L)/ sin(c2L), c2 =
√

ε0 − u0, and c3 = −√−ε0. The ground-state
eigenvalue ε0 for Vsq(x) is the first root of the equation

√
ε0 − u0 cot(

√
ε0 − u0L) = −√−ε0,

or ε0 ≈ −49.75457960982555. The QDM representation is given by Eq.
(3.7), where (~2/2µ)Ṽ (xi) = Vsq(xi)− ε0.

3.7 Results and discussions

We have calculated the eigenvalues for the I2 potential, Eq. (3.8), with the
diagonalization of Eq. (3.7). The convergence of E10 for three different
discretizations is shown in Table 3.1. In the first column, the eigenvalue es-
timate obtained with the QDM with no translation or scaling of the quadra-
ture points converges monotonically to within seven significant figures of the
exact value. The underlined portions of the estimates in the table show the
converged values to five significant figures. In the second column of Table
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Table 3.1: Convergence of 103E10 for the I2 Morse potential.

N QDMa QDMb Hermitec

11 6.397074 6.432646 9.203165
12 5.929980 5.749709 6.515301
13 5.731211 5.634366 5.285059
14 5.653056 5.625372 5.229673
15 5.629265 5.623171 5.177875
16 5.624138 5.623269 5.524050
17 5.623357 5.623259 5.464870
18 5.623268 5.623260 5.615021
19 5.623260 5.619430
20 5.623601
21 5.622067
22 5.623292
23 5.623252
24 5.623235
25 5.623258
26 5.623257
27 5.623260
28 5.623259
29 5.623260
a s = 1, b = 0.
b s = 1.05, b = 0.
c s = 0.14, b = 0.
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3.1, we show the improved convergence with scaling s = 1.05 although it is
no longer monotonic from above. The eigenvalue estimate exhibits a min-
imum versus N at N = 15. The scaling s and translation b changes the
weight function to [ψMorse

0 ((x − b)/s)]2 so that V (x) − (~2/2µ)Ṽ (x) is no
longer a constant, and the second integral in Eq. (3.5) cannot be evaluated
exactly by quadrature. Hence, the QDM representative of the Hamilto-
nian in Eq. (3.7) is not equivalent to the basis set representation and the
variational principle no longer holds. The eigenvalues calculated with the
diagonalization of the discrete Hamiltonian in the scaled Hermite basis set,
Eq. (3.11a), is shown in the third column of Table 3.1. The eigenvalues
converge nonmonotonically as well and slower than the QDM results.

Figure 3.2 shows the convergence of E1, E10, E30, and E50 for the po-
tential given by Eq. (3.8). The negative of the relative error, defined by

εm(N) = log

∣∣∣∣∣
E

(N)
m −Eexact

m

Eexact
m

∣∣∣∣∣ ,

represents approximately the number of significant figures for E
(N)
m . The

exact eigenvalues Eexact
m are given by Eq. (3.9). The QDM results for E1

without scaling shown in Fig. 3.2A converge much faster than the results
with DVR with scaled Hermite polynomials. In Figs. 3.2B-3.2D, the conver-
gence of the eigenvalues E10, E30, and E50 evaluated with the QDM is also
much faster than the DVR results with Hermite polynomials. In order to
capture the behaviour of the eigenfunctions for the higher states which are
more loosely bound, the scale factor introduced for QDM serves to expand
the computational domain. The scaling of the QDM is particularly impor-
tant for E50. The translation of the QDM grid, b = (1 − s)x1, is chosen to
keep the lowest grid point unchanged while the length of the computational
domain is scaled by s, which is optimized by trial and error. The results
with Hermite polynomials are also optimized with the values of s and b by
trial and error.

The fast rate of convergence for QDM is anticipated because the mth
eigenfunction ψm(x) is expanded in polynomials orthogonal with respect to
the weight function w(x) = [ψ0(x)]2. The first excited state, ψ1(x), is the
simplest one to represent in the basis set generated with this weight func-
tion, and thus we obtain the very rapid convergence of E

(N)
1 , as shown in

Fig. 3.2A.
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In Fig. 3.1A we show the variation of the coefficients c
(m)
n for the mth

eigenfunction versus n for m = 1 (triangles) and m = 10 (squares). The
rapid exponential decrease of c

(1)
n versus n is an illustration of spectral con-

vergence. The QDM yields diagonally dominant matrix representations in
the polynomial basis set as discussed previously by Lo and Shizgal [28] and
thus gives the rapid spectral convergence shown in Fig. 3.2.

The variation of the coefficients c
(m)
n versus n for m = 1 and 10 in the

Hermite expansion

ψm(y) ≈ exp

(
−1

2

[
y − b

s

]2
)

N∑

n=1

c(m)
n Q

(s,b)
n−1(y), (3.15)

where y = sx + b is the scaled and translated coordinate, is shown in Fig.
3.1B with triangles and squares, respectively. In Eq. (3.15), Q

(s,b)
n (y) =

νnHn((y− b)/s) are the scaled and translated Hermite polynomials normal-
ized by the constants νn. Spectral convergence is also confirmed, but the
rate of decrease of c

(m)
n is slower than with the QDM. For m = 10, the

spectral convergence refers to the exponential decrease in the expansion co-
efficients c

(10)
n versus n for n & 10 beyond the maxima shown in Fig. 3.1.

Figure 3.3 shows the convergence of the eigenvalues E0, E3, E5, and E7

for Ar2. The potential supports 8 bound states. The exact eigenvalues,
Eexact

m , used for calculating the errors are evaluated in multiple precision
with a higher order method and are assumed to be correct to at least 20
significant digits. In Fig. 3.3, we show that the QDM discretization gives a
very rapid convergence rate for the four eigenvalues when appropriate scal-
ings are used. The results for the scaled and translated Laguerre expansion
are also shown in Fig. 3.3. Since the eigenfunctions are concentrated in the
region of the potential well, in order to improve the convergence of the La-
guerre expansion a translation of the grid points is essential. This changes
the weight function to w(y) = ((y − b)/s)2 exp(−(y − b)/s) and the compu-
tational domain to y ∈ [b,∞). This translation redistributes the Laguerre
quadrature points concentrated near x = 0 to the region of the potential
well. The value of b for each state must be chosen appropriately such that
the domain truncation error incurred by neglecting the contribution from
[0, b) is less than machine precision and the convergence rate of the eigen-
value is nearly optimized.
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For the Woods-Saxon potential, we use the ground state eigenfunction,
Eq. (3.14), of a square well potential as the weight function which generates
the basis set and quadrature points used in the QDM. The diagonalization
of the matrix representative of the H given by Eq. (3.7) gives approximate
eigenvalues for the Woods-Saxon potential. No translation of grid points
is required (b = 0) as both potentials give the same boundary conditions
for the eigenfunctions, ψ(0) = ψ(∞) = 0. To evaluate the accuracy of the
approximate eigenvalues we compare these with the exact numerical values
reported by Ledoux [23]. In Fig. 3.4, the values of s for the curves labeled
with the open circles were chosen so that εm(N) ≈ −6 and remains more
or less constant with increasing N . We suspect that the minimum error of
10−6 which does not decrease with an increase in N arises from the sub-
traction of (~2/2µ)Ṽ (x), which is not continuous. If larger values of s are
chosen (filled circles), the accuracy of the eigenvalue estimates is improved
to machine precision.

3.8 Summary

The quadrature discretization method (QDM) was originally developed to
solve the time dependent Boltzmann and Fokker-Planck equations for kinetic
theory problems [5, 35–37, 39, 40]. This motivated the concept of develop-
ing nonclassical basis sets for different problems based on weight functions
that were associated with the equilibrium solution which is the ground state
eigenfunction. The spectral convergence of this large class of eigenvalue
problems was found to be very rapid. The DVR was developed from the
need to calculate potential energy matrix elements numerically and quadra-
ture methods were adopted, analogous to applications of the Boltzmann
equation [5, 36]. The numerical implementation of the QDM and the DVR
is with a pseudospectral approach that was developed by workers in fluid me-
chanics [8, 32]. In this chapter, we have demonstrated that the convergence
of the vibrational states of Ar2 and I2 is accelerated with the appropriate
choice of the basis set modified by scaling and translation of the coordinate.
The convergence with Hermite or Laguerre basis functions which are often
the basis sets of choice for many applications of the DVR is generally much
slower.

82



0 20 40 60
N

-16

-12

-8

-4

0

lo
g|

(E
0(N

) -
E

0ex
ac

t )/
E

0ex
ac

t |

A

s = 1

s = 1.2

0 40 80 120
N

-16

-12

-8

-4

0

lo
g|

(E
9(N

) -
E

9ex
ac

t )/
E

9ex
ac

t |

C

s = 1.25

s = 1.5

0 20 40 60 80
N

-16

-12

-8

-4

0

lo
g|

(E
4(N

) -
E

4ex
ac

t )/
E

4ex
ac

t |

B

s = 1.1

s = 1.3

0 40 80 120 160 200
N

-12

-8

-4

0

lo
g|

(E
13

(N
) -

E
13

ex
ac

t )/
E

13
ex

ac
t |

D

s = 1.6

s = 1.9

Figure 3.4: Variation of log |(E(N)
m − Eexact

m )/Eexact
m | versus the number of

quadrature points N for the Woods-Saxon potential by QDM. (A): m = 0;
(B): m = 4; (C): m = 9; (D): m = 13.

83



Chapter 3. Pseudospectral methods of solution of the Schrödinger equation

84



Bibliography

[1] Z. A. Anastassi and T. E. Simos. A family of exponentially-fitted
Runge-Kutta methods with exponential order up to three for the nu-
merical solution of the Schrödinger equation. J. Math. Chem., 41:79,
2007.

[2] D. Baye and P. H. Heenen. Generalised meshes for quantum mechanical
problems. J. Phys. A: Math. Gen., 19:2041, 1986.

[3] D. Baye, M. Hesse, and M. Vincke. The unexplained accuracy of the
Langrange-mesh method. Phys. Rev. E, 65:026701, 2002.

[4] D. Baye and M. Vincke. Lagrange meshes from nonclassical orthogonal
polynomials. Phys. Rev. E, 59:7195, 1999.

[5] R. Blackmore and B. D. Shizgal. Discrete-ordinate method of solution
of Fokker-Planck equations with nonlinear coefficients. Phys. Rev. A,
31:1855, 1985.

[6] M. Braun, S. A. Sofianos, D. G. Papageorgiou, and I. E. Lagaris. An
efficient Chebyshev-Lanczos method for obtaining eigensolutions of the
Schrödinger equation on a grid. J. Comput. Phys., 126:315, 1996.

[7] K. Cahill and V. A. Parsegian. Rydberg-London potential for diatomic
molecules and unbonded atom pairs. J. Chem. Phys., 121:10839, 2004.

[8] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral
Methods in Fluid Dynamics. Springer-Verlag, New York, 1988.

[9] H. Chen and B. D. Shizgal. The quadrature discretization method in
the solution of the Schrödinger equation. J. Math. Chem., 24:321, 1998.

[10] H. Chen and B. D. Shizgal. A spectral solution of the Sturm-Liouville
equation: comparison of classical and nonclassical basis set. J. Comput.
Appl. Math., 136:17, 2001.

85



Bibliography

[11] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration, 2nd
ed. Academic Press, New York, 1984.

[12] A. S. Dickinson and P. R. Certain. Calculation of matrix elements
for one-dimensional quantum mechanical problems. J. Chem. Phys.,
49:4209, 1968.

[13] R. Dutt, A. Khare, and U. Sukhatme. Supersymmetry, shape invari-
ance, and exactly solvable potentials. Am. J. Phys, 56:163, 1988.

[14] J. Echave and D. C. Clary. Potential optimized discrete variable repre-
sentation. Chem. Phys. Lett., 190:225, 1992.

[15] S. T. Epstein. The Variational Method in Quantum Chemistry. Aca-
demic Press, New York, 1974.

[16] F. M. Fernández, Q. Ma, and R. H. Tipping. Eigenvalues of the
Schrödinger equation via the Riccati-Padé method. Phys. Rev. A,
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Chapter 4

An efficient mapped
pseudospectral method for
weakly bound states;
vibrational states of He2,
Ne2, Ar2, and Cs2

4.1 Introduction

In recent years, there has been considerable research devoted to the study
of molecular systems loosely bound by weak van der Waals forces [16, 19].
The interesting aspects of these systems are their behavior at very low tem-
peratures [8, 17], the nature of the long range interactions between atoms
[2, 31, 32], and the development of computational methods to analyze such
systems [10, 15, 21, 36]. The nature of helium dimers and other molecular
clusters has attracted considerable attention [13,24]. These systems present
a challenge for the numerical evaluations of their bound states as the wave
functions for the loosely bound states are very diffuse.

There are presently several different numerical methods available for the
solution of the Schrödinger equation. Shizgal and co-workers [7,20,26–29] de-
veloped a pseudospectral method based on nonclassical polynomials which
is referred to as the quadrature discretization method (QDM). Light and
coworkers [18] developed a similar collocation method referred to as the dis-
crete variable representation (DVR) which is often employed with quadra-
ture points based on classical polynomials. Baye and coworkers [3–5] used
basis sets based on interpolation functions analogous to sinc basis functions.
He refers to this method as the Lagrange mesh method. Other methods

A version of this chapter has been submitted for publication. Joseph Q. W. Lo and
Bernie D. Shizgal. J. Phys. B
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such as the Fourier [9–11, 15, 25] and sinc methods [1, 33] based on uniform
grids have also been used.

The main motivation for the introduction of the DVR is that poten-
tial matrix elements need not be evaluated. Rather, the potential is eval-
uated at the quadrature points but the accuracy of the method depends
on whether the collocation provides accurate estimates of the matrix ele-
ments [18]. A detailed discussion of these aspects of the DVR has been
presented by Wei [34] who demonstrated that “ghost” levels that are not a
part of the true spectrum can appear. The QDM in some instances such as
for the Morse potential can be based on a quadrature for which the poten-
tial function does not appear explicitly and in such cases ghost levels do not
occur.

The efficiency of a numerical method is in terms of the convergence rate
of the eigenstates with respect to the number of grid points or equivalently
the number of basis functions. An efficient method is particularly important
for multi-dimensional problems. Hence, the development of efficient numer-
ical algorithms is important. The optimization of the weight function that
defines the orthogonal polynomials and the quadrature points is an ongoing
objective in the further development of the QDM [20].

