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Abstract

A lattice tree is a finite connected set of lattice bonds containing no cycles. Lattice
trees are interesting combinatorial objects and an important model for branched
polymers in polymer chemistry and physics. In addition they provide an interesting
example of critical phenomena in statistical physics with similar properties to models
such as self-avoiding walks and percolation.

We use the lace ezpansion to prove convergence of the Fourier transform of
the r-point functions (quantities which count critically weighted trees containing r
fixed points) for a spread-out model of lattice trees in Z? for d > 8. Our results
therefore provide additional evidence in support of the critical dimension d. = 8.
The spread out model allows bonds between vertices =,y € Z¢ with ||z — y||e < L,
providing a small parameter L% needed for convergence of the lace expansion. We
extend the inductive approach (to the lace expansion on an interval) of van der
Hofstad and Slade [19] to prove convergence of the Fourier transform of the 2-point
function (r = 2). We then proceed by induction on r, equipped with the lace ex-
pansion on a tree [21]. Convergence of the r-point functions implies convergence of
certain expectations of the spread out lattice trees model formulated as a measure
valued process, to those of the canonical measure of super-Brownian motion. Ap-
pealing to the hypothesis of universality, we expect that the results also hold for the
nearest neighbour model. Our results together with the convergence of the survival
probability would imply convergence of the finite-dimensional distributions of our
process to those of the canonical measure of super-Brownian motion. Convergence
of the survival probability remains an open problem.
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Chapter 1

Introduction

This chapter serves as an introduction to the terminology, ideas and context of this
thesis. In Section 1.1 we discuss some of the motivation for this thesis and give a brief
outline of some of the relevant existing results. In Sections 1.2 and 1.3 we introduce
the model that we study and state the main result. We conclude this chapter by
defining some quantities that are the main focus of this thesis, and briefly discuss
how they are connected to the main result.

1.1 Background and motivation

A lattice tree in Z¢ is a finite connected set of lattice bonds containing no cycles
(see Figure 1.1). Lattice trees are an important model for branched polymers.
They are inherently combinatorial objects, so are of interest in combinatorics and
graph theory. As we shall discuss shortly, our model for lattice trees is relevant
to statistical physicists as a lattice model that exhibits a phase transition, with
the behaviour at criticality being of particular interest. We can also describe our
model as an example of a non-Markovian measure-valued process which converges

1

Figure 1.1: A nearest neighbour lattice tree in 2 dimensions.



(in dimensions d > 8) to a well known measure-valued Markov process in the scaling
limit. Thus our results are also appealing to probabilists and researchers interested
in stochastic processes.

1.1.1 Combinatorics and statistical physics

Lattice trees provide an interesting example of critical phenomena in statistical
physics with similar properties to models such as self-avoiding walks (a model for
linear polymers) and percolation. Let [, be the number of n-bond (nearest neigh-
bour) lattice trees that contain the origin. An elementary question in combinatorics
or graph theory would be “what is [,,7”. Even in two dimensions the answer is

3 ln+m ln lm :
not known for large values of n. However is known [24] that 52 > ‘alm jp al]

1
dimensions, and a standard subadditivity argument then shows that I — A > 0 as
n — 00. The bounds

1
c1n2lBRAY <[ < cana \T, (1.1)

were proved in [23] and [26] respectively. Using the notation f(z) ~ g(z) to mean

limg 00 Ti) = 1, it is widely believed that

Ip ~ CA"nt=9, (1.2)

where 6 is called a critical exponent for the model. Critical exponents convey infor-
mation about the macroscopic or asymptotic properties of the model. The exponent
0 is believed to depend on d, but not on the type of lattice or the type of bonds
allowed (provided modest regularity conditions such as symmetry and finite range
hold). An important example for our purposes is the unrestricted 2-point function,
Pp(T) = XoreT(a) p#T where T (z) is the set of lattice trees containing the origin and
z and #7T is the number of bonds in 7. The function p,(z) is a power series with
the coefficient of pV being the number of lattice trees containing 0 and z consisting
of N bonds. This power series has nontrivial radius of convergence p. = %, at which
it is believed that p(z) changes from having exponential decay in |z| for p < p. to
power law decay

C
Pp.(T) = [+’ as |z| — oo, (1.3)

where = represents some asymptotic behaviour that we do not state precisely at
present. This kind of fundamental change in the properties of the model at p = p,
is sometimes referred to as a phase transition.

The critical exponent 7 in (1.3) is also thought to depend on d, but not on
the type of lattice or bonds. This lack of dependence on the details of the model
is called universality, and models with the same critical exponents are said to be in



the same wuniversality class. It should be pointed out that universality is a widely
believed hypothesis in statistical physics rather than a rigorous mathematical theory.
However there are many rigorous examples which give evidence in support of the
hypothesis. Different critical exponents of a model are not independent of each
other, and may obey a scaling or hyper-scaling relation (if the relation includes the
dimension d) or inequality. A good source of information on critical exponents for
lattice trees (self-avoiding branched polymers) is [9].

Lattice trees are self-avoiding objects by definition (since they contain no
cycles). It is plausible that the self-avoidance constraint imposed by the model
becomes less important as the dimension increases in the following sense. We might
expect a randomly chosen branching lattice object in d dimensions and containing NV
bonds to be more likely to be self-avoiding as d increases. In fact there is considerable
evidence that for dimensions d > 8 the self-avoidance constraint is negligible in
terms of the macroscopic view of the model. It is believed that for d > 8 the
critical exponents cease to depend on the dimension and correspond to those of a
simpler model, that does not have the constraint. The simpler model is called the
mean-field model, and the dimension d. above which the constrained model has the
same macroscopic properties as the mean-field model is called the critical dimension.
Lubensky and Isaacson [25] proposed d. = 8 as the critical dimension for lattice trees
and animals.

There are few rigorous results for lattice trees for d < 8. The scaling limits
of many models in statistical physics in 2 dimensions are believed to be described
by a class of processes called Stochastic Loewner Evolution (SLE), [30]. The SLE
processes are candidates for the scaling limit of a model where the scaling limit is
believed to have a property called conformal invariance. The scaling limit of lattice
trees in 2 dimensions is not expected to have this property. Brydges and Imbrie
[4] used a dimensional reduction approach to obtain strong results for a continuum
(i.e. not lattice based) model for d = 2,3. Appealing to universality, we would
expect lattice trees to have the same critical exponents as the Brydges and Imbrie
model. More is known in high dimensions, where the asymptotic behaviour should
correspond to the mean-field model for lattice trees, branching random walk. Tasaki
and Hara [29] showed in the context of lattice animals that the finiteness of the
square diagram Y-, . . pp.(2)pp.(y — T)pp.(2 — Y)pp.(2) implies mean-field critical
behaviour for the susceptibility x(p) = ), pp(z). The same methods and results
apply to lattice trees. Hara and Slade [12], [13] proved the finiteness of the square
diagram for sufficiently spread-out lattice trees (and animals) for d > 8, and for the
nearest neighbour model for d > 8, as well as the mean-field critical behaviour of
various quantities. Hara, van der Hofstad, and Slade [11] proved for a sufficiently



spread out model that for d > 8, (1.3) holds with = 0. This is the same exponent
as for branching random walk. In [11] and this thesis the major tool of analysis is
a technique known as the lace expansion, (introduced by Brydges and Spencer [5]).
This technique is highly combinatorial in nature.

1.1.2 Probability and measure-valued processes

Most of the discussion in the following three paragraphs can be found in standard
graduate level probability texts, for example [3].

Fix a probability space (€2, F, P) and suppose that X; are independent iden-
tically distributed real valued random variables with mean 0 and finite variance o2,

and let S, = 3" | X;. A fundamental result in probability theory, called the cen-

tral limit theorem states that a% converges weakly to a standard Gaussian random

variable, Z. More precisely, defining probability measures i, (e) = P(a% € o), and
1 22

(o) = P(Z € o) = / e Tz, (1.4)

then u, == u. Convergence takes place in a metric space of probability measures
on R equipped with the weak topology (for example the Prohorov metric), M;(R),
so that p, == p if and only if for every bounded continuous f : R - R, [ f du, —
| f du. We use the notation E,[f(X)] = [ f dup where it is understood that X
is a random variable with distribution y. Therefore we can also write u, ==
p = E,[f(X,)] = E,[f(X)], for every bounded continuous f : R = R. To
prove weak convergence in R (convergence in the space of probability measures on R
with the weak topology) it is enough to show convergence of the Fourier transforms
E,, [e*%r] — E,[e*X] (or more traditionally E[eikfinﬂ] — E[e*?] = e‘g) to
that of the Gaussian. In other words the functions {fi(z) = €** : k € [—7, 7]}
constitute a convergence determining class. These results can easily be generalised
to R%-valued random variables. Note that the constraint that the X; be independent
identically distributed may be relaxed (for example X; stationary, ergodic with
E[Xp41|Fn] = 0) and the central limit theorem may still hold.

Setting Sy = 0, the collection {S,},>0 is a random walk on R, and writing
X = it\’}%, t > 0, defines a real-valued stochastic process {X}'};>0 that is right
continuous with left limits for each n, i.e. {X{};>0 € D(R). Define probability
measures f, on the Borel sets of D(R) by u,(e) = P({X{}i>0 € ®). Another fun-
damental result in probability states that p, == W, where W is Wiener measure.

It is perhaps more commonly said that {X/*};>¢ converges weakly to a continuous,
real valued stochastic process B; called Brownian motion, or that random walk con-
verges to Brownian motion in the scaling limit. To prove convergence in the space

4



of probability measures on D(R) (weak topology) it is enough to prove convergence
of the finite dimensional distributions and tightness. The {uy} are tight if for every
e > 0 there exists a compact K C D(R) such that sup,, un(K€) < e. Convergence
of the finite dimensional distributions by definition means that for every m € N,
t € [0,00)™, and every bounded continuous f : R™ — R,

E, [f(Xi,.... X0 )] = Ewl[f(By,--.,By,)] (1.5)

To verify (1.5), it is enough to show convergence of the corresponding Fourier trans-
forms E,,, Caaaal

Due to the independence of the X;, the process { X' };>0 is a Markov process.
That is, the future of the process is independent of the past given the present. Since
the increments (consider the X;) of the process also have mean 0, {X[};>o is a
martingale (E[ X}, |F'] = X{* where F]' = 0({X}}s<¢)). Brownian motion is also
a Markovian martingale. It has Hausdorff dimension d A 2 and is almost surely self-
avoiding in 4 or more dimensions. As such it is a sensible candidate for the scaling
limit of self-avoiding walk (neither Markovian nor a martingale) for d > 4. A result
of Hara and Slade shows that for d > 4, self-avoiding walk converges to Brownian
motion in the scaling limit. In this case tightness follows from a negative correlation
property of the model.

The following brief introduction to some important measure-valued processes
is described in more mathematical detail in Chapter 7. Let Y be a non-negative
integer-valued random variable with mean 1. Critical branching random walk in
d dimensions is a process that starts with a single particle at time 0 located at
the origin, and at each time n € N, each particle a alive at time n independently
gives birth to Y, 2 Y particles at independently and randomly chosen neighbouring
vertices and then dies instantly. It can be described by a measure-valued process
X,, where for each fixed time n, X, is a finite measure (X,, € My (R?%)) on the Borel
sets of R? with X,,(B) being the number of particles « alive at time n whose spatial
location is some z € B. In this way, a realisation of a measure-valued process
describes the evolution in time of the distribution of mass. The mean offspring
number of 1 is critical. It can be shown that this process dies out almost surely, but
that the expected time when this happens is infinite. The process is Markovian due
to the independence conditions and with the critical birth rate the process is also a
martingale.

In a similar way to what was done for the simple random walk case, we
can define the branching random walk process for all ¢ > 0, so that it is right
continuous with left limits. With appropriate scaling of space and time, criti-
cal branching random walk converges weakly (i.e. convergence in the space of



measures on D(Mp(R%))) to a measure-valued process X; called super-Brownian
motion (SBM). This is of course a statement that ul, == Ny for some measures
pl, € Mp(D(Mp(R?)) and some other measure Ny called the canonical measure of
super-Brownian motion (CSBM). Tightness of the measures p, can be verified us-
ing martingale methods. Now the support process {A;}:>0 (A; is the support of the
measure X;) of a SBM has Hausdorff dimension 4 A d and has no self intersections
in dimensions d > 8 (Ny almost everywhere). This is the appropriate way to say
that SBM is self-avoiding for d > 8.

Intuitively, by comparison with the self-avoiding walk results we might expect
that our critical lattice trees model (described as a measure-valued process with
appropriate scaling) converges weakly to CSBM in the same sense as branching
random walk, for d > 8. Studying a different but related limit conjectured by
Aldous [2], it was shown in [7] that sufficiently spread out lattice trees in dimensions
d > 8 converge to integrated super-Brownian ezcursion (ISE) as the total size of the
tree goes to infinity. ISE is a probability measure on probability measures on R?,
ie. T € My (Mi(R?)) which describes the distribution of the total mass of CSBM
(conditioned to be 1). ISE contains no information about time evolution, however
some results concerning ancestry were also proved in [7].

In this thesis, we prove convergence of the finite dimensional distributions
of an appropriately defined lattice trees process to those of CSBM, for d > 8. This
convergence is obtained by proving convergence of the Fourier transforms of relevant
quantities and using the existence of a certain exponential moment of CSBM. The
main tool used in the proof is the lace expansion, in the form of both (an extension
of) the inductive approach of [19] and the lace expansion on a tree of [21].

Tightness remains an open problem. The processes in question are neither
martingales nor Markovian, so many of the standard methods for proving tightness
do not immediately apply.

1.2 The model

We now present the basic definitions of the quantities of interest. We restrict our-
selves to the integer lattice Z<.

Definition 1.2.1.
1. A bond is a pair of distinct vertices in the lattice.
2. A cycle is a set of distinct bonds {vive,vovs, ..., v;_1v, 01}, for some | > 3.

3. A lattice tree is a finite set of vertices and lattice bonds connecting those
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Figure 1.2: A nearest neighbour lattice tree in 2 dimensions. The backbone from x
to y of length n = 17 is highlighted in the second figure.

vertices, that contains no cycles. This includes the single verter lattice tree
that contains no bonds.

4. Letr > 2 andlet z;, i € {1,...,r} be vertices in T. Since T contains no cycles
then there exists a minimal connected subtree containing all the x;, called the
skeleton connecting the x;. If r = 2 we often refer to the skeleton connecting
x1 to x9 as the backbone.

Remark 1.2.2. The nearest-neighbour model consists of nearest neighbour bonds
{z1, 29} with z1,79 € Z¢ and |71 — 22| = 1. Figure 1.2 shows an ezample of a
nearest-neighbour lattice tree in Z2.

We use Z, to denote the nonnegative integers {0,1,2,... }.
Definition 1.2.3.

1. For x € Z% let T, = {T : x € T}. Note that this set always includes the single
vertex lattice tree, T = {z} that contains no bonds. We also let Ty(z) = {T €
Ty : z € T}, and often write T (z) for To(z), the set of lattice trees containing
the vertices 0 and x.



Figure 1.3: A nearest neighbour lattice tree 7" in 2 dimensions with the set 7; for
1 = 10.

2. For T € Ty we let T; be the set of vertices = in T such that the backbone from
0 to = consists of © bonds. In particular for T € Ty we have Ty = {0}. A tree
T € Ty is said to survive until time n if T, # 0.

3. Forx = (z1,...,2r—1) € Z% 1D gnd i € Zq__l we we write X € T if x; € Ty,
for each i and define Ta(X) ={T € To: X € Ta}.

If we think of T' € Ty as representing a migrating population in discrete time,
then T; can be thought of as the set of locations of particles alive at time i. Figure
1.3 identifies the set Ty for a fixed T'. Similarly 75(X) can be thought of as the set
of trees for which there is a particle at z; alive at time n; for each 3.

In order to provide a small parameter needed for convergence of the lace
expansion, we consider trees taking “steps” of size < L for some large parameter L.
The steps are weighted according to a function D which is supported on [—L, L]¢
and which has total mass 1. Thus D represents a kind of step probability function.
We define this formally in the following subsection. The methods and results in this
paper rely heavily on the main results of [11] and [19]. Since the assumptions on
the model are stronger in [11], it is this finite range L, D spread out model that
we consider. The following definition and the subsequent remark are taken, almost
verbatim from [11].



Definition 1.2.4. Let h be a non-negative bounded function on R® which is piecewise
continuous, symmetric under the Z%-symmetries of reflection in coordinate hyper-
planes and rotation by 7, supported in [—1, 114, and normalised (f[fl,l]d h(z)diz =
1). Then for large L we define

h(z/L)
Y zezah(z/L)

Remark 1.2.5. Since Y, 7ah(z/L) ~ L using a Riemann sum approzimation
to f[—l,l]d h(z)d%z, the assumption that L is large ensures that the denominator of
(1.6) iis non-zero. Since h is bounded Y, zah(z/L) ~ L% also implies that

C
ﬁ.
We define 0> =Y |z[>?D(z). The sum Y. |z|"D(z) can be regarded as a Riemann
sum and is asymptotic to a multiple of L™ for r > 0. In particular o and L are

comparable. A basic example obeying the conditions of Definition 1.2.4 is given by
the function h(z) = 2*dI[_1,1]d (z) for which D(x) = (2L +1)™¢ Ii_p rjanza(z).

D(z) = (1.6)

1 D]lec < (1.7)

Definition 1.2.6 (L, D spread out lattice trees). Let Qp = {z € Z?: D(z) >
0}. We define an L, D spread out lattice tree to be a lattice tree consisting of bonds
{z,y} such that y —x € Qp.

The results of this thesis are for L, D spread out lattice trees in dimensions
d > 8. Appealing to the hypothesis of universality, we expect that the results
also hold for nearest-neighbour lattice trees. However from this point on, unless
otherwise stated, “lattice trees” and related terminology refers to L, D spread out
lattice trees.

Definition 1.2.7 (Weight of a tree.). Given a finite set of bonds B and a non-
negative parameter p, we define the weight of B to be

W,n0(B)= ][] rDW-=), (1.8)
{z,y}eB

with Wy, p(0) = 1. If T is a lattice tree we define
Wp,D(T) = Wp,D(BT)a (19)
where Bt is the set of bonds of T'.

Definition 1.2.8 (p(z)). Let
pp(x) = > W,n(T). (1.10)

TeT (x)



Clearly we have p,(0) > 1 for all L,p since the single vertex lattice tree
contains no bonds and therefore has weight 1. A standard subadditivity argument
[24] shows that there is a finite, positive p, at which ) p,(z) converges for p < p,
and diverges for p > p.. Hara, van der Hofstad and Slade [11] proved the following
Theorem.

Theorem 1.2.9. Let d > 8 and fiz v > 0. There exists a constant A (depending on
d and L) and an Ly (depending on d and v) such that for L > Ly,

,(d—8)A2 2
HO\ e @ ) + O ((|$\ \ 1)2_”> '

(1.11)
Constants in the error terms are uniform in both x and L, and A is bounded above

A
o2(|z| v 1)4-2

Ppc(T) =

uniformly in L.
We henceforth take our trees at criticality and write
W() = Wp,,n(-), and p(z) = pp,(z). (1.12)

Hara, van der Hofstad and Slade [11] also proved that p.p(0) <1+ O (L?*") and

Iw#O
<O | I+ : 1.13
o= ( : L2—v<|x|v1>“) 1

where the constants in the above statements depend on v and d, but not L.

1.3 A measure-valued process

Let Mp(R?) denote the space of finite measures on R? with the weak topology. For
each 7,n € N and each lattice tree T', we define a finite measure X Z’T € Mp(R?%) by

n

C
XZ’T:;l > b, (1.14)
x:/Conz€eT;

where 6,(B) = I ep for all B € B(R?). The constants C;,Cy depend on L and d
and will be stated explicitly later. Figure 1.3 shows a fixed tree T" and the set T; for
1 = 10. For this 7', the measure X ET assigns measure % to each vertex in the set

TIO/\/W = {.13 : \/@.’L‘ € Tl()}.

We extend this definition to all t € RT by

n

xpT=Xx00 (1.15)

n

10



Thus for fixed n, T, {X/*"} is constant on [£, 1),

For a Polish space (complete, separable metric space) E we let D(E) =
D(]0,00), E) denote the space of right continuous paths with left limits taking values
in E. Then D(E) equipped with the Skorokhod topology is also Polish ([8], Theorem
5.6). Let Mp(FE) denote the space of finite measures on a Polish space E. Then
Mp(E) equipped with the weak topology is also Polish ([6], statement 3.1.1.). Since

X = X7 for all ¢ € [4, 51 for each fixed n, T, {X;"} € D(Mp(R%)). The

n’ n
above discussion says that D(Mr(R?)) (with the appropriate topologies) is a Polish
space.
Next we must decide what we mean by a “random tree”. We define a prob-

ability measure P on the countable set Ty by P({T'}) = VZ(((;‘G), so that
w(T
P(B) = %, BC T (1.16)

Lastly we define the measures p, € Mp(D(Mpr(R?))) by
sin(H) = CynP ({T XM Y er, € H}) . HeB(DMp[®Y),  (117)

where B(E) denotes the Borel o-algebra on E and C3 is another constant that
will be stated explicitly later. We expect that u, == Ny, where Ny is the canonical
measure of super-Brownian motion. Convergence as a stochastic process follows from
convergence of the finite-dimensional distributions and tightness (see for example
[3] Theorems 8.1 and 15.1). The precise definition of this convergence is technical,
and thus we postpone its formalisation until Chapter 7. In particular, Ny (X, #
Opr) (where 037 denotes the zero measure) is finite but becomes infinite as € “\, 0.
Therefore it is natural to consider Ny on the set where extinction occurs after time
€.

We note in Chapter 7 that to prove the usual statement of convergence of
the finite-dimensional distributions we would require the asymptotics of the survival
probability P(T,, > 0). However without the survival asymptotics we prove the
Theorem 1.3.1, which is the main result of this thesis for probabilists (statistical
physicists may be more interested in Theorems 1.4.3 and 1.4.5), in which {Y;"}
denotes a process chosen according to the finite measure p, and {Y;} denotes super-
Brownian ezcursion, i.e. a measure-valued path chosen according to the o-finite
measure Ny. We also use Dr to denote the set of discontinuities of a function F.

Theorem 1.3.1. There exists Ly > 1 such that for every L > Lo, with u, defined
by (1.17) the following holds:

11



For every e, > 0, m € N, t € (e,00)™ and every F : (MF(Rd)m) - R
bounded by a polynomial and such that Ny (X}E Dr) =0,

(1) B [FEHYRW)] - B [FEY()],  and  (118)
(2) By, [F(%")I{nn(n»}] — En, [F(?E)I{Ys(lb)\}] : (1.19)

The factors in Theorem 1.3.1 involving the total mass at time ¢, are essentially
two ways of ensuring that our convergence statements are about finite measures. In
particular these factors ensure that there is no contribution from the no contribution
from processes with arbitrarily small lifetime.

As we have already noted in Section 1.1, it is often sufficient to prove results
such as (1.18-1.19) for a suitable class of test functions. For any measure p on RY
and ¢ : R* — C we define p(¢) = [pa ¢dp. In particular,

n n C
X7 (g) = / paxpT = / $() 6,
Re " i/nCrzet, U
z:v/nCoz€T ny

9 Y .

n
z:V/nCox€T |y

(1.20)

For k € [—m,7]¢, let ¢p(z) : Z¢ — C be defined by ¢i(z) = €**. We indirectly
prove the following Lemma, in Chapter 7.

Lemma 1.3.2. Suppose that for every r > 2, every k € RO-D4 and every t €
(0,00)"",

r—1 r—1
B, [TTY5(40,) | = Bro |T] Y (05, | - (1.21)
j=1 j=1

Then Theorem 1.3.1 holds.
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Note that for t € (0,00)""! we have,

r—1 r—1
1% (x,)| = CsnEe | [T X07(9))
j=1

J=1

CﬁZQZW Y e

TeT) J=lgz;:/nCax; ETLntjj
e - (1.22)
— 1 .
= W Z H Pk (z;) Z w(T)
cezdc=1 \j=1 TET] (%)
V/nCa
C3C77! ikt
~ ()2 2 eV S, W)
gezd(r=1) TeT | nz) (%)

This suggests that it might prove useful to examine the quantities ZTeTl 4 w(T).

1.4 The r-point functions

Definition 1.4.1 (2-point function). For ¢ >0, n € N, and z € R we define,

tn(z; Q) =¢" Y W(T). (1.23)

TETn(x)
We also define t,(z) = tp(z;1).

Definition 1.4.2 (Fourier Transform). Given an absolutely summable function
f:Z' > R, welet f(k) =Y., e**f(z) (k € [-m,7]!) denote the Fourier transform
of f.

In [19] the authors show that if a recursion relation of the form

n+1
frt1(k; 2) Z gm (k; 2) frnt1-m(k; 2) + eny1(k; 2) (1.24)

m=1

holds, and certain assumptions S, D, E, and G on the functions f,, ge and e, hold
then there exists a critical value z. of z such that f,(k,z.) (appropriately scaled)
converges (up to a constant factor) to the Fourier transform of the Gaussian density
as n — 00. In Appendix A we extend this result (based on the ideas of [18]) b,

generalizing assumptions £ and G according to a parameter p > 1, where the p = 1

13



case is that which is proved in [19]. Tn Section 3.2 we show that #,(k;¢) obeys the
recursion relation

n+1
tna1(5:0) = Y Rt (3 0)CpeD (k) s 1-m (k3 €) + Tt (k5), (1.25)
m=1

where 7, (x;¢) is a function that is defined in Section 3.2. After massaging this
relation somewhat, the important ingredients in verifying assumptions £ and G for
our lattice trees model are bounds on 7, using information about p(z) and % (k; ¢)
for | < m. The quantities 7,1 (k;() are defined using a technique known as the
lace expansion. The lace expansion is discussed in Chapter 2 and it enables us to
express mpy,—1 in terms of Feynman diagrams, that can be bounded using (1.13) and
bounds on ;f\l(k, ¢) for I < m. As in previous work already discussed, the critical
dimension d. = 8 appears in this analysis as the dimension above which the square
diagram
pPD0) =" px)ply — 2)p(z — y)p(2) (1.26)
I,Y,z

converges.

Ultimately we verify assumptions E, and G, for our lattice trees model with
p = 2 and thus the results of Appendix A are valid. The parameter { appears in
(1.4.1) as an additional weight on bonds in the backbone of trees T' € 7, (z). Those
trees are already critically weighted by p. (a weight present on every bond in the
tree) as described by Definition 1.2.7 and (1.12) and exhibit mean-field behaviour
in the form of Theorem 1.2.9. One might therefore expect a Gaussian limit for %,
with ( = 1.

The following theorem follows from the induction approach of Appendix A,
together with a short argument showing that the critical value of { obtained from
the induction is {, = 1.

Theorem 1.4.3. Fizd >8,t>0,v € (0,1A %) and 6 € (0, (1A %) —7). There
exists a positive Ly = Lo(d) such that: For every L > Lg there exist positive A,v
depending on d and L such that

~ k K2 k? k210 1
o (o) = et v 0 () o (S ) v g ),
el ( vaZn) n n? (ntv1)%° (27

with the error estimate uniform in 3k € R? : k2 < M , where C' = C(7) and
the constants in the second and third error terms may depend on L.

Based on Theorem 1.4.3 and (1.22), we choose Cy = vo? in (1.14).
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Figure 1.4: The unique shape a(r) for r = 2,3 and the 3 shapes for r = 4.

Definition 1.4.4 (r-point function). For r > 3, i € N'=1 and % € RU=1 e
define
thE) = > W(). (1.28)

TETa(X)

To state a version of Theorem 1.4.3 for r-point functions for » > 3 we need
the notion of shapes.

A shape is an abstract set of vertices and edges connecting those vertices.
The degree of a vertex v is the number of edges incident to v. Vertices of degree 1
are called leqves. Vertices of degree > 3 are called branch points. We are primarily
concerned with shapes that have a binary tree topology as follows. There is a unique
shape for 7 = 2 consisting of 2 vertices (labelled 0, 1) connected by a single edge.
The vertex labelled 0 is called the root. For r > 3 we have [[}_3(2j — 5) r-shapes
obtained by adding a vertex to any of the 2(r — 1) — 3 edges of each (r — 1)-shape,
and a new edge to that vertex. The leaf of this new edge is labelled r — 1. Each
r-shape has 2r — 3 edges, labelled in a fixed but arbitrary manner as 1,...,2r — 3.
This is illustrated in figure 1.4 which shows the shapes for » = 2, 3,4. Let ¥, denote
the set of r-shapes. We make the edges in a € 3, directed by directing them away
from the root.

By construction each r-shape has r — 2 branch points, each of degree 3. Thus
the unique shape for » = 3 (Figure 1.4) has 3 leaves and 1 branch point.

Given a shape a € ¥, and k € R4 we define #(a) € R34 45 follows.
For each leaf j in o (other than 0) we let E; be the set of edges in « of the unique
path in a from 0 to j. For [ =1,...,2r — 3, we define

r—1
ki(a) = ijI{leEj}- (1.29)
=1

Next, given o and 5 € ]Rfr_g) we define {(a) € ]RS:—U by

G0) =Y s (1.30)

lEEj
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Finally we define
Ri(a) = {5: ¢(a) = t}. (1.31)
This is an r — 2-dimensional subset of Rfr_?’). For r = 3 we simply have
Ri(a) = {(s,t1 — s,t0 — ) : s € [0,11 A ta]}. (1.32)
It is known [1] that for 7 > 2,0 < #; < ty--- < t,_1 and ¢x(7) = e*Z,

r—1
I1 X, (é%,) Z/ H R (1.33)
j=1

aEd,

For » = 3 this reduces to

A (‘91 52). s l(tl s) 2(t2 s)
— — —
0

2:d e 2 ds. (1.34)
Theorem 1.4.5. Fizd > 8, v € (0,1A %8) and 6 € (0, (1A %52) —v). There ezists

Lo = Lo(d) > 1 such that: for each L > Lg there ezists V =V (d,L) > 0 such that
Jor every & € (0,00)" D, r >3 R>0, and ||k|e < R,

k _ o r=277—2 42r—3 '“l(a)l
w( w%) n VT2 A Z H s+ 0 :

a€X,
(1.35)
where the constant in the error term depends on t,R and L.

)

Based on Theorem 1.4.5 we choose C; = V1472 and C3 = V Ap(0) in (1.14)
and (1.17). Theorem 1.4.5 is proved in Chapter 4 using the lace expansion on a tree
of [21]. The proof proceeds by induction on r, with Theorem 1.4.3 as the initializing
case. Lattice trees T' € T(X) can be classified according to their skeleton (recall
Definition 1.2.1). Such trees typically have a skeleton with the topology of some
«a € Y, and the lace expansion and induction hypothesis combine to give the main
contribution to (1.35). The relatively few trees that do not have the topology of
any a € Y, are considered separately and are shown to contribute only to the error
term of (1.35).

Theorems 1.4.3 and 1.4.5, combined with the observations (1.22) and (1.33)
verify the conditions of Lemma 1.3.2. Thus assuming Lemma 1.3.2, Theorems 1.4.3
and 1.4.5 are sufficient to prove the main result, Theorem 1.3.1. Lemma 1.3.2 and
Theorem 1.3.1 are proved in Chapter 7.
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Chapter 2

The lace expansion

The lace expansion on an interval was introduced in [5] for weakly self-avoiding walk,
and was applied to lattice trees in [12, 13, 7, 11]. It has also been applied to various
other models such as strictly self-avoiding walk, oriented and unoriented percolation
and the contact process. The lace expansion on a tree was introduced in [21] and
was applied to networks of mutually avoiding, SAW joined with the topology of a
tree. Our analysis requires some modifications to the definitions of connected graph
and lace given in [21]. In this chapter we follow [21] with some small modifications
and define the notion of a lace on a star-shaped network. In Section 2.1 we introduce
our terminology and define and construct laces on star shaped networks of degree
1 or 3. In Section 2.2 we analyse products of the form [] ,.\-[1 + Us] and perform
the lace expansion in a general setting. Such products will appear in formulas for
the r-point functions in Chapters 3 and 4.

2.1 Graphs and Laces

Given a shape a € %,, and 7 € N*’=3 we define N' = N (o, 77) to be the skeleton
network formed by inserting n; — 1 vertices into edge i of a, 1 = 1,...,2r — 3. Thus
edge 7 in a becomes a path of length n; in NV.

Fix a connected subnetwork M C A. The degree of a vertex v in M is the
number of edges in M incident to v. A vertex of M is a leaf (resp. branch point)
of M if it is of degree 1 (resp. 3) in M. A path in M is any connected subnetwork
M1 C M such that M; has no branch points. A branch of M is a path of M
containing at least two vertices, whose two endvertices are both leaves or branch
points of M, and whose interior vertices (if they exist) are not leaves or branch
points of M. Note that if ¥ € M; C M is a branch point of M; then it is also a
branch point of M but the reverse implication does not hold in general. Similarly
if v € My is a leaf of M then it is also a leaf of M7 but the reverse implication

17



o

Figure 2.1: A shape a € 3, for r = 4 with fixed branch labellings, followed by a
graph T on N («, (2,4,3,1,1)), and the subnetwork A,(T).

does not hold in general. Two vertices s,t are neighbours in M if there exists some
branch in M of which s, are the two endvertices (this forces s and ¢ to be of degree
1 or 3). Two vertices s,t of M are said to be adjacent if there is an edge in M that
is incident to both s and t.

For r > 3, let b denote the unique branch point of ' neighbouring the root.
If r = 2, let b be one of the leaves of N'. Without loss of generality we assume that
the edge in a (and hence the branch in ') containing the root is labelled 1 and we
assume that the other two branches incident to b are labelled 2,3. Vertices in N
may be relabelled according to branch and distance along the branch, with branches
oriented away from the root. For example the vertices on branch 1 from the root
0 to the branch point (or leaf if 7 = 2) b neighbouring the root would be labelled
0=(1,0),(1,1),...,(1,n1) =b.