The calculation of the vibrational states of diatoms with the weight func-
tion given by the square of the the ground-state eigenfunction of the Morse
potential has been shown to be very effective for the lower states because of
the similarity of the Morse potential and the actual potentials, especially in
the region of the well [7, 27, 29]. However, asymptotically the Morse poten-
tial decays exponentially whereas the actual potentials generally decay as
an inverse power. As a result, even though the grid points can be scaled and
translated, the basis functions and quadrature points derived from a Morse
weight function do not provide a rapid convergence for the highest states as
compared with the lower states. The reason for this is that the vibrational
eigenfunctions close to the dissociation limit extend far into the classically
forbidden region. The motivation of this chapter is to find a method which
can produce rapidly converged eigenvalues for all bound states in the spec-
trum.

A mapped Fourier method has been extensively used for the determina-
tion of these very loosely bound states [11,14, 15,36]. The basic underlying
principle is to create an adaptive grid which takes into account the local de
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Broglie wavelength for a given potential. The advantage of this approach
is that the adaptive grid points are concentrated near the potential well,
where the eigenfunctions undergo large variations, and the grid also extends
to larger radial distances so as to capture the features of the higher-state
eigenfunctions in the classically forbidden region. As a result, this method
can provide accurate estimates for very loosely bound vibrational states.
However, some spurious eigenvalues not in the spectrum of the Hamilto-
nian, referred to as “ghost” levels, can occur [14,34,36].

In this chapter, we propose analogous mapping procedures for polyno-
mial methods which can improve the evaluation of the very loosely bound
eigenstates and develop a technique for the elimination of ghost levels. In
Section 4.2, we define the coefficient and physical space representation and
introduce several maps for polynomial expansions. In Section 4.3, we ap-
ply a mapping procedure to the sinc collocation method. Section 4.4 is a
summary of the maps that we use. The potentials for He2, Ne2, and Ar2
and the basis functions are defined in Section 4.5. A benchmark problem is
reported in Section 4.6 and a possible treatment of ghost levels is suggested.
In Section 4.7, we discuss the results for He2, Ne2, and Ar2 with the mapped
polynomial and sinc methods.

4.2 Solution of the Schrödinger equation on a
grid of quadrature points

4.2.1 The coefficient space representation

The determination of the eigenvalues, Em, of the Schrödinger equation

Hψm(x) = − ~
2

2µ
ψ′′m(x) + V (x)ψm(x) = Emψm(x) (4.1)

for x ∈ [0,∞) often involves an expansion of the eigenfunctions in the form

ψm(x) ≈ ψ(N)
m (x) =

N∑

n=1

ĉ(m)
n φ̂n(x). (4.2)

The choice of basis set {φ̂n(x)}∞n=1 is derived from the orthogonality of a
polynomial set {Pn(u)}∞n=0 given by

∫ b
a w(u)Pm(u)Pn(u) du = δmn with the
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introduction of a map u = ρ(x) such that

∫ b

a
w(u)Pm(u)Pn(u) du =

∫ ρ−1(b)

ρ−1(a)
ρ′(x)w(ρ(x))Pm(ρ(x))Pn(ρ(x)) dx

= δmn. (4.3)

In Eq. (4.3), the right hand side has been expressed in terms of the variable
x, where x = ρ−1(u) is the inverse map. Thus the basis functions are
φ̂n(x) =

√
ŵ(x)Pn−1(ρ(x)) with the weight function ŵ(x) = ρ′(x)w(ρ(x)).

A quadrature rule for some arbitrary function g(x) with this weight function
is

∫ ρ−1(b)

ρ−1(a)
ŵ(x)g(x) dx =

∫ b

a
w(u)g(ρ−1(u)) du

≈
N∑

k=1

wkg(ρ−1(uk))

=
N∑

k=1

wkg(xk). (4.4)

The quadrature points {uk} and weights {wk} are associated with the poly-
nomial PN (u) [12], and the quadrature points for x are xk = ρ−1(uk). Equa-
tion (4.4) is exact if g(ρ−1(u)) is a polynomial in u of degree at most 2N−1.
The quadrature rule in Eq. (4.4) can be rewritten with the absence of the
weight function ŵ(x) in the form

∫ ρ−1(b)

ρ−1(a)
g(x) dx ≈

N∑

k=1

η̂kg(xk), (4.5)

where the new quadrature weights are η̂k = wk/ŵ(xk).

The matrix representation of the Hamiltonian in the new basis is ĤC
mn =

(~2/2µ)K̂C
mn + V̂ C

mn, where

K̂C
mn = −

∫ ρ−1(b)

ρ−1(a)
φ̂m(x)φ̂′′n(x) dx, (4.6a)

V̂ C
mn =

∫ ρ−1(b)

ρ−1(a)
φ̂m(x)V (x)φ̂n(x) dx, (4.6b)
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and C denotes the coefficient space representation. Symmetrization of K̂C
mn

is done with an integration by parts, i.e.

K̂C
mn =

∫ ρ−1(b)

ρ−1(a)
φ̂′m(x)φ̂′n(x) dx (4.7)

with the assumption that the boundary term vanishes. With the explicit
definition of φ̂n(x), K̂C

mn becomes

K̂C
mn =

∫ ρ−1(b)

ρ−1(a)
[ρ′(x)]3w(ρ(x))P ′

m−1(ρ(x))P ′
n−1(ρ(x)) dx

−
∫ ρ−1(b)

ρ−1(a)
ρ′(x)w(ρ(x))Pm−1(ρ(x))Ṽ (x)Pn−1(ρ(x))) dx, (4.8a)

where P ′(ρ(x)) = (dP (u)/du)|u=ρ(x), and

Ṽ (x) =

[
1
2

w′′(ρ(x))
w(ρ(x))

− 1
4

(
w′(ρ(x))
w(ρ(x))

)2
]

[ρ′(x)]2

+
1
2

ρ′′′(x)
ρ′(x)

− 1
4

(
ρ′′(x)
ρ′(x)

)2

+
w′(ρ(x))ρ′′(x)

w(ρ(x))
. (4.8b)

The notation w′(ρ(x)) denotes (dw(u)/du)|u=ρ(x) and the second derivative
is similarly defined. The integration in Eq. (4.8) is done with the quadrature
rule, Eq. (4.4), that is,

K̂C
mn =

N∑

k=1

wk[ρ′(xk)]2P ′
m−1(uk)P ′

n−1(uk)−
N∑

k=1

wkPm−1(uk)Ṽ (xk)Pn−1(uk).

The potential energy matrix V̂ C
mn is evaluated similarly. Thus, the Hamilto-

nian is given by

ĤC
mn =

~2

2µ

N∑

k=1

wk[ρ′(xk)]2P ′
m−1(uk)P ′

n−1(uk)

+
N∑

k=1

wkPm−1(uk)
[
V (xk)− ~2

2µ
Ṽ (xk)

]
Pn−1(uk). (4.9)

95



Chapter 4. An efficient mapped pseudospectral method for weakly bound states

4.2.2 The physical space representation

The coefficients ĉ
(m)
n in Eq. (4.2) are given by

ĉ(m)
n =

∫ ρ−1(b)

ρ−1(a)
φ̂n(x)ψm(x) dx ≈

N∑

k=1

η̂kφ̂n(xk)ψm(xk),

where the quadrature rule Eq. (4.5) has been used. Hence, Eq. (4.2) becomes

ψm(x) ≈ ψ(N)
m (x) =

N∑

k=1

ψm(xk)Ĉk(x), (4.10)

where the interpolating function Ĉk(x) is given by

Ĉk(x) = η̂k

N∑

n=1

φ̂n(xk)φ̂n(x)

and satisfies the orthogonality
∫ ρ−1(b)
ρ−1(a)

Ĉk(x)Ĉl(x) dx =
√

η̂kη̂lδkl and the

cardinality Ĉk(xl) = δkl. The representation, Eq. (4.10), is referred to as
the physical space representation, since the coefficients are precisely ψm(x)
evaluated at the quadrature points xk. The functions Ĉk(x) are also called
the Lagrange functions by Baye [4]. Equation (4.10) is an expression of the
interpolation of ψm(x) with the exact values at xk. However, the eigenfunc-
tion ψ

(N)
m (x) is only an approximation to ψm(x) at values of x 6= xk. Also,

the set Ĉk(x) depends on N .

The matrix elements of the Hamiltonian, Eq. (4.1), in the physical space
representation, denoted by P, is defined by ĤP

ij = (~2/2µ)K̂P
ij + V̂ P

ij , where

K̂P
ij = − 1√

η̂iη̂j

∫ ρ−1(b)

ρ−1(a)
Ĉi(x)Ĉ ′′

j (x) dx, (4.11a)

V̂ P
ij =

1√
η̂iη̂j

∫ ρ−1(b)

ρ−1(a)
Ĉi(x)V (x)Ĉj(x) dx. (4.11b)

The kinetic energy matrix K̂P
ij is symmetrized and discretized in a way

similar to what is shown in Eqs. (4.7) and (4.8). The discretized Hamiltonian
is given by

ĤP
ij =

~2

2µ

N∑

k=1

[ρ′(xk)]2D
(1)
P [ki]D(1)

P [kj] +
[
V (xi)− ~2

2µ
Ṽ (xi)

]
δij . (4.12)
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In Eq. (4.12), Ṽ is given by Eq. (4.8b), and the representation of the first
derivative operator is [20]

D
(1)
P [ij] =

√
wiwj

N∑

n=1

P ′
n−1(ui)Pn−1(uj).

The orthogonal transformation T̂ defined by

T̂kn =
√

η̂kφ̂n(xk) =
√

wkPn−1(uk)

relates the coefficient space and the physical space representations of the
Hamiltonians in Eqs. (4.9) and (4.12). Thus, ĤP

ij =
∑N

m=1

∑N
n=1 T̂imĤC

mnT̂jn,
and

ĉ(m)
n =

N∑

k=1

T̂kn

√
η̂kψm(xk), (4.13a)

√
η̂kψm(xk) =

N∑

n=1

T̂knĉ(m)
n . (4.13b)

4.3 The solution of the Schrödinger equation
with the sinc functions

The sinc interpolation was originally introduced by Whittaker [35], and has
been widely studied [6,22,30] and used to solve the Schrödinger equation [3,
23,33,36]. Lo and Shizgal [20] have recently reported a detailed comparison
of sinc methods with the QDM based on nonclassical polynomials. The sinc
function is defined by

sincu =





sinπu

πu
if u 6= 0,

1 if u = 0.

The set of sinc interpolating functions, or the Lagrange-sinc functions [3],
are given by

Sk(u) = sinc
(

u− uk

h

)
(4.14)
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and have the property Sk(ul) = δkl, where {uk}∞k=−∞ form an infinite uni-
form grid given by uk = u0 + kh for some starting point u0 and width h.
These functions satisfy the orthogonality

∫∞
−∞ Si(u)Sj(u) du = hδij . The

interpolation of an arbitrary function g(u) in the sinc basis is given by
g(u) ≈ ∑∞

k=−∞ g(uk)Sk(u), and is an equality if the Fourier transform of
g vanishes outside [−π/h, π/h]. The quadrature rule associated with the
sinc expansion is

∫∞
−∞ g(u) du ≈ ∑∞

k=−∞ hg(uk). The popularity of the sinc
interpolation is due to the simplicity of the uniformly distributed grid points.

The mapping used in Section 4.2.1 can also be applied to the sinc inter-
polation. The mapped Lagrange-sinc functions are defined by

Ĉk(x) =

√
ρ′(x)
ρ′(xk)

Sk(ρ(x)) (4.15)

and the orthogonality
∫ ρ−1(∞)
ρ−1(−∞)

Ĉi(x)Ĉj(x) dx =
√

η̂iη̂jδij holds for this new
basis, where η̂i = h/ρ′(xi) and ρ−1(±∞) = limu→±∞ ρ−1(u). The new
quadrature rule becomes

∫ ρ−1(∞)

ρ−1(−∞)
ρ′(x)g(x) dx ≈

∞∑

k=−∞
hg(xk).

For computational purposes, the sum is truncated to N terms. If the
computational domain is [x1, xN ] = [xmin, xmax], the width of the grid
uk is given by h = [ρ(xmax) − ρ(xmin)]/(N − 1), and the grid points are
uk = ρ(xmin)+(k−1)h and xk = ρ−1(uk) for k = 1, . . . , N , and the solution
is in the form given by Eq. (4.10). The discretization of the Hamiltonian is
similar to that in Section 4.2.2, and is given by

ĤS
ij =

~2

2µ

N∑

k=1

[ρ′(xk)]2D
(1)
S [ki]D(1)

S [kj] +
[
V (xi)− ~2

2µ
Ṽ S(xi)

]
δij , (4.16)

where S denotes the sinc representation and

D
(1)
S [ij] = S′j(ui) =





(−1)i−j

(i− j)h
if i 6= j,

0 if i = j,

with

Ṽ S(x) =
1
2

ρ′′′(x)
ρ′(x)

− 1
4

(
ρ′′(x)
ρ′(x)

)2

.
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4.4 Explicit transformations of grid points

The map ρ introduced in Sections 4.2 and 4.3 has a range [a, b] and is an
increasing function of x such that ρ′(x) > 0 for all x. This monotonicity
allows the existence of the inverse map ρ−1(u) for all u ∈ [a, b]. The map
can be as simple as scaling and translation, that is ρ(x) = (x − b)/s, or
a complicated function for which ρ−1 cannot be solved explicitly, and the
points xk can only be found by numerically solving the equations uk = ρ(xk).
In this chapter, we consider three different types of maps for polynomial
bases,

ρ(x) =
x− b2

s2
, (4.17a)

ρ(x) = s1 ln
(

x− b2

s2

)
, (4.17b)

ρ(x) = s1 arcsinh
(

x− b2

s2

)
+ b1. (4.17c)

Equation (4.17a) is a scaling and translation of the grid points {xk}, and
we refer it as a linear map. Equation (4.17b) is an exponential map, which
concentrates the grid points for small x, and separates the points for large
x. Equation (4.17c) is a hyperbolic sine map, which concentrates the grid
points to the region close to x = b2.

We have found it useful from the numerical experiments reported in
Section 4.7 to further control the computational domain and the distribution
of grid points. We do so by restricting the computational domain of x to
[xmin, xmax], where xmin and xmax are freely chosen. If Eq. (4.17b) is solved
for x and written as x1 = xmin and xN = xmax, it is easy to show that the
solution of the resulting two equations give s2 and b2 as

s2 =
(xmax − xmin)

exp(uN/s1)− exp(u1/s1)
, (4.18a)

b2 = xmin − s2 exp(u1/s1). (4.18b)

In addition, a parameter ŝ is introduced with

s1 = (uN − u1)ŝ. (4.18c)

The distribution of the grid points {xk}N−1
k=2 is controlled indirectly by ŝ,

where a small ŝ corresponds to a high concentration of grid points near

99



Chapter 4. An efficient mapped pseudospectral method for weakly bound states

0 10 20 30
u

0

4

8

12

x 
=

 ρ
-1

(u
)

A

u1 uN

xN = xmax

x1 = xmin

0 10 20 30
u

0

4

8

12

x 
=

 ρ
-1

(u
)

B

u1 uN

xN = xmax

x1 = xmin

0 10 20 30
u

0

4

8

12
x 

=
 ρ

-1
(u

)
C

u1 uN

xN = xmax

x1 = xmin

Figure 4.1: The mapping of collocation points using Eq. (4.17c) from La-
guerre grid uk to a modified grid xk. (A) ŝ = 0.2, b2 = 5, x ∈ [1, 10]; (B)
same as A except ŝ = 0.5; (C) same as A except b2 = 2.
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xmin, and a large ŝ corresponds to a mapping close to a linear map.

Similarly, with Eq. (4.17c) the parameters s2 and b1 can be written as

b1 =
s1

2
ln

(
c exp(u1/s1)− exp(uN/s1)

c exp(−u1/s1)− exp(−uN/s1)

)
, (4.19a)

where
c =

xmax − b2

xmin − b2
, (4.19b)

and
s2 =

xmax − xmin

sinh
(

uN−b1
s1

)
− sinh

(
u1−b1

s1

) . (4.19c)

Equation (4.18c) is also used and ŝ controls the level of concentration of grid
points near x = b2. A low value of ŝ corresponds to a high concentration,
while a high value of ŝ gives a mapping close to a linear map. Figures 4.1A
and 4.1B show the different distributions {xk} versus {uk} for different val-
ues of ŝ. The parameter b2 remains as a free parameter and controls the
region where points are concentrated, as illustrated in Figs. 4.1A and 4.1C.

For the sinc expansion, the corresponding maps are

ρ(x) = x, (4.20a)
ρ(x) = ln(x− b2), (4.20b)

ρ(x) = arcsinh
(

x− b2

s2

)
, (4.20c)

where the free parameters are s2 and b2. Note that Eq. (4.20a) is refered to
as an unmapped sinc expansion. The sinc discretization of the Hamiltonian
is given by Eq. (4.16). The transformations in Eqs. (4.20a) and (4.20c) are
used and are referred to as “sinc” and “sinc(arcsinh)”, respectively.

4.5 Weakly bound vibrational states of He2, Ne2,
and Ar2

There have been many studies on numerical methods for vibrational states
of diatoms [10, 15, 21, 36]. The lower bound states can be easily evaluated
with precision. The higher states, however, are more weakly bound and
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require much wider domains in order to describe these eigenfunctions. The
main objective of this chapter is to show that with the appropriate mapping
of the grid points accurate results can be obtained with a considerable re-
duction in the number of grid points.

4.5.1 Tang-Toennies potential

The vibrational states of He2, Ne2, and Ar2 are used as an application for
a detailed comparison of the discretization methods mentioned above. The
potential model is the one given by Tang and Toennies [31].

VTT(x) = A exp(−bx)− f6(bx)
C6

x6
− f8(bx)

C8

x8
− f10(bx)

C10

x10
, (4.21a)

where the damping functions, fn, are given by

f2n(bx) = 1− exp(−bx)
2n∑

k=0

(bx)k

k!
. (4.21b)

Both VTT and x in this potential are in atomic units with the parameters in
Table 4.1. For our purpose, the units of energy and distance are converted
to eV and Å, respectively. The potential energy curves for He2, Ne2, and
Ar2 are illustrated in Fig. 4.2A. With application of Levinson’s theorem as
discussed by Shizgal [27], zero, three, and eight negative eigenvalues can be
found for He2, Ne2, and Ar2, respectively, as shown in Fig. 4.3.

A classical basis set; Laguerre polynomials

For the semi-infinite domain, a natural choice of basis functions are the
Laguerre polynomials orthogonal with weight function w(u) = u2 exp(−u).
The discretized Hamiltonian, ĤLag

ij , for the Schrödinger equation, Eq. (4.1),
is given by Eq. (4.12). The eigenfunction ψm(x) can be found by

ψm(xk) =

√
ρ′(xk)u2

k exp(−uk)
wk

[Ψm]k,

where uk and wk are the Laguerre quadrature points and weights, and Ψm

is the eigenvector of ĤP, Eq. (4.12), associated with the eigenvalue Em. The
linear and exponential maps in Eqs. (4.17a) and (4.17b) are referred to as
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Table 4.1: The parameters of the Tang-Toennies potentials for He2, Ne2,
and Ar2, Eq. (4.21) [31]. All parameters are in atomic units.

He2 Ne2 Ar2
A 41.96 199.5 748.3
b 2.523 2.458 2.031

C6 1.461 6.383 64.30
C8 14.11 90.34 1623
C10 183.6 1536 49060
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Figure 4.2: (A) The Tang-Toennies potential for He2, Ne2, and Ar2; (B)
The comparison of three different He2 potentials. (solid) Tang-Toennies
(TT); (dotted) Tang-Toennies-Yiu (TTY); (dashed) Aziz-Slaman (AS).
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Figure 4.3: The zero energy limit of the l = 0 phase shift for He2, Ne2, and
Ar2.
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“Lag” and “Lag(ln)”, respectively.

The first grid point x1 = xmin is chosen to be 2.7 for Ar2 and 2.0 for Ne2

for the Laguerre expansion. Therefore, for Lag,

b2 = xmin − s2u1,

and the parameters for Lag(ln) are given by Eq. (4.18).

A nonclassical basis set; Morse basis functions

Since the Morse potential

VMorse(u) = De[1− exp(−α(u− xe))]2 −De (4.22)

is a reasonably accurate approximation to the potential VTT, the Morse
ground-state eigenfunction is used to construct a nonclassical weight func-
tion, given by

w(u) = [ψMorse
0 (u)]2

= exp

[
−2

√
2µ

~2
De

(
u− xe +

exp(−α(u− xe))
α

)
+ α(u− xe)

]
.

(4.23)

The parameters De, α, and xe are chosen by equating the root and the
minimum points of VMorse with V . For Ne2, De = 3.65111(−3) eV, xe =
3.08986 Å, and α = 2.15179 Å−1. For Ar2, De = 0.0123670 eV, xe = 3.75669
Å, and α = 1.79072 Å−1. For this weight function,

1
2

w′′(u)
w(u)

− 1
4

(
w′(u)
w(u)

)2

=
2µ

~2
De[1− exp(−α(u− xe))]2 − α

√
2µ

~2
De +

α2

4
.

With the modified grid xk = ρ−1(uk), the Hamiltonian ĤQDM
ij is given
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by Eq. (4.12), where

Ṽ QDM(x) =

[
2µ

~2
De[1− exp(−α(ρ(x)− xe))]2 − α

√
2µ

~2
De +

α2

4

]
[ρ′(x)]2

+
1
2

ρ′′′(x)
ρ′(x)

− 1
4

(
ρ′′(x)
ρ′(x)

)2

+

[
−2

√
2µ

~2
De[1− exp(−α(ρ(x)− xe))] + α

]
ρ′′(x).

The eigenfunctions are ψm(xk) = η̂
−1/2
k [Ψm]k, where η̂k is given below Eq.

(4.5), and [Ψm]k is the kth element of the eigenvector of ĤQDM associated
with the eigenvalue Em.

The maps in Eqs. (4.17a) and (4.17b) are used, and are referred to as
“QDM” and “QDM(ln)”, respectively. Because the grid uk is defined by
the Morse potential, u1 can be chosen to have the same value as x1, i.e.
b2 = u1 − s2u1 for QDM. The parameters for QDM(ln) are given by Eq.
(4.18) with xmin = u1.

4.5.2 Tang-Toennies-Yiu and Aziz-Slaman He2 potentials

Whereas the Tang-Toennies He2 potential defined in Eq. (4.21) does not
support a bound state, the potential provided by Tang, Toennies, and Yiu
[32],

VTTY(x) = Dx7/2β−1 exp(−2βx)−
12∑

n=3

f2n(bx)
C2n

x2n
, (4.24)

does support one bound state as verified in Fig. 4.3. In Eq. (4.24), the
damping functions, f2n, are given by Eq. (4.21b), D = 7.449, β = 1.3443,
C6 = 1.461, C8 = 14.11, C10 = 183.5, b = 2β − [(7/2β) − 1]/R, C2n =
(C2n−2/C2n−4)3C2n−6 for n = 6, . . . , 12, and VTTY, x and all parameters are
in atomic units.

The second He2 potential is the LM2M2 potential provided by Aziz and
Slaman [2] which was used by Lombardi et al [21]. The Aziz-Slaman LM2M2
potential is given by

VAS(x) = εV ∗
(

x

rm

)
, (4.25a)
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Table 4.2: The parameters of the Aziz-Slaman LM2M2 potential for He2,
Eq. (4.25) [2]. All parameters are dimensionless, except for ε/k in K and rm

in Å.

A 189635.353 D 1.4088
α 10.70203539 ε/k 10.97
β -1.90740649 rm 2.9695
c6 1.34687065 Aa 0.0026000000
c8 0.41308398 r1 1.0035359490
c10 0.17060159 r2 1.4547903690
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where

V ∗(r) = A exp(−αr + βr2)−
[ c6

r6
+

c8

r8
+

c10

r10

]
F (r) + Va(r), (4.25b)

F (r) =





exp

[
−

(
D

r
− 1

)2
]

if r < D,

1 if r ≥ D,

(4.25c)

Va(r) =





Aa

[
sin

(
2π

r − r1

r2 − r1
− π

2

)
+ 1

]
if r1 ≤ r ≤ r2,

0 if r < r1 or r > r2.
(4.25d)

with the constants as given in Table 4.2. The units of VAS and x are eV
and Å, respectively. Figure 4.2B shows that for He2 both VTTY and VAS are
marginally wider than VTT. This small increase in width allows one negative
eigenvalue for VTTY and VAS as confirmed in Fig. 4.3. The main difference
between VTTY and VAS, however, is that VTTY is analytic on (0,∞), while
the second derivative of VAS does not exist at x/rm = D, r1, and r2.

The implementation of Laguerre and sinc bases are essentially the same
as discussed before. The QDM methodology has to be modified as the Morse
potential with matched values of De, α and xe does not have a bound state
and hence no weight function can be constructed. We therefore adjust the
value of α to 1.5 Å−1. The other parameters used to define the weight
function, Eq. (4.23), are De = 9.4659017(−4) eV and xe = 2.9720746 Å for
VTTY, and De = 9.4532246(−4) eV and xe = 2.9695000 Å for VAS. The sinh
map is used for the polynomial methods, and the mapping parameters are
given by Eq. (4.19).

4.5.3 Justifications for the computational domains

The domains of all the potentials provided in Sections 4.5.1 and 4.5.2 are
x ∈ [0,∞), whereas the domains of the modified bases discussed above are
given by x ∈ [ρ−1(a),∞), where a = 0 for Laguerre, and a = −∞ for QDM
and sinc. The disagreement between the domain of the Schrödinger equa-
tion and the domain of the basis functions is insignificant from a numerical
aspect, since the eigenfunction decays very rapidly as x decreases from the
classically forbidden region to zero. For the Laguerre expansion, an appro-
priate choice of xmin will assure that this error is below machine accuracy.
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For the QDM, the Morse weight function given by Eq. (4.23) is origi-
nally defined with u ∈ (−∞,∞), but decays as exp(− exp(−(u− xe))) as u
decreases from xe. If the domain is truncated to u ∈ [0,∞), the integration
by parts done in Eq. (4.7) will yield a boundary term w(0) which is not ex-
actly zero. However, with an appropriate choice of ρ(x), w(0) is well below
machine accuracy.

For the sinc expansion, the solution outside the computational domain
[xmin, xmax] is assumed to be zero. Convergence to the exact eigenvalues may
be achieved only when xmin → 0 and xmax →∞, but appropriate choices of
xmin and xmax will give a domain truncation error less than machine preci-
sion.

4.6 A benchmark calculation for Cs2; elimination
of ghost levels

We first test the mapping procedure with the Morse potential in Eq. (4.22),
for which exact eigenvalues are known. The Cs2 Morse potential, previously
considered by Willner et al [36] is used for this benchmark. The parameters
are De = 0.016627 a.u., xe = 8.77a0, and α = 0.372031199 a.u.. The
Planck’s constant ~ is taken to be 1 a.u. and the reduced mass is µ =
121135.9042132189 a.u.. The exact eigenvalues are given by

Em = −α2~2

2µ

(√
2µDe

α~
− 1

2
−m

)2

.

This potential contains bound states for m = 0 to 170. The highest six
bound states obtained with the QDM(arcsinh) are compared with the re-
sults obtained by Willner et al [36] in Table 4.3.

The QDM(arcsinh) provides results about two to three order of magni-
tudes more accurate than the mapped Fourier-sine method used by Willner
et al for m = 165 to m = 169 on the short interval up to xmax = 80.
Both methods are based on 276 grid points. To obtain the highest state,
a wider interval with xmax = 500 and N = 400 is used. The result with
the QDM(arcsinh) has converged to machine accuracy, while the results re-
ported by Willner et al have converged to only about two significant figures.
The use of Lag(arcsinh) does not provide eigenvalues for m ≥ 165 with 276
points, but the error of E170 is approximately −6.03(−11) with 400 points
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Table 4.3: Convergence of the Morse potential for Cs2. Eexact
m and ∆Em

are in cm−1.

m Eexact
m

∆Em

WDMSa QDM(arcsinh)b QDM(arcsinh)c

N = 276
165 -3.26122 1.04(-4) -1.40(-6) -1.34(-6)
166 -2.10770 1.30(-4) -6.89(-7) -1.14(-6)
167 -1.20493 1.58(-4) -4.21(-7) -9.13(-7)
168 -0.552941 1.76(-4) -2.54(-7) -6.47(-7)
169 -0.151714 1.73(-4) -1.25(-7) -3.49(-7)
170 -1.25384(-3) 1.65(-4) 2.04(-4) 1.87(-4)

N = 400
170 -1.25384(-3) -1.11(-5) -6.22(-13) -6.84(-13)
a Fourier-sine results by Willner, Dulieu, and Masnou-Seeuws

[36].
b ŝ = 0.2, b2 = 10, x ∈ [6, 80] for N = 276; ŝ = 0.14, b2 = 10,

x ∈ [6, 500] for N = 400.
c parameters same as b, but N ′ = N + 1 for ghost level removal.
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when ŝ = 0.165 and b = 10. It suggests that the mapping of polynomials, if
done properly, can be more efficient than mapped Fourier methods for very
loosely bound eigenvalues. The untransformed QDM does not provide E165

to E169 with 276 points, and E170 with 400 points.