Examples illustrating some of the following definitions appear in Figures 2.1-
2.2.

Definition 2.1.1.

1. A bond is a pair {s,t} of vertices in M with the vertex labelling inherited from
N. Let Epq denote the set of bonds of M. The set of edges and vertices of
the unique minimal path in M joining (and including) s and t is denoted by
[s,t]. The bond {s,t} is said to cover [s,t]. We often abuse the notation and
write st for {s,t}.

2. A graph on M is a set of bonds. Let Grq denote the set of graphs on M. The
graph containing no bonds will be denoted by (.

3. Let R = R denote the set of bonds which cover more than one branch point
of M. If r < 3 then R = 0 since in this case M C N cannot have more than
one branch point. Let QXAR ={T € Gm : TNRrp = 0}, i.e. the set of graphs
on M containing no bonds in R.
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Figure 2.2: A graph T’ € G(N) that contains a bond in R. The bond in R appears
darker. For simplicity, only the leaves and branch points of N are explicit.

4. A graph T' € Goq is a connected graph on M if, as sets of edges, Uger|s, t] =

M (i.e. if every edge of M is covered by some st € T'). Let G§J' denote the
set of connected graphs on M, and QXAR’CO" =g n QXAR.

con

. A connected graph T' € G{* is said to be minimal or minimally connected if
the removal of any of its bonds results in a graph that is not connected (i.e.

for any st € L', '\ st ¢ G§F*)-
. Given T' € Grpq and a subnetwork A C M we define I'|4 ={st €' : s,t € A}.

. Given a vertet v € M and T' € G we let Ay(T") be the largest connected
subnetwork A of M containing v such that T'| 4 is a connected graph on A.
Note that A could be a single vertex. In particular A,(0) = v.

. Let EY be the set of graphs T € QX,R such that Ap(T") contains a vertex adjacent
to some branch point b' # b of N. Note that this set is empty if r < 3, since
then N contains at most one branch point. Note also that if b is adjacent to
another branch point of N, then even () € Ejbv, since Ap(0) = b.

The existence of A, (T") is clear since if A; and Ay are connected subnetworks

of M containing v such that I'| 4, is a connected graph on A;, then A = A; U Ay
also has this property.

For A € {0,1,2,3}, i € N® let S”(#) denote the network consisting of A

paths meeting at a common vertex v, where path i is of length n; > 0 (contains

n; edges). This is called a star-shaped network of degree A. By definition of our
networks N (e, 77), with @ € N*"=3_ for any T € QX[R \ Sf{[, Ap(T') contains at most
one branch point and is therefore a star-shaped subnetwork of degree 3 (if it contains

a branch point), 2, 1, or 0 (if A,(T") is a single vertex). Since it contains no branch

point, a star shaped network S'(n) of degree 1 may be identified with the interval

[0, 7], and we can write S[0,n] for S'(n). Similarly a star-shaped network S?(nq,n2)
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Figure 2.3: Two graphs on each of S'(8) and S3(4,4,7). The first graph for each
star is connected. The second is disconnected. The connected graph on S3(4,4,7)
is a lace while the connected graph on S*(8) is not a lace.

of degree 2 may be identified with the interval [—ng,n1] and we can write S[—ng, n1]
for S?(n1,n2). Our main interest will be connected graphs on star-shaped networks.

Figure 2.3 shows graphs on each of S!(8) and S3(4,4,7). The first graph in
each case is connected, while the second is disconnected.

Definition 2.1.2. Fiz a connected subnetwork M C N. Let T € g;f’w" be given
and let v be a branch point of M. If M contains no branch points then we let v be
one of the leaves of M.

Let 1“’; C T be the set of bonds s;t; in I' which cover the vertex v and which
have an endpoint (without loss of generality t;) strictly on branch M, (i.e. t; is
a vertez of branch M. and t; # v). By definition of connected graph, T'Y will be

v,max

nonempty. From I'Y we select the set I'e for which the network distance from t;
to v is mazimal. We choose the bond associated to branch M, at v as follows:

1. If there exists a unique element of Te’™*" whose network distance from s; to v
is mazimal, then this s;t; is the bond associated to branch Mg at v.

2. If not then the bond associated to branch M. at v is chosen (from the elements

o™ whose network distances from s; to v are mazimal) to be the bond s;t;

with s; on the branch of highest label.

Definition 2.1.3 (Lace). A lace on a star shape S = S™(1), with it € N®, A €
{1,3} is a connected graph L € G such that:

o If st € L covers a branch point v of S then st is the bond in L associated to
some branch S, at v.

e If st € L does not cover such a branch point then L\ st is not connected.
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We write L(S) for the set of laces on S, and LN(S) for the set of laces on S
consisting of exactly N bonds.

Note also that the definition of a lace can be extended to star-shapes of higher
degree (e.g. see [21]) and even to more complex networks (for example networks with
general tree topology). However we do not require such generality for our analysis.

See Figure 2.3 for some examples of connected graphs and laces. We now
describe a method of constructing a lace Lt on a star-shaped network S of degree
1,2 or 3. Note that the only (connected) graph on a star-shape of degree 0 (i.e. a
single vertex) is the graph I' = () containing no bonds, and we define Ly = (.

Definition 2.1.4 (Lace construction). Let S be a star-shaped network of degree
1, 2, or 3. In the latter case, b is the branch point, otherwiseformer b denotes one
of the leaves of S. Fiz I € Q’gn’con. Let F' be the set of branch labels for branches
incident to b. For each e in F,

o Let s§t§ be the bond in I' associated to branch S at b, and let b be the other
endverter of Se.

e

o Suppose we have chosen {s§t$,...,s¢t¢} and that UL_,[s

Then we define

t¢] does not cover b,.

11 =max{t € Sc: 3 s € Se,s <p 1] such that st €'}, 2.1)
sfyq = min{s € S¢ : stj, | €T}, '

where max (min) refers to choosing t (s) of mazimum (minimum) network
distance from b. Similarly s <y t if the network distance from t to b is greater
than the network distance of s from b.

o We terminate this procedure as soon as be is covered by U._,[s¢t¢], and set
Lr(e) = {s{t{,...,s{t}.

Nezxt we define
Lr = UeerLr(e), (2.2)

and given a lace L € L(S) we define
C(L)y={ste Es\L:LLyss =L} (2.3)
to be the set of bonds compatible with L.

In particular if L € £(8) and if there is a bond s't’ € L (with s't' # st) which
covers both s and ¢, then st is compatible with L.

The following results are proved for star-shaped networks in [21] for the
different notion of connectivity. The proofs presented here are very similar.
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Proposition 2.1.5. Given a star shaped network S = S*(i1), A € {1,3}, and a
connected graph T' € G(S), the graph Ly is a lace on S.

Proof. By construction, every branch of S is covered by Lr so Lr is a connected
graph on S. Now suppose st € Lp covers the branch point (or leaf if A = 1) b of
S, with s € Se, t € Se (where ¢ = e if s =b or t = b). Then st was chosen as the
bond in I" associated to S, or S/, so in particular it is the bond in Lt associated to
S. or S.r. Now if st € L does not cover b then s and ¢ are on the same branch S,

€

for some e and so st = s{t¢ for some i. Now observe that if Lt \ st is a connected

€

graph on § then we would not have chosen s{t{ = st in the construction of Ly. [

Proposition 2.1.6. Let I € Q’gn’con. Then Lr = L if and only if L C T is a lace
and '\ L CC(L).

Proof. If Ly = L, then L is a lace by Proposition 2.1.5. By definition any bond
st € T'\ L that covers b is compatible with L since Ly contains the bond s't' in
I’ associated to each branch S, at b, and s't' is therefore also the bond in L U st
associated to S at b. Similarly if st € '\ L does not cover b then there are bonds in
Lr chosen from all bonds I to satisfy the optimal covering criteria (2.1). Therefore
these same bonds satisfy those criteria when choosing from bonds in Lt Ust, so that
L, = L and st is compatible with L.

For the reverse direction, let L C T" be a lace and I'\ L C C(L). Assume that

Lr # L. Then
(a) there exists st € Lr N (I'\ L) or
(b) there exists st € LN (I \ Lr).

For (a), if st € Lp N (I'\ L) covers the branch point then by definition of Ly it is
the bond in T" associated to some branch S,. Therefore for any lace L' C T, st is
the bond in L' U st associated to S, so st is not compatible with any lace L' C T.
Since st € I' \ L we have a contradiction. If st € Lr N (T'\ L) does not cover the
branch point then st = s{t{ for some e,i. Then for this fixed e there is a smallest
i such that s{tf € Lr N (I'\ L). Then this bond is not compatible with L and we
again have a contradiction.

For (b), since I'\ L C C(L), we must have that every bond in I' associated
to a branch S, is in L. Since L is a lace, these are the only bonds in L which cover
b and they are also in Ly by definition. Therefore the st € LN (I'\ Lr) must satisfy
s,t € Se, s,t # b. Since L is a lace, L \ st is not connected, and therefore since Lp
is a connected graph and st ¢ Lt there must exist s't' in Lr N (' \ L) and by case
(a) we have the result. O
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Figure 2.4: An illustration of the construction of a lace from a connected graph.

The first figure shows a connected graph I' on a star Sé”nhn?’ng). The intermediate

figures show each of the Lp(e) for e € Fj, while the last figure shows the lace Lr.

Figure 2.5: Basic examples of a minimal and a non-minimal lace for A = 3. For the
non-minimal lace, a removable edge is highlighted.

See Figure 2.4 for an example of a connected graph I' on a star-shaped
network of degree 3, and its corresponding lace Lr.

2.1.1 Classification of laces

Definition 2.1.7 (Minimal). A lace on S is said to be minimal if the removal of
any bond from the lace results in a disconnected graph on S.

A lace L on a star shape S of degree 1 or 2 is necessarily minimal by Defini-
tions 2.1.3 and 2.1.1. For a lace on a star shape of degree 3 this need not be true.
See Figure 2.5 for an example of a minimal and a non-minimal lace for A = 3. There
is a more general version of the following Lemma for laces on star-shaped networks
of higher degree, but we present only the results needed for our analysis.

Lemma 2.1.8. (a) For a star shaped network S of degree A € {1,2,3}, any min-
imally connected graph T' € G™(S) is a lace.
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Figure 2.6: Basic examples of a cyclic and an acyclic lace.

(b) For any non-minimal lace L € L(S3), there exists a bond st € L (that covers
the branch point) such that L\ st € L(S) and L\ st is minimal.

Proof. For (a), let I' € G°"(S), and let b be as in Definition 2.1.4. Let st € I" cover b
and suppose s € S, and t € S, where S, are branches of S (we may have e; = e2).
If st is not the bond in I' associated to Se; then I' \ st covers S,,. Therefore if st is
not the bond associated to either S, or S, then I'\ st covers S so that I is not
minimal. By Definition 2.1.3 this is enough to prove (a).

For (b), let L € £(S?) be non-minimal. Then there exists st € L such that
L\ st is connected. By Definition 2.1.3, st must be the edge in L associated to some
branch e, and in particular it covers the branch point. Since S® is a star shape of
degree 3 this means that L contains exactly 3 bonds covering the branch point. Now
observe that L \ st satisfies the definition of a lace, and contains exactly 2 bonds
covering the branch point. It follows immediately that L \ st is minimal since a
graph T’ with only 1 bond covering the branch point of S? cannot be a connected
graph on S3. O

As in part (b) of Lemma 2.1.8, a non-minimal lace contains a bond st that
is “removable” in the sense that L \ st is still a lace. In general such a bond is not
unique. One can easily construct a lace on a star shaped network of degree 3 for
which each of the bonds sit1,...,s3t3 covering the branch point satisfy L \ s;t; €
L(S).

Definition 2.1.9 (Cyclic). A lace on a star shaped network S3 is cyclic if the
edges covering the branch point can be ordered as {syty : k =1,...,3}, with tx and
Sg+1 on the same branch for each k (with sy identified with s1). A lace that is not
cyclic is called acyclic.

See Figure 2.6 for an example of this classification.
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2.2 The Expansion

Here we examine products of the form [[ ;g [l + Ust). Following the method of
[22] we can express such a product as

H [1+Ust] = H [1+Ust] - H [1 + Ust] (1 - H [1 + Ust]) . (2'4)

SteEE N steEA\R steEA\R steR

Define K(M) =] stEEM\R[l + Ust]. Expanding such a product we obtain, for each
possible subset of Exq \ R, a product of Uy for st in that subset. The subsets of
E i \ R are precisely the graphs on M which contain no elements of R, hence

S I Vst (2.5)

FEQXAR stel

where the empty product [] .4 Ust = 1 by convention. Similarly we define

JM)= > ] Us (2.6)

Feg;[R,con stel’

If M is a single vertex then J(M) = 1. If § is a star-shaped network of degree 1 or

3 then
-y Y Mw-Y o ¥ I v
LeL(S) re gen stel LeL(S) stel Tegyn: s't'er\L
Lr =1L Lr=1L
Z H Ust Z H U, sy = Z Z H Ust H []. + Us/t/],
LeL(S)steL  T'cC(L)s't' el N=1LeLN(S)steL  s't'eC(L)

(2.7)

where the second to last equality holds since for fixed L, {T' € G&" : Lt = L} =
{LUT’ : T" C C(L)} by Proposition 2.1.6. The last equality holds as in the discussion
preceding (2.5) since expanding [ [, cc(L) [14+Ugy| we obtain for each possible subset
of C(L), a product of U for st in that subset.

Recursion type expression for K (N)

Recall that N' = N («,7) where a € &, and 7 € N* 3 for some r > 2. If r = 2 then
let b be the root of N. Otherwise let b be the branch point neighbouring the root of
N. In each case let Sy, be the largest connected subnetwork of N containing b and
no vertices that are adjacent to any other branch points of N (S); could be empty
or a single vertex). Observe that for any graph I' € QX[R \ &%, the subnetwork Ay(T")
contains no branch point of N other than b (if » > 3) and hence is a star shape of
degree 0, 1 or 3.
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Definition 2.2.1. If M is a connected subnetwork of N then we define N\ M to be
the set of vertices of N that are not in M together with the edges of N' connecting
them. In general (N'\ M) UM contains fewer edges than N, and N'\ M need not
be connected. However if M C Sy, then N\ M has at most 3 connected components
(at most 1 if r = 2) and we write (N'\ M);, i = 1,2,3 for these components, where
we allow (N \ M); = 0.

Definition 2.2.1 allows us to write

KN = > J[U«+ > []Us

FEQX/R\EX/ stel Fegb stel’

- Z Z HUstH Z H Usivi + Z HUsta

ACSy: regym stel’ i=1 Fieg(j\/R\A)i sitieT; regk/, stel
be A

where the sum over A is a sum over connected subnetworks of A/ containing b

and no vertices adjacent to any other branch points of A'. Some of the (N \ A);

may be a single vertex or empty and we define Zri <Gy [Lii er, U,izi = 1. Defining
( ) = Zres” Hster st, we have

3

KWN) Y. JAT[EW\ A +EOW).
ACS,: i=1
be A

(2.9)

Depending on N, the first term of (2.9) may be zero since Sy, may be empty. The
fact that for any A contributing to this first term, the subtrees (N '\.A); are of degree
r; < r is what allows for an inductive proof of Theorem 1.4.5.

If r = 2 then NV contains no branch point. In this case we may identify the
star-shaped network S'(m) with the interval [0,m] and (2.8)-(2.9) reduce to

K([0,n]) Z J([0,m])K([m + 1,n]), (2.10)
m<n

which is the usual relation for the expansion of K (-) on an interval for this notion of
connectivity (see for example [11]). Otherwise b is a branch point of A and we let
K(0) =1, and I; = I;(N) be the indicator function that the branch i is incident to b
and another branch point b;. Therefore for a fixed network N, n; — 21y = n; —2I5(N)
is equal to either ny — 2 (if branch 2 is incident to b and another branch point b;)
or n;. Then (2.8)-(2.9) give

3
3 Yoo IS ) [[ KW\ SA ) + EOW), (2.11)
mi<nN1 oy < pg — 20 i=1

m3 < n3z — 213
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where S2(7) is a star-shaped network satisfying

{b} ,ifm=0
S () = S3(m) it m; # 0 for all 4
S[0,m;] , if m; #0, and m; =0 for j #
S[—mj,m;] , ifj >4, m; #0, m; #0, and my = 0 for k # i, j.

(2.12)
In the case where there is another branch point b, that is adjacent to b in N (so
that ng or ng is 1), the sum over at least one of mg, m3 in (2.11). However note that
this case contributes to the term E®)(N), as required.
The combinatorial analysis of

e E®(N) and
e the contribution to (2.4) from graphs containing a bond in R

is difficult and we postpone it until Chapter 6. Neither term appears in our analysis
of the 2-point function in Chapter 3.
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Chapter 3

The 2-point function

3.1 Organisation

In this chapter we prove Theorem 1.4.3 using an extension of the inductive approach
to the lace expansion of [19]. The extension of the induction approach is described
and proved in a general setting in Appendix A. Broadly speaking there are two main
ingredients involved in applying the results of Appendix A. Firstly we must obtain
a recursion relation for the quantity of interest, the Fourier transform of the 2-point
function, and massage this relation so that it takes the form

n+1
Far1(k;2) = Y gm(k; 2) far1-m(k; 2) + enta(k; 2), with

m=1

fo(k;z) = 1, fi(k;z) = zﬁ(k), e1(k;z) = 0.

(3.1)

Secondly we must verify the hypotheses that certain bounds on the quantities f,
for 1 < m < n appearing in (3.1) imply further bounds on the quantities g, €y, for
2 < m < n+ 1. This second ingredient consists of reducing the bounds required to
diagrammatic estimates, and then estimating the relevant diagrams.

In Section 3.2 we prove a recursion relation of the form (3.1) for a quantity
closely related to the Fourier transform of the 2-point function. In Section 3.3 we
state the assumptions of the inductive approach for a specific choice of parameters
corresponding to our particular model. In Section 3.4 we reduce the verification of
these assumptions to proving a single result, Proposition 3.4.1. Assuming Propo-
sition 3.4.1, the induction approach then yields Theorem 3.4.3, which we show in
Section 3.5 implies Theorem 1.4.3.

The diagrammatic estimates involved in proving Proposition 3.4.1 provide
the most model dependent aspect of the analysis and these are postponed until
Chapter 5.
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3

1 X a
FEEil j alf

Figure 3.1: The first figure is of a lattice tree T' € T, (0,x) for n = 17. The second
figure shows the backbone which is also a (self-avoiding) walk w, while the third
shows the branches emanating from the backbone, which are also mutually avoiding
lattice trees Ry, ..., Ry.

3.2 Recursion relation for the 2-point function

Recall Definitions 1.2.4, 1.2.6, and 1.2.8. Also recall from Definition 1.4.1 that the
two point function is defined as

(@) =" Y W), (32)

TeTn(x)

Every tree T € T,(x) consists of a unique backbone (which is a self-avoiding walk)
w connecting 0 = w(0) to z = w(n) that contains n bonds, together with branches
emanating from each vertex in the backbone. The branches emanating from the
backbone vertices are themselves lattice trees Ry,..., R,, and by the definition of
lattice tree (applied to T') they must be mutually avoiding. Since each R; contains
the vertex w(i), the mutual avoidance of the R; incorporates the self-avoidance of
the backbone w. See Figure 3.1 for a pictorial view of this discussion. Let

1, fRsNR#0

3.3
0, otherwise. (3.3)

Ust = U(R57Rt) = {

Then [[<;ci<pnll + Us is the indicator function that all the R; avoid each other.
Summarising the above discussion and using the fact that the weight W (T') of a tree
factorises into (bond) disjoint components (see Definition 1.2.7) we can write,

(@) =C" Y W(w)x

w:0—>zx,

wl =mn (3.4)
S OWR) Y WR)-- Y WR) [ L+U,
Ro€T.,(0) R1€T,01) Rn€To(n) 0<s<t<n
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where the first sum is over simple random walks of length n from 0 to z. To simplify
this expression, we abuse notation and replace (3.4) with

tn(z; () =¢" Y, Ww H Y. W@y [ D+UL).  (35)
w:0—x, 1=0 R; €T, (5) 0<s<t<n
lw| =n

Recall Definition 2.1.1 and the discussion following it. The set of vertices [0,7]
corresponds to the set of vertices of M'(a,n), where « is the unique shape in Y.
Since this N contains no branch points, we have R = () and therefore from Section
2.2 we have [y, cy<p [1 + Us] = K(N) = K([0,n]). Hence

tn(z:0)=¢" > W(w H > W(R)K([0,n]). (3.6)
w:id—oz 1=0 R; €Ty, (5)

w=n

Definition 3.2.1. For m > 0 we define

() =¢" Y W(w H > W(R:)J([0,m]). (3.7)
w:0—>2 1=0 R; €T, (5
lw|] =

Note that for m = 0 this is simply 3 p 7o W(R;) = p(0) if z = 0 and zero otherwise.

Definition 3.2.2. Let f,g. We define the convolution of absolutely summable func-
tions f and g to be the function

=) fWelz —y). (3.8)

y€zZd

Clearly, by the substitution v = x — y we have (f * g) = (g * f). Moreover since
> yzczd [f(W)g9(z —y)h(z — 2)| < oo by Fubini, (f x(g+h))(z) = ((f *g) *h)(z), and

we can do pairwise convolutions in any order.

The following recursion relation is the starting point for obtaining a relation
of the form (3.1).
Proposition 3.2.3.

n

tni1(3;0) = > (T % CpeD # tnm) (3 C) + T g1 (23 C) + p(0) (CPe D # 1n) (w3 ) (3.9)

m=1
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Proof. By definition

n+1

tnyi(23¢) = ¢ ) o) [[ D2 WEIE([O,n+1).  (3.10)

w:0—z, i=0 Ri€T,(:)
lwl=n+1

Equation (2.10) gives

K([0,n+1]) = K([1,n+1]) + 2": J([0,m])K([m+1,n+1])+ J([0,n+1]). (3.11)

m=1

Putting this expression into equation (3.10) gives rise to three terms which we
consider separately.

1. The contribution from graphs for which 0 is not covered by any bond: For this
term we break the backbone from 0 to z (a walk of length n + 1) into a single
step walk and the remaining n-step walk as follows.

n+1
¢ty o[ Y w®)kn+1)
w:0—x, 1=0 R;€T (w(z))
lwl=n+1
= > W(R) Y, > (W(w)x
Ro€To YEQD  wy:0 >y, (3.12)
lwi] =1
n+1
> W Y WERIKLn+1,
we Yy —x, 1=1 R;€T (w2(i—1))
|wa| =n

where K[1,n + 1] depends on Ry,..., R, 1 but not Ry. Therefore using the
substitutions R;- = Rjy1 this is equal to

0> Y (W(w)x

YeQlD w1 : 0y,
w1 =1

n
oo MWW Y. WER)K,n]
w2 1Y —> T, J=0 R €T (w2(5))
lwe| =n

= p(0) Z Pl D(y)tn(z — y; ()

yEQp

= p(0)pcC(D * tp) ().

(3.13)
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2. The contribution from graphs which are connected on [0,7n + 1]:

n+1
¢ty W[ Y. WR)I(0,n+1]) = mpia(a;¢)  (3.14)
w:0—x, 1=0 R; €T, )

lwl=n+1

3. The contribution from graphs which are connected on [0,m] for some m €
{1,...,n}: For this term we break the backbone from 0 to z (a walk of length
n + 1) up into three walks, of lengths m,1,n — m respectively

n+1 n
¢t > W L Y W®) Y T0,mIKm + 1,0+ 1]
w:0 -z, 1=0 R, €T, ) m=1
lw=n+1
_ZZZ Yoo "W (w) H > W(Ry) | J0,m]x
m=1 u w1:0—u, =0 Ri€ T4, (i)
lwi| =m
> (W(wa)X
w2 U —,
|wa| =1
n+1
oo W) | ] > W(R)| Km+1,n+1].
w3 iU =T i=m+1 Ri€T 4 (i (m+1))

lwg|=n—m

(3.15)

Now [0,m] and [m + 1,7 + 1] are disjoint, so J([0,m]) and K([m + 1,n + 1])
contain information about disjoint subsets of {R; : i € {0,...,n + 1}}. Using
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the substitutions R = Rj,+1 this is equal to:

SEE T ewe(f[ £ o) s
m=1 u w1 : 0—)u, =0 Ri€Ty, (i)

lw1] =

pcCD(v — u) Z "W (ws) (H Z W(R )K[O,nm]

w3:v T J ORE%S(])
|w3] =n—m

_Zzzﬂmu OPeCD(® = ulty m(z = v3¢)

m=1 u
n

(7Tm * peCD * tnfm)(-r; C)
e (3.16)
O

Dividing both sides of Equation (3.9) by p(0) and taking Fourier transforms we get

Pahe) 3 En) o)cp. Dty 2= B 60 gygp, iy )

(3.17)

We now massage (3.17) into the form (3.1) required for the analysis of Ap-
pendix A.

m=1

Definition 3.2.4. For fized ( > 0, define
1) z = p(0)¢pe.
2) fo(ksz) =1, fi(k; ) = gi(k;2) = 2zD(k), and e1(k; 2) = 0.
3) Forn > 2,

)= k0 ) = mno1ki0)
R LR I
) — C #1(k; ) _ D 7n(k;C) ’

We note from (3.17) with n = 0 that since to(z) = p(0)I,—o,we have to(k) = p(0)
and

(3.19)



Therefore for n > 2

For n > 3 this is
)= T2k Q) 5o TR Q) T (k5 C)
en(k;z) = 7{)(0) D(k) 2(0) + 2(0) (3.21)

Lemma 3.2.5. The choices of fm, gm, €m above satisfy Equation (3.1).

Proof. The case n = 0 is trivially true by definition of fy, fi, g1 and e;. We use
(3.19-3.20) for the case n =1 so that,

n+1
Z Im (k5 2) frv1-m (ks 2) + ent1(k; 2)

m=1

= g1(k; 2) f1(k; 2) + g2(k; 2) fo(k; 2) + ea(k; 2)

o 71k C) = ~ |tk A ma(k; ¢)
:zD(k)zD(k)+1p(T)zD(k)+zD(k)[lp(o) —zD(k)| + 2/)(0) (3.22)
_Rk0 5 Bk Q) | Fa(k; Q)

) B () A ()
_ 1y(k;¢)
p(0)

by (3.17) for n = 1. For n > 2,

n+1
> gn(k; 2) far1-m(k; 2) + enta (k; 2)

m=1

= 91(k; 2) fn(K; 2) + gn(k; 2) f1(K; 2) + gni1(K; 2) fo(k; 2) + eny1(k; 2)+
n—1

Im(k; 2) frr1-m(K; 2)

a0 Faci (B0 sy A L FalkiO) A (3.23)
=zD(k) 2(0) + 2(0) zD(k)zD(k) + 2(0) 2D(k)+

o1 (kiQ) 500 [00) 5 Tnn (K3 )
o) zD(’“)[ o0 PO )

© Fme1 (ki) 5 Intiom (ki)
0 T

+ +
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The second term cancels with the second part of the fourth term. The last term
added to the third term and the first part of the fourth term gives

S Tm(k: Q) tn-m(k; ¢)
2 =0 PR (29

m=1

which appears on the right side of (3.17). The remaining terms here are the remain-
ing terms on the right side of (3.17), hence by (3.17) the entire quantity is equal to

% = fus1(k; 2) as required. =

3.3 Assumptions of the induction method

The induction approach to the lace expansion of [19] is extended in Appendix A with
the introduction of two parameters € and p* and a set B C [1,p*]. In this chapter

we apply the extension with the choices 8 = %, p* =2, B = {2} and we define

B = L_ﬁ% — L~%. The induction method is discussed thoroughly in Appendix A,
and so we simply restate the assumptions in this section, and verify them in the
next section.

We have already shown in Section 3.2 that for our choices of fi,, gm,em as
given in Definition 3.2.4,

n+1
Fr1(k52) = Y gm(K; 2) for-m (K 2) + enga(ks2) - (n>0), (3.25)
m=1
with fo(k;2) = 1.
Assumption S. For every n € N and z > 0, the mapping k — f,,(k; 2) is symmetric
under replacement of any component k; of & by —k;, and under permutations of the
components of k. The same holds for e, (-;z) and g,(+; z). In addition, for each n,
| f(k; z)| is bounded uniformly in k € [—, 7]? and z in a neighbourhood of 1 (which
may depend on n).

Assumption D. We assume that

fi(k;2) = zD(k), e1(k;2z) =0. (3.26)

N

In particular, this implies that g;(k;2z) = zD(k). Define a(k) =1 — D(k). As part
of Assumption D, we also assume:
(i) D is normalised so that D(0) = 1, and has 2 4 2¢ moments for some € > 0, i.e.,

> |z D(z) < oo. (3.27)

z€Z
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(ii) There is a constant C' such that, for all L > 1,

IDllo < CL™%,  o® =0} < CL?, (3.28)

(iii) There exist constants 7, ¢, cz > 0 such that

al?k? < a(k) < Lk (koo < LY, (3.29)
a(k) >n  ([klleo > L), (3.30)
a(k) <2-n (ke [-mx]%). (3.31)

For h : [-m,n]* — C, we define

d o2
VZh(K) =" %h(k) . (3.32)
=1 J
J k=k'

The relevant bounds on f,,, which a priori may or may not be satisfied, are that
K

1D fm(52)ll2 < ——7»  |fm(02)| <K, |V2fm(0;2)] < Ko?m, (3.33)
2Mm4

for some positive constant K. We define
B=L"5%. (3.34)

The bounds in (3.33) are identical to the ones in (A.13), with our choices if p* = 2,
B ={2}, and 6 = dz;4.
Assumption E. There is an Ly, an interval I C [1 —«,1+a] with a € (0,1), and a
function K — C.(K), such that if (3.33) holds for some K > 1, L > Ly, z € I and
for all 1 < m < n, then for that L and z, and for all k € [-7,7]¢ and 2 < m < n+1,
the following bounds hold:

lem (k; 2)| < Co(K)Bm T, lem(k; 2) — em(0;2)] < Ce(K)a(k)Bm 7. (3.35)
Assumption G. There is an L, an interval I C [1 — a,1 + o] with a € (0,1), and
a function K — C,4(K), such that if (3.33) holds for some K > 1, L > Ly, z € I and
for all 1 < m < n, then for that L and z, and for all k € [-7, 7] and 2 < m < n+1,
the following bounds hold:

d—6

lgm (k3 2)| < Co(K)Bm ™2, [V2gm(0;2)| < Co(K)o?Bm™ 2, (3.36)
10:9m (03 2)| < Cy(K)Bm™ "7, (3.37)

|G (k; 2) = gm(0; 2) — a(k)o ™2V 2gm(0; 2)| < Cy(K)Ba(k)Hm™"2 +¢,  (3.38)
with the last bound valid for any € € [0,1 A (452)).
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3.4 Verifying assumptions

Assumption S: The quantities f,(k;z), n =0,1,... are (up to constants), Fourier
transforms of ¢,(z,(), which are symmetric by symmetry of D. Hence the f,
have all required symmetries. Similarly m,,(z,() are symmetric by symmetry of
D, so that the quantities g,,e, also have the required symmetries. Now fo = 1
is trivially uniformly bounded in k£ and z < 2. Furthermore for n > 1, using the
bound [][1 + Uy < 1 in (3.5) we obtain 3" t,(;¢) < (Cpe)"p(0)"+1 S, D™ (z) =
(Cpe)™p(0)" 1, where D™ denotes the n-fold convolution of D(e). Therefore for
n> 1, |fa(k,2)| < % < (Cpep(0))™ = 2™ so that f, is bounded uniformly in
k € [-m,7]% and z in a neighbourhood of 1 and therefore satisfies the weak bound
of Assumption S.

Assumption D: By Definition 3.2.4 we have fi(k, z) = zD(k) and e; = 0. Addi-
tionally, all moments of D are finite, so choosing ¢ = 1 ensures that (3.27) and 3.28)
hold trivially (see Remark 1.2.5). The remaining conditions (iii) are verified by van
der Hofstad and Slade in [19].

We therefore turn our attention to verifying assumptions £ and G. Recall
from Definition 3.2.4 and (3.20) that for n > 2, g, and e, could be expressed in
terms of the quantities 7, for m < n. In Chapter 5 we will prove the following
proposition.

Proposition 3.4.1 (7, bounds). Suppose the bounds (3.33) hold for some z* €
(0,2), K > 1, L > Ly and every m < n. Then for that K, L, and for all z € [0, 2],
m<n+1 andq € {0,1,2},

S [0l (a¢)| < SEDTE 4 (3.30)

m 2z ¢

where ( = m, the constant C = C(K,d) does not depend on L, m and z, and
v > 0 is the constant appearing in Theorem 1.2.9.

We choose v < 1 in (1.13) so that 2— % > 1 and therefore ﬂ2_67y < L~%. The
proof of Proposition 3.4.1 involves reformulating 7, in terms of laces and estimating
Feynmann diagrams corresponding to those laces. For now we concentrate our efforts
on verifying assumptions £ and G assuming Proposition 3.4.1.

Assumption E: Suppose there is some 2* € (0,2), K > 1, L > Lg such that (3.33)
holds for all m < n. Let z € [0, 2*]. Recall that e;(k;z) = 0 and observe from (3.20)
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that

ol ) = |oDpy Tk Q) Mok Q)| | Ta(ksQ) | [Ta(ksC)

B (U I e ) ‘* p(0) ‘ 3.40
CF)FE | CE)PE O K)p (340)
-0 p0)2%° 2% ]

where we have applied Proposition 3.4.1 with |7, (k; ()| < Y, [mm(z;¢)|, and have
also used p(0) > 1. Similarly for 3 < m < n + 1,

T1(k;C) | Tm(k;C)

lem (3 2)| = [fm-2(k; =D (6) =™ + =055 (3.41)
< GO ouptt QT CUOPTE
p(0)2(m —2)%7" p(0)m = ma

Thus we have obtained the first bound of Assumption E. It follows immediately that

ek 2) — em(0:2)] < (em(k:2)| + lem(@2)) < SEETE - (3.9)

m 2

for all m > 2. By (3.30) this satisfies the second bound of Assumption E for
|kllcc > L™1. Thus it remains to establish the second bound of Assumption E for
|kllc < L1, for which we use the method of [21].