We have demonstrated that the mapping procedure can greatly improve
the convergence of the eigenvalues. Unfortunately, it sometimes yield fic-
titious eigenvalues, called “ghost levels”, which do not belong to the spec-
trum of the Hamiltonian. The problem of ghost levels has been discussed
by Wei [34], Kallush et al [14], and Willner et al [36]. For the Cs2 potential,
one ghost level is found with QDM(arcsinh). The position of the ghost level
versus N is shown in Fig. 4.4A. The ghost level can be easily identified by
the fact that it is not converging to any value. It can also be identified by
the eigenfunction coefficients, shown in Fig. 4.5A, which do not decay as n
increases. The eigenfunction oscillates in the physical space as shown in Fig.
4.5B.

The problem of ghost levels arises from the error of the quadrature for-
mula when approximating the matrix elements shown in Eq. (4.6) or (4.11),
as discussed by Wei [34]. No ghost levels are found when the integrals are
evaluated with high accuracy. To improve the accuracy of the quadrature,
a larger set of quadrature points is used in the coefficient space represen-
tation. It can be done by constructing ĤC

mn, given by Eq. (4.9), only for
1 ≤ m,n ≤ N ′ for some N ′ ≤ N . We use this N ′ ×N ′ Hamiltonian matrix
to evaluate the eigenvalues Em. The eigenfunctions in the physical space
representation are

ψ(N ′)
m (x) =

√
ρ′(x)w(ρ(x))

N ′∑

n=1

ĉ(m)
n Pn−1(ρ(x)),

where ĉ
(m)
n is the nth component of the corresponding eigenvector. Note

that the unitary transformation between the coefficient space representa-
tion and the physical space representation given by Eq. (4.13) no longer
holds if N ′ < N .

Because we used a higher quadrature rule to construct the Hamiltonian
matrix, the discretization error is decreased, and the ghost levels which de-
pends on this error should be sensitive to this change. Surprisingly, the
ghost level can be eliminated by merely setting N ′ = N − 1. Figure 4.4B
shows the position of the ghost level when N ′ = N−1 on the smaller domain
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Figure 4.4: The eigenvalues Em and the ghost level in logarithmic scale
versus the number of collocation points N for Cs2 Morse potential. The
parameters are the same as in Table 4.3. (A) N ′ = N ; (B) N ′ = N − 1.
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Figure 4.5: The expansion coefficients and the eigenfunction of the ghost
level for Cs2 with the Morse potential parameters in Table 4.3.
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x ∈ [6, 80]. The ghost level moves into the continuum for N ≥ 266. Since
only one less basis function is considered, there is no large impact on the
convergence of eigenvalues, as shown in Table 4.3 under QDM(arcsinh)1. In
the larger domain x ∈ [6, 500], the ghost level moves to the continuum when
N ≥ 376. With Lag(arcsinh), there is one ghost level for the calculation
with x ∈ [6, 500] and N = 400. If we set N ′ = N − 1, the ghost level does
not appear with N = 400. The method we used to eliminate the ghost level
does not require any modification of the Schrödinger equation or the basis
functions.

4.7 Results and discussion

As mentioned previously, the noble gas pairs He2, Ne2 and Ar2 support 1,
3 and 8 bound states with potentials as noted in Table 4.4. The table lists
the values of the eigenstates as calculated with the mapped sinc method
and are accurate to the significant figures shown. We begin the discussion
with the results for Ne2 with the Tang-Toennies potential, Eq. (4.21). This
potential can support three bound states and the ground state, ψ0(x), and
the uppermost loosely bound state, ψ2(x), are shown in Figs. 4.6 and 4.7
with the grid point distributions as symbols and N = 20. We also show the
convergence rates for these eigenfunctions in Fig. 4.8. The logarithmic value
of the relative error,

ε(N)
m = log

∣∣∣∣∣
E

(N)
m −Eexact

m

Eexact
m

∣∣∣∣∣ ,

is approximately the number of significant figures of the eigenvalue estimates
E

(N)
m . The exact eigenvalues, Eexact

m , are calculated with the mapped sinc
method in multiple precision, and are accurate to at least 20 digits with
N ≈ 100. The ground state eigenfunction, ψ0(x), in Fig. 4.6A is a single
bell shaped nodeless function localized more or less in the interval x ∈ [2, 6].
The rapid numerical convergence of the eigenvalues would require a dense
mesh of grid points in this region. The convergence of E0 for N . 15 shown
in Fig. 4.8A is most rapid with QDM followed by Laguerre and sinc with
the sinh mapping and finally sinc. The mapped sinc is the most rapid for
N & 15. These different rates of convergence can be understood in terms
of the number of grid points in the interval x ∈ [2, 6] which explains the
improvement of the mapped sinc results as illustrated in Fig. 4.6B. The su-
periority of the QDM results arises from the choice of weight function as
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Table 4.4: The vibrational energy levels for He2, Ne2 and Ar2 in meV.

TTY He2
a AS He2

b TT Ne2
c TT Ar2c

E0 -1.08286(-4) -1.07315(-4) -2.07329 -10.4703
E1 -0.362465 -7.21707
E2 -1.56865(-3) -4.65637
E3 -2.74616
E4 -1.42543
E5 -0.608341
E6 -0.183899
E7 -0.0246251
a Tang-Toennies-Yiu, Eq. (4.24).
b Aziz-Slaman LM2M2, Eq. (4.25).
c Tang-Toennies, Eq. (4.21).
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Figure 4.6: The ground state eigenfunction for Ne2, ψ0(x). For all cases,
N = 20. (A) Lag: s2 = 0.06, xmin = 2; QDM: s2 = 1; (B) sinc: x ∈ [2, 8.5];
sinc(arcsinh): s2 = 0.8, b2 = 2.1, x ∈ [2, 8.5]; the collocation points for
different methods are shown by the symbols.
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Figure 4.7: The highest state eigenfunction of Ne2, ψ2(x). For all cases,
N = 40. (A) Lag: s2 = 0.3, xmin = 2; Lag(ln): ŝ = 0.25, x ∈ [2, 150];
(B) QDM: s2 = 1.8; QDM(ln): ŝ = 0.29, x ∈ [u1, 150]; (C) sinc(arcsinh):
s2 = 0.8, b2 = 2.1, x ∈ [2, 150]; the collocation points for different methods
are shown by the symbols.
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Figure 4.8: Variation of ε
(N)
m for m = 0 and 2 versus the number of collo-

cation points N for Ne2. Lag: xmin = 2 for all cases, (A) s2 = 0.06, (B),
s2 = 0.3; Lag(ln): (B) ŝ = 0.25, x ∈ [2, 150]; QDM: xmin = u1 for all cases,
(A) s2 = 1, (B) s2 = 1.8; QDM(ln): (B) ŝ = 0.29, x ∈ [u1, 150]; sinc: (A)
x ∈ [2, 8.5], (B) x ∈ [2, 150]; sinc(arcsinh): s2 = 0.8, b2 = 2.1 for all cases,
(A) x ∈ [2, 8.5], (B) x ∈ [2, 150].

116



the square of the ground state eigenfunction of the Morse potential that is
a close approximation to the Tang-Toennies potential.

The eigenfunction ψ2(x), shown in Fig. 4.7, has two nodes near the origin
at x ≈ 3.40 and x ≈ 4.71 and a long diffuse portion that extends far be-
yond x > 25. For this eigenstate, we expect that convergence will be rapid
if there is a sufficient number of points densely distributed in the region
x ∈ [2, 6] as for ψ0(x) as well as a less dense distribution for much larger
x. The convergence shown in Fig. 4.8B is the worst with sinc and also slow
for both QDM and Laguerre basis functions without mapping. The rate of
convergence is greatly improved with the appropriate mappings and QDM
mapped exponentially is the most rapid. For both Laguerre and QDM shown
in Figs. 4.7A and 4.7B, the exponential map, Eq. (4.17b), redistributes the
grid points so that more points are in the region near the nodes where a
large variation occurs, and fewer points on the decaying tail. This map im-
proves the efficiency of the interpolation, and hence a faster convergence is
expected. We did not obtain a bound state with unmapped sinc with 50
grid points, but the sinh map redistributes the grid points analogous to the
mapped polynomials (Fig. 4.7C) and the convergence is greatly improved.

The convergence of the highest eigenvalue, E2, with the unmapped La-
guerre and QDM is comparable as in Fig. 4.8B. No convergence is observed
with the sinc method without mapping. We used the exponential map for
the polynomial methods, and found that the convergence is drastically im-
proved, where mapped QDM results yield the fastest rate of convergence.
With the sinh map applied to the sinc method, the rate of the convergence
is similar to the mapped Laguerre expansion.

Figure 4.9 shows the variation of the coefficients ĉ
(m)
n for ψ2(x) versus n

for the QDM (Fig. 4.9A) and the Laguerre expansion (Fig. 4.9B) with and
without mapping. With the exponential mapping for both QDM and La-
guerre, the variation of ĉ

(m)
n versus n exhibits a maximum and then decays

rapidly, more so for QDM than Laguerre. These results are consistent with
the convergence of E2 shown in Fig. 4.8B.

For Ar2, the convergence rate of the ground, 3rd, 5th, and the highest
state eigenvalues are illustrated in Fig. 4.10. Without mapping, the rate of
convergence is more rapid with QDM except for E7 for which Laguerre and
QDM results are similar. The mapped sinc method improves the conver-
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Figure 4.9: Variation of the expansion coefficients ĉ
(2)
n versus n of the highest

state eigenfunction ψ2(x) of Ne2. (A) QDM: s2 = 1.8, b2 = −1.5; QDM(ln):
s1 = 5, s2 = 3, b2 = −2.5; (B) Lag: s2 = 0.3, b2 = 2; Lag(ln): s1 = 46,
s2 = 2.75, b2 = −0.75.
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Figure 4.10: Variation of ε
(N)
m for m = 0, 3, 5, and 7 versus the number of

collocation points N for Ar2. Lag: xmin = 2.7 for all cases, (A) s2 = 0.03, (B)
s2 = 0.04, (C) s2 = 0.05, (D) s2 = 0.1; Lag(ln): (C) ŝ = 0.7, x ∈ [2.7, 13],
(D) ŝ = 0.3, x ∈ [2.7, 40]; QDM: xmin = u1 for all cases, (A) s2 = 1, (B)
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(C) ŝ = 0.6, x ∈ [u1, 13], (D) ŝ = 0.3, x ∈ [u1, 40]; sinc: (A) x ∈ [2.7, 6],
(B) x ∈ [2.7, 8.5], (C) x ∈ [2.7, 13], (D) x ∈ [2.7, 40]; sinc(arcsinh): s2 = 0.7,
b2 = 3.3 for all cases, (A) x ∈ [2.7, 6], (B) x ∈ [2.7, 8.5], (C) x ∈ [2.7, 13],
(D) x ∈ [2.7, 40].
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gence of all the eigenvalues and the higher ones more so than the lower ones.
It is important to notice in Fig. 4.10D that a converged value of E7 cannot
be obtained with unmapped sinc and N ≤ 100. The results obtained with
the mapped QDM converges at the fastest rate.

The Tang-Toennies-Yiu, Eq. (4.24), and the Aziz-Slaman, Eq. (4.25),
potentials are used for He2. Both potentials support one very loosely bound
state. These potentials serve as examples where the convergence of the
“ground-state” eigenvalue can be very difficult to obtain, and mapping pro-
vides the ability to efficiently and accurately calculate the eigenvalue. The
second derivative of the Aziz-Slaman He2 potential has three discontinuities
at x equal to rmD, rmr1 and rmr2. Thus, with the mapped sinc grid we
can only evaluate Eexact

0 to six significant figures with N ≥ 400. Figures
4.11A and 4.11B show the rates of convergence of the single bound state
eigenvalue for the Aziz-Slaman and Tang-Toennies-Yiu potentials, respec-
tively. Table 4.5 compares the convergence of the single eigenvalue for QDM
and Laguerre as well as the mapped QDM, Laguerre and sinc methods for
the Aziz-Slaman potential. It is important to note that the convergence
with QDM and Laguerre expansion is comparable and very slow. Lombardi
et al [21] also obtained a very slow convergence with DVR such that they
obtained eigenvalues accurate to three significant figures with N & 150 and
four significant figures with N & 400. However, the sinh mapping for both
methods greatly improves the convergence. Similarly, there is a considerable
improvement for the mapped sinc method where without the mapping the
bound state cannot be obtained, analogous to the highest eigenvalues for
Ne2 and Ar2. The Tang-Toennies-Yiu He2 potential is an entire function
and hence does not exhibit the slow convergence found for the Aziz-Slaman
potential. The exact eigenvalue Eexact

0 can therefore be evaluated to more
than 20 significant figures. The convergence rates of the eigenvalues are
shown in Fig. 4.11B, where the mapping greatly improves the convergence
for all methods. For the Tang-Toennies-Yiu potential, the mapped sinc
method provides a faster convergence than the polynomial methods.

The ground state eigenfunction for the Aziz-Slaman potential for He2 is
shown in Fig. 4.12 and the x variation exhibits two different spatial scales.
There is a very rapid increase near the origin followed by a slow decay. The
challenge of any numerical method is to accurately capture this behavior by
distributing the points appropriately. This is clearly demonstrated in Fig.
4.12 for all three methods. With the mappings, there is an increase in the
density of points both near the origin as well as for large x. The grid for the
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Table 4.5: Convergence of the energy (in µeV) for Aziz-Slaman He2 poten-
tial.