Let h : Z% — R be absolutely summable, and symmetric in each coordinate
and under permutations of coordinates. Now

> > > k? Gor |k[? o
_ < —
‘h h(O)‘ < [ptk) = (0) = 5 - V2R(0)| + |5 V2h(0)
3.43
— 15 (eosh-a) —1 - =22 no)| + [ w20 .
~ 2d P ! 2d '
By symmetry we have that
1 2 1 d 2 2
p Z |z|*h(z) = p ZZwlh(m) = ijh(:(;), (3.44)
T =1 T T

which implies — W V2h(0) = d>ow E?Zl(ijj)Qh(x). On the other hand if i # j then
Y, zizjh(z) =0, so that > (k- z)%h(z) also equals Y Z?Zl(kixi)Zh(x). Thus we
can rewrite (3.43) as

k&

(k) — h(0)| < g

> (cos(k ) —14 = (k ) )h(:v)

T

h(O)‘ . (3.45)
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We claim that there exists a constant ¢, such that for all € [0,1], | cos(t) —
1+ 3t2| < ct>t21. To see this note that for |¢| > 1 the left hand side is bounded
above by 2+ %tQ < %tQ < gt2+2’7. For |t| < 1 the left hand side is bounded above by

= t2+2"2 S t2+2"§: L (3.46)
= (2n)! — ’

where the constant is independent of . This verifies the claim. Putting this result
into (3.45) we get

. k|
< z)2+2n | ) )
‘h(k) ‘ CZ| h( )|+‘ > h(O)‘ (3.47)
In particular if we choose 17 = 0 then (3.47) becomes
‘ﬁ(k) ‘ < CZZ (kjz;)|h(z ‘ ’ S V7R (0)
Tz j=1 (3.4:8)

< CIk[>) o3 |h(z)
X

Now e, (k; z) — e, (0; 2) is equal to

_ (ks Q) Tk ) = T(0;€) | T (K5 C) — T (05 )
(gnfl(ka Z) - gnfl(Oa Z)) p(O) +gn—1 (07 Z) p(O) + p(O) .
(3.49)
By (3.47) with n = 0, and Proposition 3.4.1 with ¢ = 1 we have that
0252—%’
|Tom (k5 Q) = T (0; Q)| < C(K)k* ——=— (3.50)

Therefore |en, (k; 2) — €,(0; 2)| is bounded above by

7 (ke 252-% 252-%
|gm—1(k; 2) — gm—1(0; z)l% + |gm—1(0; z)IC(K)kQUfT + C(KW%
p(0)m ™=
2_%’ 2 2
< SO (lom 1(852) = g 10:2) 4 lgm 2 (020202 + 5 ).
P(O) m 2
(3.51)
Thus recalling that g1 (k; z) = zﬁ(k) we have
28 2 2
lea(k; z) — ea(0;2)| < % ( a(k) + zk*c® + ]; ; ) . (3.52)
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For m > 3, recall that gm_l(k; 2) = T30 2 (k) which gives

91k 2) = 9105 2)| < = [[Fmn-2(k3 €)= Fon2(05 ) [ D(0) + alk)|Fon2(05C)

(0)
O(K)Ko*3* € | C(K)a(k)s®

(m—2)%" (m—2)%
(3.53)
Therefore for m > 3,
2 9425 2-8v 2 _92,2— 2 2
ks 2)—en(0:2)] < OG5 (KCBTE | aRFTE | KA Ko
(m—-2)2 (m—-2)2 (m—-2)2 mz

Both (3.52) for m = 2 and (3.54) for m > 3 are bounded above by C(K)alk)B

lkllo < L~! by (3.29) and the fact that 02 ~ L? (see Remark 1.2.5).
Assumption G: Suppose there is some z* € (0,2), K > 1, L > Ly such that (3.33)
holds for all m < n. Let z € [0, 2*]. As for Assumption E, we may apply Proposition
3.4.1 toobtainfor2<m<n+1
T (k3 C) ‘ . _HOE)PTE _CUK)BE
p(0) |~ p(0)(m — 1)d— T a5
which gives the first bound of Assumption G.

|gm(k Z)‘ =

zD(k)

For the second bound we note that by symmetry the first derivatives of 7,
and D vanish at 0. Hence for m > 2

Tm—1(k; C)]
k=0

V29, (05 2)| = ‘VQ[ D(k) = _|V?Rm-1(0) 4 Tm_1(0)V2D(0)|

p(0) - p( )
: (CE)PEo?  CE)ETE L\ _ CE)B Lo
< d—6 + g = T'
p(0) m 2 m 2 mo 2
(3.56)
This verifies the second bound of Assumption G.
Next for m > 2, we have that
. zD(k Fm-1(k;¢) D(k)
k;z) = Tmo1(k; =2 .57
gm( 72) Tm 1( aC) 0 0) z ( ,m—1 p(O) (35 )
where 7”"17() does not depend on z (or ¢). Therefore
vz met (Fmea (k) D)
|8zgm(kaz)‘ = |mz ( mel p(O)
R ) (K o (3.58)
~ D(k C'(K)B“~a
= _ : <
mmm 1(k7 C) p(O) > md%G )
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which proves the third part of assumption G.
Now for ||k||ec > L', (3.30) applies and we have that for m > 2,

‘gm(k; z) - gm(O; z) - a(k)0_2v2gm (O§ Z)|

Cl(K)B T | CU(K)BE C'(K)p> &

STLE T T e (3:59)
C! (K%

< aepSBIE
m 2

since a(k) > n, and where the constant depends on 7. This satisfies the final part
of assumption G for ||k|s > L1

For ||k|l < L™!, we again use the method of [21]. By the triangle inequality
we bound |g, (k; 2) — gm (05 2) — a(k)o 2V?g,,(0; 2)| by

k 2 ~ B k 2
n(152) ~ 4 0:2) = V0 0:2)| |- Do 2 = L 92012
o (3.60)
Recall that for m > 2, gn(k; 2) = -%5 (7 * D)(k). On the first term we apply the

p(0)
analysis of the first term of (3.43), to the symmetric function m,, * D. Choosing

n = € we see that the first term of (3.60) is bounded by

2Oy |22 (w1 + D) (2)], (3.61)
T

with the constant independent of ¢/. We claim that
1-¢ 1+€
2 2
(Z ||| (1 * D)(ﬂi)l)
T

(3.62)
If ¢ = 1 then the bound (3.62) holds trivially. If ¢ < 1 then (3.62) is Holder’s
inequality with

> |2l (D) ()] < (Z |(7m—1 * D)(w)l>

1+€’ 1—¢ 1 + 6, ]. — 6,
2

f(@) = 2P| (mn1xD) ()| 7, g(x) = |(mm-1%D)(x)| ", gt =1
(3.63)
Applying Proposition 3.4.1 with ¢ = 0 gives
C(K)B> 7
> [ DY) < 3 ) DG ) < CEE L (60
T y T m 2

We now apply Proposition 3.4.1 with ¢ = 0,2 together with the inequality
(a+ b)* < 8(a* +b*) (obtained by squaring the inequality (a + b)% < 2(a® + b%) and
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applying the same inequality again) to get
> lz*(mm1 = D)(x)] <8 (Z ly[*lmm-1(9)| Y D(x —y)+
z Y z
> Imma @) e —y|*D(x - y))
Y T

<c (Z [l o )]+ 3 s ()]
Yy Yy

<a4C(K; 2= . AC(K)B T - 040(1()_ 2*%”_

d—4 — 8

m 2 m 2 m 2

(3.65)

Note that we have used Remark 1.2.5 to obtain ) |z|"D(z) < Co” with the con-
stant independent of L (it may depend on 7). Putting (3.64) and (3.65) back into
(3.62) we get

1—¢ 14€

<C(K)ﬁ2—%” ) N (U4C(K) —> 2
m's m's" (3.66)

L o)

IA

3 (2% e ()]
xr

=~ m%*el
Combining (3.66) with (3.61) gives
k|2 C(K) B2 % (021k[2)1+¢
gm(k; 2) — gm(0; 2) —%Vng(O;Z)‘ < ()8 g_e,' )
e (3.67)
_ ) alk)
= d—6 ’
m 2z ¢

when ||k|| < L~!. This satisfies the required final bound of Assumption G.
It remains to verify this bound for the term inside the second absolute value
in expression (3.60). For this term we write

1=DkK) kP _ 1 (a0 men FEoan
————* — =—|D(k) - D(0) - —V*D 3.68
- = (B - D) - £ov2DE), (3:68)
and proceed as for the first term to obtain
1—D(k) |k|? y v y v
T _ ﬁ < C|k|2+2 Z |LE|2+2 |D(II2)| < C|k’|2+2 L2(1+ ) (369)
x

42



Together with Proposition 3.4.1 with ¢ = 1 this gives

k|2 CO(K 27%’0.2 k1212 1+€
- 9205 < SR (HLL)

2d m 2 o? ’

(1 - D(k))o 2

(3.70)

which satisfies the required final bound of Assumption G for ||k|| < L~L.

Remark 3.4.2. We have actually verified slightly stronger statements than those
of Assumptions E and G. For the purposes of proving Theorem 3.4.3 we were only
required to verify the bounds of Assumptions E and G for z = z*, however we proved
that if the bounds (3.33) hold for some z* then the bounds of Assumptions E and G
hold uniformly in z € [0, 2*].

We have now verified that Assumptions S,D,E,G all hold provided Propo-
sition 3.4.1 holds. Thus subject to proving Proposition 3.4.1, we may apply the
induction method of Appendix A and obtain Theorem A.2.1 which for our model is
the following.

Theorem 3.4.3. Fizd > 8, v € (0,1A %) and § € (0, (1A %) —7). There ezists
a positive Ly = Lo(d) such that:

For every L > Lq there exist A',v, 2. depending on d and L such that the
following statements hold:

(a)
%\n ’ ; ores 2 2
(\/’UUZn P(O)Pc) — A'e_%i |:1 + O <k_5> + O (%)] s (371)

with the error estimate uniform in {k € R : 1 — ﬁ(k/\/ vo?n) < yn~tlogn}.
(b)

V2%, 0; 2
B An( P(O)PC> :’Uo’2fn, [1+0( él 6):| (372)
tn (0; —p(O():pc) Lzn
(c) for every p > 1,
o C
b, ( % ) < ¢ 373
o0 ) ||, = 72,205 (3.73)

(d) The constants z., A’ and v obey

1= Z gm((); Zc)a
m=1

A= 1 D em(02) (3.74)
Zm:]_ mgm(0; zc)

_ Domet V29 (0; 2c)
o? 23?21 mgm(o; Zc)

v =
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d

The constants A',v satisfy A" = 1+ O (If%), v=14+0 (L_f). Also z, =
1+ O(L~%).

To reiterate the induction method shows that (3.33) holds for all m, provided
Proposition 3.4.1 holds.

3.5 Proof of Theorem 1.4.3

In this section we show that Theorem 1.4.3 follows from Theorem 3.4.3(a). Com-

paring the two Theorems and setting A = A’p(0) (recall that ¢, = p(‘éﬁ), it is clear

that to prove Theorem 1.4.3 it is sufficient to prove the following two Lemmas

Lemma 3.5.1. For d, v, 6 and Lo as in Theorem 3.4.3, there exists a constant
Co = Cy(d,v) such that

1 ( K g) A —%t+0(k2)+0(k2t1_6)+0 ! (3.75)
n 3 Ge = € - - -1’ y .
"\ Voo?n n n (v 1)

with the error estimates uniform in {k € R? : |k|> < Cylog(|nt] v 1)}.

Lemma 3.5.2. The critical value (. = p(ggpc in Theorem 8.4.8 is 1.

The significance of Lemma 3.5.1 is to incorporate the continuous time variable
t into the asymptotic formula (3.71) and to present a more palatable region of R¢
on which the error estimates in are uniform.

Proof of Lemma 3.5.1. The statement is trivial for |[nt| = 0, so we assume that
|nt| > 1. Incorporating a time variable by n +— |nt], k — k LnTtJ into (3.71), and

using A = A’p(0) we have that ?LntJ (ﬁ, Cc) is equal to

~ Eq/ L2t . s
thtJ L; C | = Ae_kzbntJ 1+0 (%) ) 1d_8 ,
vrind " [nt] 2

(3.76)

where the error estimate is uniform in

1/
H,,={keR:1-D| L= <v|nt] 'log|nt| p. (3.77)

v/ vo?|nt]

We claim that there exists a constant Cp such that {k : |k|*> < Cplog(|nt])} C Hy,.
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Define

Gy = {k Melloo < %} (3.78)

By (3.29) and using the fact that o ~ L, there exists C; > 0 such that for k € G, ¢,

kq/ Lot 2
1-D n_ | Gk (3.79)

Vouol|nt] | T Int]”

Now since ||k||2, < |k|* and using the fact that o ~ L, there exists a constant
Cy < Cl2 such that

{k : |k[> < Colog(|nt])} C G- (3.80)
Then for k? < Cylog(|nt|) we have

t
T\ LGk _ GiGylog((nt))

vo?[nt] | ~ Int] T [nt)

7 log((nt])
- nt]
Thus verifies the claim, and thus (3.76) holds with the error estimate is uniform in
{k : |k|?> < Colog(|nt])}. Since |nt] < nt in the first error term of (3.76), and

1-D

(3.81)

2, 2 2 2
et okt < I (t - M) -9 (k_) ) (3.82)
2d n n
we have proved Lemma 3.5.1. U

The significance of Lemma 3.5.2 was discussed immediately before the state-
ment of Theorem 1.4.3 in Section 1.4. Essentially, ( was a weight introduced so
that we could apply the induction method of Appendix A. That (. should be 1 is
intuitive since the lattice trees are already critically weighted (by p.) and this idea
is the basis of the following proof.

Proof of Lemma 3.5.2. The susceptibility, x(z) is defined as

X(2) = Y ful0s2) = 3 50)

— p(0)
) (3.83)
=ZC"WZ > W(T) =x(0),
n P T TeTn(0,x)

Where C = m.
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Let z. denote the radius of convergence of x(z). By Theorem 3.4.3 there
exists a z. > 0 (resp. () such that

Z Z W (T (3.84)

Z TeTn(z

so that

Z Z w(T —>Cl (3.85)

Z TeTn(x

Thus the radius of convergence of ¥(¢{) (resp. X(2)) is ¢ > 0 (resp. z).

Write 3, p(¢) = limp00 D7 5 < ar p(2) and observe that 3, 5y W ~
M¢. 1t follows from Theorem 1.2.9 that }°_ p(x) = co. Thus

Z Z Z L Z p(x) = oo, (3.86)
=TT — p(0) &

which implies that (. < 1.

Recall from (1.16) that P(T € To(0,z)) = =rmex V(T

. Then Theorem

p(0)
3.4.3 states that for every k,
- k-x 2
(e Vet P(T € T, (0,2)) — Ae™ 5. (3.87)
T
Setting £ = 0 we have
gZP(TeT(o z)) =1 (3.88)
A n 7 ) -
x
and dividing (3.87) by (3.88) gives
T € Ta(0,2)) _&2
Ze Z P(TET(O u))—>e 2d (3.89)
Let Z, be Z%valued random variables defined by P(Z, = z) = Eg.%%
Then (3.89) is the statement that
ik —Zn .

E[ez \/—azm] _>E[e““'z] , (3.90)
for every k, where Z ~ N(0, ;). This is equivalent to \/% 2, Z, and thus for
every R > 0 we have

Zn
P € B(O,R) | - P(Z € B(0,R)), (3.91)
a?vn
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where B(0, R) denotes the ball with centre 0 and radius R in (R?,| e |). Choose Ry
such that P(Z € B(0,Rp)) > 2. Then there exists an Ny = No(Ry) such that for
every n > Ny,

Z 1
P = €BOR) | > 5. 3.92
(m ( °)> >3 (3.92)
Therefore for every n > Ny,
P(T € T,(0,z)) i 1
2 S PTeT,(0u) (2n € B(0, RyVo?um)) > S (399)

|z|<RoVo2vn

Applying (3.88) to the denominator, we find that there exists N; > Ny such that
for every n > Ny,

n 1 )
%c Y PET0a) 2y ie Y PIEeT01) >
|z|<RoVo2un |z| <RoVo2un ¢

(3.94)
Bounding 3y (0,0) W(T) by p(2) = 32 Yorer, (0,0) W(T), it follows that

R OE CQSO). (3.95)
|7|< RoVa?un ¢

We also have from (1.13) that,

c(L)
Yoo > Tav &= < O(L: Ron. (3.96)
|z|<RoVo2un |z|<RoVo2un

Thus from (3.96) and (3.94), < < Cn for every n > ng. This requires that ¢, > 1
and we have the result. ’ O

Assuming that Proposition 3.4.1 holds, we have now verified Lemmas 3.5.1
and 3.5.2, and hence we have proved Theorem 1.4.3. We postpone the proof of
Proposition 3.4.1 to Chapter 5.
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Chapter 4

The r-point functions

We have shown Gaussian behaviour (Theorem 1.4.3) of the 2-point function with
appropriate scaling in Chapter 3. We now wish to prove the analogous result for
r-point functions, Theorem 1.4.5. The proof is by induction on r, with Chapter 2
already having verified the initializing case r = 2. We use the technology of the
lace expansion on a tree of van der Hofstad and Slade [21] as expressed in Chapter
2, and prove the result, assuming certain diagrammatic bounds. The diagrammatic
estimates are again postponed until Chapter 6.

4.1 Preliminaries

Recall from Definitions 1.2.3 and 1.4.4 that for fixed r > 2, 1 € Z:L_l and X € R 1,
we have
TaX)={T€To:xi €Ty, i =1,...,r—1} (4.1)

and

thE) = > W(). (4.2)

TETa(X)
For T € T (z), let T-..; be the backbone in T from 0 to z.
Definition 4.1.1. A lattice tree B is said to be an (n,X) bare tree if
1) B € Ta(x) and

2) UzrillBWZi = B.

We let B(n,X) denote the set of (,X) bare trees. If B € B(n,X) then we write
T = {T € Ta(X) : Tusz; = Busg,, @ € 1,...,7 — 1} for the set of lattice trees
containing B as a subtree.
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Since every T € Tx(%) has a unique minimal connected subtree (Ul_{T..z,)
connecting 0 to the x;, 1 =1,...,7 — 1, we have

tHE) = Y. D W) (4.3)

BeB(i1,%) TeTp

Definition 4.1.2 (Branch point). Let B € B(n, X). A vertez z € B is a branch
point of B if there exist i,j € {1,...,r — 1}, i # j such that z; and z; are distinct
leaves (vertices of degree 1) of B and B..y; N Be.y; = B..y. The degree of a branch
point x € B is the number of bonds {a,b} € B such that either a = z or b = z.

As they are defined in terms of the leaves of B € B(1i,%X), branch points of
B depend on B but not the set B(fi, X) of which B is a member. In particular if B
is also in B(ft/,X’) then our definition gives rise to the same set of branch points.
By definition, a branch point that is not the origin must have degree > 3.

Definition 4.1.3 (Degenerate bare tree). For fized v, a bare tree B € B(1i, X)
s said to be non-degenerate if B contains exactly r — 2 distinct branch points, each
of degree 3, mone of which is the origin. Otherwise B is said to be degenerate.
We write Bp (@i, X) for the set of degenerate trees in B(Q,X) and set B, (i, X) =
B(n,x) \ Bp(n, X).

Clearly from (4.3) we have

HE = >, D WD+ D> > WD) (4.4)

BeBS,(/,%) T€Ts BeBp(ii,%) T€Tx

Definition 4.1.4. Let B € B(f,X). Two distinct vertices y, y* in B are said to be
net-neighbours in B if the unique path in B from y to y* contains no other branch
points of B other than y, y*. A net-path in B is a path in B connecting the origin
or a branch point in B to a net-neighbouring branch point or leaf in B.

Lemma 4.1.5. Fizr >2, e N~ % e z4r-1),

1. If B € B (@h,%) then B consists of 2r — 3 net-paths joined together with the
topology of a for some a € 3.

2. If B € Bp(n,X) then B contains fewer than 2r — 3 nonempty netpaths and
fewer than r — 2 branch points that are not the origin.

Proof. Induction on r. For r = 2, there are no degenerate bare trees and the result
is trivial.

Suppose the result holds for all ' < 7.
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1. Let B € B}, (,%). Then B contains 7 — 2 branch points, each of which is of
degree 3, none of which is the origin. Let z # 0,x,_1 be the unique branch
point in B net-neighbouring z,_;. Removing the netpath B..;, , \ By, we
have that z is a vertex of degree 2 in B* = B\ (B..3,_, \ B-sz) and therefore
B € B((n1,...,np—2),(21,...,2Zr—2)) contains r — 3 branchpoints, each of
degree 3, none of which is the origin. Thus B* is nondegenerate. By definition
of a netpath and the fact that x is not a branch point of B*, we see that B*
contains two fewer netpaths than B. The induction hypothesis gives that B*
consists of 2(r — 1) — 3 net paths joined together with the topology of o* for
some * € X, 1. Therefore B contained 2r — 3 netpaths joined together with
the topology of a € ¥, _1, where « is the shape obtained by adding a vertex to
the edge of a* corresponding to the unique net-path in B* containing x = x

J
and adding an edge to that vertex.

2. Suppose now that B € Bp(n,x). If B contains no branch point other than
perhaps 0, then trivially for r > 3, B contains fewer than 2r — 3 net paths.
Otherwise we use the same decomposition as for part 1, and let the degree
of the branch point z # 0 be [. If [ = 3 then B* above is a degenerate
bare tree and the result hold by induction. If [ > 3 then B* contains one
fewer netpath and the same number of branch points as B. By induction
B* € B ((n1,-.-,nr-2),(Z1,...,Tr_2)) contains at most 2(r — 1) — 3 netpaths
and (r — 1) — 2 = r — 3 branch points that are not the origin. Therefore B
contained at most 2r — 4 netpaths and r — 3 branch points that are not the
origin.

O

Definition 4.1.6. For a fized shape o € %, and 7t € N?,_F?‘ we let N(a,7) be
the abstract network shape obtained by inserting n; — 1 vertices onto edge j of «,
j=1,...,2r — 3. Each edge j of a has two vertices j1,jo in « incident to it. We
define branch N of N to be the smallest connected subnetwork of N that contains
the vertices ji, j2.

Let B € B} (i, X). We say that B has network shape N (o, ) if B and
N(a, ) are graph isomorphic and for each i the graph isomorphism maps leaf i of
N(a,7) to z;. For §f = (y,...,y2r—3) € ZX=3) we define TN (ayit) () to be the set
of lattice trees T € Ty such that there ezists X € Z4 1 fi € N~ and B € B (i, %)
such that

1. TeTp,

2. B has network shape N (a, ), and
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Figure 4.1: A shape a € ¥4 with labelled edges, and a nearest neighbour lattice tree
T € Tn(aym) (@) for = (3,5,7,7,2), 7= ((2,-1),(-2,-3),(2,3),(3,4),(2,0)). Also
T € Ta(X) where i = (17,12,8) and % = ((7,6), (6,2), (0,—4)). Note for example
that y1 + y3 + ya = z1.

3. if the endvertices of netpath B; are uj,v; € R, where B..y; C By, then
v; —u; = Yyj, for each j =1,...,2r — 3.

Suppose T' € Ty(q,i) (%), With corresponding X, i, B as in Definition 4.1.6.
Since B has shape N («,7), we may label the netpaths {Bji,...,Bs,_3} of B ac-
cording to the edge labels {1,...,2r —3} of a. Let E; = {j : Bj C B..4,}, and note
that E; is equal to the set of edges in the unique path in a from the root to leaf
i, defined in Section 1.4. By definition we have } .. p y; = x; and ) ;cp. nj = 1.
See Figure 4.1 for an illustration of this.

Lemma 4.1.5 implies that if T € Tp for some non-degenerate B € B%,(n, X),
then T' € Tpy(a,7)(#) for some o € ¥, 7 € N3, j € 7.9(27=3) gatisfying djer N =
N, Y iep Yi = Xi, © € {1,...,7 —1}. On the other hand suppose T' € Ty(a,i)(¥)-

nj

Let z; be the vertex in T corresponding to leaf i of a, 4 = 1,...,r — 1, and let
n; = |Tooy,|- Then T € Tx(X) by definition. Choosing B = U/ T..,,, it is easy
to see that B € B(f1,x) and T' € Tp. Finally since N (e, 7) contains r — 2 distinct
branch points, each of degree 3 (of which none are the origin), B must also have

this property and thus B € B, (@1, X).
For fixed « € &, & € N~ and % € Z4 1 we write Y nen to mean the
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sum over {7 € N"=3 . ZjeEi nj =mni, i =1,...,7 — 1}, and Zg&ﬁ to mean the
sum over {ij € Z4(2r—3) . ZjeEi yj =Xi, 4=1,...,7—1}. Then

oo X wm=>Y_ Y > Y w. (4.5)

BeBS, (%) T€TB a€¥r 358 75% TETN (o,7)(¥)
See Figure 4.1 for a concrete example of this idea.

Definition 4.1.7. For fized v > 2, a € X, network shape N = N(a,7), and
netpath displacements § = (y1,...yor_3) € Z%? =3) we define

tNem@ = >, WD), (4.6)

TeTN(a,ﬁ) (?7)

Recall the definition of £ from (1.29). We are now able to state the main
result of this chapter, Theorem 4.1.8.

Theorem 4.1.8. Fizd > 8,v € (0,1A%2) and 6 € (0,(1A %528) —). There ezists
Ly = Lo(d) > 1 such that: for each L > Lg there exists V. =V (d,L) > 0 such that
for everyr>2, a€ X, € N"3 R >0, and § € [-R, R|?" 34

7 2r—3 _,g? (nj) 2r—3 1 2r—3 |/<.;\2n1-_‘5

v (s ) =V [ (ro [ L o [ 30 70
VoZon i =1 n;® ="

(4.7)

where A and v are the constants appearing in Theorem 1.4.8 and the constants in
the error terms may depend on r and R.

The constant V is defined in Definition 4.3.1 and reflects the presence of
non-trivial interaction near branch points of our binary tree networks N where
three trees must meet at a single point but are otherwise mutually avoiding.

In view of (4.4) and (4.5) we have that

=X NN W@+ 3 Y Y WD)

A€, 3 %h g% % BeBp (%) TeTs

_Zezkx SNt on (k).

a€Xr 7S50 7S%

We will show that ‘Zﬁ(') gives rise to an error term.
Recall the definition of the set of edges Ej of the unique path in « from 0 to
leaf j. Then x; = Z?Lﬁ Yilyier;) and in (4.8) we use

2r—3 2r—3 r—1 2r—3

r—1
> ki x; = Zk Zyﬂ{lem— Zyl Zk Ijep,) = Zyl w =R, (4.9)
j=1 j=1
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where r; was defined in (1.29). Thus the first term on the right of (4.8) is equal to

PIDID LD BN ED DD DD B
JE5%

ac¥; g% X a€¥r 7%a U

=3 ) e ()

a€¥r 74

(4.10)

This is more clear if we consider the case r = 3, for which there is a unique shape «
(which we suppress in the notation for A'), and a single branch point. If we denote
the spatial location of the branch point by y then

(l’l1 /\rlz) 1
(n1 ny) kl? k2 Z Z etk gt Z tJ\/'(n,nl —n,ny—n) (ya X1~ Y, X2 — y)
X1,X2 Yy
+ ¢f1 (k)a

(4.11)

where informally one may think of $3 as consisting of the n = 0 and n = n; A ng
terms of the sum. The first term on the right of (4.11) is equal to

(n1/\n2)—1

Z Z Z ei(kl-(XI_y)+k2-(xz_y)+(k1+k2)-y)t/\/(n ny—n,nz—mn) (ya X1 — Y, X2 — y)

n=1 X1,X2 Y

(n1Ang)—1
= Z tN(n,nlfn,nzfn) (K1, K2, K3)-
n=1

(4.12)

Recall from (3.4)-(3.5), and the fact that (. = 1 that we were able to express
the critical 2-point function as

th(z)= Y, W H S o wr) [ L+Ual, (4.13)

w:0 -z, 1=0 R; €T, (5) 0<s<t<n
lw| =n

using the notation [, ZRieﬁ,(i) W (R;) H0§s<t§n [1 + U] to represent

Yo WRy) - Y, WRy [ 1+Ual. (4.14)

Ro€T,0) Rn€T5(n) 0<s<t<m

The product [ [[1+Us] incorporats the mutual avoidance of the branches R; emanat-
ing from the backbone w (which is a random walk), and we analysed this product
using the lace expansion. For higher-point functions, the backbone structure in
question may be interpreted as a branching random walk, with the temporal (resp.
spatial) location and ancestry of the branching given by N (7, a) (resp. %).
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Definition 4.1.9. Fiz N (i,«). We say that w is an embedding of N into 74 if
w is a map from the vertez set of N into Z% that maps the root to 0 and adjacent
vertices in N to D(-) neighbours in Z%. Let Qx (%) be the set of embeddings w of N
into Z.% such that the embedding w; of branch i has displacement v;.

We now express the r-point function (4.6) in a form similar to that previously
obtained for the two point function (3.5). For a collection of sets of vertices { Rs}sen,
define as in (3.3),

~1, ifR,NR#0

4.15
0, otherwise. ( )

Ust = U(RSaRt) = {

Recall from Definition 2.1.1 that Eyxr = {st : s, € N, s # t}. Also note that
a vertex s € N is uniquely described by a pair (i,m;), where 7 is an edge in @ and
m; < n;. We write J] o ZRseTw(s) as shorthand notation for

S SRS SPTID > B AT
Ro€Ty0) R1,1)€Tw(1,1) R1,2)€T0@,2)  Rr—3m9,_3)ETw(@r—3,n9,_3)
Then,

I\ (a, n) Z W(w H Z W(R H 1+Uy], (4.17)

wEQN (7) SEN Rs€T,(s) bEE N
where

1. the sum over w is a sum over all embeddings of the network shape i.e. over all
bare trees with the required network shape and displacements,

2. the sums over R, are sums over all branches at vertices s of the embedding w,

3. the factor [], [1 + U,] ensures that the branches are mutually avoiding so that
only combinations of branches that form lattice trees are counted.

Equation (4.17) follows from (4.6) since any combination (w € Qn(¥), {Rs}scw)
such that the R, are all mutually avoiding lattice trees, uniquely defines a lattice

tree T' € Ty/(q,) and vice versa.

4.2 Application of the Lace Expansion

We now apply the expansion described in Section 2.2. Let

= > wWw][ Y W& (H[l—kUb)(l—H[lJrUb]).

WEQN(9) s€EN Re€T (w(s)) beRe beR
(4.18)
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Then by expressions (2.4) and (4.17) we can write

tvam@ = Y. Ww ][ Y. WMRIKW) -, (4.19)
wEQN (Y) SEN R, €T (w(s))

where K(N) = [[,cge [1 + U,]. We will see shortly that &57\2[(/%') is an error term.
Another such error term comes from

= > W] Y. W) > [ (4.20)

weQN(Y) SEN Rs€T (w(s)) Fef,‘ﬁ/ bel

where b is the branch point neighbouring the origin and 5/’(, is defined in part 8 of
Definition 2.1.1.

Recall the definition of a branch from the second paragraph of 2.1. Let
iy, = (n1,n9,n3) be the vector of branch lengths for branches incident to b and
let G = G(N) C {2,3} be the set of branch labels for branches incident to b and
another branch point of A'. Define Hz, (N) C Z2 and Hy, (N) C Z3 by

Ha, = {m:0<m; < % i=1,2,3} N {i:m; <ni—2,i€G) o
Ha, = {m:0<m; <mny, 1=0123}N{m:m; <n;—2,i € G})\Hﬁb.
Note from (2.11) that Hjz, Uﬁﬁb = {m : m; < ny,me < ng —2Ih,m3 < ng — 213}
and that this is empty if n; = 1 for some ¢ € G. Equations (2.8)-(2.11) give an
expansion for K (N') which yields

= > W] Y W) D> J(SAm) H (W \ S2 (1))
wEQN (7) SEN RseT (w(s)) mEH 7, =1
+ ¢ () + e (9) — B (@),
(4.22)

where
3
) = Z ww [[ > WE) Y, IS ) [[ K (WS m)).
weQN (T SEN R,eT (w(s)) Eﬂﬁb i=1
(4.23)

See Figure 4.2 for an illustration of these definitions. In accordance with Definition
2.1.1, the first term on the right side of (4.22) does not contribute in cases where b is
adjacent to another branch point of AN (which implies that r > 4 and ny Anz = 1).

For r = 3 there is only one branch point, b, hence ¢4/ (7) = ¢%(7) = 0.
Lemma 4.2.1 states that in fact for large 7_o, = infi<j<2,_3n;, all the terms ‘/’N’
¢N and ¢N- are error terms, so the main term in (4.22) is

QN (o) () = taam) (@) — B4 () — ¢ (@) + SR, (4.24)
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Figure 4.2: An example of graphs on N («,7) with a € 35 a shape with edge labels
shown at the bottom and 7 = (3,4,4,3,6,4,3). The first graph contains an edge
in R so contributes to ¢*. The second graph does not contain such an edge but
branch 2 is covered so this graph contributes to ¢'. In the third graph, branches 2

and 3 are not covered, but ng —2>mo =2> 22 = % and this graph contributes to

P
which is the first term on the right of (4.22). Taking Fourier transforms of (4.22) or
(4.24) we obtain

i (7) = QN (R) + Ol (R) + 8X(R) — 3R (). (4.25)

Lemma 4.2.1. The error terms defined in (4.18)-(4.23) satisfy

SIR@ =0 Y 5 |,
7 i=1 ni2
3
i@l =0 > - | (4.26)
7 i=2 ”z‘2
(3. 4
Skl =0 (> —= 1.
7 i=1 ni2

where the constants implied by the O notation depend on r.

The proof of Lemma 4.2.1 involves estimating diagrams and is postponed
until Chapter 6.
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4.3 Decomposition of Qs

In this section we show that QQa can be expressed as a convolution of a function
my; and functions ¢y, for j = 1,2,3, and ultimately that @N can be expressed as
a Gaussian term plus some error terms. The N; are network shapes with a; € g
and r; < r. This permits analysis by induction on r.

We first define the quantity = ; (@) and then the constant V' appearing in
Theorem 1.4.5 in terms of this function. We then state some bounds on the function
7 ; (@) in Proposition 4.3.2 and Lemma 4.3.3 that are the main ingredient for the
proof of Theorem 1.4.5. The proofs of Proposition 4.3.2 and Lemma 4.3.3 are
postponed until Chapter 5. The convolution expression for Q(¥) involving
appears in Lemma 4.3.4, and for the Fourier transform in (4.42). Finally we express
@N as a Gaussian term plus some error terms in (4.43). These error terms are

bounded in Section 4.4.
Definition 4.3.1. Suppose Sf;.[ is a star-shaped network of degree A € {1,2,3}

defined by branch lengths M as in (2.12). Let @ € 73%. We define

= > W [[ Y. WE)JI(SH). (4.27)

wEQsAA?I(u) ZES}\A/I R;€T, w(i)

Note that if M = 0 then Qga ) is empty unless u; = 0. In particular z'fSOA = {0} is
M
a single vertex (star-shaped network of degree 0) then we define ng(i) = p(O)I{ﬁza}.

Now by (2.7) we can write

Z oo IIw I +w)

N=1reLN(s2)bel  vec(l)
(4.28)

o0

=> 0" 3 JIew I i+,
)

N=1 LeLhN (s fz ybeL bec(L

so that for M # 0, m; (@) = Y=, (=1)™ 7% (@) where

m@= Y > ww [ > W[ J] B+
LeLN(SAAZ) wER A @ iesfz R, eT (w(2)) beL by eC(L)
M
(4.29)
Note that ﬁﬂNz(ﬁ) > 0 since —U, > 0. We also define

3
V= Z > (@) [ peD(ui —vi) =p2 > > w7(7). (4.30)
i1 7

M Z3dUEZ3d
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The following Proposition is proved in Chapter 6 and is the main ingredient
for the proof of Theorem 4.1.8. In order to state the proposition in a tidy manner,
we introduce the notation

[M]=MvV1. (4.31)
Proposition 4.3.2. There exists a constant C independent of L such that for N > 1
and q € {0,1},
D luPia (i) < N3(N?0?|| M ||o) By (M), (4.32)
a‘eZ3d
where @ = (u1,u2,us), and

281/

By (M) = ((Jﬁ *—)N x

3

3 TN ME T

i=1 R i=1 Z j#im j — m]] 2 [Mk + m]] 2
(4.33)

Lemma 4.3.3. Let By(M) be defined by (4.83) there is a constant C independent
of L such that

9 8v
ZN?’ BN(M)SCIB d_:, 7=1,2,3, and
N=1 MMjZnJ [‘TL]]T
N5 S [l By (1) < { I1lles” i d 10
N=1  ji<@ log ||nllee,  if d = 10.

Given M € Hz, we define N;” = (N \ SI\AZI)i’ where the notation (N \ M);
was defined in Definition 2.2.1. Note that the dependence of N;” on M is suppressed
in the notation. Let vectors 7 € Z(2r=3)¢ and ¢ € Z3¢ and 8]%[ C N with M € Hi,
be given. We write B,,- for the set of branch labels of A that are branches in N
but not Sf?[ and we wrilte ¥; for the vector of y; such that j € B N Then we define

Yoy = (i — vi, Gi)- (4.35)

Lemma 4.3.4. Let i, denote the vector of displacements associated to the branches
of N (determined by ¥, i, and the labelling of the branches of N as in (4.35)). Then

Z Z’R’ HpCZD i — U t/\/’ (G, )- (4.36)

ME'Hﬁb @
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Proof. First from (4.22) and (4.24) we have

3

QN(an Z Z W H Z W SA(M))HK(N_)

i
ME’H~b WEN () SEN Rs€T,,(s) i=1

(4.37)
However, as in the proof of (3.9) for the two point function, we may split up the

branching random walk w € Q/(%) into 4 branching random walks (some of which
may be empty) to obtain

Y Ww=) Y W Hch ) Z W (wi). (4.38)

wWERN () 71 wEQSA_(u) i=1 v; w@GQ (Fv;)
M

’L

Trivially,

3
I Y we)=11 > wkR)II I 3 W, (439
sENRsE'Y;,(S)

sesﬁ Rs€T(s) =1 5;eN; Bsi €Tu;(sp)

where the products of the form s € N~ are products over vertices in the network
shape N'.

Since by definition, N~ and S2

' are vertex disjoint (i.e. have no vertex in
common), equations (4.37)-(4.39) show that Qx(a,7)(%) is equal to

202 2 W I > WER)IESH)

MeHz, G weﬂsﬁ(u) s€SA(M) Bs €70 (s)

[ s
1> pDi—uw) Y wWw) [[ Y WERHKW,)| 440

i=1 v; wiEQN_(g]'vi) $;EN; Rsieﬁ,i(si)
Z ZWM HPCZD — U t/\[ ()
MEHﬁb 7 Ui

as required. O

Given & € [-m,m]*" 3
h:z',’iz 1,2,...
Then

we let R? = (k1,k2,rK3), and K} denote the vector of
; 2r — 3 such that i is the label (inherited from \) of a branch of N/}

) et (4.41)



From Lemma 4.3.4 we have

~

Qn(R) = w1 (7) [LpeD(sy)is (R5). (4.42)

Finally we write

2r—3 nz R .
Qn(R) =V 2 [ Ae™2™™ + EP(R) + EX(R) + EP(R) + €Y (R),  (4.43)
=1

where the £ are defined by

M= Y (H@(m)—n)pi %) T o ().
etz

E C{1,2,3} leE , J=1
E#0
@ = Y (Fa@) -750) [Lin, &),
— . :1
MeHs, ! (4.44)
2r—3 2
EXR) =p% Y 73(0) Hth—(ﬁ;*) ViR e e |,
MEHﬁb j=1 =1
2r—3 2
EX(R) =V [ Aem2ame p} 7.:(0)
=1 _‘Eﬁﬁ

~

The first term is obtained by writing ﬁ(iﬁ]j) = (1 + (D(k;) — 1)), the second by

writing 7 (/) = (%M(a) + (77 (R) — %M(G))) and so on.

4.4 Bounds on the £,

In this section we prove bounds on the quantities (4.44), as stated in Lemma 4.4.2.
All of these terms will turn out to be error terms in our analysis and in general rely
on estimates for 7 ;(K) such as those appearing in Proposition 4.3.2. Each term
except £ will also use naive bounds of the form appearing in Lemma 4.4.1, in
which # a4 denotes the number of branches in M (recall the definition of a branch

from the second paragraph of Section 2.1).

Lemma 4.4.1. There exists a constant K, independent of L, M and K such that

for any network M
tm(R) < K#m, (4.45)
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The proof of Lemma 4.4.1 is elementary, but we also postpone this proof
until Chapter 6.
Using Lemma 4.3.3 with n; = 1,

PR \—ZZZw ﬁs%jz M) < 0p* %, (4.46)

M#£0 N=1p7+5 @ M

where the constant is independent of L. In particular since %6(6) = 1, this proves
that V =1+ O(% 7).

Lemma 4.4.2 (£: bounds). For all &,
EP(R) = LQZKZ ) (4.47)

o (ranmE). azo
O (#Potoglnl),  ifd=10
3
o[y —= (4.49)
j=1 n 2
%) a

Proof of (4.47). For | ¢ E we bound HJ 1t/\f
using Lemma 4.4.1 and (4.46). This leaves us w1th

V(& (4.48)

Rl

77 (%) by constants

Ex®I<c > ] atky). (4.50)
EC{1,2,3} JEE
E#£0

For each nonempty F we may bound all but one of the a(k;) by 2. This gives
3
&L (R)| < Z (4.51)

In particular since a(x;) < 2 this quantity is also bounded by a constant C'. If
1Rjlloo > L71, then C' < ¢||k°||2L? and we have obtained (4.47) for ||K;]lcc > L7
By (3.29) we have for ||j|lc < L™! that

a(kj) < CL2/<;? (4.52)

which proves the first bound for ||&;|jeo < L1 O
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Proof of (4.48). We bound the %y by a constant and apply (3.48) with 3d instead
of d with K% = (K1,1,...,K1,d:K2,1,---,K2d,K3,1,---,K3,4) to bound the difference

-,

75:(0) — 7 7(R"). In doing so we obtain

#5(® — 7 @) < CIRE Y usl? |7 (@) (4.53)
weZ3d
This gives us
E@®I < C DR D Juf? 7y (@)] - (4.54)
Mgﬁb HEZ3d

Applying Proposition 4.3.2 and Lemma 4.3.3 we obtain

5 b2 21 =b) (V)
‘52(%')‘ <C Y |RIP0%|M || N°By (M) < CB>¢ |10 [172°]|so if d # 10

M<ib |"7‘3’b|2‘72 10g [|7°] 0o, if d = 10,
(4.55)
as required. O
Proof of (4.49). We bound each exponential by a constant, leaving
EX @I <C Y 770 (4.56)

MEﬁﬁb

Next we observe that M € F only if M; > % for some j € {1,2,3}. The required
bound then follows from Proposition 4.3.2 and Lemma 4.3.3. O
It follows immediately from (4.47) that

- 3 3
EP(#) (\/“_2) ~-0 (%) -0 (%ﬂﬁ) , (4.57)

and from (4.48) that

. = (M\/o)
g(A)-fo(<sE) wann
7 - |
Vvaln 0(%) if d = 10.

4.5 Proof of Theorem 4.1.8.

We prove Theorem 4.1.8 by induction on r (or equivalently on the number of
branches 2r — 3 in N). For r = 2 recall that A = A'p(0), so (as in the proof
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of Theorem 1.4.3) we have by Theorem 3.4.3 and Lemma 3.5.2 that

o A% 40 ("’"2771) oL (4.59)
tn = Ae 2 + + — 1, .99
! (\/U02n> nd nfTs

with the error terms uniform in {x € R? : |x|2 < Cylogn;}. This yields the required

result for r = 2.
Now fix 7 and N' = N (o, 77) with @ € ¥, and 77 € N*’~3_ and assume the
theorem holds for all r; < r. By (4.25) and Lemma 4.2.1, we have that

- - 2r—3
iy (%) =Qn (%) +0 (> S (4.60)

vo vo°n =1 n, 2

voln

Next from (4.43), (4.57)—(4.58) and (4.49), we have that @N( R ) is equal to
K/Z n
yr—2 HZQLI:; Ae~ 2w plus
= 3 2 b2 _2p1=b) (5t V0) 3
. R 1
8%nd ( K ) + O Z]—l J + O |K | o ||n2||00 + O Z p— ’
Vvoin n [ond ) Tin.?

J

(4.61)
plus the error term (4.58) Since § < %8 A1 in the statement of Theorem 4.1.8 we
have # V0 < 1—¢ and these error terms satisfy the error bounds of the Theorem.

It remains to show that 8%“‘1 ( \/U’%n> is an error term of the required type.
From (4.44) we have

= —x 2r—3 2
: K =, ~ K Ky ng
gl’nd( ) — 3 § 7-(0 | It _ ( J ) _VT_?’ | | Ae™ 2dn
T 2ﬂ, Dbe Af( ) ' AG UUzﬂ, o

vo ME i j=1

(4.62)

By the induction hypothesis applied to r; < r, we have
_ =V J e~ 2dn
i voin p

€B,, -
J

4.63

1 7205 " 0%

VAR
ol ¥ ol & B,
2
lEBNj_ ny lEBN;

where the sums and products are over branch labels of branches in ./\/'j_. If Hyz, =0
then E}L.nd = 0. For M € Hi,, for every j € {1,2,3} we have % < nj < ny. This

63



Figure 4.3: An illustration of the relation Z?:l r; = r + 3 resulting from the decom-
position of a network A into A;, when M € Mi,- The 3 extra vertices generated by
this decomposition are indicated.

enables us to replace n;; by n; if necessary in the error terms of (4.63). Additionally
since M € M, we have r = E?Zl(ri —1), or equivalently Z?:l r; = r+3 (see Figure
4.3) and

3 P 2r—3 w2y 3 w2 (nj=M;)
T J =T 3423 e 2dn e~ 2dn
1% (i) TE
(4.64)
r— r—3 =2 (1-
o -3 o 2 3|m\nl(1 5
o e | ro (X ).
=1 nl =1
k‘* 2 ny
Thus’ H] 1tN (\/’UOT) VT 3Hl2r13A6 2dn IS equal to
2r—3 Nin
‘/7”731427‘73 H e 2dn He 2dn — He 2dn
=4
(4.65)
+0 > == |+0 :
=1 mn,*

Next using a telescoping sum and the inequality e @ —e™® < C(b—a) for b>a > 0
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3 n?—(nijj) 3 n?nj
we see that |[[;_;e” 2~ —[[;_;e 2 | is equal to

3
Z _ring ,N?(nrMﬂ
H e 2dn e 2dn 2dn H e 2dn

g1 (4.66)

2

K
< A —
_CIZZ;an[nl (n = My)] = CZ 2dn

Collecting terms and applying Proposition 4.3.2 and Lemma 4.3.3 we have

. P4 3 2 .
5%“( -~ )‘SPE’Z%Z 3 @O,
=1

vorn = N ME’Hﬁb
2r—3 2r— 3| |2 (1-9)
+O0 (Y —=|+0 ( )
=1 n;*
3 22 102—dv0 2r—3 2r—3 | 512 1 d)
|R["n, 1 |R|*ny |
=0 —_t .
R PV R D
=1 =1 nl
(4.67)
Since 1 — § > wT_d V 0 these are all error terms, and the proof is complete. O

4.6 Proof of Theorem 1.4.5.

In this section we prove Theorem 1.4.5. By (4.8) there are two terms to consider.
From (4.9), the first term of (4.8) involves a quantity that is treated in Theorem
4.1.8, summed over shapes and temporal locations of the branch points. We shall
see in the proof of Theorem 1.4.5 that with the appropriate scaling this first term
approximates the sum over shapes of the integral in Theorem 1.4.5.

The second term of (4.8) is the contribution from degenerate trees and
Lemma 4.6.2 shows that this is an error term. In proving this Lemma we will make
use of an expression of the form (4.5) for degenerate trees. As such we introduce
the notion of a degenerate shape.

Definition 4.6.1 (Degenerate Shape). For r > 3, let X, be the set of rooted
trees & such that

1. @& contains fewer than 2r —3 edges, and fewer than r —2 branch points (vertices
of degree > 3) that are not the root, and
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01 2 02 1 0 12 012

Figure 4.4: The seven possible degenerate shapes for r = 3. The second (resp.
third) shape is only a possible candidate for the shape of B € Bp(n,X) if ng > n;
(resp. ng < ny).

2. for each i € {0,...,r — 1} there exists a vertex in & with label i (each vertex
may have more than one label), and each leaf (vertex of degree 1) of & has at
least one label.

We call @ € T, a degenerate shape. Clearly there are only finitely many degenerate
shapes for each fized r. See Figure 4.4 for the set 3.

By Definition (4.1.3) and Lemma 4.1.5, if B € Bp(ii, %) for some fi € N' 71,
% € 7% =1) then B has the topology of some @ € %,. For & € %, consisting of
I < 2r —3 edges and @ € N we define D(&,7) to be the abstract network shape
obtained by inserting n; — 1 vertices onto edge j of &, j = 1,...,l. Furthermore
for § € Z% we define Tp(a,n)(¥) to be the set of lattice trees T' € Ty with network
shape D(a, ) such that for each edge 7 in @ with endvertices i1,i9 (i1 is closer to
the root), the corresponding vertices u, v in T satisfy v — u = y;. Furthermore we
define

toam(@ =Y, W(T) (4.68)
TETp(a,7) @)
Then as in the nondegenerate case (4.5),
)IEDIED I UCEDIDIDIDD w(T)
% BeBp(i,x) TET; X 325 T€Tp@a,n¥
p(R,%) B D(a,n) (@) (4.69)

Note that for any given i € N"~! we may have many & for which the set {7 : @ < @}
is empty.
We are now able to prove the following Lemma.

Lemma 4.6.2. For allk € [—m, 7] 1d,

|65 (k)| < Cr[la]15>. (4.70)
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Proof. Let | = I(@) be the number of edges in @. Applying Lemma 4.4.1 to D we
obtain
tpam(0) < K. (4.71)

Therefore, (4.69) implies that

)l < Y0 DK < Y RI KT < Cldln (4.72)

aEE, nwn O:EET

The second inequality holds since Zﬁg 5 is a sum over at most 7 — 3 temporal

locations of branch points which are not the origin, each of which must be smaller

than [[fi||o, by definition. O
We are now ready to prove Theorem 1.4.5 which we restate below.

Theorem (1.4.5). Fizd > 8, v € (0,1 A %8) and § € (0,(1 A 458) — ). There
exists Ly = Lo(d) > 1 such that: for each L > Ly, t € (0,00)" D, >3, R >0,

and ||k||e < R,
7r) k r—2qr-2 42r-3 / T Lok AR+ O
() > [ o (k)]
Q r

(4.73)
where the constant in the error term depends on t,R and L, and where V is the
constant of Theorem 4.1.8.

Proof. From (4.8) and Lemma 4.6.2 we have

i k
i (m) -2 Z W) (m) * ol (Vif’n>

% A nt ) (4.74)
3 Z » ( )Mr_zo(ntng?»)
acs, () voZun n ’

where 7 = &(a, k) as described in (1.29). Theorem 4.1.8 may be applied to the first
term, giving

r) 2 42 32T312(ﬁ)
thﬂ( Um) > > ViPATS T e\ 4

€%, 7% [nE): Jj=1
n€N2'r 3
2r—3 2r—3 =22, 1-0 Tir—3
1 RI"N; t||-
o[ L]0l |R[*n; +nr20<|| 5 )
- 3 - n n

(4.75)
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Considering the first error term, note that

1 1 1
Z a8 — Z s T Z a8

% |nE) 1 T TR i ok 7y
nj < Lnille ny > Untlle
1
< > Y. etz > 1
m<llnblloe 7% [nE]: M;2 T2 7i % |nf) :
-2 n;=m ny > Mnfllles (4.76)
1 C -
< D> == ). 1+ —=lntlR?
me Lnklloo ™™ 7 % |nf) : nz
= (R2=dvo), C ~
< Cllntlllec* Nt lIne® + —= Il Lt ll5 %,
n 2

where in the last step we used the fact that since n; is fixed, the sum over 7 %
|nt] : n; = m is a sum over the locations of r — 3 branch points. Note that if d = 10

dv0)

~ 10—d ~
we interpret the quantity |||_ntj||go 2 as log(|nt]). Thus, since |X,| is a finite

quantity depending only on r, the first error term in (4.75) is

n" 20 S 4.77
() (77)

nd

where the constant in the error term depends on r and # (and goes to 0 as # \, 0).
The second error term in (4.75) is

R|2pt-9 k|2||E||r—1-9
I, (‘ | J _ nerO % , (478)
n n

where we have used (1.29) with m? <(r-1) Z;;% (ijleEj)Q.
The third error term is already of the form n™ 20 (nl—(;) where the constant
depends on t. Thus it remains to show that

for each o € ¥,, where the constant depends on t, r and R. We rewrite the left
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hand side as

1 () T s’
LS | P € _/ [[e o dsl. (4.80)
n i % |nt] Jj=1 £(@) j=1
i € Nr=3

Observe that the left hand term inside the absolutely value is the Riemann sum
approximation to the integral on the right, with the approximation breaking R;(«)
into cubes of side %, with some overcounting or undercounting at the boundary.
The set R;(«a) is a convex r — 2 dimensional subset of R?” 3. As such there are at
most C1n"~3 boundary cubes in the discrete approximation, each of volume ﬁ,
where C} is a constant depending on £ and r. Since the integrand (and summand)
is uniformly bounded by 1, the contribution to the left hand side of (4.80) is O (%)
where the constant depends on # and r. Within each cube of side % we have, for all
§ in that cube,

—K,JZ- n; n?si 52. n; /<,j2.
e n —e 2 §2—J‘5j—# =0 ;9 : (4.81)

By a telescoping sum representation (as in (4.66)) this gives us that for all §'in that
cube,

2r—3 ﬁ n; 2r—3 nz,sj ‘I_<5|2

H e 2d (n) — H ei';T e O (—) . (4.82)

. , n

j=1 j=1
Using Iﬁ)_? <(r—-1) E;;% (ke Ej)Q, this verifies (4.79) and hence proves the Theo-
rem. ]
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Chapter 5

Diagrams for the 2-point
function

Proposition 3.4.1 was needed to advance the induction argument for the 2-point func-
tion in Chapter 3. In this chapter we estimate various diagrams arising from the lace
expansion on an interval (star-shaped network of degree 1) and prove Proposition
3.4.1. In Section 5.1 we introduce some definitions and notation that will be used
throughout this chapter, and state Propositions 5.1.1, 5.1.7 and 5.1.4, and Lemma
5.1.6. Proposition 3.4.1 follows immediately from Proposition 5.1.1 by summing
over N. In Section 5.2 we prove Proposition 5.1.1 assuming Propositions 5.1.7 and
5.1.4 and Lemma 5.1.6. Proposition 5.1.7 and Lemma 5.1.6 are proved in Section
5.3 and Proposition 5.1.4 is proved in Section 5.4.

5.1 Definitions and Notation

In this section we introduce some notation and results that we need to prove Propo-
sition 3.4.1.

Let mm,(z;¢) be defined by (3.7), with Uy given by (3.3). Then from (2.7)
and writing Ug; = (—1)(—Us;) we have that for m > 1,

(2 Q) =¢™ Y ()Y Y Y. W(wx
N=1 LelN(0,m]) w:0—>z
lw| =m (5.1)
I > ww) [[-va [] 1+ Usel
1=0 R; €T, (5) steL s't'eC(L)

The sum over N is actually finite, since a lace on [0,m] can contain at most m
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bonds. We define
o (3 ¢) =™ Z Z W (w) x

LeLN(0,m]) w:0—z

|w| =m
) (5.2)
1L > w@) [[-0a J] B+,
1=0 R; €T, (1) steL s'teC(L)

and from (5.1) we have for m > 1 that m,(z;¢) = Y. %_;(—1)V 7N (z;¢) and hence
|Tm(z;¢)] < YN *N(z;¢). Therefore Proposition 3.4.1 follows immediately (by
summing over N) from the following Proposition.

Proposition 5.1.1. Suppose the bounds (3.33) hold for some z* € (0,2), K > 1,
L > Ly and every m < n. Then for that K, L, and for all z € [0,2*], m < n-+1 and

q €{0,1,2},
N

2 (0p2~%
Z|w|2q7r%(:c;<)sa (i_ ) : (5.3)

m =z ¢

where ( = m, the constant C = C(K,d) does not depend on L, m, z, N, and

where v > 0 is the constant appearing in Theorem 1.2.9.

Throughout this chapter, unless otherwise specified, C' denotes a constant
that depends on d and K but not on L, m, z, or N. It may change from line to line
without explicit comment.

Define hp, (w) = hm, (u, () by

C?p2(D by, —g ¥ D)(u), if m; > 2
ham; (w) = < (pcD(u), ifm; =1 (5.4)
I{u=0}7 ifm; =0

where to(u) = p(0)I{y—0}-

Definition 5.1.2. For ¢; € {0,1}, m; € Z we define sm, 4,(z) = |z|*%hp, (z). For
[ <4 we define 35;?(1),(;(1) (z) to be the l-fold spatial convolution of the Spy, 4.

Definition 5.1.3. For r; € {0,1}, let ¢, (z) = |z|*"ip(z). Forl € {1,2,3,4}, let
gbg(),) (x) denote the l-fold spatial convolution of the ¢r,, and define ¢ (z) = y—_p

Proposition 5.1.4. Let | € {1,2,3,4}, and k € {0,1,2,3,4}. Let m® ¢ 7! and
m = Yt m;. If the bounds (3.33) hold for 1 < m < n and z € [0,2] then for all
m<n+1, and z € [0,2],

o 2kv
< mE et S 2T gt S ry) B (5.5)

l k
||3£73(z)@(z) * ¢£—:(12)||oo = d_2k
m 2
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b x+y b X b y
my
a” VNN ¢ a y a «
m m, my

Figure 5.1: Feynman diagrams for M},}) (a,b,z,y), Amims(a,b,z,y) and
Apio(a,b,z,y). A jagged line between two vertices u and v represents a quan-
tity A, (v —wu). A straight line between two vertices u and v represents the quantity

p(v —u).

and
l . )
||s§ﬁ>(,),q(,)||1 < CmE gl 4, (5.6)
Definition 5.1.5. Let
Mr(nl) ((1, baxay) = hm(IC - a)p(2) (‘T +y— b)7 (57)
and
hiny (Y — @) hany (7 — ) p@ (b — ), may #0,
Ay ms(a,b,2,y) = { m ( e @) (5.8)
hm, (z — a)p(y — z)p'? (b —y), mg = 0.
We recursively define
N N-1
M'r('fz )((1, ba Z, y) = Z Aml M2 (a7 ba u, U)M((m3,___),m2N_1) (u7 v, T, y) (59)

U,V

The diagrammatic representation of these quantities appears in Figures 5.1
and 5.2.
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Vg Wi Vg

X+y

w
Vo T4 Vg Ug Uz Vg Ugg

uq Ug=U 4p

Figure 5.2: An example of an “opened” Feynman diagram, Mg)(a,b,a:,y) arising
from the lace expansion. A jagged line from wu;_1 to u; represents the quantity
hm; (u; — ui—1) (derived from the backbone from a to z). A straight line between
two vertices u and v represents the quantity p(v — u) (derived from intersections of

branches emanating from the backbone).

Lemma 5.1.6. Setting ug = a and uoy_1 = z, for every N > Q,

N1
MT(.,.LN)(a,b,ac,y) :Z Z [H hmi(ui—ui_l)] X

upsn-—2 L =1

> o1 —b)plon — (z+1))x

V1,..UN

H Zﬂ(wl - ul—l)P(UHTZ - 'wl)P(U% —wy) | X

1>2:m;=0 wy;

11 (P(’U% =)l even + p(v1gs —w) Iy odd})
1<1<2N—2:
mp,mip1 # 0

N-1
- Z M((ml,---),mzN_g) (a, b, u, U)Am2N71 yMaN —2 (Ji, Y, u, 'U)-

u,v
(5.10)
We also make use of the following notation. Let
2N—1
Hm,N = {’I’?L € ZiNil : Z m; = m, M, > O,mQj_l > 0} . (5.11)
=1
For general N > 2 we let
N o 2m
E,=qm¢€HuNn:my+m < =3
(5.12)

. 2m
FTIT\L’ = {m € Hm,n : man—2 +man_1 < ?},
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and for N = 2 we also define

= {T?L € 'Hm,z : (m1 V mg) < mg} . (5.13)

Note that for N > 3, EN U FY = Hum, N since m1 + ma + mon 2 +may -1 < M.
Similarly for N = 2, E2, U F2 U G2, = Hpo.

Proposition 5.1.7. For ¢ € {0,1,2} and N > 1,
Z 2|27l (2;¢) < Z Z |:c|2qM (V) (0,0,z,0). (5.14)

mEHm N Z

Observe that there are two disjoint paths in the diagram Mr(ﬁN) (a,a,x,0)
from a to x, corresponding to taking the uppermost path and the lowest path, each
have displacement z — a. In the opened diagram MT%N) (a,b,z,y), the corresponding
uppermost path may be from b to z or from b to x + y depending on 7. Similarly
the right endpoint of the lowest path depends on . We define z = Z(m, z, b, y) and
z= E(mawa a’y) by

~ {:v —b , if #{mqg; : mg; # 0} is odd
z =

z4+y—>b , if #{mg;: mg; # 0} is even
T (5.15)

{x+y—a , if #{ma; : mg; # 0} is odd

T—a , if #{mg; : mgj # 0} is even .

5.2 Proof of Proposition 5.1.1

In this section we prove Proposition 5.1.1, assuming Propositions 5.1.4 and 5.1.7.
We prove the three cases ¢ = 0, 1,2 separately.
Case 1: ¢ = 0. Our induction hypothesis is that

28\
Z supZM( (a,b,z,y) < M- (5.16)
MEHm Nab,y z mz

In view of Proposition 5.1.7 with ¢ = 0, this clearly implies Proposition 5.1.1 with
qg=0.
For N =1 note that

supZM abx,y)—suth (z —a)p® (z +y —b)

aby ", aby ",
= sup > hn(@)p? (z +y — b+ a) (5.17)
aby

—suth )P (z + 2).
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_4y
Applying (5.5) with [ =1, K = 2 and all ¢; = r; = 0, this is bounded by 2,4‘1 as
2
required. "

We consider separately the contributions to (5.16) from EY, FY and in the
case N = 2 also the contribution from G2,.
Now by (5.9) we have

Z supZMN (a,b,z,y)

AeEN WY x
§ § E sup E Am1,m2 (CL, b7 u, ’U)
mlssz ng%"—ml mIEHm—(m1+m2),N—1 TowY

X sup Z MT%Z,H) (u,v,z,y)

=3 Y sw) Aum(abu) (5.18)

<2 ma <2y

2 sup > MV (w2, )

! !
LY g

X

T E€Hm — (my +ms), N1

—8\N—1
Z Z Supz Amy,ms (@, b,u,v) (G5 ¢) a4

mlssz ngszfrm ab u,v (m — (ml + m?))T

where we have applied the induction hypothesis in the last step. Since mi+msg < QTm
in the range we are summing over, the last line of (5.18) is bounded by

C'(C 74) Z Z SUPZAml ms (@, b, u,v), (5.19)

<2m <2m a’ u,v

d—
where the constant ¢' = 37" is independent of N. Finally we split the sum over
mo into the two cases mo = 0, mo > 0 to get

Z Z SupZAml,m2 (a’7 b,u,'u)

a
mi < ™ ma < M _my T WY

= Z supz Py (u - a)p(’l) - u)p(Q) (b - U)

a,b

+ Z Z SuIP Z Py (U — @) hyy (1 — 0) pP (b — w) (5.20)

my <=t 2m 0<m2<f—m1

T 2_% 6v
<y Iy oy O oy

2
m1§2m ml 1<2m0<m2<2m —m [m1+m2]
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where we have applied (5.5) with all ¢; = r; = 0 in the penultimate step and the
fact that d > 8 in the last step . Combining (5.18)-(5.20), we get that

Z supZM( abwy)gw, (5.21)

EENabvy T m 2

as required.
(N) (i

Similarly using the symmetry of M."’ (in the form of the second equality of
(5.10)) and writing n; for moy_1 and ng for moy_o we get

Z supZM( (a,b,z,y)

mEFN a,by T

> ) S“PZAnw z,y,u’,v) (5.22)

= Y
n1<2—mn2<2—mfn1m E7'im—(nl+nz),N 1 YT

X sup M (a,b,u,v").
a,b,v’ Z
Using translation invariance of Ay, »,(z,y,u’,v) we proceed as in (5.18)-(5.20) to
get
C 2—->\N
Z supZMN abxy)g%, (5.23)
mEFN aby ", m
as required.
It remains to prove the bound (5.16) for the sum over 7% € G?,. Note that
(2)(

in this case mo # 0 and so M."(a,b,z,y) is equal to

Z P(Q) (b—v)hmy (u— a)hm—(m1+m3)(v — w)hm (z — U)p(Q) (@+y —u) (5.24)

We break the sum over 7 € G2, according to which of m; and mg is larger and
note that me = m — (m1 + m3). By symmetry of MT(..V?) (a,b,z,y) and translation
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invariance we have

Z supZM2 (a,b,z,y)

mEG2 a‘abay T

<2 Z Z supZM()abwy)

mi<y  mgz<m: @by g
ma > m1
Y Y Y- o
Wb T (5.25)

m
mi<3  mg <mp:
ma > m1

X hm—(m1+m3) (’U - u)h’m3 (‘T - U)p@) (:K +y- ’U,)

=2 > > sup D> "o (b = )i, (u)

m
m1<3 mg<mp:
m2 > mi

X Py (i +mz) (V — @) himg (7 — 0)pP (2 +y — w),

where in the last step we have subtracted a from each vertex and correspondingly
changed variables (i.e. we have used tranlations invariance). This is bounded by

2y > (%) D Db = ) (1 4ma) (0 — U')> (S}Jllp > s (2 — v'))

m
m1<3y  mg<mi:
m2 > my

x (sng Py ()p?) (2 = u>> .