N Laga Lag(arcsinh)b QDMc QDM(arcsinh)d sinc(arcsinh)e

10 -0.4077 0.0428 3.1934 -0.3581 -28.1437
20 0.5817 -0.1044 0.2667 -0.1056 -0.3888
30 0.0694 -0.1073 -0.0601 -0.1073 -0.1162
40 -0.0345 -0.0934 -0.1076
50 -0.0723 -0.1055 -0.1073
100 -0.1064 -0.1078
150 -0.1074 -0.1068
200 -0.1073 -0.1070
250 -0.1073 -0.1071
300 -0.1073 -0.1074
350 -0.1074 -0.1071
400 -0.1073 -0.1074
a s2 = 0.7, xmin = 1.5.
b ŝ = 0.11, b2 = 4.3, x ∈ [1.5, 800].
c s2 = 0.5, xmin = u1.
d ŝ = 0.12, b2 = 4.3, x ∈ [1.5, 800]
e s2 = 0.8, b2 = 3, x ∈ [1.5, 800]
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Figure 4.11: Variation of ε
(N)
0 versus the number of collocation points N for

He2. (A) Aziz-Slaman: (Table 4.5); (B) Tang-Toennies-Yiu: Lag: s2 = 1,
xmin = 1.1; Lag(arcsinh): ŝ = 0.14, b2 = 3.1, x ∈ [1.1, 1800]; QDM: s2 = 0.6,
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s2 = 0.6, b2 = 1.8, x ∈ [1.1, 1800].
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Figure 4.12: The eigenfunction of the Aziz-Slaman He2 potential. For all
cases, N = 50. (A) Lag: s2 = 1, xmin = 1.5; Lag(arcsinh): ŝ = 0.11,
b2 = 4.3, x ∈ [1.5, 800]; (B) QDM: s2 = 0.5, xmin = u1; QDM(arcsinh):
ŝ = 0.12, b2 = 4.3, x ∈ [1.5, 800]; (C) sinc(arcsinh): s2 = 0.8, b2 = 3,
x ∈ [1.5, 800]; the collocation points for different methods are shown by the
symbols.
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mapped sinc method provides more points in this asymptotic region than
the mapped polynomial methods, but the convergence of the eigenvalues is
somewhat slower than with the polynomial methods as shown in Table 4.5.

As is well-known, the numerical calculation of the Hamiltonian matrix
elements, Eq. (4.6), are inexact and as a consequence ghost levels can ap-
pear. No ghost levels were found for Ne2 and Ar2 with all methods as the
results converge to the exact eigenvalues. However, there is one ghost level
with both the mapped QDM and the mapped Laguerre method for both
He2 potentials. The position of the ghost levels for Aziz-Slaman potential
with mapped QDM and Laguerre are shown in Fig. 4.13A and 4.13C. If the
technique for the elimination of the ghost levels discussed in Section 4.6 is
used, the ghost level moves up from approximately −10−4 to −10−7 with
N ′ = N − 1. The position is shown in Fig. 4.13B and 4.13D. The ghost
level can be completely eliminated if N ′ = N − 2. For Tang-Toennies-Yiu
potential, the ghost level can be eliminated by setting N ′ = N − 1.
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Figure 4.13: The eigenvalue E0 and the ghost level in logarithmic scale
versus the number of collocation points N for Aziz-Slaman He2 potential.
The parameters are the same as in Table 4.5. Lag(arcsinh): (A) N ′ = N ,
(B) N ′ = N − 1; QDM(arcsinh): (C) N ′ = N , (D) N ′ = N − 1.
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Chapter 5

Conclusions and future
directions

5.1 Preliminary investigations in mappings and
other directions

In this section, I provide a continuation of the work of Chapter 4, which
focuses on the mapping of grid points. In Chapter 4, explicit mappings
such as the exponential or the hyperbolic sine mappings, Eq. (4.17), were
introduced. There were, however, no discussions about the optimization of
the parameters. In this section, I will suggest a method for determining
appropriate parameters for these explicit mappings.

It is expected that each type of explicit mappings is appropriate for only
a small class of functions. For example, in the case of interpolation using
hyperbolic sine mapping only functions with large variations concentrated
in one narrow region can be beneficial from the redistribution of grid points.
To add flexibility to the mapping, I hope to develop a technique which can
construct an appropriate mapping based on the behaviour of the function.
In this section, I will focus only on the sinc interpolation [8, 13].

The motivation of the investigations in mapping methods is to find a
simple way to reduce the number of grid points required to solve time-
dependent or eigenvalue problems when classic basis functions can be used.
For 2D problems, the size of the matrices get larger so that the methods
developed in this thesis for 1D problems will have important applications
to 2D problems. In section 5.1.3, I will provide some preliminary results for
the eigenvalues of the Kramers equation to illustrate that mapping will be
useful in 2D problems.

I will at first start with interpolation of functions, and apply the same
technique for interpolation to time-dependent problems and eigenvalue prob-
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lems.

5.1.1 Interpolation with mapping

Consider the interpolation of a function g(x) in the domain x ∈ [xmin, xmax].
The sinc interpolating functions, Sj(u), defined on the uniform grid uj =
xmin + (j + 1)h and h = (xmax − xmin)/(N − 1) are defined in Eq. (4.14).
With an introduction of a map u = ρ(x), the new mapped sinc interpolating
functions, Ĉj(x), are given by Eq. (4.15), where the mapped grid points are
xj = ρ−1(uj). The new grid xj is referred to as the physical grid, and the
original grid uj is referred to as the computational grid. Without loss of
generality, it is convenient to require the map to satisfy ρ(xmin) = xmin and
ρ(xmax) = xmax. The map must also satisfy ρ′(x) > 0 for x ∈ [xmin, xmax].
The expansion f(x) =

∑N
j=1 g(xj)Ĉj(x) is referred to as the interpolant of

g(x).

The Gaussian function

G(x; µ, σ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

. (5.1)

is used to illustrate of the use of mappings. I consider the interpolation of
the function

g(x) = 0.75G(x; 0, 0.5) + 0.25G(x; 0.5, 0.02) (5.2)

in the interval x ∈ [−2, 2]. This function is very similar to the Gaussian
bell curve except there is a narrow spike at x = 0.5. This function is in-
terpolated by 160 uniformly distributed grid points with no mapping, i.e.
u = ρ(x) = x. Figure 5.1A shows the function g(x) with the grid points.
The error g(x)− f(x) is shown in Fig. 5.1B, with a maximum magnitude of
approximately 0.1.

The function g(x) can be interpolated with much fewer grid points if the
grid points are dense near the region x = 0.5 and sparse elsewhere. One
way to redistribute the grid is to uniformly place the grid points along the
curve so that the arc lengths of the curve between any two consecutive grid
points are the same. This is an example of grid redistribution based on the
equidistribution principle.
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Figure 5.1: Unmapped sinc interpolation of Eq. (5.2) using 160 grid points.
(A) Grid point distribution; (B) Error of the interpolation.
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The equidistribution principle is a method for placing the grid points,
{xj}N

j=1, so that the quantity
∫ xj+1

xj
M(x) dx is equally distributed [1]. The

function M(x) is referred to as the monitor function. The monitor function
can be any function which reflects some property of g(x). For arc length
equidistribution, M(x) =

√
1 + [g′(x)]2.

Explicitly defined mapping

Since a large variation of g(x), as shown in Fig. 5.1A, occurs at a narrow
region near x = 0.5, a high concentration of grid points is required in order
to describe the behaviour of g(x) correctly. A hyperbolic sine mapping [8],
Eqs. (4.17c), (4.18c), and (4.19), with u1 = xmin, uN = xmax and b2 ≈ 0.5
will redistribute a uniform grid towards x = 0.5. The optimization of the
mapping parameters ŝ and b2 can be done by the equidistribution principle.
I propose a new monitor function

M(x; α) =
√

1 + α|g(x)|+ α|g′(x)| (5.3)

which includes the contribution from the magnitude of both the value of
g(x) and its derivative. The parameter α controls the level of grid redistri-
bution between the regions where g(x) ≈ 0 and g′(x) ≈ 0, and the regions
where the magnitude or the derivative of g(x) is large.

Based on the equidistribution principle, the grid should be set up in a
way that the quantity

∫ xj+1

xj
M(x; α) dx is distributed as evenly as possible.

I therefore take the values of ŝ and b2 which minimize the function

E(ŝ, b2) =
N−1∑

j=1

(∫ xj+1

xj

M(x; α) dx

)2

where the physical grid is defined by xj = ρ−1(uj). The integrals and the
minimization are evaluated by Riemann sum and steepest descent, respec-
tively.

For the interpolation of g(x), the above procedure yields the values
ŝ = 0.115 and b2 = 0.498 when α = 100 and N = 18. Figures 5.2A and
5.2B show the interpolation of g(x) and its error. The maximum error with
18 points under the sinh transformation is comparable to the error with 160
equally spaced grid points shown in Fig. 5.1B.
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Figure 5.2: Sinc interpolation of Eq. (5.2) with hyperbolic sine mapping
using 18 grid points. (A) Grid point distribution; (B) Error of the interpo-
lation.
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Implicitly defined mapping

An appropriately distributed grid can be constructed directly by the equidis-
tribution principle without a predefined mapping function such as the hyper-
bolic sine function used above. This idea has been widely used in the finite
difference and finite element [4,9], and I attempt to apply it to pseudospec-
tral methods. Since the mapping is constructed implicitly, it is referred to
as an implicit mapping [1]. First, a reference grid {x̂j}N

j=1 is constructed by
satisfying ∫ x̂j+1

x̂j

M(x;α) dx =
1

N − 1

∫ xmax

xmin

M(x;α) dx (5.4)

for all k with x̂1 = xmin and x̂N = xmax. To simplify the evaluation of
the integrals, M(x;α) can be considered as a piecewise constant function
approximating Eq. (5.3).

The reference grid can be used directly for a finite difference method.
For the pseudospectral method, however, a differentiable mapping function
ρ(x) is required. By defining Û(x) as a piecewise linear function joining the
points (x̂j , uj), the map ρ(x) is defined by fitting Û(x) by least squares. I
propose ρ(x) to be of the form

ρ(x) = x +
Nfit∑

n=1

cn sin
(

nπ
x− xmin

xmax − xmin

)
(5.5)

so that ρ(xmin) = xmin and ρ(xmax) = xmax. The sum on the right hand
side of Eq. (5.5) is analogous to a Fourier-sine expansion of order Nfit, and
one can take advantage of the orthogonality of sine basis when solving for
the coefficients cn.

The coefficients cn are found by minimizing the error function

E =
∫ xmax

xmin

{
[ρ(x)− Û(x)]2 + β[ρ′′(x)]2

}
dx,

where ρ(x) is given by Eq. (5.5) and β is a smoothing parameter. Smoothing
may be necessary to prevent any oscillation in ρ(x) produced after fitting.
Figure 5.3A shows that for β = 0, the fitting generates a lot of small oscil-
lations. The oscillations disappear, in Fig. 5.3B, when a small smoothing
β = 3× 10−5 is used. In both cases, N = 30, Nfit = 24, and α = 100.
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Figure 5.3: The reference grid x̂j (crosses) and the map ρ(x). The param-
eters are N = 30, Nfit = 24, and α = 100. (A) β = 0; (B) β = 3× 10−5.
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Because of the orthogonality of sine basis, the system of equations ∂E/∂cn =
0 are uncoupled. The coefficients cn therefore have an explicit form

cn = 2
(

xmax − xmin + β
π4n4

(xmax − xmin)3

)−1

×
∫ xmax

xmin

[Û(x)− x] sin
(

nπ
x− xmin

xmax − xmin

)
dx.

Since Û(x) − x is a piecewise linear function, the integral on the right side
can be evaluated analytically. The new physical grid, xj , is calculated nu-
merically by solving the equations ρ(xj) = uj .

The interpolation and its error are plotted in Fig. 5.4. The error with
30 points is similar to the errors for unmapped and explicitly mapped inter-
polation discussed above.

5.1.2 Interpolatory moving mesh

The method of adaptive grid and implicit mapping discussed in Section
5.1.1 provides an efficient method for interpolation as the distribution of the
grid is optimized based on the behaviour of the function being interpolated.
For a time-dependent function, it is possible to construct a grid for each
time step so the grid moves as the function evolves along time. The time-
dependent grid is referred to as a moving mesh. The moving mesh method
for initial value problems based on finite difference or finite element methods
has been widely studied in the context of fluid dynamics [4, 9]. In contrast,
similar adaptive methods for pseudospectral methods are seldom mentioned.

In this section, the implicit mapping of the grid discussed in Section 5.1.1
is applied to the solution of the time-dependent Smoluchowski equation in
Eq. (1.7). The eigenvalues of the same Smoluchowski operator were studied
in Chapter 2. For this time-dependent problem, a moving mesh method is
used to illustrate the effectiveness of the interpolation of the solution when
the initial condition and the steady-state solution have very different be-
haviours. The simplest type of moving mesh involves the construction of a
new grid based on the behaviour of the solution at each time step [14], and is
therefore referred to as the interpolatory moving mesh method. Since rein-
terpolation of the solution and reconstruction of the Smoluchowski matrix
operator is necessary with any change of the grid, to reduce computational
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Figure 5.4: Sinc interpolation of Eq. (5.2) with implicitly defined mapping
using 30 grid points. The parameters are Nfit = 24, α = 100, and β =
3× 10−5. (A) Grid point distribution; (B) Error of the interpolation.
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costs, a new grid is used only when it differs from the old grid by a signifi-
cant amount.

The self-adjoint form of the Smoluchowski equation given by Eq. (1.10)
is

∂p

∂t
=

ε

ν
√

P0

∂

∂x

[
P0

∂

∂x

(
p√
P0

)]
= LSp (5.6)

when P (x, t) =
√

P0(x)p(x, t). The solution p(x, t) is represented as an
interpolation

p(x, t) =
N∑

j=1

aj(t)
Cj(x)

ηj
, (5.7)

where aj(t) = √
ηjp(xj , t).

The initial condition is interpolated with the implicit mapping generated
from the monitor function in Eq. (5.3). The maps, the physical grids, and
the interpolating functions used at subsequent time steps tn are denoted by
ρ[n](x), x

[n]
j , and C

[n]
j (x), respectively. All other quantities required to be

redefined are denoted with [n]. The details for the discretization and time
integration of Eq. (5.6) are given in Appendix D.

The grid points x
[n]
j at tn are used to determine the solution p(x, t), Eq.

(D.2), at tn+1. Before proceeding to the next step tn+2, one needs to decide
whether a new grid is necessary. The decision is made based on the differ-
ence between the reference grid used to generate the current map ρ[n](x) and
the reference grid determined by the behaviour of the solution at current
time step tn+1.

Since the solution p at tn+1 given by Eq. (D.2) is defined on the grid
x

[n]
j , the monitor function can be considered as a piecewise function

M [n+1](x; α) =

[
1 + α̂

∣∣∣∣∣
p(x[n]

j+1, tn+1) + p(x[n]
j , tn+1)

2

∣∣∣∣∣

+ α̂

∣∣∣∣∣
p(x[n]

j+1, tn+1)− p(x[n]
j , tn+1)

x
[n]
j+1 − x

[n]
j

∣∣∣∣∣

] 1
2

for x
[n]
j < x < x

[n]
j+1 and j = 1, . . . , N − 1. Comparing with Eq. (5.3), the

second term is replaced by the midpoint values, and the third term is re-
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placed by the difference formula. Because the magnitude of p(x, t) changes
over time, a new parameter α̂ = α/[maxj p(x[n]

j , tn+1] is introduced to keep
the monitor function consistent at each time step.