(5.26)

Applying (5.5) with all ¢;,r; = 0 for the term inside the first and third braces and
(5.6) with I = 1 and ¢; = 0 for all ¢ for the term inside the second braces, (5.26) is

bounded by
0,82_ %’ CﬁQ_ %’

P 2 ol i

(m — (m1 +m3)) m,

ma > mi
4v
(CBH) ~ 1
SO Y > 1 (5.27)
m m1<g My m3 < m1




and we have the desired bound since d > 8. This completes the proof of Proposition
5.1.1 for ¢ = 0. O
Case 2: ¢ = 1. Our induction hypotheses are that

2 2-%\N
Z supZ|E|2MéLN)(a,b,x,y)§M, and

mE'Hm,N aabay x

m 2
S sup Y [2PMG (a,b,3,y) <

MEHm, N aby x m

e (5.28)
0'2(0,62 ] )N

6

2

In view of Proposition 5.1.7 with ¢ = 1, these clearly imply Proposition 5.1.1 with
qg=1.
For N = 1, the first statement of (5.28) is

o2(CB2~ S \N
supZ\m+y—b|2hm(m—a)p(z)(x—l—y—b) < o (Ch )7 ﬂd_6 ) i
aby m 2z

(5.29)

Writing o) (z +y —b) = 3, p(u — b)p(z +y — u) and using |z +y — b|> < 2(|Ju —
b2 + |z +y — ul?), (5.29) is bounded by
25up 3" b1 (s — D)ol + 5 — wh (& — @) + 25up 3 (s~ B)gh (2 4+ — w2 — a).

a,b,y T a’b’y T
(5.30)
Applying (5.5) to each term with [ = 1, k = 2, ¢; = 0 and exactly one r; = 1, (5.30)
9 dv
is bounded by W as required. The second statement for N =1 is
2

m

2(0p2 %N
supZ |z — a?hm (2 — a)pP (z +y —b) < %

aby ", m 2

, (5.31)

which follows immediately by applying (5.5) withi =1,k =2, ¢; =1 and all 7; = 0.

For the inductive step, for each statement of (5.28) we break up the sum over
m € Hm,n into sums over m € E, 7 € FN and when N = 2, also 7 € G2,. For
the contribution from 17 € EY we write |z|2 < 2(|Z4|? + |2a|?) where

(x —u,u—0b) , if #{mo; : mg; # 0} is odd and my > 0
_ (x+y—u,u—>) , if #{mo; : mgj # 0} is even and my > 0
(zAazM) = A )
(x —v,v—0) , if #{mo; : mg; # 0} is odd and my =0
(x+y—wv,v—>) , if #{mg; : mg; # 0} is even and my = 0.
(5.32)
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Thus

3 sup Y [ZPMS (a,b,7,y)

’I?LEEN a‘abay T

<2 30 s 3 [EaP Ao b )M (w0,2,9) (5.33)

meE,, Na, ’ymuv

+2 37 sup Y Auyma(a.b,uv) My D (w0, 2,).

mEE‘N aby T,u,v

As in (5.18) the first term on the right of (5.33) is equal to

2 Z Z Supz |ZA| Am, m2(a b, u,v) (Cﬁ2 )N 1d—4

1<2_m 2<2_m_m1 ab u,v (m - (ml —|—m2))T
© 52_@ o (5.34)
<t Z Z supZ|zA| Ay ms(a,b,u,v).
m1<2m m2<—fm ab u,v

We now proceed exactly as in (5.19)—(5.21) except that we use (5.5) with exactly
one rj = 1 (instead of all r; = 0 as we did in (5.20). This yields an upper bound on
(5.34) of

2"”(06;24_ Y (5.35)

m o2
For the second term on the right of (5.33) note that by definition, z,; is

either Z’ or 2/, the displacement of the upper or lower path of M(Nfl)(u,v,a:,y).
We proceed exactly as in (5.18)—(5.20) except that the induction hypotheses give a
bound

6v
[ C,B2_T N-1
Y s Y eV V) <ot —
'y (m — (m1 4+ my))
6v
(0p*= )N
*m d—4>

(m — (m1 +mg)) 2
(5.36)

mIEHm—(m1+m2),N—1

IA
Q

which contains an extra factor of o?m compared to that appearing in (5.18). We
now proceed exactly as in (5.19)—(5.21) to get a bound on the first term of (5.33) of
B2~ \N
m 2
This proves that

2 2-8v N
S sup > ZPMEY (0, b,3,y) < % (5.38)

meENab’y = m” 2
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As in the ¢ = 0 case of Proposition 5.1.1, the bound

2 2-6v\N
> supZ\EVMT%N)(a, b,x,y) < M (5.39)

meF’rJr\Lf aabay x m 2

follows by symmetry.
When N = 2, the contribution to (5.28) from 7 € G2, is easily bounded
as in (5.25) by applying (5.5) and (5.6) with exactly one of these having one g; or

N
rj = 0. This gives the desired bound of gz(cgdi_:)? as required. This completes the

m- 2
proof of Proposition 5.1.1 for ¢ =1 O
Case 3: ¢ = 2. Our induction hypothesis is that
4 -8 N
- N o*(CB~ 4
S sup S ERPM (0 b gy < T ()
TEHm, N aby T m 2

the induction hypothesis In view of Proposition 5.1.7 with ¢ = 2, this clearly implies
Proposition 5.1.1 with ¢ = 2. The proof of (5.40) is very similar to the proof of (5.28)
so we just present the main ideas.

The N =1 case follows from (5.5) with [ =1, k = 2, ¢; = 1 and exactly one
r; = 1. To bound

3 sup Y 2P2PME (0, b, 2, y), (5.41)
meEy Y o

we use the expansions 2|2 < 2(| e |2+ | e |?) and |z|> < 2(| @ |> + | ¢ |?) yielding 4
terms instead of the two in (5.33). One such term is

_ N—
43" sup 3 [Zallzal® Amy o (0,5, 0) MY (u, 0,2, ), (5.42)

o a,b
mEETJX ”yz,u,v

on which we use the ¢ = 0 case of Proposition 5.1.1, and (5.5) with ¢; = 1 and
exactly one of the r; = 1. For two of the remaining three terms arising from (5.41)
we use the ¢ = 1 case of Proposition 5.1.1 and (5.5) with exactly one of ¢ = 1 or
some 7; = 1. The remaining term arising from (5.41) is

_ N—
437 sup Y Amyms(a,b,u,0)[Z Pl PMG Vu,z,y),  (5.43)

- a,b
mEE}X ”ym,u,’u

which we bound using the induction hypothesis and (5.5) with all ¢;,7; = 0 and .
Collecting the 4 terms we obtain the bound

OB )2
3 sup 3 [3P1el M) < T (5.44)

meErJXaa Y T m 2
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The contribution from 7% € FY also obeys the bound (5.44) by symmetry,
while the contribution from 7 € G2, when N = 2 is handled as for the ¢ = 1 case
of Proposition 5.1.1 except that we have exactly two of the g;,r; equal to 1 when
we apply (5.5) and (5.6).

This completes the proof of Proposition 5.1.1 for ¢ = 2, and hence completes
the proof of Proposition 5.1.1. O

Remark 5.2.1. Observe that apart from the recursive representations of the dia-
grams M) in (5.9) and (5.10), the only information we used to bound the diagrams
was Proposition 5.1.4. This will become important when we estimate more compli-
cated diagrams in Chapter 6.

5.2.1 Diagrams with an extra vertex.

We say that a diagram has an extra vertex on some p if it is the same as a diagram
corresponding to some M2 except one p(z) in that diagram is replaced with p?)(2).
We say that a diagram has an extra vertex on some hy, if it is the same as a diagram

(N)

corresponding to some M~/ except one hy,(z) in that diagram is replaced with
Bunt % hin; —my (7). When we consider the diagrams arising from the lace expansion
on a star-shape of degree 3 we will encounter diagrams with an extra vertex on
some p or h,,. We bound the contribution from all such diagrams by repeating the
inductive analysis used in the proof of Proposition 5.1.1. We do not show all the
details but the main ideas are as follows.

We let n denote the location along the branch point where the extra vertex
is located. If n = Egzl m; for some 1 < j < 2N — 2 then the vertex is on the p
emanating from the backbone at n, or a p incident to that p (of which there are
at most two). If n = 0 (resp. n = m) then the vertex is on the first p (resp. last
p) in the diagram, or the p incident to it. Otherwise the vertex is at position n on
the backbone (i.e. on some hyp,,). Let M (N)’n(a,b,x,y) denote the corresponding
diagram with an extra vertex at n.

We prove by induction on N that

o @p )" 52_*)
3o > sup > ML (a,b,a,y) < = (5.45)

MEH,, v n<m aby T 2

For N =1 the left hand side of (5.45) is
Z suth % hyn—n)(z — a)pP (z +y — b)+2suth (z —a)p® (z 4y —b).

0<n<m @Y Tz aby "y
(5.46)
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Using (5.5) with [ = 2, £ = 2 and all ¢;,r; = 0, the first term in (5.46) is bounded
by

4v 4v
0,82_7 0,82_7
d—4 S d—6

O<n<m ™M 2 m 2

(5.47)

Similarly using (5.5) with [ = 2, k = 3 and all g;, 7; = 0, the second term is bounded

o b 9_ 6v
by ch d_?. Adding these together we get a bound of ch d_z which satisfies the
2 m 2

induction hypothesis with N = 1.
For general N > 2 we bound

> D sup) MY (a,b,2,y), (5.48)

mEETIX ngm aabay x

by using (5.9), and splitting the sum over n < m into sums over n < my +mo : n #

m1, and n > m1 + mo, and the final case n = m1. In each case the extra vertex is

either on A, m, or MT(ﬁ]Y_I). In the former case we use the ¢ = 0 result in the proof

of 5.1.1 on the Mr(ﬁjy_l) part and (5.5) (increasing k or [ by one due to the extra
vertex) on the A" part. In the latter case we use the induction hypothesis on
mi,ma

the Mfé)"”’” part and (5.5) on the A%, . part. The contributions from 7 € FY
and 7 € G2, are dealt with as usual.
Similarly we prove
2 2-8\N
N), o“(Cp* d
> Y sl -l My by < DL g
meHm,N nsmaabay x m 2

Note the factor |z —a|? in (5.49) rather than |z| or |z|. This is to avoid the situation
that could arise of having a convolution of four p’s with one of them having an
extra factor |u|? on the same diagram piece. This would violate the condition
kE + Zle r; < 4 in Proposition 5.1.4. Using |z — a|? instead, we will use path
along the backbone from a to x rather than the top path or bottom path, and the
induction argument goes through as before.

5.3 General Diagrams

In this section we prove Proposition 5.1.7 and Lemma 5.1.6. We begin with the
proof of Lemma, 5.1.6.
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Lemma (5.1.6). Setting up = a and ugny_1 = z, for every N > 2,

IN—1
MT(;.LN (a,b,z,y) Z Z [ H hom,; (g —ui_l)] X
i=1

U2N -2

Z p(v1 = b)p(un = (z +y))x

V1,--UN

I > ew - w-1)p(vig2 —wp)p(vr —wy) | X

1>2:m;=0 wi

H (p(ll}% - ul)I{l even} + p(’l}# - ul)I{l odd})
1<I<2N—2:
mp,mip1 # 0

N 1
ZMéml, ) ) (@ 0:00) Ao o, (2,9,,0).
(5.50)

Proof. For the first equality of (5.50), we prove the result by induction on N and
leave the reader to verify the easiest case, N = 2 (consider the two cases mo > 0,
mo = O)

For N > 3, if my > 0 then by separating the terms [ = 1,2 from the initial
and final products in the right side of (5.9) we have that Mr(ﬁN) (a,b,z,y) is equal to

> (hml (1 = @)y (ug — u1) »_ plvr — b)p(vz — UQ))

Uu,u2
2N—1
(Z Z [ H hml(uz —’U/z'—l)] X
uaN-—2 L =3
> plvigs —ur)p(on — (2 +y)) I > etw - w-1)p(vigs —wp)p(vr —wi)
V2, UN 1>4m;=0 w;
X 11 (P(U% — )L eveny + P(vigs —w) I odd}) )
3<I<2N—2:

my,myp1 # 0

Z Amyms(a,b ul,ug)M((N Y

3, ,mQN_l)(uh'U'?a"Ea y)a

U1,U2

(5.51)

by definition of Ay, 1, and the induction hypothesis. This proves the result when
mo 7é 0
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If mo = 0 then by separating the [ = 1,2 terms from the first product and
[ = 2 term from the second product in (5.9) we have that MT(ﬁN) (a,b,z,y) is equal
to

Z Z ( my (U1 — a)ho(ug — ug Zp v1 — b)p(ws —ul)p(v% —wz))

UL, w2 U2 V1

(Z 3 r]lv_[lhmi(ui—ui_l)] y

uaN-2 L =3

Y ooz —woplon — (@ +9)) | I Do plwr —w-1)p(vie —wi)p(vs —w)

V2,0, UN 1>4:m;=0 w;

X 11 (P(Ué = )1 even} + p(V1xs —up) Iy odd}) >
3<I<2N-2:
my, myy1 70

= Z Aml,mQ(a’7 baulan)M( Y (U1,1U2,.’E,’y),

(m3,...;,man_1)
U1, w2

(5.52)

by definition of A,,, ,,, and the induction hypothesis. This proves the result when
mg = 0, and thus completes the proof of the first equality of (5.50).
The proof of the second equality is the same by symmetry of the expression
for MT(ﬁN) in the first equality, by considering the cases maony_o > 0 and moy_o = 0
and separating the terms [ = 2N — 1,2N — 2. O
We now prove Proposition 5.1.7.

Proposition (5.1.7). For ¢ € {0,1,2} and N > 1

Z el < Y S ey (0,0,2,0). (5.53)

mEHm N Z

Proof. We prove the stronger result that

> M8(0,0,2,0). (5.54)

MEHm, N

Recall the definition of 72 (x;¢) from (5.2).
For N =1 there is only one lace L = {Om} on [0,m] and every other bond
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Vi

0 X

Figure 5.3: The Feynman diagram corresponding to the lace containing one bond.
The jagged line represents the quantity h,,(z), while straight line between 0 (resp.
z) and vy represents the quantity p(vi) (resp. p(z — v1)).

is compatible with {Om}, so by (5.2)

b= X Wl 5 Wit [T so
Wil =z =0 R; €T, (i) b#0m
|w| =
=Y W(Re) Y W(Rn)[~Uom]x (5.55)
Ro€To Rm €Ty
m—1
¢y ww [ Y. w) [+
Wil =1 Ri€To) »#0m
|w|

Note that everything in this expression is non-negative. Now —Uom = I{rynR,,£0}
so w5 (x;¢) is nonzero if and only if there exists v € Z¢ such that v € Ry N R, and

therefore
S WMR) Y. WRA)-Uoml <Y Y W(R) Y. W(R
Ro€To Rm€Te v R0€7E)(’U) Ry €Tz (v) (5 56)
= Z p(v)p(v — x)
If m = 1 then the last line of (5.55) is
¢ Y. W(w) ={(pDlx), (5.57)
w:0—>x
jw =1

as required. For m > 2, [0, [1 + Ub] < [[1<5cicm-1[1 + Ust] and letting y1 (resp.
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u us=u u v u u
v P, 5 4 9 Vg Wy, Vo

u, Ve Wa vg  ug uz Vs Uj Uy=uU 4,
Figure 5.4: An example of the Feynman diagrams arising from the lace expansion.
A jagged lines from w;_1 to u; represents the quantity hm, (u; —ui—1) (derived from
the backbone from 0 to z). A straight line between two vertices u and v represents
the quantity p(v — u) (derived from intersections of branches emanating from the
backbone).

y2) be the location of the walk w after 1 step (resp. m — 1 steps) we have

MY W H Y w(r) [[1+U)

w:0—>z =1 Ri€T,x) b£0m
|w| =m
<D (peD(y1)¢peD (@ — y2) %
Y1 Y2 (5.58)
m—2
S Y. wE)[[n+uy)
Wiy =y JZO Ri€T 10y b
|w'| =m—2
=hp(z).

Combining (5.55)—(5.58) gives the desired result for N = 1. See Figure 5.3 for the
diagrammatic representation of this bound.

For N > 2 the reader should refer to Figure 5.4 to help understand the
following derivation. Firstly L € £N([0,m]) if and only if L = {sit1,...,sntn}
where s; = 0,iy = m and for each ¢, s;+1 < t; and s;41 — ;-1 > 0. Hence from
(5.2), ¥ (x;¢) is equal to

m

S > W@l > wr
0 R;€T,, 1)

{s1t1,...sntn} w:0—>z i=
€ LN ([0,m]) w| =

H 1+ Up).

beC(L

1:12

(5.59)

Now everything in this expression is positive, and every bond b = st such that
S1<s<t<sg,orty_1 <s<t<tn,orsip1<s<t<t,ort;<s<t<sio,is
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compatible with L = {s1t1,...,snytn}. Therefore (5.59) is bounded above by

m N
S Y. W] > wE)[[[-Uselx
{s1t1,...sntn} w:0—>zx 1=0 R; €T, (5 =1
€ £N([0o,m]) |w| =m
N-1 N-2
II o+o) II o+l II o+w Il II D+wl
|7€(51,82) bE(tN_l,tN) =1 176(57;4_1,1‘4') Jj=1 bE(tj,Sj+2)

(5.60)

where for b = st we are using the notation b € (a,b) to mean a < s <t < b.
For L = {sit1,...,sntn} € LV([0,m]) we define m(L) € Z2"V~" by

my =s9—0, mon_1 =m—ty_1, Mo =1t;i—Siy1, Moi—1 = Sit1—ti—1. (5.61)

Then mo; > 0, mo;_1 > 0 and Z?ivl_l m; = m, so m € Hy y. Similarly for any
m € Hy, n we define L(m) = {s1t1,...,sntn} € G([0,m]) by

s1=0, ty=m,

21
ti=Y» my, i=1,...,N—1,
j—l (5.62)
20—-1

sl:ij, l=2,...N.
j=1

Then for each i, s;41 < t; and s;11 — t;_1 > 0 so that L(m) € £N([0,m]). Thus
(5.61)—(5.62) defines a bijection between £V ([0,m]) and Hy, n-

We now break up the sum over walks w in (5.60) according to the intervals
on the right of (5.60). Doing so we obtain

Y Ww)

w:0—=>z
] = m
= E § W (w1) E W (wan—1) %
UlyenU2N—1 1 : 0 = ug W2N—-1 U2N-2 > L (5-63)
|w| =82 — 51 lw| = 52 — 51
N-1 N=2
) W (wa) ] ) W (w2j+1)-
=1 wo g — U I=1 wajqn tug; — ugjta
lwai| = t; — si41 lwajt1] = sj4+2 — 8

87



Then under this scheme, [[{2) > . W (R;) becomes

€Tu (i)
m;—1
Yo Wr) ] Y. WEm) [ D> WEy |,
Ro€To 1<i<2N—1: \Rim;€T0;(m;) J=1 R ;€T0, ()

m; Z0
(5.64)
where w;(m;) = u; (wan—1(men—_1) = ) and the product over i ensures that if some
sy = t;_1 then we do not count the tree emanating from this vertex twice. Similarly
the term Hé\;ﬂ_Usm] = Hfil I{r,,nR,, 20} becomes

(I{mﬁéo} + I{miZO}I{Ri,mi:Ri—l,mi_l}) x
N-2 (5.65)

I{RoﬂRz,m2im}I{Rszs,m2N_3ﬂR2N71,m2N_1 #0} H I{RZI—l,m2l_1 NRy142,mg; 70}
=1

Note that (5.65) contains no information about R; ; for 0 < j < m;.
Lastly we have that the second line of (5.60) becomes

2N-1

11 II  Zwor=o |- (5.66)

=1 1<s<t<m;—1

Combining (5.60) with (5.63)-(5.66), and writing ug = 0, usny_1 = = we have
that (5.60) is equal to

YooY Y W(R) 11 S W(Rim) | x

—

@ MmEHm,N Ro€To 1<i<2N —1: Ri,m; €Tu;
m; %0

(I{mﬁm} + f{mi:O}f{Ri,mi:Ri_l,mi,l}) X

N-—-2
I{RoﬂRz,m2 #@}I{RzN—s,mw_SﬂRzN—1,m2N_1 #0} H I{R2171,m2,_1 NRot49,may; 5 70} %
=1
2N-1 m;—1
e
I e > we Il X we)| 1 Tweowe=n
i=1 Wi w1 — Uy J=1 Ry €T, () 1<s<t<m;—1
lows| = m;

(5.67)

The last line of (5.67) is H?ivl_l hm; (Ui — uij—1) by definition.
For any collection of trees {R;,, : 1 <4 < 2N — 1} for which (5.65) is equal
to one (i.e. nonzero) we choose v; € Z¢4, i =1,..., N as follows.
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(a) I{R00R27m2 20y = 1ifand only if there exists a v € Z%such that vy € RoNR3 1, -
This means that Ry € To(v1) and Ry, € Ty, (v1).

(b) Similarly I{RQN_S,mQN_SQRQN_l,mQN_l7&@} = 1 if and only if there exists a vy €
Z%such that vy € RonN—_3mon_sNRaN—1,msy_,- Thismeans that Ron_3 myy_s €
Tusn »(vn) and Ron_1myn_1 € Tz(v1)-

(c) For each i € {3,...,2N —5} such that i is odd, I{Ri my(Rivam, 570} = 1 if and
only if there exists vi+s € Z% such that viss € R;m; N Riy3m;,,- This means

2 2
that R, € Tu;(vies) and Riy3.m;.5 € Tu;,5(vits) where i 4 3 is even.
2 2

43
Now if m; = 0 (in particular this forces 7 to be even) then hy,, (v — u—1) in (5.67)
is nonzero if and only if u; = u;_1. In addition I{Rz,ml:Rz—l,ml,l} = 1 if and only
if Ry, = Ri—1m,_,- By the above construction we have that vi € Ry, and
Uitz € Ri_1,m,_,, ie. UL, Vig2, Uy € Rym,. For T = Ry, let TUzwv% and Tul"’"'“%—g
denote the backbones in T joining the specified verticies. Then there exists a unique
w; € T such that

Tulwv% mTulW’U%;Q = Ty - (5.68)

Collecting the above statements we have that

Y W(Ro) 11 Y W(Rim,) | %

Ro€To 1<i<2N —1: Riym; €Tu;
m; %20

(I{mﬁéo} + I{miZO}I{Ri,mi:RFl,mi_l }) X

N-2
I{R00R2,m2#@}I{R2N—3,m2N_3nRZN—l,mzN_l?éw} H I{Rzlfl,mm,lnR21+2,m21+2#®}
=1
<> ) W(R) > W (Ron-1,may_1) ¥

¥ Ro€To(v1) Ron-—1,myn_1 €Te(vn)

H Z W(Rl,ml) X

L =0 Ry my €Ty (v v142)

11 > W(Rum) | Ty eveny + > W(Rim,) | Tit 0day
l:m; #0 Rz,mleﬂl(”%) Rl,mlenl(vljéé)
myp1 #0

(5.69)
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Now observe that ZReTyl (92) W(R) = p(y2 — y1) and

> W(Rim) <>, >, WMER) Y, WMR) Y, W(Rs)

Rl,mlenl(v%,v%&) wy R16Tul(w1) RzETwl (U%) RgeTwl (1]1_42,2)

=> plw — w)p(vr —wi)p(vigs — wy)-
: (5.70)

This completes the proof of (5.54), and hence Proposition 5.1.7. O

5.4 Diagram pieces

In this section we first prove Proposition 5.1.4 assuming the following two lemmas,
which we prove later in this section.

Lemma 5.4.1. Let k € {1,2,3,4} and %) € {0,1}* be such that k + Zle r; < 4,
then

2kv

k - . k CUZETiﬂsz

S o) (@) < OmMETIGAZE and sup 9% (1) < T teer

0<|z|<y/mL |z|>v/mL m—=

(5.71)

Lemma 5.4.2. If the bounds (3.33) hold for 1 < m < n and z € [0,2], then for all
z€[0,2], 1 €{1,2,3,4}, € {0,1} and m¥ ¢ Z! such that Y m; =m <n+1,

00'2 Z qi /BQmE qi
d

d ; and ||S,E-lﬁ)(l) J(l)||1 S CO-QEQimEQi. (572)
m?2 ’

l
||8£7-5?(l)’§(l)||oo <
Proposition (5.1.4). Let I € {1,2,3,4}, and k € {0,1,2,3,4}, ¢ € {0,1} and
7 € {0,1}* be such that k + Zle ri < 4. Let Y € Z and m = Zézl m;. If the
bounds (3.33) hold for 1 <m <n and z € [0,2] then for allm <n+1 and z € [0, 2],

2kv
1 k . . , e

||5£ﬁ)(l),é’(l) * ¢£’(12)”00 < 2 62T g2 4ty d_2k (5.73)

m 2

and

! ) )
||s§ﬁ)(,),q(l)||1 < CmZ gl 4, (5.74)

Proof. Firstly (5.73) with £ = 0 and (5.74) follow immediately from Lemma 5.4.2.
We must therefore prove (5.73) with k£ > 1.
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o\ ! k . l k
By definition ||s£ﬁ)(l),q(,) * ¢;(,2)||oo is equal to sup, ), Siﬁ)(l),qﬂ) (x — u)¢£(,z)( )
which is equal to

1 k
Sup Z SEﬁ)(l),q(l)(m )¢(~(k) +sup Z m(z) ~(1) U)‘is;(/z)(“)

* |u|>vmL |u\<\/mL
k l
< ’SUP ¢,(7(12) (U,) Z in)(l) q(z)(l' - u) + SUPS ~(z) (j(z) Z ¢7-.'(k)
|u'|>v/mL u|>v/mL u|<v'mL
2,2’07'/ ) )
MCUZZ%WLZ ‘h CG?quﬁsz % ka+ZTjo.kV+2Z'rj
— d—2k—2) r; da ’
m 2 m?

(5.75)
where we have applied Lemma (5.4.1) and Lemma (5.4.2) in the last step. Collecting
terms we get the result. O

Let [z] = |z| V1. In order to prove Lemma 5.4.1, we need the following

convolution proposition which is proved in [11].

Proposition 5 4.3 ([11] Prop. 1.7(i)). If functions f,q on Z¢ satisfy | f (z)| < #
and |g(z)| < 5 ]b with a > b > 0, then there exists a constant C' depending on a,b,d
such that
(Frowis{im, e (5.76)
x g)(z)| < .
W%’ ifa<danda+b>d.

5.4.1 Proof of Lemma 5.4.1

We prove the result in two stages. We first prove that

k
(k) c
ety (7) < Z Li@—V)[g]d-2—2% (5.77)
i=0

For k = 1 we have from (1.13) that

1

(1) Clogs C
o (2) < Clo=s + T2t < §. O IG (5.78)
]:

and

C L C
#@) < propm <X peap (5.79)

=0
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Which verifies (5.77) for kK = 1. For k > 1 we have

17(1) Z ¢5) (u) Tz, ,rk (@ —u)

k-1

C
= ; ]ZO LiC—v [U d 2j—2r1 ;0 Ln(2—v) [.’E _ u]d*2n72 >k
. 1 (5.80)
< Z 2:0 Li2- V)Ln (2—v) Z [’U, d 2] 27"1 u]d_Qn_zzfzz i
0n=

k—1 C
< Z Z (j+n) 2+V) [x]de(Hn)*? Thr

where we have used Proposition 5.4.3 with the fact that £ + > r; < 4 in the last
step. With a different constant, (5.80) is bounded by

k
y — ¢ : (5.81)

= Li(2+v) [.T]d_QJ_? Ele T4

as required.
Therefore we have

k
C
Z ¢£*(k> Z E Li(=v)[g]d=2-22 i

0<|z|<v/mL 7=00<[z[<v/mL

IN

i 2j+23 i k |
Z \/_I(JQ) e =C Z mi T [ iv+23Ti (5.82)
Li(2—v)
=0 =

< ka—l—z nLku—l—2Em < ka—kz rio.ku+22r¢
which proves the first bound of Lemma, 5.4.1. Similarly,

k
(k) C
sup ¢ ;) (x) < sup ———— <
alsymn S lal>yme LG @] 220

k

b C
= Li(2—v) (\/T_nL)d*QJ'*?EH

C
] d—2j—-2% 7;
= [d—v—2rigy gt

CO’2 >y ﬁ2 2k”

— d—2k—23% r; ?

d=2h—2%.7j
m 2

(5.83)

which proves the second bound of Lemma 5.4.1. O
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Remark 5.4.4. Observe that the only information about p(zx) that we used to prove
Lemma 5.4.1 (and hence Proposition 5.1.4) was (1.18). This will become important
when we estimate more complicated diagrams in Chapter 6.

5.4.2 Proof of Lemma 5.4.2.

In this section we prove Lemma 5.4.2 by induction on .
For [ = 1 we use induction on m. For [ = 1 and m = 1 we have hy(z) =
(pcD(x) and hence

C
hilloo < 75 =CB% Il < C. (5.84)
Using the fact that D(z) = 0 for |z|?> > dL?,
1
sup |z|2hy (z) < CLQE < Co?p?, (5.85)
T
and by (3.28)
Y |alhi(z) < CY |’ D(z) < Co®. (5.86)
T T

This proves the result for the case [ = 1, m = 1. The case [ = 1 and m = 2 is dealt
with similarly using

|z[?ha(z) < C Y |[ul’D(u)D(z —u) + C Y |z — u|>D(u)D(z — u). (5.87)

For | = 1 and m > 2 we use the inequality hn,(z) < p(0)¢pc >, D(u)hm—1(z — )
(which holds trivially by replacing the factor [ o<, ci<m_o[1+Ust] bY 11 <scrcm—ol1+
Ust] in the definition of ¢,,_2) so that
Cp?
[Bmlloc < hm-1llo £ = [hmll1 < [hm-1llc < K. (5.88)

m?2
Using |z|?2 < 2(|u|? + |z — u|?), we have
SUP‘$|2hm($) < 0'2||hm71”oo + sup |z — ul|2hm71(w - ul)
x !

—U

(5.89)

202 292
<Cadﬁ +CJ§

— d—2 °

m?2 m 2

This proves the result for / = 1 and all m < n + 1.
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(I-1)

)
~ For [ > 2 we have W g0 = => . sml,ql (u)s(m2,___,ml),(qz,___ql)(:C —u). Iff m >
2
(-1
lstatn g lloo < 1155 g1 o8, gz 1
Co?0 B2ma 25
- = - q; Z qi
< o Co” &im2limei=2 (5.90)
< Co? 2 4im24i 32
— d 7
m2
as required. Similarly if m; < 7,
) (1-1)
18,50 g lloo <l ml;‘]l” [E PO Y |
Co?Yizs qiﬂ2mZﬁ:2 5
2
< Co*t'm m% (591)

< Co? 2 4im24i 32

d ’
m?2

as required. This completes the proof of the first bound of Lemma 5.4.2 for all /.

For the second bound of Lemma 5.4.2, we have

[ -1
1550 ol < 18 a5 o I

< Co2q1mq10022 QQ’LmZ =27 (592)
g CO’Z Zi:l Qimzi:1 ‘Ii’
as required. This completes the proof of the second bound of Lemma 5.4.2, and
thus completes the proof of Lemma, 5.4.2. O

Remark 5.4.5. Observe that the only information about h,, that we used to prove
Lemma 5.4.2 (and hence Proposition 5.1.4) was

Cp?
[hmlleo < =2 [[hmlls <C, (5.93)
m?2
and when some q; # 0 we also used
C 2
sup [z (z) < 7 mﬁ Zm hu(z) < Com. (5.94)

This will become important when we estimate more complicated diagrams in Chapter
6.
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Chapter 6

Diagrams for the r-point
functions

In this chapter we prove Proposition 4.3.2, and Lemmas 4.3.3, 4.4.1 and 4.2.1. Note
that since we have proved Proposition 3.4.1 in Chapter 5, one output of the inductive
approach of Appendix A is that the bounds of equation (3.33) hold for all n. As a
result, the conclusions of all the Lemmas and Propositions of Chapter 5 hold for all
n. Another result of the inductive approach is that (., = 1 (see Lemma 3.5.2). In
this chapter ¢ = 1 and hence it does not appear.

Proposition 4.3.2 is proved in Sections 6.1 to 6.4 using the lace expansion
on a star-shaped network and the results of Chapter 5. Lemma, 4.3.3 is proved in
Section 6.5. The other results are proved in Section 6.6, also assuming the results
of Chapter 5.

6.1 Proof of Proposition 4.3.2.

For N > 1, recall the definition of 71']\]%(’11) from (4.27) where SAAZ has at least one of
My, My, M3 nonzero (we defined 75(i) = p(O)I{ﬁza}).

Proposition (4.3.2). There exists a constant C independent of L such that for
N >1 and q € {0,1},

Y luPr(@) < N*(N?0®| M ||o0) !B (M), (6.1)

weZ3d
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where @ = (u1,us,u3) € Z3* and

By (M) = (CﬂQ—%”)N x
3

H d_e+§3: d_gg . ! =1

im1 i—1 [ M;] m]] 7 [My +mj] =

(6.2)
We prove Proposition 4.3.2 assuming Lemmas 6.1.1, 6.1.2, and 6.1.3.
Lemma 6.1.1. For q € {0,1}, when M; =0 but M £0,
o < N3W?0?|| M o) (CF* )N
D luy Pl (@) < 00 (6.3)

(S8 M)

As stated in Chapter 2, laces on a star-shaped network of degree 3 can be
classified as cyclic or acyclic. Let LY (resp. LY) denote the set of cyclic (resp.
acyclic) laces and define ?r]\Nyf(a'c') and 7cr]\N7I(a'c') to be the contributions to 7r]\]\7][ (%) from

acyclic and cyclic laces respectively so that when none of the M; = 0, 7% (:Tc') =

%%( )+ M( 7). Figure 2.6 shows a basic cyclic lace and a basic acyclic lace with 3

bonds covering the branch point.

Lemma 6.1.2. For q € {0,1},

o

> g 23 () < NP(N?6? | M |oo)? (€52 )NH 69

#e€Z.3d i=1 [MZ]T
Lemma 6.1.3. For g € {0,1},
AN
> P (@) NP (N?0?)| M ) (€52 )

weZ34d
3 (6.5)

Y=Y ¥ 1 .

-1 [Mi] 2 m; <M; [M; — m]] [Mk +mg] 2

Proof of Proposition 4.3.2. If M; = 0 for some [ (but M # 0) then from Lemma,
6.1.1 we have

3 2 20117 _%
3 e (@) < X 1M 1) (OB ¥

(Zz 1M) o (6.6)
N (N2 2||M||oo>< g2 )N
T M - M) [My, — M) My, + M)
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where [1 # [ and Il # [. Summing over [ this is trivially less than
N (N?6” | M) /(CB* )V By (1), (6.7)

as required.
Otherwise M; # 0 for all [, and the result follows from Lemmas 6.1.2 and
6.1.3 using

_. eN oN
Do luPa (i) < g P (@) + ) Juy [P (@) (6.8)
a a a

O

Before proving Lemma 6.1.1 in the next section, we introduce a Lemma which

allows us to replace one or more lines (correpsonding to p’s and h,,’s) in a diagram

with different quantities, in such a way that we can estimate the resulting diagrams
without resorting to more inductive proofs such as in Section 5.2.

Lemma 6.1.4. Given homogeneous functionals F : E™ — Ry and f; : E — Ry,
suppose that whenever f;(a;) < b;, we have F(@) < K. Then for scalars o; > 0, the
bounds fi(al) < a;b; imply F(@*) < K [["; o.

Proof. By homogeneity,

Also by homogeneity,

x (a*
fi (a_z) = fila) < b;, for eachi (6.10)
i (e
which implies that F' (Z—Il, N %) < K by hypothesis. This completes the proof.

O

In most cases we will use Lemma 6.1.4 with each a; being either hy,, (u;)

or p(u;) and F being a diagram (i.e. a large convolution of h,,’s and p’s). In

fact Lemma 6.1.4 provides an alternative method of bounding the ¢ = 1,2 cases of
Proposition 5.1.1.

6.2 Proof of Lemma 6.1.1.

Without loss of generality M3 = 0. By (2.12), 8;‘7[ is the interval (i.e. a star-shaped
network of degree 1) [—Ms, M;] of length M7+ Ms. Consider the lace L = {—MyM; }
illustrated in Figure 6.1. Breaking up the walk corresponding to the backbone into
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Figure 6.1: The single bond lace on [— M3, M;] and the corresponding [0, M; + M>).

two subwalks we can show that the contribution to Y7, . 7(as,ap,0)(21,72) from
this lace is less than or equal to

> by (m2) o, (1)p) (@1 — m9). (6.11)

T1,T2

Using translation invariance we can rewrite this as

> hary (Whan, (z —uw)p? (z). (6.12)

Comparing this to the contribution to (4.29) from the lace on the right of Figure
6.1,

ZhM1+M2($)p(2) (3:)7 (6'13)

we see that the only difference is the replacement of hpz,ym,(u1) in (6.16) by
Zu oty (W) B, (w1 — w)-

Now consider the lace L = {sit1,soto} where s1 = Ms, t1 = mq + ma,
89 = myq, tg = M7 on the left of Figure 6.2. This lace divides the interval [— My, M1]
into subintervals, one of which contains 0. Using the same method as in the
proof of Proposition 5.1.7, but breaking up the walk corresponding to the subin-
terval containing the root into two subwalks, we can show that the contribution to
me T(M;,M»,0)(Z1, Z2) from this lace is less than or equal to

37D bty (w2) by (1) ey (2 =11 )y — (g ma) (@1 —2) pP) (g —2) o) (11 — 1),
1,2 U1,U2

(6.14)

Using translation invariance we can rewrite this as

SN hagy ()b, (w1 = 1) ey (g = 11) Py — g 4y (71— 2) 0 (1) o) (ug — 7).
T1 U,u1,u2

(6.15)
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X5 0 0

Figure 6.2: A lace on [—Mpy, M;] and the corresponding [0, M + Ma].

Comparing this to the contribution to (4.29) from the lace on the right of Figure
6.2,

DD Byt (1) By (2 = 1)y — (g ) (81 — u2)p® (u) p™M (w1 — 31), (6.16)

1 U1,U2

we see that the only difference is the replacement of hpz,m, (u1) in (6.16) by
5 P () o (1 — ).

In general, assuming M3 = 0, the diagram arising from any lace on [— My, M ]
is bounded by the opened diagram M, %N) of (5.9) that arises from the equivalent lace
on [0, My + Mj], except for the replacement of at most one term hyy,, (u;) by a term
of the form (A # fun;—m)(u) in M. Note that this m is fixed by M; and Mj (i.e.
it is not summed over). Proposition 5.1.4 states that the bound on a diagram piece
does not depend on the degree of the convolution of h,,, (provided that degree is
less than 4). Thus by Proposition 5.1.7 we have the same diagrammatic bounds for
Zzhzz 7"1]\\]/[1,M2,0(371a$2) as for eHar, 1y n SWPa,by Yow Mr(ﬁN) (a,b,z,y). But from
(5.16),

6v N
S () (e5*%)
Tar My,0(21, T2) < E sup E Mg '(a,b,z,y) < a1
T1,T2 MEH My +My,N @by g [M1 + MQ] 2
(6.17)

which satisfies the claim for ¢ = 0.

For ¢ = 1 observe that |z;/2 < 2N 7" |u; |2, where the u;; are the
displacements of the h,,; along the backbone from 0 to z; (there are at most 2N — 1
of these). The resulting diagrams are the same as for the ¢ = 0 case except that one
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hm,;(uj;) on the backbone from 0 to z; has been replaced with |u;;|*hm, (u;;). In
view of Remarks 5.2.1 and 5.4.5, the only bounds on h,,, that we used to bound the
cp?

diagrams Mr('r’zN) without the factor |u;;|> were ||hm,llcc < “F and ||hpy, |l < C.
m?2

Since m; < ||M||oo, (5.5) with [ = 1,k = 0 and (5.6) with [ = 1 imply that

sup, |[u2h(u) < %(W and Y, [ul?h(u) < Co?||M||ss. We now apply Lemma
m?2

6.1.4 to get that the diagrams MT%N) with the extra factor of |u;;|? are bounded by

02||M||so times the bound for the diagrams MT(TzN) without the extra factor.

Therefore when M3 = 0,
3 Pa(@) < MM Y sup Y. MY (a,b,2,y)

AEH M, 41y, VY 3
< 0°||M||oo (2N)? v
M, + My =
Similarly for My = 0, and My = 0. Since (6.18) is smaller than (6.3) this completes
the proof. O

6.3 Proof of Lemma 6.1.2

In this section we prove Lemma, 6.1.2, which gives a bound on the contribution to
>ow |m|2q7r]\1\7[[($) from cyclic laces. We first consider the cyclic laces L € L3 (51(\;[))
containing only 3 bonds. There are multiple cases to consider, depending on how
many bonds have common endvertices. For example, one needs to consider the
number of those bonds that have the branch point as one of its endpoints (see the
second row of Figure 6.3).

e Consider the case where none of the three bonds in the lace L have the branch
point as an endpoint. Without loss of generality the branch point associated
to branch 1 has its other endvertex on branch 3 as in the first lace in Figure
6.3. Then for each 7 € {1,2,3} there exists 1 < n; < M; that is the endpoint
of e;+1 (the bond associated to branch ¢ + 1) on branch 4.

If n; < M; for all ¢ then by first breaking the sum over w € Q 5® (Z) into the
M
sum over three walks w; € Q2 e (z;), and then each of these into two further
M,

subwalks (using the same methods as in the proof of Proposition 5.1.7), it is
easy to show that the contribution to ) . WE\? (%) from this lace L is bounded
by

3
Do T oy (i) Bty (5 = 1) pP (41 — ), (6.19)
r 4 j=1
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3 1 3 1<

Figure 6.3: Some cyclic laces containing only 3 bonds

X X
2 2
| k W\J
: g ' x %
\ \ X2 X3 0 X3
y N ' Us
e '
T M4

Figure 6.4: A basic cyclic lace L containing only 3 bonds, its corresponding diagram
F(L) and its decomposition into 3 subdiagrams, Fy (L), F5(L), F5(L).

where we use the convention that x4 = z1 (see Figure 6.4). We use the expres-
sion “opening up” a diagram informally to mean that we drop the restriction
that two specific lines have a common endvertex and take the sup over the
displacement of their endvertices. For example, the diagram corresponding
to >, MT(ﬁN) (0,0,2,0) (see Definition 5.1.5) with both ends opened up (i.e.

opened up at 0 and z) would be sup, , > -, MfﬁN) (0,0, z,y).

Opening up the diagram (which we denote F'(L)) expressed in (6.19) at the
vertices n;, Equation (6.19) is bounded by

3
blslllepbg, Z Z H b (wj)haty—n; (€5 — u]')p(z) (@)1 = bjt1)
502, r @ j=1

) (6.20)
=TI 5up D>ty (wj)ersy (w5 — ) p® (5 — by),

j=1 bj Tj U
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which is a product over 3 separate diagrams, Fy(L), F5(L), F3(L), each corre-
sponding to M )(0 bj,z;,0) with an extra vertex on the backbone (see 5.7).

Suppose now that m; = M; (this is possible depending on the relative size of
the M;). Then two of the bonds have an endpoint at the endvertex of branch
1 and the contribution to ). 7'('5%) (Z) from this lace L' is bounded by

D ha(@)p(ur — 21)pP (22 — w1)hny (up)

X hiagy sy (T9 — ug)pt? (903 — u)hpy (u3)hpty—ns (23 — u3)p? (uy — us)

< sup Z Z o, (1) p(ur — 21)pP) (29 — b) P, (us2)

X haty—n, (352 - Uz)/)( ) (23 — b3)lng (u3)haty—ng (T3 — uz)p'® (uy — by)
—SHPZZhMI p(uy —x1)p(2)(u1 —b1)

X Hsup Z th u; hM] n]( — -)p(2)(wj —b;)

—9 b Tjuj

:s;lthM1 1 p :1:1 —b)
1

X HSUP Z th 'U/] hM TLJ( - )p(2)($] - bJ)

=2 i Zj,Uj

(6.21)

Once again this is a product of 3 separate diagrams Fy(L'), Fy(L'), F3(L'),
each corresponding to M, (1) (O b;,z,0) with an extra vertex (two on backbones
and one on a p).

Consider now the case where one or more of the 3 bonds has the branch point
as an endvertex. The diagrams arising from such laces depend on how many
of the 3 bonds have this property, and each case is treated slightly differently.
We present the most complicated case, where all 3 bonds in the lace L have the
branch point as an endvertex, as in Figure 6.5. The contribution to ) - 7'('](;) (%)
from this lace L is bounded by

3
S0 pw)p® (1 — whp(w - 2)p® (@2 — 2)p (s — 2) | ar(a), (6.2
T w,z ]:1
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plus two other terms (see Figure 6.5) of similar form arising from the possible
shapes of a lattice tree containing 4 fixed vertices. Equation 6.22 is the first
diagram in Figure 6.5 and is bounded by

sup Z Z plw — a1)p? (1 — w)p(by — 2)

b1,b2,b3 T

x p 3 (29 — 2)pP (x3 — b) H b ()

j=1
=sup Z p(w — by)pP (21 — w)ha, (21)
I z1,w
X Sup Z p(bo — 2)p'D (z2 — 2)har, (22)
b2 gy 2 (623)
X SIIJIPZP(Q) (73 — b3)hary(z3)
3 x3
= SIIle Z p(s) (1 — b1)har, (z1)
1 1
X supr(?’) (z2 — b2)har, (z2)
2 x9
X supr(Z) (3 — b3)hrs(3).
3 x3

Again this is a product of 3 separate diagrams Fi(L), Fa(L), F3(L), each
corresponding to M (1 )(O b;,z;,0), two of which have an extra vertex on some
p. The two other terms give rise to the same bounds up to permutation of the

indices.

We have already bounded the contribution from diagrams with an extra
vertex in Section 5.2.1. By (5.45) we have,

) < H Cﬁ i (6.24)

which satisfies (6.4) with N = 3 and ¢ = 0. Similarly by (5.49) we have,

_8v __6v
3 | [25%() <ZC" ’ Hcﬁ;‘i
T

M. i M.2
P (6.25)
< M|l o®(CH* )3 H
j= lM 2
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.

X1 X3

X X
1 3
0

0

Figure 6.5: The diagrams arising from a lace where all three bonds associated to a
branch have the branch point as one of their endpoints.

which satisfies (6.4) with N = 3 and ¢ = 1. Therefore we have proved Lemma 6.1.2
for N = 3.

At this point we know how to bound the diagrams arising from cyclic laces
containing only three bonds. A cyclic lace L that contains N > 3 bonds has N — 3
additional bonds that do not cover the branch point. As such, each of the additional
N — 3 bonds has both endvertices strictly on some branch j. Suppose that the
number of additional bonds on branch j is N;—1, so that 23:1 N; = N. We perform
the same operation of breaking up the diagram F'(L) at the branch point and opening
the diagram at each n; to get three separate diagrams F(L), F5(L), F3(L), each
(except in some degenerate cases that satisfy stronger bounds) corresponding to
M J(VZ i )(0, bj,z;,0) with an extra vertex. This can be proved explicitly by induction
on N1, N3 and N3. The degenerate cases are when n; is the endpoint of more than
one bond for some j.

By (5.45) we have,

z N15N27N3: ‘7:1 M] ?
LN = (6.26)
S
< N¥(Cp> &)V
7j=1 M ?
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which satisfies (6.4) with ¢ = 0. By (5.49)

6v
<N i cpra)Ni
IO P SN o al /vl y {C/ ey
i Ni,N3,N3: =1 M, * i# M?
2 Ni=N (6.27)

3
< N3||M||oo0®(CB> % H

.7

which satisfies (6.4) with ¢ = 1. This completes the proof of Lemma 6.1.2. O

6.4 Proof of Lemma 6.1.3

In this chapter we prove Lemma 6.1.3. We prove the Lemma by considering sep-
arately the contribution to ?r%(ﬁ) from laces with two bonds covering the branch

N
point and from laces with three bonds covering the branch point. We write 7 ;7(@)

N
for the contribution to 7 M( ) with two bonds covering the branch point and 7 M( X)

for the contribution to wﬁ( %) with two bonds covering the branch point.

6.4.1 Acyclic laces with 2 bonds covering the branch point

In this subsection we prove the following Lemma

Lemma 6.4.1. For q € {0,1},

_s\ NV
S by PO i (@) SN (N2 M o)t (C5* )
VAL
(6.28)

5> MZZ e

i=1 [M Jj#i m;<M; [M ] 2 [Mk+mj] 2

where k # 1, .

Proof. As in the case of the cyclic laces, our strategy is to decompose the resulting
diagrams into subdiagrams (3 in general) that we have already bounded in Chapter
5.

Consider the acyclic lace L € £2 containing only two bonds. An acyclic lace
contains a special branch with the property that there is only one bond covering
the branch point with an endpoint on that branch. Without loss of generality we
suppose that the (although there may be more than one) special branch determined
by the acyclic lace L is branch 3, and that the bond ez associated to branch 3 has
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X X
1 0 T
X3

Mg

Figure 6.6: An acyclic lace containing only two bonds, its associated diagram and
the decomposition into subdiagrams.

its other endpoint on branch 2. We let m denote the endpoint of e3 on branch 2
so that 0 < m < M,. In addition we suppose that 0 < m < My, so that the lace
appears as in Figure 6.6. It is easy to show that the contribution to ) 7'('](;) (Z) from
this lace is bounded by

Z Z haty (1) P (2) Porty —m (w2 — ) By (3)p P (w2 — 1) p) (ug — w3)

< sup Z Y hn(u2)haty—m(w2 — u2)haty (1) b ()

b2;b3 7 u2
x p@ (by — m)p® (b3 — x3) (6.29)
= sup Z B (w2) bty —m (T2 — u2)p (2)(62 — I9)
b2 To2,u
X sup Z har, (1) oy (23) p) (bg — 3).
bs T1,T3

Using translation invariance on the second term, this is a product of two subdia-
grams, M )(O b;j,x;,0) with an extra vertex (that we bounded in Section 5.2.1)
and M](\/[3+M3 (0,b;,2;,0) with hps, 4, () replaced with (has, * hary)(z) (which we
bounded in Section 6.2). Using (5.45) and (6.17) and summing over the permuta-
tions of branch labels we have

26 2- 4
2T i) < ZZ v Sl , (6.30)

ueZ34d =1 j#i [M] [M +Mk] 2

where k # i,j. This obeys the bound (6.28) with N = 2, ¢ = 0. Similarly using
(5.49) and (6.18) we have

281/

> (<a||M||ooZZCﬁ_i_ B e

@ez3d im1 jzi | [M; +Mk] D

which obeys the bound (6.28) with N =2, ¢ = 1.
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For general acyclic laces L € LY for which only two bonds cover the branch
point, we again suppose that the special branch is branch 3, and that the bond
e3 associated to branch 3 has its other endpoint on branch 2. As before we let m
denote the endpoint of e3 on branch 2 so that 0 < m < Ms. Let e denote the other
bond covering the branchpoint. We suppose that L has N; bonds (other than the
ones covering the branch point) strictly on branch 1 and N; — 1 bonds strictly on
branch j, for j = 2,3 respectively. Thus 2+ Ny + No — 1+ N3 —1 = N. We also
let mn; denote the first vertex (from the branch point) strictly on branch 1 that is
an endvertex of some bond in L.

The reader should refer to Figures 6.8 to 6.11 when digesting the bounds
that follow. We bound the Feynmann diagram F(L) for L by doing the following:

1. We define F; to be the part of the diagram consisting of the backbone cor-
responding to the interval from m; to M7 of branch 1, together with any p
obtained from a bond with both endvertices on branch 1 (such a bond must
have both endvertices strictly on branch 1, otherwise it would be a third bond
covering the branch point). In the degenerate case that m; is also an endpoint
of e, the p incident to the backbone at m; is also considered part of Fi. We
open up F; at mi. Note that if mq = M; then F} is defined to be empty
(compare with the N = 2 case). Note further that (except in the degenerate
case already discussed) the convolution of two p’s obtained from bond e is
not considered part of Fi, and thus F; contains either an extra vertex on the
backbone (if the endpoint of e on branch 1 is not the endpoint of any other
bond) or on a p (if the endpoint of e on branch 1 is the endpoint of some other
bond).

2. We define F3 to be the backbone corresponding to branch 3, together with the
backbone corresponding to the interval 0 to m; on branch 1 and with any p
derived from a bond with an endpoint strictly on branch 3. In particular we
take the p % p obtained from bond e3 as part of F5. We open up the diagram
F3 at m (leaving a extra vertex on Fj).

3. We define F5 to be the backbone of branch 2 along with any p corresponding
to a bond with an endpoint strictly on branch 2 (except for the bond e3). We
open up the diagram F5 where it meets F; so that the p * p corresponding to
e is part of F5.

Note that the only properties of the acyclic lace L (that has 2 bonds covering the
branchpoint) that are important when constructing of Fi, F» and F3 are the bonds
that cover the branchpoint, and more specifically, whether or not the endpoints of
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Figure 6.7: Examples of acyclic laces with only 2 bonds covering the branch point,
and their decomposition into opened subdiagrams.

those bonds on branches 2 and 3 are also endpoints of some other bonds. To help
the readers understanding of this construction we give 3 figures giving examples of
the different possibilities which may arise depending on e and es.

As in Figures 6.7 and 6.8, this leaves us with 2 (if m; = M;) or 3 subdia-
grams (in general F(L) and F»(L) contain an extra vertex), that we have already
bounded. By (5.45) and (6.17) and summing over the possible locations of m; and
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permutations of branch labels,

sivme » vy @

a€Z3d N1,N2,N3 1=1 j#i [M;] =

oy P (o)

my<i; [Mj —mj] 2 [My +mj] 2

W)Yy Loy L

i=1 ]#z ] ijMj [Mj _mj] 2 [Mk +mj] 2
(6.32)

which satisfies (6.28) with ¢ = 0. Similarly by (5.49) and (6.18)

AN
> g% (@) SN0 | N? (€52 )
uer}d
3 . (6.33)
X Z d—6 d—4"
i=1 [ ] ];ﬁz m; <M [Mj - mj] 2 [Mk +mj] 2
which satisfies (6.28) with ¢ = 1, and completes the proof of Lemma 6.4.1. O

6.4.2 Acyclic laces with 3 bonds covering the branchpoint

In this section we bound the contribution to 7 from (acyclic) laces that have 3
bonds covering the branchpoint. The idea is similar to that of acyclic laces with
2 bonds covering the branchpoint, but the contribution from non-minimal acyclic
laces requires careful treatment. In particular for non-minimal laces we need the
following two definitions and lemmas. We refer to these lemmas as 4-star lemmas,
and they are proved later in this section.

Define

gy e (B, T2, w) =D Y iy () gy, (71 — 1)

mi1 <M1 ma<Ms u1,u2 (634)

PP (ug — u1) hmy (42 — W) haty—m, (T2 + W — u2).

This can be seen diagrammatically in Figure 6.9.
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X2

X1 z 0

0

Figure 6.8: An acyclic lace with only 2 bonds covering the branch point, and its
decomposition into opened subdiagrams for which we have existing bounds. The
branches are labelled 1 to 3 from left to right.

0 Xy w X5W 0 AANANANANAN X WANANANANANANNAN x3W
my Mgmy ms Mzm, My M,

Figure 6.9: On the left is a so called 4-star diagram of (6.34) for the case [ = 2
which is shown in Lemma 6.4.2 to obey the ||.||; and ||.||cc bounds of the diagram
on the right times a factor CﬂQ_%.
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0 X 0 NANNANANNN X
m M-m M

Figure 6.10: On the left is another called 4-star diagram which is shown in Lemma
6.4.3 to obey the ||.||1 and ||.||cc bounds of the diagram on the right times a factor

Ccp2-¥.

Lemma 6.4.2. The 4-star diagram g, (21, 22, w) satisfies the following bounds

, CB? CpB?
SUp SUp gar 1, (71, w2, w) < OB 4 ﬁ ﬂ ;
1 z2 M2 M2
_ov cf8?
> sup gan i, (@1, w2, w) < CF* 0 =,
T 2
2 My (6.35)
_6v C
SUP Y gnny, wa, (€1, T2, w) < CB>d ﬂg
1 T M12
ey
Zngl,M2(xlal‘27w) S 6182 d.
T1 T2

For the second 4-star Lemma we let b(z) = Ij,—q) + %. Clearly

|z| < |y| implies that b(z) > b(y). Note from (1.13) that p(z) < Cb(z), and from
Remark 5.4.4 that the only information about p that we used in bounding the
diagrams was that p(z) < Cb(z).

Lemma 6.4.3.
@ cp’ 2t
sup > > hm(whar—m(@ —u)p® (v — w)plv —y)p(z = v) < —b(z —y) 7,
m<M u,v M~
>S5 Y hn(@har mle —wp® (v — wplv — y)p(z — v) < Cblz — )87
r m<M u,w
(6.36)
We prove the following Lemma, assuming Lemmas 6.4.2 and 6.4.3.
Lemma 6.4.4. For g € {0,1},
N - A\ N
D P (@) <NP(N20?| M |oo)? (OB )
TIEZSd
(6.37)

3 1 1
Z[ ‘162 Z d—6 d—4)
i=1

Mi] 2 i< [Mj —mgl 2 [Mg +mj) 2
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X2

Figure 6.11: Basic acyclic laces with only 3 bonds covering the branch point, and
their decomposition into opened subdiagrams.

where k # 1, ].

Proof. We begin with an acyclic lace L € £ containing only 3 bonds, all of which
cover the branch point. We suppose that the special branch is branch 3 and that the
bond e3 associated to branch 3 has its other endvertex on branch 2. In general (see
for example Figure 6.11) this means that each of the bonds associated to branch 1
and 3 have an endvertex on branch 2. We let ma < My denote the first vertex (from
the branch point) strictly on branch 2 that is the endvertex of some bond f in L.
We will also assume that no endvertices of the 3 bonds coincide. When some such
endvertices do coincide we must use a decomposition similar to what follows with
adjustments as we did for the cyclic laces.

Consider the first lace of Figure 6.11. Let mo < My denote the first vertex
(from the root) strictly on branch 2 that is the endvertex of some bond f in L. Here
mo is an endvertex of the bond associated to branch 3 and the endvertex of the
bond associated to branch 1 is therefore at some m with ms < m < Ms. It is easy
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to show that the contribution to ) - 7'('5\;) (Z) from this lace is bounded by

Z Z hml (ul)hM1—m1 (371 - ul)hmz (u3)hm—mz (u2 - US)th—m(-'EQ - U2)hM3 (-’ES)
I 4
x (1 — u2)p? (w9 — u1)p? (w3 — ug)
<Sllp Z hm1 ul)hM1 —m1 (1L'1 - Ul)P(Z) (‘Tl - bl)

b1 ur

X SUP > hmmsy (U2 — w)hat,—m(z2 — u2)p® (32 — bo)
u,b2 Uz, T2

X sup Z Pomsy (t3) Biags (23) p2) (3 — as).
bs u3,T3

(6.38)

This is a product of three diagrams, two of which contain an extra vertex and the
other with hy,,4+ s, replaced with hy,, * hps,. The other lace of Figure 6.11 gives
a similar product. By (6.17) and (6.18), and summing over the permutations of
branch labels we have
o OB cpd  cp i
> T (i) < — — 5 (6.39)
dez3d iz [My] 2 j#i [Mj —mj] 2 [M;+my]

where k # i,j. This obeys the bound (6.37) with N = 3, ¢ = 0. Similarly using
(5.49) and (6.18) we have

0182—8—” 052—8—” 052—8—"
1) < 02| M|oo . (6.40)
aez:zsd ;%‘: [M] 2" [M; — my)" [M; +my] "

which obeys the bound (6.37) with N =3, ¢ = 1.

For general L € LY with 3 bonds covering the branch point, if L is a minimal
lace (see Definition 2.1.7) then we proceed as before with my < My denoting the
first vertex (from the branch point) strictly on branch 2 that is the endvertex of
some bond f in L. We leave it as an exercise for the reader that by breaking the
diagram at mo and 0 we obtain a product of three diagrams that we have already

N

.. . . a+ — ..
bounded, giving a bound on the contribution to > ;cysq4 [u;[* 7 ;7(%) from minimal
laces of

- s\ NV
N3 (N%0?|[M|o0)? (OB~ )

3 . (6.41)

LYY -

i= I[M] 2 Jj#i m; <M; [Mj_mj] 2 [Mk+mj] 2
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ma

1 *3

Figure 6.12: An application of Lemma (6.4.2) to remove the bond associated to
branch 2.

ma

AANNANNANANNN

1 '3

Figure 6.13: An application of Lemma (6.4.3) to remove the bond associated to
branch 2.

Therefore we are left to prove a bound of the form (6.37) for the contribution
from non-minimal laces. We will argue that such a lace has a bond that we can
“remove” in such a way that the resulting diagrams are diagrams arising from an
acyclic lace L' € LN~ (with two bonds covering the branch point) that we have
already bounded, together with an extra factor of ﬁ2*%”.

There are many different cases to consider, depending on which bond (e
or e1) is removable and how many endvertices of that bond are an endvertex of
some other bond in L. We will present the argument for the three cases where es is
removable and leave the others as an exercise. From this point we assume that e
is a removable bond.

Case (0). Suppose that neither of the endvertices of e, are the endvertices of any other
bond in L. Then we use Lemma 6.4.2 to remove the bond e; and obtain the
extra factor ﬁ2_87V, as in Figure 6.12. This is a non-trivial consequence of
Lemma 6.1.4 and so we give further explanation. However this explanation
is one of the most notationally difficult parts of this thesis, so we don’t give

every detail.

Removing the bond ey from the lace L leaves an acyclic lace L' = L\ey € £V ~1
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ms . . o ms

P g i SN s

Figure 6.14: Another application of Lemma (6.4.3) to remove the bond associated
to branch 1.

with two bonds covering the branch point, which we analysed in Section 6.4.1.
Recall that we bounded the contribution to ;74 |u]-|2q7r]\]\7ff(ﬁ) from such
laces by breaking up the diagram F(L') for each L' at m; and 0 into three
subdiagrams Fy (L"), F5(L') and F3(L'). The bounds on those diagrams relied
only on the bounds p(z) < b(x), [|An|le < c_,q; and ||hp|l1 < C when g =0,

m
and in addition the bounds sup, |z|2h;,(z) < a%ni%)/ﬂ and > |7)?hm(z) <
m
Cmo? when ¢ = 1. Let N; denote the number of bonds that contribute to
diagram F; in this decomposition of F(L').

Let m1 be defined as in Section 6.4.1 as the first vertex from the root on branch
1 that is the endvertex of some bond in L' that has an endvertex strictly on
branch 1. Either the endvertex m* of e5 on branch 1 is greater than m; or less
than m; (it is not equal to m; by definition of m; and the fact that neither
of the endvertices of ey are the endvertices of any other bond in L).

We can write an explicit bound for the contribution to ). 71']\]\-/]1(:1‘5') from the
lace L in terms of a diagram F'(L) consisting of various convolutions of p’s and
hy’s. In particular that diagram contains a term p® (u — u') obtained from
the bond e3. We break up this diagram at m; and obtain a product of two
subdiagrams, which we denote by Fi(L') and F'(L) if m* < my and F3(L’)
and F'(L) if m* > mj. We consider only the case m* < mq, as the proof of
the other case is very similar. When m* < m; (see Figure 6.15) the diagram
Fy(L') is the same diagram we obtain when estimating F/(L') and is bounded
by supg, 5, Yog, Mr(ﬁ]\rl)’"1 (a1,b1,21,0), where m € Har,—m;,n,, and n1 denotes

the location of the extra vertex.

As in Figure 6.15, F'(L) is the diagram F3(L') with the first factor hg(v — v')
of the backbone being replaced by a diagram Fj(L)(z — w). Thus F'(L)
is bounded by sup,, p, >_,. MT%NS)’*(ag,bg,.Tg,O), where MT%NS)’* is the dia-
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=1

1 —m 3 X1 X3
1 0 Mj+m,

Figure 6.15: A non-minimal lace L and the subdiagrams Fj(L’) (the bottom left
subdiagram in the second figure) and F'(L).

gram MT(ﬁNs) with one specific factor hg(v —v') being replaced by the diagram
F}(L)(v—2"). Furthermore Fj(L)(v —v') is itself the diagram F»(L') with one
of the first three factors h;(u —u') on the backbone being replaced by gy, ;(u —
u',v—v',v"), and with an extra vertex at ny. Therefore Fij(L)(v—v') is bounded
by Sup,, p, Y0, MfﬁNz)’nz’g(ag,bg,wg,O)(U —v'), where MT(ﬁNz)’nz’g(o)(v — ') is
the diagram Mr%NZ)(O) with one of three factors h;(u — u') being replaced by
gki(u —u';v — o', v"), and with an extra vertex at no.

It follows that the contribution to ). @ :77[(:7:') from non-minimal acyclic laces
such that: the special branch is branch 3, e3 has its other endvertex on branch
2, ey is removable and has no endvertices in common with any other bond,
and m* < my is bounded by

c Z Z Z Z sSup ZMT(?L]YI)’nl (alablamlao)

Ni,N3,N3: mma<Mimi€Hpy—mq,ny n1<M1—n1 1,01 gy
SN, =N-1
§ : § : (N3)x
X sup Mm3 " (as, bs, 3,0).

o a3,b
M3€EH Mz —mq,N3 393 x3

(6.42)

Here MG *"" (a3, b, 3,0) denotes the diagram M) (as,bs,z3,0) with the
first factor h,,(v — v') of the backbone being replaced by

S s Y MO a2, 0) 0 - 0),  (6.43)

- a2,b
Mo EHnry, Ny N2 <M ¥202 3y

and M%]Z?)’m’g(ag, by, T2,0)(v — v') denotes the diagram My(.ffzz)’m (a2, by, x2,0)

with a specific factor h;(u — u') being replaced by g (u — u',v — v, v').
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We prove that (6.42) is bounded above by
v v 6v
cot Yy 0BT (©B iy (optiy

d—6 d—6 d—4
— 2 2 2
Ni,Na,Ns: mi<M [My —mq] M, [M3 + m,]
SNi=N-1

(6.44)
which satisfies the bound (6.37) of Lemma 6.4.4) with ¢ = 0.

By (5.45) we have

. C 2-8\ Ny
> Y sup ZMT(-,'LNI)’ (a1,b1,71,91) < (ﬁ—)_ﬁ

mE’HMI*mIaNl n<M;—m1 a1,b1,y1 T1 [Ml - ml] :

By Remarks 5.2.1-5.4.5 and (6.17), the bounds sup,_,s k(v — v') < i—grg and

Y v_y (v — ") < K, together with bounds on the rest of the lines in F3(L’)
imply that

2—-8\ Ny
Z sup Z MfﬁN3)(a3, bs, z3,0) < M. (6.46)

d—4

MEH aty 1y N3 a3,b3 " [M3 + mq] 2

Therefore by Lemma 6.1.4, to prove that (6.42) is bounded by (6.44) it is

enough to show:

sup Z Z sup Z Mr(ﬁNQ)’m’g(am ba, x2,0)(v = v')

v—v’ "ﬁEHMz,N2 na<Ms, as,ba T2
8v (6.47)
0,62 e 0,32_7 Ny
<@ O s
M, >
and
(N2),9,n .
>oodT D sup Yy My (ag, ba,w3,0) (v — o)
v—v' MEH My, N, N2 < M2 az,b2 T3
2-82\ N, (6.48)
S 0’82—%’ (CIB _dﬁ) .
Again by Lemma 6.1.4, to show (6.47) it is sufficient to prove
0,82 _6_uC,82
sup sup gei(u—u',v—v w) < ?CﬁQ d 2 (6.49)
v—U uU—U
and
' ' cp? 2 8¢
sup Y ge(u — ', v —v',w) < —5-Cp27 (6.50)
v—1’ ,
Uu—u
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Similarly, to show (6.48) it is sufficient to prove

_e CB?
Z sup gk,l(u - ulav - Ulaw) < C/82 d l—fa (651)

ol
,U_v,u u

and

Z Z gra(u — v — v, w) < ofiza (6.52)

v—v' u—u’
But (6.49)-(6.52) are exactly the statements of Lemma 6.4.2.
This proves that (6.42) is bounded above by (6.44) as required.