The reference grid x̂
[n+1]
j is generated by the equidistribution principle

∫ x̂
[n+1]
j+1

x̂
[n+1]
j

M [n+1](x; α) dx =
1

N − 1

∫ xmax

xmin

M [n+1](x;α) dx (5.8)

as in Eq. (5.4). If the difference between the reference grids x̂
[n+1]
j deter-

mined by Eq. (5.8) and the reference grid x̂
[n]
j used at the previous time step

is small, i.e.

max
j

∣∣∣x̂[n+1]
j − x̂

[n]
j

∣∣∣ ≤ ∆x̂

for some tolerance level ∆x̂, no new grid is required. One will therefore set
x

[n+1]
j = x

[n]
j , ρ[n+1](x) = ρ[n](x), a

[n+1]
j (tn+1) = a

[n]
j (tn+1), and copy the

values of all other quantities with [n] to [n + 1]. The values of x̂
[n+1]
j found

by Eq. (5.8) will be abandoned, and will be set to x̂
[n+1]
j = x̂

[n]
j .

On the other hand, if maxj

∣∣∣x̂[n+1]
j − x̂

[n]
j

∣∣∣ exceeds the tolerance level,

x̂
[n+1]
j is used to construct ρ[n+1](x) as described in Section 5.1.1, and a new

physical grid x
[n+1]
j is generated. All other quantities associated with x

[n+1]
j

are require to be updated. The solution p(x[n+1]
j , tn+1) is interpolated by

p(x[n+1]
j , tn+1) =

N∑

i=1

a
[n]
i (tn+1)√

η̂
[n]
i

C
[n]
i (x[n+1]

j )

and the updated expansion coefficient set to a
[n+1]
j (tn+1) =

√
η̂

[n+1]
j p(x[n+1]

j , tn+1).

The following example illustrates the use of moving mesh for solving
Eq. (5.6) in the case ε = 0.1 and ν = 1. The initial condition P (x, 0) =
G(x; 0.5, 0.02) is considered, where G is the Gaussian function defined in
Eq. (5.1). The parameters used for the moving mesh are xmin = −2.2,
xmax = 2.2, α = 20, β = 10−4, Nfit = 24, and ∆x̂ = 0.01(xmax − xmin).
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Figure 5.5: Solution of the Smoluchowski equation by interpolatory moving
mesh method. The distribution of grid points is plotted under each graph.
(A) t = 0; (B) t = 0.1, (C) t = 1.6, (D) t = 25.6.
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Figure 5.7: The error of the solution of Smoluchowski equation for in-
terpolatory moving mesh method (N = 40) and unmapping sinc method
(N = 141). (A) t = 1.6; (B) t = 25.6.
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The solution with N = 40 and ∆tn = 0.01 is shown in Fig. 5.5 with
the grid distribution shown underneath. The dashed curve in Fig. 5.5D rep-
resents the steady state solution P0(x). Figure 5.6 shows the distribution
of the moving grid points at any time step. The sawtooth behaviour of the
curves suggests that the grid is not updated at every time step. In fact, there
are only 64 grid updates among 10000 time steps from t = 0 to t = 100 with
the chosen tolerance level ∆x̂.

The accuracy of the moving mesh solution with 40 grid points is com-
pared with the solution calculated by 141 unmapped grid points in Fig. 5.7
at t = 1.6 and 25.6. Since the exact solution is unknown, a reference solu-
tion, denoted by Pref(x, t), solved by using 701 unmapped points is used for
measuring the accuracy of both solutions. The value of the moving mesh
solution at the reference grid points are found by interpolation. On the
other hand, the grid points of the unmapped solution coincide with the grid
points of Pref(x, t), and no interpolation is necessary. The larger error of
the moving mesh solution for x < 0 shown in Fig. 5.7A is due to the much
farther separation of grid points in the region than those grid points in the
unmapped solution. The overall accuracy of the moving mesh solution with
40 points, however, is better than the unmapped solution with 140 points
because the initial condition P (x, 0) is more accurately interpolated with
mapping.

5.1.3 Eigenvalues of the Smoluchowski and Kramers
equation

Smoluchowski equation

It has been shown in Chapter 4 that mapping is an efficient method for
calculating the eigenvalues of highly diffuse states of the Schrödinger equa-
tion. In this section, I will demonstrate the use of implicit mapping for
the evaluation of eigenvalues of the Smoluchowski, Eq. (1.7), and Kramers
equations, Eq. (1.6). Transformation of grid points is effective for small ε
because the structure of these eigenfunctions are localized. The value used
in this section is ε = 0.001.

The eigenvalues λm of the Smoluchowski operator LS in Eq. (5.6), LSψm(x) =
λmψm(x), are evaluated by finding the eigenvalues of the discretized matrix
LS given by Eq. (D.1) without [n]. For implicit mapping, a preliminary
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estimation of the grid distribution is required as explained in Section 5.1.1.
This estimation requires the knowledge of the regions which the structure
of the eigenfunctions ψm(x) are localized.

The information for constructing the grid can be provided by very rough
sketches of the eigenfunctions. To get the rough sketches, the eigenvalue
problem is solved in the first place by a low order unmapped sinc method.
With u = ρ(x) = x, the uniform grid uk is used for constructing the Smolu-
chowski matrix operator. In this example, N = 20 uniform grid points in
the interval [−1.2, 1.2] are used. Among the eigenfunctions found by L̃S

ij ,
two of them used for the grid estimation are shown in Figs. 5.8A and 5.8B.
These sketches of eigenfunctions are denoted by ψ̃A(x) and ψ̃B(x), and are
scaled to a maximum value of 1. The reference grid x̂j is found by Eq. (5.4)
with the piecewise constant monitor function

M(x; α) =

[
1 + α

∣∣∣∣∣
ψ̃(uj+1) + ψ̃(uj)

2

∣∣∣∣∣ + α

∣∣∣∣∣
ψ̃(uj+1)− ψ̃(uj)

uj+1 − uj

∣∣∣∣∣

] 1
2

for uj < x < uj+1 and j = 1, . . . , N − 1. Compared with Eq. (5.3), the sec-
ond term is replaced by the midpoint value, and the third term is replaced
with the difference formula. The parameters used to construct the maps
ρ(x) are α = 100, β = 10−5 and Nfit = 12. Figures 5.9A and 5.9B shows
the maps ρA(x) and ρB(x) generated by ψ̃A and ψ̃B, respectively. A third
map ρC(x) generated by ψ̃C(x) = ψ̃A(x) + ψ̃B(x) and scaled to a maximum
value of 1 is also shown in Figs. 5.8C and 5.9C.

Tables 5.1 and 5.2 show the eigenvalues with six significant figures found
by the three mappings. The unmapped results are also included for compar-
ison. For ρA(x), most of the grid points are concentrated in the vicinity of
x = 0. Since the eigenfunctions ψ3, ψ4, ψ7, and ψ8 have their main structure
near x = ±1, the corresponding eigenvalues are not found with ρA(x). On
the other hand, the eigenfunctions ψ2, ψ5, ψ6, ψ9, and ψ10 have structure
localized near x = 0, the same map can calculate the corresponding eigen-
values very efficiently.

The same argument applies to ρB(x) which the grid points are localized
in the vicinity of x = ±1. This map can produce the eigenvalues λ3, λ4, λ7,
and λ8. It is worth noting that using this map will require approximately
two times the number of grid points than the map ρA(x) in order to calculate
the eigenvalues to six significant figures. The reason is that the grid points

145



Chapter 5. Conclusions and future directions

-1 0 1
x

-0.4

0

0.4

0.8

1.2

A

p̃
A
(x

)

-1 0 1
x

-0.4

0

0.4

0.8

1.2

B

p̃
B
(x

)

-1 0 1
x

-0.4

0

0.4

0.8

1.2

C

p̃
C
(x

)

Figure 5.8: Eigenfunctions of Smoluchowski equation solved by unmapped
sinc method with 20 grid points. (A) and (B) two eigenfunctions; (C) sum
of the two eigenfunctions.
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Table 5.1: Eigenvalues of Smoluchowski operator for ε = 0.001 evaluated
using different mappings.

N λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

ρA(x)
12 -1.006404 -2.47368 -3.41230 -7.30289 -8.52820
14 -0.997546 -2.10652 -3.20082 -5.19971 -6.26385
16 -0.997455 -2.00468 -2.99653 -4.31843 -5.33439
18 -0.996985 -1.98875 -2.97411 -4.01143 -4.99822
20 -0.996982 -1.98789 -2.97266 -3.95399 -4.92765
22 -2.97265 -3.95118 -4.92340
24 -4.92337
26 -4.92340

ρB(x)
20 -2.52936 -2.54618 -4.34540 -4.59095
24 -1.99579 -2.03057 -4.65541 -4.74760
28 -2.00692 -2.03016 -3.98030 -3.99223
32 -1.98212 -1.99033 -3.99228 -4.00816
36 -1.98927 -1.98852 -3.95093 -3.95251
40 -1.98806 -1.98805 -3.95217 -3.95238
44 -1.98789 -1.98789 -3.95124 -3.95139
48 -3.95118 -3.95118
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Table 5.2: Eigenvalues of Smoluchowski operator for ε = 0.001 evaluated
using different mappings.

N λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

ρC(x)
24 -1.021761 -2.40046 -2.36432 -2.86485 -3.70659 -4.41502 -4.67242 -8.34631 -9.07370
28 -1.001783 -2.07855 -2.12363 -2.32266 -3.24054 -4.72207 -4.69602 -6.04777 -7.12278
32 -0.997608 -2.00221 -1.99835 -2.08958 -3.03982 -4.03080 -4.10496 -4.85710 -5.69441
36 -0.997030 -1.99828 -2.00395 -2.01674 -2.98359 -3.98455 -3.97918 -4.27327 -5.14256
40 -0.996984 -1.98830 -1.98911 -1.99162 -2.97353 -3.97021 -3.97626 -4.03525 -4.96543
44 -0.996982 -1.98797 -1.98796 -1.98829 -2.97266 -3.95165 -3.95320 -3.96388 -4.92591
48 -1.98817 -1.98799 -1.98790 -2.97265 -3.95134 -3.95132 -3.95221 -4.92318
52 -1.98807 -1.98792 -1.98789 -3.95143 -3.95137 -3.95121 -4.92337
56 -1.98788 -1.98789 -3.95125 -3.95124 -3.95118 -4.92339
60 -1.98789 -3.95119 -3.95119 -4.92340
64 -3.95118 -3.95118

unmapped
40 -1.009628 -2.60022 -2.63149 -2.40029 -3.39238 -7.66165 -7.58504 -6.01067 -6.96642
48 -0.998489 -2.59873 -2.57044 -2.08817 -3.07145 -4.53141 -4.52771 -4.73743 -5.69731
56 -0.997096 -2.03357 -2.02456 -2.00389 -2.98787 -4.56529 -4.59437 -4.16818 -5.13911
64 -0.996987 -2.02917 -2.03092 -1.98931 -2.97401 -4.21517 -4.18406 -3.98992 -4.96098
72 -0.996982 -2.00925 -2.00198 -1.98796 -2.97272 -3.96703 -3.96886 -3.95542 -4.92706
80 -1.98808 -1.98807 -1.98789 -2.97265 -3.97783 -3.97444 -3.95138 -4.92359
88 -1.98949 -1.98834 -3.95461 -3.95325 -3.95118 -4.92340
96 -1.98741 -1.98792 -3.95144 -3.95140
104 -1.98789 -1.98789 -3.95139 -3.95125
112 -3.95118 -3.95118
120 -3.95117
128 -3.95118
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associated with ρB(x) are concentrated in two different regions, while grid
points associated with ρA(x) are only concentrated in a single region.

In order to have grid points concentrated in all three regions x = 0,±1,
the map ρC(x) is found by using ψ̂C = ψ̂A + ψ̂B, shown in Fig. 5.8C, which
has characteristics in all three regions. In this case, all eigenvalues can be
found. It requires more grid points than the previous two cases because grid
points are distributed in three regions. Nevertheless, much fewer grid points
are needed for the map ρC(x) than without mapping, as shown in Table 5.2.

Kramers equation

It can be easily verified that the equilibrium solution of Kramers equation
in Eq. (1.6) is

Peq(x, y) = Kxy exp
[
−1

ε

(
y2

2
+ U(x)

)]

where Kxy is the normalization constant. Since Peq(x, y) can be written
as Peq(x, y) = K exp(−y2/2ε)P0(x) for some constant K, where P0(x) =
Kx exp(−U(x)/ε) for some constant Kx is the equilibrium solution of the
Smoluchowski equation, the solution P (x, y) can be expanded in the same
way as in Smoluchowski equation for x, and in scaled Hermite functions
orthogonal with respect to the weight function w(y) = exp(−y2/2ε) for y.
By setting P (x, y) =

√
P0(x)p(x, y), Eq. (1.6) becomes

∂p

∂t
= − P ′

0

2P0
yp− y

∂p

∂x
+ ν

∂

∂y
(yp) + U ′ ∂p

∂y
+ νε

∂2p

∂y2
= LKp (5.9)

We consider the expansion of p(x, y) as

p(x, y) =
Nx∑

i=1

Ny∑

j=1

aij
Ci(x)√

ηi

CHerm
j (y)√
ηHerm

j

(5.10)

where aij =
√

ηiηHerm
j p(xi, yj), ηHerm

j = wj/w(yj), CHerm
j (y) are the scaled

Hermite interpolating functions

CHerm
j (y) =

√
w(y)
w(yj)

N∏

k=1
k 6=j

y − yk

yj − yk
,
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w(y) = exp(−y2/2ε), yj and wj are the quadrature points and weights asso-
ciated with the scaled Hermite polynomials orthogonal with respect to w(y).

For the eigenvalue problem LKψ(x, y) = λψ(x, y), I again use ψ̂A(x),
ψ̂B(x) and ψ̂C(x) from the Smoluchowski equation, Fig. 5.8, for constructing
the maps, in the x-direction, ρA(x), ρB(x) and ρC(x), respectively, Fig. 5.9.
In this example, the arclength monitor function is used,

M(x; α) =


1 +

(
α

ψ̃(xi+1)− ψ̃(xi)
xi+1 − xi

)2



1/2

for xi < x < xi+1 and i = 1, . . . , N−1. The parameters are α = 8, β = 10−4

and Nfit = 12.

Table 5.3 shows the number of grid points, in both the x and the y-
directions, required for the mapped and unmapped results to obtain the
eigenvalues with all significant figures shown in the table. The eigenvalues
are sorted by the real parts. In all mapped cases, significantly fewer grid
points are required to obtain the eigenvalues at the same accuracy than
without mapping.