Case (1). If exactly one endvertex of es is also the endvertex of some other bond (by
definition of a lace, in the case we are considering here the endvertex of e
strictly on branch 2 could only be the endvertex of e3) then we proceed as in
case (1) except that we use Lemma 6.4.3 instead of Lemma 6.4.2 to remove
the bond e2 and obtain the extra factor ﬁQ_GTV, (see Figure 6.13).

Case (2). Finally suppose both endvertices of e, are also the endvertices of other bonds
in L. Then (exercise left for the reader) e; is a bond with the properties that
at least one of the endvertices of e; is not the endvertex of any other bond
in L, and L\ e is a lace. Then, depending on whether or not one endvertex
of e; is the endvertex of another bond in L, we use Lemma 6.4.2 or 6.4.3 to
remove e; and obtain the extra factor [32_%.

We have now proved that the contribution (up to permutation of branch
labels) to ) 7!'5\{;) (¥) from non-minimal acyclic laces with 3 bonds covering the
branch point is at most

_8 1 1 1
N}Cp )N —1 - — (6.53)
M, % ma<m, [Ma —ma] 7 [Msz +my] 2
For the ¢ = 1 case of Lemma 6.4.4 we use \a:j|2 < 2N' %N'*l |Uj,l|2 (this

gives the N2 factor) where the u;; denote the displacements along the backbone of
diagram Fj(L'). If the extra factor |u;;|? occurs on a part of the diagram F'(L)
where F;(L') and F5(L') are joined by gi; then we can use Lemma 6.1.4 to include
a factor |u|? on one of the lines in the 4-star lemmas, and proceed to get the extra
factor 02| M| Otherwise the extra factor 02| M| comes by applying Lemma
6.1.4 to the diagram F;(L') where the |u;,|? is attached.

This proves that the contribution (up to permutation of branch labels) to
>z |:1:j|27rj(élv) (Z) from non-minimal acyclic laces with 3 bonds covering the branch
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point is at most

Y _8y 1 1 1
N (N?0? | M|oo)(CH*~ )N —5 D - (654)
M,? ma<is, M2 — ma] 2 [Ms +mg] 2"
This completes the proof of Lemma 6.4.4. O

Proof of Lemma 6.4.2.

For the first bound, note that either m; < % or M; —m; < % Breaking up the

sums over m1 and msg according to these restrictions gives rise to 4 terms. One such
term is

Z Z Z By (u1)Pagy —my (21 — Ul)P(Q) (ug —u1)
my <ML My s <M1 U1,u2

X hm, (U2 — W) gy —m, (T2 + w — ug)

Z Z SuP b, — ml( )

m1 <ML my< M1 (6.55)

x sup Pty —my (T2 + w — us) (hm 5 pt) % hm2) (w)

2 (132 -4 » 2
C’ﬂ Cﬁ DY < opr Y Cﬂ CB

T d»

M1 M2 g <MLy < M1 (m1+m2) 2 M1 M

where we have used 5.5 with [ = 1 and k = 0 with the fact that M; — m; > % on

the hpr,—m;’s and with [ = 2 and k = 2 on the convolution of h’s and p’s. By similar

arguments we get the result for the other 3 terms which proves the first bound.
For the second bound we again split the sums over m; and mo to leave us
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with 4 terms. The most difficult to bound is

Zsup Z 3D by (wa) sy —my (21 — u)p (ug — ua)

M
m1>_m < 1U1,U2

X hmz('U/Q — )hM2 mz(a)g +w — ’u,z)

> % Zsup Z Z Z hM1 m1 - )p(2)(u2 _ul)

M
mi>ML 1 ma< ML U1u2

X By (Ug — W) hpgy—m, (T2 + W — ug)
2

C
< b suthM2 ms (T2 +w — u)
M2 o

X sup o3 D e —w) | 0P (g = ur) i, (ug —w) (6.56)

D mp M1 w5 My
Cp?
S—ésuthMrmz(wg-i-w—u)
M12 u T
xsup Z Z (z1 — u1)p@ (ug — w1 ), (Ui — w)
m2<M1 U1,U2
isup Z Zp(?’) 2—371 m2(u2— )
Mf " mp< ML w2

cp? cpgri _C o
< IBd sup Z IBdfa 18 KC/BQ

/A ma< M1 my? M2
where we used Proposition 5.1.4 in the penultimate step.

The third bound follows from the second by symmetry and taking the sup
outside the sum.
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For the fourth bound we see that
S0 Y D by W) hag—my (@1 = u2)p® (ug — wy)
T1,22 m1 <M1 ma<Ma U1,u2

X hum, (U — w)haz, —m, (T2 + w — ug)

=C Y > > b (w1)p® (uz — wr) i, (uz — w)

m1 <M1 ma<Ma U1,U2

<O S iy ()t (51 — )6 (2 — 1)y (2 — ) &5

m1 <M1 ma<Ms U1,42

cpr
<c Yy Yy

m1 <M1 ma<Ms [ml + m2] 2
<Ccp>E.

Proof of Lemma 6.4.3.
Firstly since |z —y| < |v —y| + |[v — 2| <2(Jv —y| V |[v — 2|) we have

S~ oo = 0 pw — y)p(z — v)

<C > AP-wbw-ypz-v)+C Y pP—u)p(v—y)b(z - )

. [z2—yl
U.|U7y‘2 2

vi|v— z|>|z vl
<C Y, A-wbz-yplz—v)+C > pPw—u)p(v—y)b(z - y)
vifo—y|> 25 vijv—z|> 25

< Ch(z —y) (p(?’) (z —u) + p®(y - u)) :

(6.58)
Therefore for the first bound,
supZZh w)hpr—m(x — u) Zp (v —u)p(v —y)p(z —v)
m<M u
< Cb(z — y) sup Z Z B (W) bt —m (2 — w) (p(3) (z—u) + p®(y — u))
T m<M u (6.59)
2 =% 0op? ,
<0 ¥ Ty < e -,
2 M T 2 M2
>3

where we have used Proposition 5.1.4 and the fact that either m > % or M—m > %
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For the second bound, we again use Proposition 5.1.4 to get,

ZZZh whay—m(x —u) Zp(Z (v —u)p(v —y)p(z —v)

z m<M u

<Chz=y)> 3 D hm hMmfC—U)(p“)(z—U)er(?’)(y—u))
z m<M u

<Cbz=9) 3 D hm(w) (6P (2 —w) + 9P (y —w)) (6.60)
m<M u

v

<che-p 3 P < obe—

m<M T 2

6.5 Proof of Lemma 4.3.3

We now prove Lemma 4.3.3, the companion of Proposition 4.3.2. Recall the defini-
tion of By (M) from 6.2.

Lemma (4.3.3). There is a constant C' independent of L such that

' 2—8—"
Z Z N3 C b . d=8 > and (6.61)
N N:M; i >n; [nJ] 2
o 252 vo td 41
S 3 N By (1) <  IFl” o 10 (6.62)
N ji<n log ||| o, if d = 10.
Proof. Summing over N first gives the factor C ,82 , for small enough . Summing

over each M; separately we have,

1 C
>, s < T as> (6.63)
M:M;>n; Mj > [n]] 2
and
0-dyg
S ] Ly < Il £ 10 661
*© - .

N<it j=1 M log||n|le, if d =10,

as required. This verifies the Lemma for the first component of By (M).
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For the second component of By (M) (ignoring the sum over j) we sum over
M, separately to get

Z 1_6 Z 1 1

2
M1>n1 Ml

d—6 d
ma<M, (M2 —mao] 2 [M3 +ma] >

(6.65)
1 1
£ D D :

My, Ms ma <M [Ms — m2] e (M3 + mz] 2

VA

[nl &R

We leave it as an exercise for the reader to show (by summing separately over
me < 22 and mo > ) that

oy L L <C.

d—6 a1 > (6.66)
My, M3 ma<M [My —mg] 2 [M3+ma] =
Furthermore
1 1 1
Y. —=5 D py =
M:Ma>ns M1 > ma<Ms [M2 - m2] 2 [M3 + mQ] 2
1 1
<C > > ) = ;
Ma>nay M3z ma<Ms [M2 - m2] 2 [M3 + mZ]T
1 1
Y Yy ot
Ma>na Mz, M2 [ 2_m2] [ 3+m2] 2
1 1
+C YD D, =
My>ny Ms > M2 [My — my] 5" [M3 +ma] 2
<C ) —a% Z Y,
Ma>ns M2] ma< M2 M3+m2] 2
1 1
+C > D D = -
moz 2 My \Mp>my [M2 —mo] 2" | [My +mo] 2
C 1 C C
<—=+C D) <= +0 Y, — % S
n22 mzZnTZ Ms [M3 +m2] 2 ’I’L22 ma> "2 [mQ] 2 n22
(6.67)
Similarly we get
1 1 1 C
M:Ms>ns Ml 2 ma<M, [MQ - mQ] 2 [M3 + mg] 2 ’1’1,22

After permuting the labels 1,2, 3, this verifies the first claim of the Lemma for the
second component of By (M).
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For the second claim we need to show that

10-d v

L1 1 1 i . ifd#10
> Wl 3 = LTI
i< M, % my<M [My —mgo] 2 [M3+ ma] 2 log||n|leo,  if d=10.

(6.69)
If ||Mw|loo = M; this follows easily by summing first over M; and using (6.66). If
|M||oc = Ma, as in (6.67) we get a bound of

CL G o 2 i

M [M2 ma< 2 (M3 +m2] 2
(6.70)
1 mo
NP =
m2 Mg M>>mg [M2 - mQ]T [M3 + mQ]T

and the result follows by the same methods that we used for (6.67). Similarly we
get the result if ||M||oo = M3. After permuting the labels 1,2, 3, this verifies the
second claim of the Lemma for the second component of B N(M ), and thus proves
the Lemma. O

6.6 Proof of Lemma 4.2.1

In this section we prove the three bounds of Lemma 4.2.1, and Lemma 4.4.1. Fix
a skeleton network N (a, ), with @ € 3, and recall Definition 2.1.1, where b is the
branch point neighbouring the root of N. Let M C N (e, 7). If Uy € {—1,0} for
each st, then trivially for any A C E4,

I n+val <[] +Ul, (6.71)
steE steA
so that in particular for any finite collection of disjoint sets G; C E4,
H [1 + Ust] < H H [1 + Ust]- (6'72)
steE pq i1 steG;

We will use these bounds frequently without explicit reference.

Before we proceed with our analysis of certain error terms appearing in
Lemma 4.2.1 we quickly verify a trivial result, Lemma 4.4.1, where #4 is the
number of branches in M.

Lemma (4.4.1). There exists a constant K, independent of L, M and K such that

for any network M
tm(R) < K#m, (6.73)
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Proof. Label the branches of M, 1,...,# ¢ and write n; for the length of branch
i. Then the vertices of M can be relabelled by (i,m;) where 7 is a branch and
0 < m; < n; is distance along the branch i. Note that branch points of M will
receive multiple labels. Using

[[0+Ua4< H 11 [1+ Uy, (6.74)

steEM ste M;:
0<s<t<mn
we have that
N #m
> tm@ < pOF T D b, () (6.75)
FeZAF M) =1 y;
The result now follows from Proposition 5.1.4 with [ =1 and k£ = 0. O

6.6.1 Proof of the first bound of Lemma 4.2.1
Recall that ¢-(7) > 0 was defined in (4.18) as

o ww ][ Y W(R)(H[1+U|,]>(1—H[1+U|,]>, (6.76)

weNN(Y) SEN R, €T (w(s)) beRe beR

where Uy, is given by (4.15). In this section we prove that

Cp* 7
Zm <L (6.77)

Let N, denote the branch of A corresponding to edge e of o and let R&¢ = {st €
R:s€ N, t €Ny} We claim that when Uy € {—1,0} for all st,

- [[n+uad< Y 1- I 0+0a]

steR e, e € By : steRe-e
Ne O Ner =0 (6.78)
e,e’
< Z Z _Ume,m’e’
e, e € By : Mme < Ne

Ne ﬂ./\/e/ =0 Mer < Nt

where the sum over e, e’ is a sum over pairs of edges of a that do not have an
endvertex in common (which can be expressed as N, N Ny = (). To verify (6.78),
observe that each of the quantities

1- H [1 + USt] ’ 1- H [1 + USt] ’ _U(e,me),(e’,m’e)a (679)
StER ste'Re,e’
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are either zero or one. Suppose the left hand side of (6.78) is non-zero. Then there
exists some st € R with Uy = —1. By definition of R, st covers two branch points
of N so that st € R®¢ for some e, e’ that do not have a common endvertex. For
this e and e’, we have 1 — [] ,cgee’ [1 +Us] = 1 and the first inequality is verified.
Now for fixed e, €', if 1 — [],,cgee [1 + Us] is non-zero then there exists st € R
with Uy = —1. But s = (e, me), t = (¢, me) for some me < ne, me < ng so that
for this me and mer, —Ulem,),(e',m:) = 1- This proves the second inequality.
Examining the second quantity in (2.4) when U € {—1,0} for all st we have,

0< H [1 + Ust] (1 - H [1 + Ust])

SteExN\R steR
7
< X > ) 11 n+Ud
e,e/ € By : Me < Me steEpm\R

Ne ﬂNe: :@ Mer Snel

< Y Y Il I bewd
e, e/ € By : Me < Ne f#e, e s,t € Ny : (680)
NeNNg =0 Mer < Mgr 0<s<t<my
x H [1 + Ust] H [1 + Ust]
5,6 € Ne : s,t € Ne :
0<s<t<me Me < 8§ <1< Ne
X H [1+Ust] H [1+U5t],
S,te./\[e/: S,teNel:
0<s<t < me Me < 8§ <t < Ner

where we have used (6.72) in the final step.
Breaking up w (in 6.76) at every branch point and at (e,m.) and (¢',m)
and applying inequality (6.80) we obtain

DR <p(0)7 2> Y > I ey p)
7 7

e,el € By : me <n. fFee
Ne ﬂNe/ Mer < Mgt

X Z h/TTLe (u — 'Ue(:lj))h/nefme (’Ue(g') + Yo — u) (681)

X hme, (u' — Ve (g))hne, —m (ye/ + Ver (g) _ u/)p(Q) (’U _ ’U,I),

where v () = > o, ys and the notation f % e denotes the set of edges in o on
the path from the root to edge e (not including e). Rearranging sums we get that
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(6.81) is bounded by a constant times

PO | DI

el € By fAee Y
Ne NN

X sup Z Z hme (u - U)h’ne_Me (U + Ye — u) (6'82)

RN )
me <ne  YesYel sUsU
Mgt S Ne!

X hme’ (’U,I _ w)hne’ —m (w _.|_ ye, _ ul)p(2) (u _ ul).

By translation invariance, the last two lines of (6.82) are equal to the sup over z
of Zml,m Ine,ny (T1,Z2,2), one of the quantities that we bounded in Lemma 6.4.2.
However we now need to prove a stronger bound than that appearing in Lemma
6.4.2. Break up the sums over m; into the two terms m; < %, and m; > % and
similarly for my. Then we are left with 4 terms, one of which is

> Y b (), —m, (21— w1)

T1,T2,U1,U2 g, > :L?e
!

Mer > 2e
X iy (u = W), . (21 = w)p® (u — )

- Z Z B, (u1)hm,, (u — w)p@ (u — u')

Me > Re U1 ,uU2

2, (6.83)
X hngem, (@1 = 1) Y by, (T2 + w — )
1 T2

Cp2
A —

[me + me] 2

IA

e
!

2

o3

Me >
Mt Z
where in the last line we have applied Proposition 5.1.4 multiple times.

By first summing over the minimum of m, and m/ this is bounded by a
constant times

5 meCp*~ 4 5 meCH2d

d—4 d—4
me > % [rme] 2 mg>2el [me] 2
" " e= 2 (6.84)
Cﬁ2_7 0,82_7
= a-8 + -8 -
Te 2 n >

[

The other 3 terms give the same bounds by symmetry.
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We may now sum over each yy in (6.82) separately, and using Proposition
5.1.4 with [ =1 and k = 0 gives

2=
Z R <L (6.85)

where the constant also depends on r. This proves the first bound of Lemma 4.2.1.
O

6.6.2 Proof of the third bound of Lemma 4.2.1

Recall that ¢7,(y) was defined in (4.23) as
3

= > Ww][ > W®) J(S2(m) [T & (W \ S (@))s)

WEQN () SEN RseT (w(s)) MEH i=1

K (6.86)

where
Hi, = {m:0<m; <nji=1,2,3}N{m:0<m; <n; —2,5€G})\ Hz, (6.87)
and

Ha, = {m:0 < m; < % i=1,2,3)N{m:m; <ni—2,i € G (6.88)

As in Lemma 4.3.4, |¢7%,(¥)| is bounded by

Y Y@ 1Y 06 v = i)ty ()

FEH~ U g =1 v;
meHR, (6.89)
(o]
<O > 2@ ZHZD = Ui (),
N:lmeﬁﬁb i g i=1 v
where N,” = (N ST%), and 7, denotes the vector of displacements associated to

the branches of N;” (determined by ¥, ¥, and the labelling of the branches of V).
Summing over the v; and 4 and using Lemma 4.4.1 this is bounded by

[e's) 3
cy N Y k@[ KFN
N=17ieH;, @ i=1
—CZ > Z”* i) (6.90)
N= 1m€7{ﬁb
) 3 3 0’82_%/
<SP N D BN <Y
N=1 =l > i=1 n;*



applying Proposition 4.3.2 and Lemma 4.3.3 in the last line. This verifies the third
bound of Lemma 4.2.1. O

6.6.3 Proof of the second bound of Lemma 4.2.1

Recall the definition of ¢4/ (%) in (4.20). In this section we prove that

> 1% (i) Ei:

¥

(6.91)

It follows immediately from the definition of ¢4, (%) that

Bh@l= > wWw]] Y. w®)| > IIv| (6.92)
@)

WENN SEN RseT (w(s)) regb, bel

where 5}{/- is defined in Definition 2.1.1 and is only nonempty if A/ contains more
than 1 branch point (r > 4). In particular recall that graphs in £3; contain no bonds
in R. We use an approach similar to that of [22] to analyse ¢4 (7).

Let G(NV) C {2,3} be the set of labels of branches of N incident to b and
another branch point of A'. For F C G and e € F, let b, be the other branch point
in AV incident to branch A.. Let

5}’7’ v =1{T €&l : for every e € F, Ay(T) contains a nearest neighbour of b}

(6.93)
Then,
S ITue= > TM1U«+ D>, TIU«— > 1IUst» (6:94)
FEEJZ’\/ stel’ FES{(?},N stel reg{s} N stel’ Feg{z BN stel

where some of these sums could be empty if G # {2,3}. Thus,

Yo Ilua< > > T Usl- (6.95)

regl, stel FCGN) [|regy \ ster
F#£0

Note that if r = 4 then one of 5?2}’/\, or 5?3},/\[ is empty and 5?2’3}’/\[ is empty. This
may also be true for r > 4, depending on the shape a.
Define I'r C T to be the set of bonds st € I" such that

e st is the bond in I' associated to e at b for some e € F, or
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Figure 6.16: An illustration of the construction of a lace from a graph on some N
in the case by, by € Ay (T'). The first figure shows a graph I' on a network N. The
remaining figures highlight the subnetworks Sg(T) for F' = {2}, {3}, {2, 3}.

e st is the bond in I' associated to e at b, for some e € F' and b, € A,(T), or
e 5,t € N, for some e € F.

Let Sp(T") be the largest subnetwork of A covered by I'r C T'. Clearly T'|s, ) =T'r
is a connected graph on Sp(T).

For each e € F, Sp(I") by definition contains a nearest neighbour of b, in
N, and may contain b, itself. Since I'r contains at most one bond that covers b, if
be € Sp(T") then it is not a branch point of Sp(I'). Moreover if F' = {2} or F = {3}
then b is also not a branch point of Sp(I"), and hence Sp(T') is a network with no
branch point (of course it contains at least one branch point of A, namely b). If
F = {2,3} then Sp(I') may be a star-shaped network of degree 3.

Fix N,F. Write S Cr N, if S C N is a star-shaped network with the
following properties:

(a) for every e € F', S contains a vertex v that is adjacent to a branch point b, of

N, and
(b) S contains no branch points of N other than b and b, e € F.

Such star-shaped networks are exactly those for which there exists I' € QX/R such
that S = Sp(T). Define £ to be the set of laces L on S such that

1. For each e in F, if b, € S then there is exactly one bond s°t¢ € L covering
branch point (of N) b, # b, and that bond has s or ¢ strictly on branch N.
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2. If F = {2} or F' = {3} then there is exactly one bond in L% covering b, while
if F = {2,3} there are at most 2 bonds in L} covering b.

3. L contains no elements of R (i.e. no bonds which cover > 2 branch points of

N).

Then recalling the definition of Lr from Definition 2.1.4 we have

S [u=Y ¥ v

regd, , ster SCN r¢ g o SET
Sp(0) =8
=2 > |1l v > I U
SCrN LEﬁg LsteL 4 L e 5%7/\/, . sltlel"\L
Sp(l)=8,Lr, =L
i 17 (6.96)
=2 > |1l v >, 1l s
SCrN LeLl LsteL 1 L p¢ GgReom ;. stel\L
Lp=1
<| 2 Il s > I v«
R ! * -R . *
I‘IegN\S stel’ r* ¢ gS,N,\S . stel

Sp(LUT*) =8

where

ggfj,\s ={TeG®: forevery steT, [s€S,tc N\S]orteS,seN\S]}.
(6.97)
Now note that for any set of sets of bonds H with the property that there exists
some N € N and {s;t;} € H, i =1,... N such that every element of  is a subset
of {sit1,...,sntn}, we have Y oreq [Ler Ust = [isipenll + Ust]. Let L’fgv’* be the
set of laces in L% consisting of exactly N bonds. Then (6.96) is equal to

II 0 +0a [T [+04]| x

StEC(L) st € EN'\S
st¢ R

> (1) > [H ~Uy

N=1 SCrN LeLh* LsteL

H [1 + Ust]

SES,teEN\S:
Sp(LUst)=8,st¢ R

(6.98)
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If Uy € {—1,0} for each st, then each quantity involving Uy in (6.98) is
nonnegative and we have

> o<y 5 [T -0 | T v
EF stel’ N= 1SEFNLE£N* stel _StEC(L)
Avs (6.99)
11 [ n+udl.
i=1 st € E(_N'\S)i
st¢ R

where A\ s is the number of disjoint components (N'\S); of N'\S. This quantity is
bounded above by the sum of four terms (corresponding to the 4 possible branches
incident to by and b3 if F' = {2,3}) each of the form

ne"‘(n i 1 ni Ne—1

S s (o %)

N=1 \e€F me=ne—1 | m1=0 \ec{2,3}\F me=0

> [H—Ust 11 [1+Ust

LeL], Lstel steC(L (6.100)

AN\.sné1

< 1T 1l 11 [+ Ul

i=1 ée(N\S?n)’i s,t € ((N\ST%)”')F :

0<s<t<ng(m)?)
where ¢’ denotes one of the two branches (other than e) incident to be, ST% is the
star-shaped network defined by (2.12), and (N \ S2)" denotes the fact that part of
branch N is being removed if m, > n.. In addition ne(17)" is the length of branch
€ of (M\ S2)". Since the analysis does not depend on the e’, we ignore the fact

that there are 4 such terms from this point on.
Combining (6.95), (6.99) and (6.100) we have that ZPES}{/ [Lsicr Ust| is
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bounded by a constant times

ne+(ng —1) n1 ne—1
> Z AN DRI NE
FCGW) eEF me=ne—1 /| m1=0 \e€{2,3}\F me=0
F#0
-U. 1+ Ug]
Le;;é Lg " stEIZI(L) ! (6.101)
AN\S%

X H H H (14 Ug)

=1 2e(M\SR) | st e (W\S5) e

0< s<t<ng(m)?)

Putting this back into (6.92), the sum over laces on the star-shaped network
gives rise to the quantity 7 ;(e) and the final product gives rise to Chy,_(zyi(e),
with displacements summed over. On the latter on which we use (5.6) with { =1
to bound ||A,_¢zy:|l1 by a constant and we obtain an upper bound on (6.92) of a
constant times

ne+(ny—1) ni Nne—1

> Z Iy |0 X|E=a

F CGWN) e€F me=ne—1 J m1=0 \ec{2,3}\F me=0/ 4
P (6.102)
/\/\sA

X H H K.
i=1 (N\SA
By Proposition 4.3.2 this is bounded above by
Ne+(ng —1) n1 Ne—1
DS 3 d 1 | 5 >IN B SN B | B S EXNC0

FC G(N) N=1 e€CF me=ne—1 m1=0 e€{2,3}\F me=0

r70 (6.103)

oy yolt

F CGW) ecF Ne
F#0

Since the remaining sums are finite, this establishes the second bound of Lemma
4.2.1. O
This completes the proof of Lemma 4.2.1.
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Chapter 7

Convergence to CSBM.

In this chapter we relate the convergence of the r-point functions (as in Theorems
1.4.3 and 1.4.5) to convergence of y, € Mp(D(Mp(R?))) (defined by (1.17)) to the
canonical measure of super-Brownian motion (CSBM).

The fact that CSBM is the weak limit of certain branching random walk
models is a standard result in the theory of measure-valued processes, and we take
such a result as our definition of CSBM in Section 7.1. In Section 7.2 we restate The-
orem 1.3.1 and briefly discuss some related results. In Section 7.3 we prove a general
result (Proposition 7.3.3) that relates convergence of finite-dimensional distributions
to convergence of certain functionals and the existence of certain exponential mo-
ments for the limiting measures. We conclude in Section 7.4 by proving Theorem
1.3.1 and noting that Theorems 1.4.3 and 1.4.5, together with the convergence of
the survival probability (which in general need not be a probability measure) implies
convergence of the finite-dimensional distributions of our model to those of CSBM.

7.1 The canonical measure of super-Brownian Motion

In this section we indirectly define the canonical measure of super-Brownian motion
as the weak limit of a branching random walk model with critical branching.

7.1.1 Branching Random Walk

We describe a particle model (branching random walk) where we label particles by
multi-indicies as in [27] and some of the references therein. The construction we
describe here is somewhat nonstandard but is done to resemble the construction of
our lattice tree model. A particle is described by

ael=Ul_NOL-m — f(ag ... am):a;i eNym € Z, ). (7.1)
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We start with a single particle, and set ag = 1 for all a. Let |(«ap, ..., )| = m be
the generation of a and write @ < @ <= a = («ay, ..., q;) for some i < |a|, i.e. if
@ is an ancestor of a. If o = (ag,...,¥m-1,an) and & = («ag,...,@n—_1) then we
say that @ is the parent of o and « is the o child of @. Fix M € Z, and let Y
be a random variable with Y (w) € {0,1,...,M}, E[Y]=1,0< E [(Y — E[Y])?] =
v < Q.

Let {Yy : @ € I} be i.id ~ Y random variables. Let Go = {(1)} and
for each m € N we define G,, recursively as follows. At time m™, each particle
a=(ag,...,0m—1) € Gp_1 gives birth to Y, children

(ao,...,am,l,l),...,(ao,...,am,l,Ya), (72)

and immediately dies. We let G, be the set of particles alive at time m. Note
that each particle « € G,, satisfies |@| = m and has a unique parent @ € G,,,—1 by
definition. Clearly if G, = () then G,, = () for every n > m. A well known result
due to Kolmogorov (see [27] Theorem I1.1.1.(a)) states that

myP(Gp, # 0) — 2, as m — oo, (7.3)

and therefore P(N5°_{Gpm # 0}) = 0 so that G = US_,G,, is almost surely a finite
set. We call a set G that can be constructed in this way a geneology. Let G denote
the set of possible geneologies. Since the number of children of a particle is bounded
above, the number of possible G,,,’s is finite for each m. Therefore G is a countable
set.

Given a function D(z) defined by Definition 1.2.4, and a set of particles
(multindicies) G we choose a random embedding B of G into R? as follows. Let
Q¢ = {B: G+ Z%B((1)) = 0} be the set of maps from G to Z% that map the
initial particle (1) to the origin. Then we define a probability measure P’ € M;(f2)
on the set Q@ = {(G,B) : G € G, B € Q¢} of embedded geneologies by

P'((G,B)=(G*,B*)=P(G=G*) [[ DB*(®)-B*(®)Iipeag.} (74
(a,a)€G*

where the product is over all (parent, child) pairs (@, ) in G*.
Now given (G, B) € Q, n € N, we define measures XZ’(G’B)

n

Cl
X?G’B) = 71 > bz (7.5)
z:4/ChnzeB(G;)
We extend this to all ¢ € Ry by X;"“" = X1%?) Finally we define 41}, €
Mp(D(Mrp(R?))) by

€ Mp(R%),ieN
by

() = nCyP' (G, B) : (X" “P )y, € HY),  H € BID(Mr(R"))). (7.6)
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Here, the C] are some fixed, known constants that may depend on the function D
(recall that D depends on L) and 7.

7.1.2 BRW converges to CSBM

In this section (much of which is taken from [27] chapter IL.7., but with different
notation) we define the precise way in which branching random walk converges to
super-Brownian motion.

The survival time (often called the extinction time) S : D([0,00), Mg (R?)) —
[0, 0] is defined by

S ({Xt}teR+) =inf{s > 0: X; = 0p}, (7.7)
where 0/ is the zero measure on R? satisfying 05,(R?) = 0. Let

D*([Mp(R?)) = {{X:} € D([0,00), MF(R")) : S({Xe}) >0, Xy =0y Vt2 S},
Cy(Mp(R?)) = {{X;} € D* : Xy = Oy, X, is continuous},
(7.8)

with the topologies inherited from D([0, o0), Mr(R?)), C([0, 00), MF(R?)) (the topol-
ogy for C' is the topology of uniform convergence on compact sets). Note that
! ! pt n,(G,B) _ _ ! _
Un(S <€) >nC3P (leJ = OM> =nC3P (Gpe =)

>nCiP (G, =0), for n > (7.9)

N | =

— 00 as . — OQ.

Let us now also define the finite dimensional distributions of v € Mp(D(Mp(R?))).
Let R > 1, and £ = {t1,...,tg} € [0,00)%. Let hy : D(Mp(R%)) — Mp(R?)E
denote the projection map satisfying hi{{Xe}) = (Xi,,...X¢z). Then the finite
dimensional distributions of v are the measures Vhtil € Mp(Mp(R?)R) given by

vho'(H) =v ({X.}: hf({X.}) € H),  H € B(Mp(R")"). (7.10)

Definition 7.1.1 (Convergence in D*). Suppose {v, : n € NU oo} C M,(D*),
the set of o-finite measures on D*. We write v, == vy on D* if for every e > 0,

vp(S > €) < oo, Vn € NU oo, and (7.11)
Un (0,8 > €) == voo(e, S > ¢), as n — 0o, '
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where the weak convergence in the second condition is convergence in Mp(D(Mp(R%))).
We write v, 222 vy on D* if for every € >0, m € N and t € (¢, 00)™,

V(S > €) < oo, Vn € NU oo, and
(7.12)

ynhtfl(O, S>e = Voohtjl(i, S >e), as n — 0o,

where the weak convergence in the second condition is convergence in Mp(Mp(R%)™).

The following Theorem, which states that branching random walk converges
weakly to the canonical measure of super-Brownian motion is fairly well known, and
a version of it is proved in [27] (see [27] Theorem I1.7.3.).

Theorem 7.1.2. Let p!, be defined by (7.6) for the branching random walk model
defined in section 7.1.1. There ezist constants C},Ch, Cy such that

(a) for every s > 0 there exists Ry € Mp(Mp(R?) \ {0a}) such that for every
s>0,

Hi(Xs € 9, X, # 0ar) = Ry(e) on Mp(RY), and Ry(Mp(RY)\ {0n}) = 73
(7.13)

b) There ezists a o-finite measure Ny on Ci(Mp(R%)) such that i, =% Ny on
() 0 U,
D*(Mp(R%)), and for every s > 0

1. Ny(X; € 0,8 > 5) = Rs(e),
9 p! ({th,(G,B)} c .|X?7(G,B) + OM) =23 Ny (e|S > s) on D(Mp(RY)).

Definition 7.1.3. The o-finite measure Ny on C*([0,00), Mp(R?)) defined by part
(b) of Theorem 7.1.2 is called the canonical measure of super-Brownian motion.

7.2 Lattice trees

In this section we recall the setup of our measure-valued process and briefly discuss
the context of our results.
Recall from Sections 1.3 and 1.4 the following definitions:

° Xt"’T € Mrp(R?) therefore {X,?’T}teRJr € D(Mp(R?)) defined by
1

xT = VA > &, and XpT = X7 (7.14)
" " z:Vo2vnceT; o
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e P € M;(7y) defined by o
P({T}) = ﬁ. (7.15)

o U, € Mp(D(Mg(R?))) defined by

pin(H) =V Ap(O)P ({T : {X"" }sex € H}). (7.16)

Note that for e > 0 and n > %,

pn(S <€) = pn(Xy =0y for all ¢t > ¢)

=nVAp(0)P(T : X7;;, = Opr for all ¢t > ¢)

(7.17)
> nVAp(O)P(T : X7, = 0)

> nVAp(0)P(T = {07;) =nVAp(0),

ie. up(S <e) /oo =Ny(S < e). Recall however from the previous section that our
statements about convergence to CSBM include the condition that S > e. Another
way of removing the contribution from processes that have arbitrarily small lifetime
is to include the total mass at time € in the expectation as in Theorem 1.3.1, which
we restate with our new notation.