5.2 Summary of results

The objective of the thesis was to demonstrate a unified approach on pseu-
dospectral methods for the solutions to the Fokker-Planck equation, Eq.
(2.1), and the Schrödinger equation, Eq. (2.3). Both the polynomial and the
sinc methods have been extensively discussed in the previous chapters. For
both polynomial and sinc collocation (SCM) methods, a mapping technique
was introduced to improve the performance of pseudospectral methods.

There are numerous pseudospectral methods widely used in quantum
chemistry: the discrete variable representation (DVR) introduced by Light
and coworkers [7], the Lagrange meshes introduced by Baye and cowork-
ers [3], and the quadrature discretization method (QDM) introduced by
Shizgal and coworkers [11]. Even though the origins and the philosophies of
these methods are different, their implementations are basically the same.
They are all based on orthogonal basis functions which can also serve as
interpolating functions, as discussed in Chapters 2 – 4. The grid points for
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Table 5.3: The number of grid points required to obtain the eigenvalues
correct to all significant figures given in the first column. The first and
second numbers in parentheses represents the number of grid points in x
and y-directions, respectively.

eigenvalue ρA(x) ρB(x) ρC(x) unmapped
λ2 −0.501144± 1.320455i (40, 10) (56, 10) (104, 10)
λ3 −0.501144± 1.320455i (40, 12) (56, 10) (104, 12)
λ4 −0.617431 (32, 20) (76, 20) (112, 20)
λ5 −0.998152 (40, 12) (60, 16) (112, 12)
λ6 −0.998152 (48, 14) (60, 16) (112, 12)
λ7 −1.00554± 2.63851i (40, 14) (52, 14) (104, 12)
λ8 −1.00554± 2.63851i (40, 14) (52, 14) (104, 12)
λ9 −1.23291 (36, 20) (84, 20) (112, 20)
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interpolation coincide with the points used in quadrature formulas. This
special property of the basis functions gives a very simple representation of
differential operators derived by the quadrature rule, yet the expansion of
the solution converges exponentially to the exact solutions. The mapping
introduced in Chapter 4 preserves the same orthogonality and cardinality,
and hence the mapped differential operators are closely related to the corre-
sponding unmapped differential operators but with redistributed grid points.

In Chapter 2, detailed comparisons of the QDM (polynomial method)
and SCM, both without mapping, were done. The motivation of this chap-
ter came from the overly acclaimed results for SCM demonstrated by Wei
[17, 18]. I have shown that unmapped SCM, with a uniform grid, does
provide exponential convergence for problems with infinite domains, but is
generally much less efficient than QDM for which the weight function, and
hence the quadrature points, can be tailored for specific problems. No expo-
nential convergence for SCM is observed with semi-infinite domains, such as
the electron relaxation problem discussed in Section 2.3. These observations
were not discussed by Wei.

Fokker-Planck equations can be converted to a Schrödinger equation
with a change of variable as discussed in [10, 12] and in Section 2.2. The
convergence of the eigenvalues for the Fokker-Planck equations and their
corresponding Schrödinger equations have also been discussed in Chapter 2
for QDM. The exponential convergence for QDM was illustrated in Section
2.7.

In Chapter 3, I provided for the Schrödinger equation a detailed com-
parison of the QDM with other polynomial pseudospectral methods such as
the Hermite and Laguerre polynomials. For QDM, the polynomials were
generated by the weight function which is chosen to be the square of the
ground-state eigenfunction, ψ0(x), of the Schrödinger equation. In this case,
ψ0(x) is represented exactly with the QDM, and the corresponding eigen-
value is exact. This representation provides a very rapid convergence rate
for the lower eigenstates. However, the convergence rate of the higher eigen-
values can be improved by introducing scaling and translations of the grid
points. For example, we observed that for the vibrational states of I2, it
requires less than 90 grid points with scaling and translation for the eigen-
value M = 50 to converge to machine accuracy, compared to 140 with the
original grid. This is shown in Fig. 3.2.
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In cases for which the exact ψ0(x) is unknown, a function that approx-
imates ψ0(x) can be used to construct the weight function. In Section 3.5,
the exact ψ0(x) for Ar2 was not given. However, the potential in Eq. (3.12)
can be nicely fitted by the Morse potential given in Eq. (3.8) with appro-
priate parameters. Hence, the ground-state eigenfunction for the Morse
potential, Eq. (3.10), is expected to be close to ψ0(x), and is a good choice
for the construction of the weight function. The convergence rates of the
eigenvalues shown in Fig. 3.3 using this weight function were considerably
faster than with other classical weight functions such as the Laguerre basis.
The idea of using such a substitution for the weight function was further
illustrated in the example of the Woods-Saxon potential. The ground state
eigenfunction for the square well potential, Eq. (3.14) was used for con-
structing the weight function. Despite the fact that this eigenfunction was
piecewise defined with discontinuous second derivative, the resulting poly-
nomial expansion still gave fast convergence.

Chapter 4 served as an extension of Chapter 3 by considering non-linear
mappings instead of linear mappings, i.e. scaling and translation. The ap-
plications focused on the vibrational states of diatoms with various poten-
tials [2,15,16]. I have demonstrated that the exponential and the hyperbolic
sine mapping can dramatically improve the convergence for highly excited
loosely bound states. The eigenvalues for the six highest bound states of Cs2
shown in Table 4.3 could be calculated efficiently with the hyperbolic sine
mapping applied to QDM using the Morse ground-state eigenfunction given
in Eq. (4.23). The mapping gives even more accurate results for He2, for
which there is only one very loosely bound eigenstate. The hyperbolic sine
mapping applied to polynomials provided four significant figures as shown in
Table 4.5 with only 30 points. On the other hand, more than 400 points are
required without mapping. This improvement can be explained in Fig. 4.12
by the properly redistributed grid points that is achieved with the mapping.

Another issue discussed in Chapter 4 was the problem of ghost levels.
Ghost levels are spurious eigenvalues found by numerical methods which are
not physical eigenvalues within the spectrum of the Hamiltonian. The ghost
levels are results of the inexactness of the matrix elements of the Hamilto-
nian when integrals are evaluated by quadrature rules [19]. The ghost levels
can be eliminated, or at least moved from the discrete spectrum into the
continuum, if a more accurate quadrature rule is used. I have shown that,
for polynomials, ghost levels could be removed by using a sightly higher or-
der quadrature for evaluating the matrix elements. This can be easily done
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by merely considering the eigenvalues of a smaller submatrix at the upper
left corner of the original discretized matrix operator. For the applications
I have considered in Chapter 4, the required submatrices were at most two
rows and two columns smaller than the original matrix. Hence, the impact
of the convergence rate was negligible.

The mapping of grid points discussed in Chapter 4 is equivalent to a
change of variables in a differential equation. Hence, mapping is a universal
technique and can be applied to many types of problems. The mapping itself
is not required to be either exponential or hyperbolic sine. One can con-
struct a mapping based on the behaviour of the eigenfunctions. For example
in the Schrödinger equation, the formulas given in Eqs. (4.9), (4.12), and
(4.16) can be used with any type of mapping. The choice of the mapping
can be based on the behaviour of the potential function.

Section 5.1 introduced methods for the construction of efficient mapping
for the interpolation of a function based on the equidistribution principle.
The resulting grid points are placed so that some property of the function,
such as the arc length, is distributed over the grid as evenly as possible.
Suitable parameters of explicitly defined mapping, for example Eq. (4.17b)
or (4.17c) used in Chapter 4, can be determined by the equidistribution
principle. The mapping can also be constructed implicitly from a reference
grid generated directly by the equidistribution principle using a least squares
fit.

Mapping is particularly useful when the function has localized behaviours
such as the function given in Eq. (5.2). I have shown in Figs. 5.1, 5.2, and
5.4 that interpolation over mapped grids requires significantly fewer grid
points than over a uniform grid. The idea of implicit mapping can also be
used in time-dependent problems for which the grid moves as the function
evolves over time, as shown in Figs. 5.5 and 5.6. I have also applied the im-
plicit mapping to eigenvalue problems such as Fokker-Planck and Kramers
equations. The improvements due to the mapping for time-dependent and
eigenvalue problems are illustrated in Fig. 5.7 and Tables 5.1 – 5.3.
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5.3 Future directions

The interpolation with implicit mapping based on the equidistribution prin-
ciple can be applied to a wide range of functions. The quality of interpolation
depends on the choice of the monitor function and the construction of the
mapping function. A detailed analysis on the choice of the monitor function
for different situations can be one of our future tasks. The construction of
the mapping function also requires a deeper study. Using Eq. (5.5) as the
form of the mapping function will lead to unwanted oscillations, as shown
in Fig. 5.3A. With a smoothing parameter β, the oscillations can be di-
minished, but the resulting mapping function will not be as close to the
original reference grid as before. This problem can be seen in Fig. 5.3B,
when the function does not follow the points (crosses) closely in the flat re-
gion u ∈ [0, 1.5]. Therefore, another way to construct the mapping function
could be with splines or parametric representations.

In the interpolatory moving mesh method, the x-direction of the solution
p(x, t) is interpolated on a grid which changes with the bahaviour of the so-
lution. It is therefore expected that the interpolation is much more efficient
than with a non-evolving grid. However, the time-integration is evaluated
by backward Euler method, and the error is generally expected to be poor.
Other methods such as the Runge-Kutta method can be used to improve
the accuracy of the solution, but numerical stability is an important issue
for forward methods. In the future, it will be important to find a method,
perhaps an adaptive method, for a more accurate time integration.

The moving mesh for finite difference and finite elements are usually done
without reinterpolation of the solution [4,5]. The time-dependent problem is
solved simultaneous with a moving mesh partial differential equation, which
is used to define new grid points at each time step. As a result, the solution
is automatically defined on new grids and reinterpolation is not needed. The
possibility of a similar algorithm for pseudospectral methods can be studied
in the future.

As shown in Tables 5.1 and 5.2, the implicit mapping for sinc method
can improve the convergence rate of eigenvalues over the unmapped sinc
method. However by comparing the results with Table 2.3, the QDM still
provides the best convergence rate for this particular problem. We would
like to study the performance of the implicit mapping with different types
of basis functions. It will also be useful to apply implicit mapping on other
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types of problems, including the vibrational energy problem discussed in
Chapter 4.

The simplest form of interpolation in two dimensions is to define the
interpolating functions as tensor products of 1D interpolating functions. A
function g(x, y) can be interpolated in the form

g(x, y) =
Nx∑

i=1

Ny∑

j=1

g(xi, yj)C
(x)
i (x)C(y)

j (y)

where C
(x)
i and C

(y)
j are 1D interpolating functions. In this case, any kind

of mapping will be done separately for each variable.

Two dimensional mapping will be studied in the future. The equidis-
tribution principle for 2D adaptive grids is discussed in Ref. 6. In order
to apply the adaptive grid to pseudospectral methods, a 2D mapping func-
tion is required. The construction of such a mapping function may involve
Fourier expansions, thin plate splines, or parametric representations. The
study of 2D mappings on moving mesh methods and eigenvalues problem
will start after the development of 2D mapped interpolation.
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Appendix A

Matrix Representation of the
Lorentz Fokker-Planck
Operator

We consider {Qn(x)}∞n=0 to be the set of polynomial orthogonal with respect
to a weight function w(x) = P0(x), i.e.

∫
w(x)Qm(x)Qn(x) dx = γnδmn,

where Qn(x) =
√

γnFn(x) and {Fn(x)}∞n=0 is a normalized set as defined in
Section 2.2. These polynomials satisfy the three-term recursion formula

Qn(x) = (x− αn−1)Qn−1(x)− βn−1Qn−2(x) (A.1)

for n ≥ 2, where Q0(x) = 1, Q1(x) = x− α0, αn = γ−1
n

∫
xw(x)[Qn(x)]2 dx

and βn = γn/γn−1. Qn(x) is an nth degree monic polynomial, for which the
coefficient of xn is unity.

The self-adjoint Fokker-Planck operator in Eq. (2.1) is given by

Lφm(x) =
1

w(x)
d

dx

[
w(x)B(x)

dφm(x)
dx

]
.

The matrix elements of the Fokker-Planck operator, Lmn, are thus

Lmn =
1√

γm−1γn−1

∫ ∞

0
Qm−1(x)

d

dx

[
w(x)B(x)Q′

n−1(x)
]

dx (A.2)

with normalization factors (γm−1γn−1)−1/2 in front. If the integral in Eq.
(A.2) is evaluated by parts, we get

Lmn = − 1√
γm−1γn−1

∫ ∞

0
w(x)B(x)Q′

m−1(x)Q′
n−1(x) dx, (A.3)

where the boundary terms are zero. Since L is self-adjoint, the matrix L is
symmetric as is clear from Eq. (A.3).

For the specific case of the Lorentz Fokker-Planck operator, A(x) =
2x2− 3, B(x) = x, we have that w(x) = x2 exp(−x2). Taking the derivative
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Appendix A. Lorentz Fokker-Planck Operator

of the term in square bracket in Eq. (A.2), and using xw′(x) = 2(1−x2)w(x),
we get that

Lmn =
3√

γm−1γn−1

∫ ∞

0
w(x)Qm−1(x)Q′

n−1(x) dx

− 2√
γm−1γn−1

∫ ∞

0
x2w(x)Qm−1(x)Q′

n−1(x) dx

+
1√

γm−1γn−1

∫ ∞

0
xw(x)Qm−1(x)Q′′

n−1(x) dx. (A.4)

It is sufficient to consider only the matrix elements for m > n because L
is symmetric. Since both Q′

n−1(x) and xQ′′
n−1(x) are polynomials of degree

n− 2 < m− 1, the first and third integrals in Eq. (A.4) vanish. To evaluate
the second integral, we expand x2Q′

n−1 in the Qn basis, thus we write

x2Q′
n−1(x) = bnQn(x) + bn−1Qn−1(x) + · · ·+ b0Q0(x). (A.5)

Hence, this integral vanishes when m > n + 1. For m = n + 1,

−2√
γnγn−1

∫ ∞

0
x2w(x)Qn(x)Q′

n−1(x) dx

=
−2bn√
γnγn−1

∫ ∞

0
w(x)[Qn(x)]2 dx = −2bn

√
βn. (A.6)

Since Qn(x) is a monic polynomial of degree n, the coefficient of xn in
x2Q′

n−1(x) is n− 1. So bn = n− 1. For m = n, the integral is given by

−2
γn−1

∫ ∞

0
x2w(x)Qn−1(x)Q′

n−1(x) dx

=
−2bn−1

γn−1

∫ ∞

0
w(x)[Qn−1(x)]2 dx = −2bn−1. (A.7)

We wish to express bn−1 in terms of the αk and βk in the three-term re-
currence relation in Eq. (A.1). We first express Qn(x) as the polynomial
Qn(x) =

∑n
k=0 An,kx

k, where the first three coefficients are An,n = 1,
An,n−1 = −∑n−1

k=0 αk and An,n−2 =
∑n−1

k=0

∑k−1
l=0 αkαl −

∑n−1
m=1 βm, so that

from the expansion in Eq. (A.5),

x2Q′
n−1(x) = (n− 1)xn + (n− 2)An−1,n−2x

n−1 + · · ·+ An−1,1x
2,

bnQn(x) = bnxn + bnAn,n−1x
n−1 + · · ·+ bnAn,0,

bn−1Qn−1(x) = bn−1x
n−1 + · · ·+ bn−1An−1,0.
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Equating the coefficients of xn−1 we get

bn−1 = (n− 2)An−1,n−2 − bnAn,n−1

= −(n− 2)
n−2∑

k=0

αk + (n− 1)
n−1∑

k=0

αk

= (n− 1)αn−1 +
n−2∑

k=0

αk.

It is understood that the sum is not considered when m = n = 1. Hence the
entries of the symmetric operator L for the Lorentz Fokker-Planck equation
is given by

Lmn =





−2(n− 1)αn−1 − 2
∑n−2

k=0 αk when m = n > 1,

−2(n− 1)
√

βn when m = n + 1,

−2(m− 1)
√

βm when m = n− 1,

0 otherwise.

(A.8)

The matrix operator L is given explicitly by

L =




0 0 0 0 0 0 · · ·
0 −4.9761 −1.3032 0 0 0 · · ·
0 −1.3032 −11.258 −3.1214 0 0 · · ·
0 0 −3.1214 −18.689 −5.3220 0 · · ·
0 0 0 −5.3220 −27.137 −7.8425

. . .

0 0 0 0 −7.8425 −36.505
. . .

...
...

...
...

. . . . . . . . .




.

(A.9)

It is clear that the off-diagonal elements of this tridiagonal matrix are
smaller than the diagonal elements and rapid convergence of the eigenvalues
is obtained [124]. The lower order eigenvalues, λ1 = 4.6834, λ2 = 10.113,
and λ3 = 16.430, are close to the diagonal elements.
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Appendix B

Matrix Representation of the
Fokker-Planck Operator for
the Bistable System

For the bistable system, A(x) = x3 − x and B(x) = ε. It follows that
the weight function is w(x) = exp(−(x4/4− x2/2)/ε), and w′(x) = −(x3 −
x)w(x)/ε. Since w(x) is even and the integrals are evaluated over (−∞,∞),
the coefficients αn are zero. Thus the polynomials Qn(x) are even when n
is an even number, and odd when n is an odd number. We use the same
notation as in Appendix A, but these are different polynomials. The matrix
elements in Eq. (A.2) are

Lmn = − 1√
γm−1γn−1

∫ ∞

−∞
(x3 − x)w(x)Qm−1(x)Q′

n−1(x) dx

+
ε√

γm−1γn−1

∫ ∞

−∞
w(x)Qm−1(x)Q′′

n−1(x) dx.

As in Appendix A, it is necessary to consider only m ≥ n. The second
integral always vanishes because Q′′

n−1(x) is a polynomial of degree n− 3 <
m− 1. For the first integral, the expansion in the Qn basis,

(x3 − x)Q′
n−1(x) = bn+1Qn+1(x) + bn−1Qn−1(x) + bn−3Qn−3(x)

+ · · ·+
{

b1Q1(x) for even n,

b0Q0(x) for odd n
(B.1)
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is used. If m = n + 2, then

− 1√
γn+1γn−1

∫ ∞

−∞
(x3 − x)w(x)Qn+1(x)Q′

n−1(x) dx

=
−bn+1√
γn+1γn−1

∫ ∞

−∞
w(x)[Qn+1(x)]2 dx

=
−bn+1√
γn+1γn−1

γn+1 = −bn+1

√
βn+1βn.

By the same argument as in Appendix A below Eq. (A.6), the coefficient of
xn+1 in (x3 − x)Q′

n−1(x) is n − 1, and therefore bn+1 = n − 1. If m = n,
then

− 1
γn−1

∫ ∞

−∞
(x3 − x)w(x)Qn−1(x)Q′

n−1(x) dx

=
−bn−1

γn−1

∫ ∞

−∞
w(x)[Qn−1(x)]2 dx = −bn−1.

To express the coefficient bn−1 in terms of βk, the expansion of Eq. (B.1) is
used. The representation of Qn is given below Eq. (A.7) in Appendix A.

(x3 − x)Q′
n−1(x) = (x3 − x)

[
(n− 1)xn−2 + (n− 3)An−1,n−3x

n−4 + · · · ]

= (n− 1)xn+1 + [(n− 3)An−1,n−3 − (n− 1)]xn−1 + · · ·
bn+1Qn+1(x) = bn+1x

n+1 + bn+1An+1,n−1x
n−1 + · · ·

bn−1Qn−1(x) = bn−1x
n−1 + · · ·

Equating the coefficients of xn−1 gives

bn−1 = [(n− 3)An−1,n−3 − (n− 1)]− bnAn+1,n−1

= −(n− 3)
n−2∑

k=1

βk − (n− 1) + (n− 1)
n∑

k=1

βk

= (n− 1)(βn + βn−1 − 1) + 2
n−2∑

k=1

βk. (B.2)
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The sum is ignored when n ≤ 2. Hence, the symmetric operator L is given
by

Lmn =





−(β2 + β1 − 1) when m = n = 2,

−(n− 1)(βn + βn−1 − 1)− 2
∑n−2

k=1 βk when m = n > 2,

−(n− 1)
√

βn+1βn when m = n + 2,

−(m− 1)
√

βm+1βm when m = n− 2,

0 otherwise,

(B.3)

where the βk recursion coefficients depend on ε as the weight function w(x)
depends on ε. The matrix operator L for ε = 0.1 is given explicitly by

L =




0 0 0 0 0 0 · · ·
0 −0.0101 0 −0.1407 0 0 · · ·
0 0 −1.9577 0 −0.4024 0 · · ·
0 −0.1407 0 −2.0518 0 −0.5967

. . .

0 0 −0.4024 0 −3.9122 0
. . .

0 0 0 −0.5967 0 −4.0964
. . .

...
...

...
. . . . . . . . . . . .




.

(B.4)

The matrix L is pentadiagonal, with zero off-diagonal entries. This result
was previously reported by Blackmore and Shizgal [21] but the derivation
was not provided. As discussed in this previous paper, these eigenfunctions
of odd and even parity do not couple. The matrix defined by Eq. (B.3) and
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Eq. (B.4) can be split into two matrices which are explicitly

Leven =




0 0 0 0 0 · · ·
0 −1.9577 −0.4024 0 0 · · ·
0 −0.4024 −3.9122 −0.9861 0 · · ·
0 0 −0.9861 −5.8627 −1.7090

. . .

0 0 0 −1.7090 −7.8079
. . .

...
...

...
. . . . . . . . .




, (B.5)

Lodd =




−0.0101 −0.1407 0 0 0 · · ·
−0.1407 −2.0518 −0.5967 0 0 · · ·

0 −0.5967 −4.0964 −1.2175 0 · · ·
0 0 −1.2175 −6.1445 −1.9673

. . .

0 0 0 −1.9673 −8.1968
. . .

...
...

...
. . . . . . . . .




.

(B.6)

The spectrum of the Fokker-Planck operator in terms of a set of singlet
and nearly degenerate triplets is clear from the structure of these matrices.
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Appendix C

Matrix Representation of the
Schrödinger Operator

If the weight function w(y) satisfies V (y) = V0(y) as defined in Eq. (2.4),
the self-adjoint Schrödinger operator in Eq. (2.3) is given by

Hψm(y) = − 1√
w(y)

d

dy

[
w(y)

d

dy

(
ψn(y)√

w(y)

)]
,

where the form is recognized as the self-adjoint form of a Fokker-Planck
operator with a diffusion coefficient equal to unity. Shizgal and Chen [168]
discussed the transformation of the Schrödinger equation to a corresponding
Fokker-Planck equation. When the basis {

√
w(y)Qn(y)}∞n=0, where Qn are

orthogonal polynomials satisfying Eq. (A.1), are used, the matrix elements
of the Schrödinger operator, Hmn are given by

Hmn =
1√

γm−1γn−1

∫ ∞

0
w(y)Q′

m−1(y)Q′
n−1(y) dy (C.1)

after evaluated by parts with vanishing boundary terms. To evaluate this
integral, we expand Q′

n−1 in the Qn basis, which gives

Q′
n−1(x) = Cn,0Q0(x) + Cn,1Q1(x) + · · ·+ Cn,n−2Qn−2(x)

for n ≥ 2. With the orthogonality relation, the integral in Eq. (C.1) is given
by

Hmn =
1√

γm−1γn−1

min(m−2,n−2)∑

k=0

Cm,kCn,k (C.2)

for m ≥ 2 and n ≥ 2. The matrix elements vanish for m = 1 or n = 1. In
principle, Cm,k can be expressed in terms of αk and βk, but the expressions
will be too complicated for practical use. The matrix operator H for the
electron relaxation problem is evaluated with a quadrature integration of
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Eq. (C.1) and is given by

H =




0 0 0 0 0 0 · · ·
0 4.7255 0.4163 0.3626 −0.1302 0.0750 · · ·
0 0.4163 10.246 0.6053 1.1485 −0.4904 · · ·
0 0.3626 0.6053 16.794 0.3615 2.4556 · · ·
0 −0.1302 1.1485 0.3615 24.491 −0.4420 · · ·
0 0.0750 −0.4904 2.4556 −0.4420 33.408 · · ·
...

...
...

...
...

...
. . .




. (C.3)

The matrix is diagonally dominant and rapid convergence of the eigenvalues
analogous to the rate with the matrix Eq. (A.9) is obtained and shown in
Fig. 2.1.

The matrix representation of the Hamiltonian operator for the bistable
system which yields the even eigenfunctions with the half-range basis func-
tions orthogonal with weight function we

b(y) = P0(y), y ∈ [0,∞), for ε = 0.01
is given by

Heven

=




0 0 0 0 0 0 · · ·
0 1.9204 0.3054 0.0137 −5.8(−8) 2.8(−7) · · ·
0 0.3054 3.7174 0.7557 0.0412 −5.2(−6) · · ·
0 0.0137 0.7557 5.3693 1.3264 0.0866 · · ·
0 −5.8(−8) 0.0412 1.3264 6.8363 2.0169 · · ·
0 2.8(−7) −5.2(−6) 0.0866 2.0169 8.0068 · · ·
...

...
...

...
...

...
. . .




.

(C.4)

The corresponding matrix representative of the Hamiltonian operator for
the bistable system which yields the odd eigenfunctions with the half-range
basis functions orthogonal with weight function wo

b (y) = y2P0(y), y ∈ [0,∞),
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for ε = 0.01 is given by

Hodd

=




0.0101 0.1405 0.0072 0 0 0 · · ·
0.1405 1.9960 0.4987 0.0263 −5.1(−5) 1.0(−5) · · ·
0.0072 0.4987 3.8705 0.9835 0.0588 −2.0(−4) · · ·

0 0.0263 0.9835 5.6186 1.5740 0.1078 · · ·
0 −5.1(−5) 0.0588 1.5740 7.2185 2.2626 · · ·
0 1.0(−5) −2.0(−4) .1078 2.2626 8.6342 · · ·
...

...
...

...
...

...
. . .




.

(C.5)

The matrix elements are calculated numerically with the integration of Eq.
(C.1). It is clear that both matrices are diagonally dominant and the rapid
convergence of the eigenvalues shown in Table 2.2 is understood.

The matrix representative of the Hamiltonian for vibrational states of
I2 modeled with a Morse potential and the basis functions defined by the
weight function in Eq. (C.1) is given by

(H− λ0I)× 106

=




0 0 0 0 0 0 · · ·
0 568.67 −32.293 1.4997 −0.0604 0.0022 · · ·
0 −32.293 1135.5 −78.973 4.2384 −0.1911 · · ·
0 1.4997 −78.973 1700.5 −136.56 8.2008 · · ·
0 −0.0604 4.2384 −136.56 2263.7 −203.25 · · ·
0 0.0022 −0.1911 8.2008 −203.25 2825.0 · · ·
...

...
...

...
...

...
. . .




in atomic units. As in the other model systems, this matrix representative
is diagonally dominant and the rapid convergence is anticipated.
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Appendix D

Moving mesh method for the
time dependent
Smoluchowski equation

The initial condition of the Smoluchowski equation, Eq. (5.6), is interpo-
lated with the implicit mapping generated based on the monitor function
in Eq. (5.3). The maps, the physical grids, and the interpolating functions
used at subsequent time steps tn are denoted by ρ[n](x), x

[n]
j , and C

[n]
j (x),

respectively. The discretization of Eq. (5.6) gives the Smoluchowski operator
matrix

LS
[n][ij] = − ε

ν

N∑

k=1

[
D

(1)
ki ρ′[n](x

[n]
k ) + ĝ[n](x[n]

k )δki

]

×
[
D

(1)
kj ρ′[n](x

[n]
k ) + ĝ[n](x[n]

k )δkj

]
, (D.1)

where D
(1)
ij is given by Eq. (2.6) and ĝ[n](x) = 1

2

[
ρ′′[n](x)/ρ′[n](x) + P ′

0(x)/P0(x)
]
.

With the quadrature weights η
[n]
j , the coefficients aj(t) from Eq. (5.7) asso-

ciated with x
[n]
j are denoted by a

[n]
j (t) =

√
η

[n]
j p(x[n]

j , t). Therefore, by using
the expansion

p(x, t) =
N∑

j=1

a
[n]
j (t)

C
[n]
j (x)√
η

[n]
j

,

the Smoluchowski equation in Eq. (5.6) becomes da
[n]
j /dt =

∑N
j=1 LS

[n][ij]a
[n]
j .

Based on the backward difference method, the coefficients a
[n]
j (t) are evalu-

ated by solving

a
[n]
i (tn) =

N∑

j=1

[
δij −∆tnLS

[n][ij]
]
a

[n]
j (tn+1) (D.2)
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for a
[n]
j (tn+1), where ∆tn = tn − tn−1. If a new grid is used at tn+1, i.e.

x
[n+1]
j 6= x

[n]
j , a

[n+1]
j (tn+1) has to be found. The solution of Eq. (5.6) and

(1.7) is therefore given by

p(x, tn) ≈
N∑

j=1

a
[n]
j (tn)√

η
[n]
j

C
[n]
j (x).

and P (x, tn) =
√

P0(x)p(x, tn), respectively.
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