Theorem (1.3.1). There exists Ly > 1 such that for every L > L, with p, defined
by (1.17) the following holds: For every e, A > 0, m € N, £ € (e,00)™ and every
F: (Mp(R4)™) — R bounded by a polynomial and such that Ny htfl(Dp) =0,
1.
B, 1t [XOFX)] = Byypr [XOFXD)], (7.18)

and

Byt [FO x| = Byt [FE) I aysn ] - (7.19)

We show in Section 7.4 that the convergence of the survival probability (to-
gether with our results) would be sufficient to prove the following conjecture.

Conjecture 7.2.1. Let p, be defined by (7.16) for the L, D lattice tree model defined
in section 1.8, and let d > 8. There exists Lo(d) > 1 such that for every L > Ly,

f.d.d

pn = Ny, on D*. (7.20)

As in [3], convergence as a stochastic process follows from convergence of the
finite-dimensional distributions (Conjecture 7.2.1) and tightness. Tightness for this
model is also an open problem and is less well understood at present.
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7.2.1 ISE

Derbez and Slade [7] proved results closely related to Theorems 1.4.3 and 1.4.5.
They showed using generating function methods that the scaling limit of lattice
trees (sufficiently spread out for d > 8, or nearest neighbour model for d > 8) is
integrated super-Brownian ezcursion (ISE). We describe their results in the form
that is most most relevant to this paper.

Let 7n denote the set of lattice trees containing exactly N vertices, one of
which is 0.

Remark 7.2.2. Roughly speaking, a lattice tree that survives until time n has, on
average, order n particles alive at that time. We infer from this that the total size

2

of such a tree is N = n*. Thus scaling space by n=% should be equivalent (in terms

of the leading asymptotics) to scaling space by N -1,
For fixed N € Z and T € Ty, define
1
xNT = ¥ Y b (7.21)
e:DiNtgeT

where D; is a constant defined in [7]. Since T contains exactly N vertices, X V7' is
a probability measure on R?. Keeping N fixed, choose a random tree according to

Wy (T)
N P
p ({T}) = =———. 7.22
() =525 (722
Then X ™7 is a random probability measure described by u™.
Define Ty € My (M;(R?)) by
In(A) = pV({T: XNT € A}), A€ B(M(R?)). (7.23)

with B denoting the Borel sets and M;(FE) the space of probability measures on F
with the weak topology.

Slade [28] shows that the results of Derbez and Slade [7] imply Zy == 7
as N — oo, where the probability measure Z € M; (M1 (Rd)) is called integrated
super-Brownian excursion. This is a statement that for all f € Cy(M;(RY)) (i.e. f
bounded continuous on M (R%)),

/ FdIn — / fdT. (7.24)

Derbez and Slade [7] prove (7.24) for functions of the form

H(v) = / e®2y(dz), (7.25)



and Slade [28] shows that this is sufficient to prove weak convergence.

To prove their results, Derbez and Slade [7] define for (;,p € C, r > 2,
a €Y, and § € Z%?=3) the set T3 (¥) of trees of skeleton shape a with skeleton
displacements y; and the generating functions

2r—3

> I > W@ (7.26)

rezi 3 j=1 TETN (7,0)(0,9)

They then write

2r—3
~ 1
G;,Oé(g) — Vr—2 5 T + E;?( ) (7.27)
’ j=1 C165 + Co(1 = 1)2 4+ C5(1 — ¢5)

for specific constants C1, Ca,C3. They show that E’\T’Zi(f{) is an error term when:

b,

e 7 =2,3for all p < p, and ||{]|oc < 1, and when
. r22forallp<pcand5:i'.

Essentially in [7] backbones were very well understood for r = 2,3 but less so for
r > 4. Since 7 is summed over in the definition of G in 7.26, setting 5 = T removes
all time (backbone length) information from the results of [7] for » > 4. Thus we
do not expect Theorem 4.1.8 to follow from the analysis of [7] for r > 4 and at
least for r > 4, Theorem 4.1.8 is an entirely new result. The following non-rigorous
argument suggests that Theorems 1.4.3 and 1.4.5 for r = 2,3 may follow from the
analysis of [7] without too much difficulty (perhaps with less sharp error bounds).
When p = p., (7.26) implies that the coefficient of HQT 3 ’.” in G” ag(i) is

vn
U | ~ K
Zem gn > ) W(T) =t (it.a) (%) : (7.28)
g TETN (it,0)(0:9)
Using the fact that for z < a, ﬁ = % Y neo(%)", and assuming that E is an error

term, (7.27) implies that this same coefficient is approximately

Vr_2 2r—3 1 V,r 92 2r-3 o0
VT ST CZ’" —3 H e @i for large n. (7.29)
3 =1 L+ g )t 3 j=1

This is of the form of Theorem 4.1.8 (resp. Theorem 1.4.3 for r = 2), which was the
main ingredient in the proof of Theorem 1.4.5. It is likely that one could adapt this
rough argument to get a rigorous proof of a version of Theorem 1.4.3 and Theorem
1.4.5 with r = 3.
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We describe the connection between ISE and CSBM as follows. Let {X;} €
C*([0,00), Mz (R4)). By definition of the survival time, S, we have that X; = 0/
for every s > S, and Xy # 0y for all ¢ € (0,.5).

If S is finite (note that under Ny, S is indeed finite almost everywhere) then
by continuity on [0, 5], sup; X;(R?) < K for some 0 < K < oo. Define a measure
Y (e) = Yix,(e) on R? by

Y(e) = /0 ” X, (o)dt. (7.30)

Then by the above discussion, Y (R?) < fOS Kdt < oo, and we may define a proba-

bility measure P on R? by

Y (vmayrs)
Y(Rd) 7’

where for A € B(R?) and C' > 0, % = {z € R¢: Cz € A}. Now if we choose

X; randomly according to Ny (e|Y(R?) = 1) (which is a probability measure on

D(Mp(R?))) then P has law Z.

P(o) = (7.31)

7.3 Finite dimensional distributions

In this section we prove some results within the general theory of measure-valued
processes. The main result of this section is Proposition 7.3.3. The motivation
for proving Proposition 7.3.3 is to obtain a statement about convergence of the
measures p, of (1.17) to Ny from convergence of the r-point functions (Theorems
1.4.3 and 1.4.5). We use Proposition 7.3.3 in Section 7.4 to prove Theorem 1.3.1 as a
consequence of convergence of the r-point functions and in Section 7.5 to show that
convergence of finite dimensional distributions of our model follows from convergence
of the r-point functions and the survival probability.

The applications of Proposition 7.3.3 carried out in Sections 7.4 and 7.5 are
also implicitly being used in [20] for oriented percolation and in [17] for the contact
process in connecting convergence of the r-point functions to convergence of finite-
dimensional distributions.

Definition 7.3.1 (Tightness for finite measures). A set of finite measures
F C Mp(E) on the Borel o-algebra of a metric space E is spatially tight if for
every n > 0 there evists K C E compact such that sup,cp p(K¢) < n. A set
F C Mp(E) is tight if it is spatially tight and sup,cp p(E) < oo.

Lemma 7.3.2. If F C Mp(FE) is tight, then every sequence in F has a further
subsequence which converges in Mp(E) (weak convergence).
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Proof. Let {un} C F. If there exists a subsequence p,, such that y,, (E) — 0 then
we have p,, — Oy by definition (for every bounded continuous f....) and we are
done. So without loss of generality there exists 79 > 0 such that inf, p,(E) = np.
Therefore

Po(e) = 5:((;) (7.32)

are probability measures. Let n > 0. Since the y,, are (spatially) tight there exists

K C E compact such that sup,, un(K¢) < nno. Therefore

KC
sup P, (K¢) = sup pin (KC°) <1 _ (7.33)
n

n /‘n(E) Mo -

so { P, } is tight as a set of probability measures. Therefore there exists a subsequence
P, — Px.
Since {pp, } is tight, {{n, (E)} is a bounded, real-valued sequence, and there-

n*

m
fore has a convergent subsequence pipx (E) - C > np. So u—k) — P, and

(B

pinz (E) = C > 0 and therefore pi,,: — CPo € Mp(E) as required.lc O
That the full statement of tightness is necessary (i.e. spatial tightness is not

sufficient) for the conclusion of Lemma 7.3.2 is illustrated in Example 7.3.4.

Let F denote a My (R?) convergence determining class of bounded continuous
functions ¢ : R? — C (i.e. v, — v in Mp(R?) if and only if v, (¢) — v() for every
¢ € F), that contains a constant function, ¢(z) = Cx # 0. The main result of this
section is the following proposition.

Proposition 7.3.3. Let ¢ > 0 and pn,pu € Mp (D(MF(Rd))). Suppose that for
every | € Z, and every t € (e,00)!, m € Zl+ we have

1. there exists a 6 = §(t) > 0 such that for all 6; < 0, Euh;[ezéflgixi(ﬂ&d)] < 00,

and

2. for every $: {p11,-.., oim,} € FXia mi

I m I m;
Eunhtfl HHXZ(QSZ]) _)Eﬂhtrl HHXZ(@J) < 00, (7_34)

i=1j=1 i=1j=1
where an empty product is 1 by definition.
Then for every m € N and every t € (e,00)™, ,unht?l — uht?l in Mp (Mp(R%))™).

The importance of the [ = 0 case in the Proposition is evident from the
following example.
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Example 7.3.4. Let ul, € Mp (D(Mp(R?))) be the measure that puts all its mass
(n) on the measure-valued process X; = %% for allt > 0, and p be the measure that
puts all its mass (1) on the measure-valued process X; = 61 for all t > 0. Next let

un(.) = 7’1,(55% + 5515 H = 5(51- (735)

Then E, [Hé:1 H;n:ll Xti(¢ij)] = Hi’:l H;nzﬁ d1(¢is) = Hé:1 H;nél $i(1), and

I my I my I my I my
Ey, HHth(QSU) :nl:[ll:ll +HH61(¢U)_>O+HH¢U(1)'

i=1j=1 i=1j=1 i=1j=1

do(bij)
n2

(7.36)
Thus we have

I m; I my
By, \TTT] X8| = Bu [T 1T Xt (445) (7.37)

i=1j=1 i=1j=1

for everyl > 1, m, f, and E, [ez 0,-Xti(¢¢)] = eXb% < 0o. However pn (S > €) =n+1l
(resp. pn (D(Mp(R?))) =n+1) and u(S >€) =1 (resp. p (D(Mp(RY))) =1), so
that none of the finite-dimensional distributions can converge, and no subsequence
of pin can converge in My (D(Mp(R?))). Note that {un}nen is spatially tight but
not tight.

We prove Proposition 7.3.3 in the form of 5 lemmas. The first, Lemma
7.3.5 establishes tightness of the {/Vanht?1 : m € N} for each fixed I,7. Thus every
subsequence of the unht?l has a further subsequence that converges. The second,
Lemma 7.3.6 states that any limit point of the {/l,nh,g.l : n € N} must have the
same moments (7.34) as uhtfl. The third, Lemma 7.3.7 states that if a certain
moment condition holds for every ¢; € F, we also have that result for all continuous
0 < ¢; < 1. The fourth, Lemma 7.3.8 says that each subsequential limit point
is uniquely determined by certain class of functionals E,[e” Zin Xi(‘m)], ¢i > 0
bounded, continuous. Finally, Lemma 7.3.9 says that these functionals are uniquely
determined by certain moments of the form (7.34). Taken together they show that
since all subsequential limit points have the same moments (7.34), the limit points
all coincide, and thus the whole sequence converges to that limit point.

Lemma 7.3.5. Let py,pu € Mp (D(Mp(R%))). Suppose that for every t € (0,00),
and every ¢ € F,
B, \t [X(@)] = Byt [X(9)] < oo. (7.38)

Then for each m € N and every t € (0,00)™, the set of measures {/Anhtil :n € N}
18 tight.
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Proof. Taking m = 0 gives p, (D(Mp(R?))) = p (D(MFp(R?))) < oo so it remains
to prove spatial tightness.

We first prove the m = 1 case. Let ¢ > 0. Define v, = E, oy 1[X], and
v=E, 1[X] Then I/(Rd) = Ly < oo and applying Fubini to (7 38) we have
f di(x Vn (dr) — f ¢i(x)v(dx) for every ¢; € F hence v, — v. Therefore there
exists ng such that for every n > ng, v,(R%) < Lo + 1. Since the v, are finite, there
exists L1 such that v,(R%) < L; for all n < ny.

Let L = (Lo + 1) A L1 and choose M such that % < §. Then

L >sup E'unht—l[X(Rd)] >sup B, -1 [MIxrays ]
n n

. p (7.39)
=M sup uph; (X (R*) > M).
n
Dividing through by M, we get that
L
sup by (X(RY) > M) < -7 < % (7.40)
n

Fix 7 > 0. There exists K 1 C R compact such that v(K¢,) < 1. Fur-
thermore there exists Ko C R? compact such that v(K¢) < v(K¢,) (e.g. the set
Ko = {z :d(z,K_1) < 1}). Since v,, = v in Mp(R?) and K§ is closed,

lim sup vy, (K§) < v(K§) < g (7.41)
n

Therefore there exists ng > 0 such that for all n > ng, v, (K§) < 1. Also since
Vi,...,Vpo—1 are finite measures there exist K; C R4 compact such that v;(Kf) < n
Then K =", K; is compact and

sup v, (K°¢) < 1. (7.42)
n
Now
L -1 c L c c
Supjinhy (X(K ) > 774) < sup By o [X(K )Ix(m»ni] <sup By o [X (K9]
= supv,(K°) <7
n
(7.43)
Dividing through by 77% we get that
sup pinhy ! (X(KC) > ni) <. (7.44)
n
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Choose 7]% = 2% Then there exists K; C R? compact such that

_ 1 1
sup punhy ! (X(KJC) > 2—]> < o5 (7.45)
n
log;2 1 €
Choose m > Togs T 1 so that gzt < 5 and let
1
K= {X : X(K5) < 27} (X : X(RY) < M} (7.46)

jzm

Now K is (sequentially) compact (see for example in the proof of Theorem I1.4.1 of
[27]), and
c c 1 . d
K :U{X:X(Kj)>§}U{X.X(R)>M}. (7.47)
jzm
Thus,

1
sup pnhy ' (K°) <suppnh, ' | {X : X(K5) > g}
" " gzm

+ sup pnhy ! ({X . X(RY) > M})
" (7.48)

which verifies that the p,h; L are spatially tight, for m = 1.

For m > 1,and £ € (0,00)™, We have from (7.48) that for each i € {1,...,m}
there exists K; C Mp(R?) compact such that sup, ,unht_il(Kic) < 5. Let K =
K; x Ka x -+ x Kp. Then K C (Mp(R%))™ is compact and

m
SUPllnht:l ({X X € KC}> = sup,unht?1 (U{X : X; € Kic}>
" " i=1
< sngunhgl ({X : X; € Kic}>
i=1

m m
= supz ,U/nht:-l (K;i) < Z sup ,unht;l (Kif) <e,
"=t i=1 "
(7.49)

which gives the result.
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Lemma 7.3.6. If the hypotheses of Proposition 7.3.8 hold for pu,, n € Mp(D(Mp(R))),
and if for fized € (0, 00), Nnkht:l = v in My ((Mp(R?))"), then for each 1 € Z!,

Lomy I my
HHXi(¢ij) :Euhtil HHXi(¢ij) - (7.50)

i=1j=1 i=1j=1

Proof. Let anht:l = v. Then in particular we have ,unkhtil(l) — v(1). Assume

v(1) # 0. Then there exists ko such that for every k > ko, 1v(1) < /Lnkhtil(l) <

2v(1) and we define for k > kg the probability measures,

fin 1= (o) _v(e)
A S

Py, (o) =

Then we have that P, == P as probability measures. Let X"nk ~ P, and X ~P.
Then Xnk 2, X and since (Mp(R?))! is separable, we may assume that Xnk and
X are defined on the same probability space (Q, F,P). By Corollary 1 of Theorem
5.1 of [3], F(X") 25 F(X) for every F such that P(X € Dp) = 0, i.e. such that
P(Dp) =0, where D denotes the set of discontinuities of F. We apply this to the
continuous function Fy : X =TI, 152, Xi(¢ij)-

We now show that Ep [Fq;(X’nk)] — Ep [Fd;()?)]. By Example 7.10(15) of

—

2
[10], it is enough to show that supy Ep [(F(;(Xnk)) ] < oco. But,

sl;pEP [(F(;(X'nk))Q] = SuPEPnk [(F$(X))2]
E, nt [ o § 1X(¢”)) ] (7.52)

< 00,

= sup
k ,unkh'{l(l)

since ([Ti_; [T, X; (¢4;))? is also a polynomial of the form appearing in (7.34).
Thus we have

By [F3(X,,)| - Be [F3(X)|, (7.53)

which implies that
B, = [F~(X)] —~ B, [F~(X)] . (7.54)
Since we also have E“nk hot [ ] “h_ [ F-(X)|, we have verified the claim

in the case v(1) # 0.

146



Consider now the case that (1) = 0. Then v is the zero measure and we
have E, [HZ 1 Hmz X; (¢ij)] = 0. By Cauchy-Schwarz,

2 ] 2

unkh- H H Xi(45) < Eunkhtil [12] Eunkhtfl H ﬁ X;(¢ij)

i=1j=1 i=1j=1
55)

Since 1 is a bounded continuous function and pi, htil — 0ps we have that the first ex-

2
pectation on the right converges to 0. Since supy, Eﬂnk hot [(HZ . Hm% X; (cﬁij)) ] <

oo we obtain

,unkh_ H H X ¢'LJ — 0. (7.56)

i=1j5=1
Since also _
I m; I m;
I X@i) | = Bpor [TTT] X835 | - (7.57)
i=1j=1 S
we have that E,uht:l [ «li:1 H;nzll XZ(QZSZJ)] =0= [ 1 H Z(QS”)] which ver-
ifies the result. O

Lemma 7.3.7. Suppose p,p' € Mp (Mrp(R?))Y). If

I my I m;
ITIIXi(ei)| = B (TT 11 Xi(4i5) (7.58)

i=1j5=1 i=1j5=1

holds (and both quantities are finite) for every ¢ € F2™i then (7.58) holds for every
¢ such that for each i,7, 0 < ¢;; < 1 is continuous.

Proof. Applying Fubini to (7.58), using the facts that E,[[]\_, [T7%, Xi(1)] < o0
(by choosing ¢; = Cx # 0, the constant function in F) and the ¢; are bounded we
have

/ /HH¢Z] ﬁﬁXi(dfﬂij) :/ /HHfﬁzg HHX (dz;;)

i=1j5=1 i=1j=1 i=1j=1 i=1j5=1
(7.59)

Since F is a determining class for M (R?) one can verify that F2 ™ is a determining
class for Mp(R4X ™) (using the fact that this class of functions determines the
conditional distribution of the nth coordinate given the first » — 1 and proceeding
by induction).
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Now

I my S m;
I bi:bseFp=4 ] dr:ducFy=r=m, (7.60)
i=1j=1 k=1

so the products of ¢;; in (7.59) uniquely determine the measure defined by v(dZ) =
EIT, [17%, Xi(dzij)]. Therefore (7.59) holds for all ¢; bounded, continuous, so
in particular for all continuous 0 < ¢; < 1. Applying Fubini again we get the
result. O
Lemma 7.3.8. Suppose p, i’ € Mp ((Mp(R%))™) and assume Dy C (Bp(RY, Ry ))™
satisfies D_gbp = (By(R?, R, ))™. If for all é € Dy

E, [ef py i Xi(¢j)] = By [e* 2 Xi(¢j)] ’ (7.61)
then p = p'.

Proof. We follow the proof of Lemma II.5.9 of [27].
(a) (7.61) holds for every ¢ € (Cy(R?, R, ))™. We verify the stronger result that
the class £ of ¢ for which (7.61) holds contains (B,(R¢, R ))™.

e > bp 7 . .
Let ¢, € L be such that ¢, = ¢. Now by dominated convergence (using the
fact that p is a finite measure and dominating by € = 1),

E, [e* Ry xi(m)] _ B, [hm - z;-":lxiwj,n)]

n—>00
= lim B, [e— Z;?LIXz-(@,n)]
e . (7.62)
= lim Eul [ei ijl Xi(¢j,n)]
n—o0

= Ey [e_ 2 Xi(¢j)] ]

Thus L is closed under bounded pointwise convergence. Since Dy C L by hypothesis
this shows that (B,(R?, R, ))™ C L as required.
Define e : (Mp(RY))™ — R, by ez(V) =e” 25=1%i(%)  Now let

H={2 € By(Mp(R))™, R) : B,[0(X)] = By[®(X)]} (7.63)
and .
Ho = {ez: ¢ € (Co(RY, Ry))™}. (7.64)

(b) H contains all bounded o(H;) measurable functions. We show that H

is a linear class containing 1, closed under 2;, and that Ho C H is closed under
products. Once we achieve this, we have by Lemma I1.5.2 of [27] that H contains
all bounded o(#g)-measurable functions.

148



1) that # is a linear class is immediate by linearity of the integral.
2) 1 € H by taking # = 0 and using part (a).

b . .
3) Let &, € H, P, 2 &. Then ® € by dominated convergence since u, u' are
finite measures.

4) Let f1, fo € Ho. Then f; = €p; and

Fifs = e 2= Xi(#i1) o= Xjm Xi(3,2) = o= Xjmn Xi(95.4452) — €pytdn € Ho.
(7.65)

5) Ho C H was verified in part (a).

(c) There exists a countable convergence determining set for (Mp(R%))™.
We use the construction of Proposition 3.4.4 of [8] to obtain a countable set V' C
(Cy(R4, R} ))™ such that #, — 7 in (Mp(R%))™ if and only if 7,(§) — #(¢) for
every qg € V). Let {q1,,- .-} be an enumeration of Q¢, a dense subset of R?. For
each (i,j) € N? define

fis (@) = 20— jI7— @) Vo, (7.66)
and for A C N? define
gu (%) = Z fij | AL (7.67)
5, <m
(5,7) € A

It is an exercise left for the reader to verify that
Vo={g%:meNAC{l,...,m}?} C Cy(R?), (7.68)

is a countable convergence determining set for Mp(R?). It follows that V =
{(¢1,---,¢m) = i € Vo U{0}} is a countable convergence determining set for
(Mp(R?))™.

Define
G=o(es: pev). (7.69)

(d) B((Mgp(R%)™) C G C 0(Hy), where G = 0(6(5 : ¢ € V). The second inclusion
is trivial since V' C (Cy(R%,R))™. We claim that G contains all the open sets in
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(Mp(R?))™ and hence contains B((Mp(R4))™). Define the metric

ZZ |f¢nd,uz f¢nd’/z| (7'70)

j=1ln=1

where {¢1, ¢2,...} is some fixed enumeration of V5 U {0}. It is a standard result
that o induces the topology of weak convergence.

Let U be an open set in the topology of weak convergence. Then U is also
open in ((Mg(R?))™, o'). Now Mp(R?) is separable so every open set is a countable
union of balls By (#,r) and therefore to show that U € G, it is enough to show that
By (V,r) € G. But

By (7,r) = ZZ J ¢”d’“ f ddvil L eg (7.71)

j=1ln=1

since an infinite series of measurable functions is measurable. We have now verified
that G contains all the open sets of (My(R?))™ and therefore contains B((Mg(R%))™).
(e) Conclusion. We have now verified that B((Mpz(R?))™) C G C o(Hg). There-
fore every bounded continuous function is measurable with respect to o(Hp). Fur-
thermore we have that 7 contains all o(#()-measurable functions (and in particular
all the bounded continuous functions). Since g = p' if and only if [ fdu = [ fdu'
for all bounded continuous f : (Mr(R?))™ — R, we have proved the result.

Lemma 7.3.9. Let u € My ((Mp(R%))™). Suppose there exists a § > 0 such that
for all 6; < 6,
B [eXit %R < o0, (7.72)

Then for every 0 < @; bounded, continuous, the quantity

E, [e_ Xt Xi(w)] (7.73)

-,

is uniquely determined by the mized moments (7.76) ofX:( ), 0 < ¢ <1 continuous,
1=1,...,m

-,

Proof. Fix ¢ = (¢1, ..., ¢m) and let Z= X(¢). Then for all Z € C™,

—»—»

EH[JN?] Euizx] (7.74)
l
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By dominated convergence with (7.72), and using the Multinomial Theorem, we
have for ||Z]|cc < 0 that the right hand side is equal to

Nl'_.

i [gf]:i% Eu| I an,]:[ZZ% : (7.75)

1=0 ieny:

Enl_l

which is a multivariable power series in z1,... 2, with coefficients that are linear
combinations of quantities of the form

fi] - f e

E, (7.76)

i=1

Now let ||Z]|oo < 6 and note that 0 < z; = X;(¢;) < X;(R4) for 0 < ¢; < 1. Then

e(FHAz)E _ EF .
: _ 2T
Al / Az ap / zie” dp
Az;x4
o |em% T ]
= li Zr|- =
A5 / ¢ [ Az xl] d“‘
o0
_ (Az;) 2l (7.77)
_ AL ) 1 -
= pim / ¢ [Azz ZH BT dp

< lim |Azi|/ez}"=1 Re(z;)z; ;.2 e‘AZ”-‘“d/A
i—0

= Jim |Az] / o Belzi) bt Azl S Re(zq)e y2—emi g,
zi—
Now z?e~% < C, so the integral converges for all Z such that Re(z;) +e+|Az]| < &
and Re(z;) < 0 for all j # 4. Thus the limit in the above is zero.

Choosing i = 1 we get that for fixed 21 = (22,...2n) with ||Z_1||ec <
5, o fez Tdu is analytic in z; such that Re(z;) + ¢ < § for every ¢ > 0,
and thus in particular for z; such that Re(z;) < 0. In particular, ¢'(2) is the
analytic continuation (in z1) of [ €#%dy for ||Z]|o < & and as such ¢! (Z) is uniquely
determined by the moments (7.76).

For 1 < ¢ < m, and fixed z; such that Re(z;) < 0 for j < 4 and |z;| < ¢ for
j > i suppose we have ¢'~!(Z) is analytic in each z; in the regions Re(z;) < 0 for
j <iand |zj| <& for j > i. Then we define ¢'(Z) as follows.

As in the last line of (7.77), and using the fact that z;z; < 0 for j < i, we
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have

lim
Az;—0

oFHAZ)E _ 7F .
dp — | z;e®*du
AZZ'

< Alimo ‘AZZ| / e(Re(zi)+e+|Az¢|)xi+Z;">i Re(z]')zja:?efexidul
2;i—>

(7.78)

This integral converges for all Z such that Re(z;) + € + |Az;| < § and Re(z;) < ¢
for j > 4. Thus for Z’ such that Re(z;) <0,...,Re(z;—1) < 0 and fixed |z;| < § for
j > 1 the function

©'(7) = / " Tdy (7.79)

is analytic in each z; in the region Re(z;) < 0 for j <1 and |z;| < § for j > 4, and is
the analytic continuation of ¢*~!(Z), as a function of z;. As such, ¢! is uniquely
determined by the moments (7.76).

Therefore we have ¢™(Z) = [ e?Zdy is analytic in each zj in the region
Re(z;) <0, and is uniquely determined by the moments (7.76).

Thus for each Z with Re(z;) < 0 for each j, and every $ with 0 < ¢; <1

continuous for each j, we have that
/65-??(5)(1“ = /6—25”—1 Xi(=%%i) gy, (7.80)

is uniquely determined by the moments (7.76). Therefore for each q_S" such that (f);-
is bounded, nonnegative, and continuous we have

/ e Zim X gy, (7.81)

is uniquely determined by the moments (7.76).

7.4 Proof of Theorem 1.3.1

In this section we use Proposition 7.3.3 together with the convergence of the r-point
fucntions (Theorems 1.4.3 and 1.4.5) to prove Theorem 1.3.1.

The first hypothesis of Proposition 7.3.3 is the existence of an exponential
moment for the limiting measure. The following Lemma, will be used to verify this
hypothesis in the proof of Proposition 7.3.3.

Lemma 7.4.1. For every ¢ > 0 the following hold.

1. For every A > 0, Nj(X(1) = X) =0.
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2. For every i € (e,00)™ there exists a 6(F) > 0 such that for all ||0]s < 0,

En, [Xe(l)ezz’il ”thi(l)] < . (7.82)

Proof. By Theorem I1.7.2(iii) of [27] we have

€

Ny (X.(1) € 4) = € /A eTdg, (7.83)

so the first assertion is trivial.

The second assertion of Lemma 7.4.1 is also a standard result and can be
proved using the Markov property of the local time of the Brownian excursion under
Ito’s excursion measure, or the fact that Ny is an entrance law for SBM. We choose
to give a direct and elementary calculation relying on the representation of SBM as
a Poisson Point Process of excursions with intensity Ny (see (7.84)).

Let £ = (t1,...,tm) € (¢,00)™ and set o = ¢. Then Theorem I1.7.3(c) of [27]
implies that for 6; > 0,

Ej, [ez?io ei}/ti(l)] = exp {/62?10 Biv; (1) _ 1 dN (,/)}’ (7.84)

where {Y;};>0 is a super-Brownian motion starting at dy (i.e. with initial law d5,).
Lemma II1.3.6 of [27] with Cauchy-Schwarz and with f; = 6; (constant functions)

implies that the expressions in (7.84) are finite provided [|6]|sc < II%CIO where ¢j is
co

some constant depending on m. Therefore for [|0]|o < T standard application

of the Dominated Convergence Theorem allows us to take differentiation through
the integral on the left side of (7.84) and obtain

4 g [ezzf;o mi(n]

_ S 63, (1)
7 Es, [Y€(1)e ) ] . (7.85)

6o=0

That this quantity is finite follows easily from the fact that (7.84) is finite. The
derivative of the right side of (7.84) is

exp {/62210 fire;(1) _ 1 gN, (,,)} i+ /eZZ’io Oive; (1) — 1 dNy (v) (7.86)
do, B0=0
Therefore we have
Es, |Ye(1)e2iz10iYt(1)
i/ezﬁoaiufi(l) -1 dNO(l/) _ o [ 6( )e :|
dear 80=0 E(jo ezﬁOathi(l)] (787)
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By Fatou’s Lemma we have

H(e,1,0) = 6’loigo e2oiz vt (1) [% dNy (v)
> / e ZI 01) fiy g | S = 1 dNo (v) (7.88)
) 0o
= [ B n O, (1) d ).
Thus for ||0]|c < IIECI?oo we have
En, [Xe(l)ez?ileiXti@)] < H(e,1.0) < oo, (7.89)
as required. O

Recall the statement of Theorem 1.3.1, where D is the discontinuity set of
F. In Section 7.2 we restated this theorem using the notation of this chapter as
follows.

Theorem (1.3.1). There exists Ly > 1 such that for every L > Ly, with p, defined
by (1.17) the following holds: For every e, X > 0, m € N, £ € (e,00)™ and every
F: (Mp(RY)™) — R bounded by a polynomial and such that N htfl(DF) =0,

1.

Hn ht'

E . [Xe(l)F(X')] = By [X€(1)F()?)] , (7.90)

and

Bzt [F(X)I{X5(1)>)\}] = By [F(X)I{XE(1)>,\}] : (7.91)

Proof. Define p,Ng € Mp (D(Mp(R?))) by

ped) = [ X, N5(4) = [ (R, (7.92)

That these measures are finite (in fact uniformly bounded) follows from the fact
that

s, (DOMR(RY))) = By, [Xe(1)] - Bry [Xe(1)] < co. (7.93)

We take F = {¢** : k € R?} which is a convergence determining class of
bounded C-valued functions containing the constant function Cr = 1. Now for all
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1>0,meZ,

I m; I my I my
Eyent (TTTT Xi(6i) | = Bug | TTT1 Xu(6i9) | = B | Xe() [T T Xus(2)

i=14=1 i=1j=1 i=1j=1

I my
_>EN0 Xe(l)HHth(QSZ])

i=1j=1

I my
:ENf)ht:I HHXZ(QSZ]) 3

i=1j=1
(7.94)

where even in the [ = 0 case, the presence of the factor X, (1) ensures that the conver-
gence in (7.94) is a statement of convergence of r-point functions. By Lemma 7.3.5
the measures {,u;htfl} are spatially tight. Since they are also uniformly bounded
by (7.93), {p;htil} are in fact tight.

By Lemma 7.4.1 we have that

mo0;X;
Byt [ =150 < oo, (7.95)

for all § sufficiently small depending on #. In view of (7.93), (7.94) and (7.95) we
may apply Proposition 7.3.3 to the measures puf,, Nj to get

pphzt =5 Nyho'. (7.96)

Thus ufbhtjl(l) — Nghtil(l). In particular, there exists ng(e, ) such that for
n 2 ng,
Nohz'(1)
2
Therefore for n > ny we may define P:L,E‘ € My ((Mp(R%))™) by

< pphz (1) < 2NGhZ(1). (7.97)

pihz (o)
Pe (o) = —L—. (7.98)
’ N%h{ (1)
Now u%ht?l == Nf)ht:l implies that P . = P; as probability measures, where
NehZl(e - . - o
Pi(e) = Ngh:?él;' Let X" ~ P*.and X ~ PZ. Then we have X" 25 X, and

since (Mp(R%))™ is separable, we may assume that X" and X are defined on the
same probability space (2, F,P). By Corollary 1 of Theorem 5.1 of Billingsley
F(X") 24 F(X) for every F such that P(X € Dy) = 0, i.e. such that P%(Dr) = 0.
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We now show that if F is also bounded by a polynomial, then Ep [F(X’n)] -
Ep [F()?)] By Example 7.10(15) of Grimmett and Stirzaker, it is enough to show
that sup,, Ep [(F(X:”))Q] < oo. But,

Bypet [FE)P] By [@CD))

Be [(F(X")?] = Bpe, [(F(X))?] =

pehzt(1) T pghzt()
(7.99)
where @ is a polynomial such that |F| < ). Since sup,, E . p [(Q(X))2] < 00 we
nlty
have the result.
Thus we have that

Ep [F()Z")] ~ Ep [F(X)] , (7.100)

which implies that
Byenst [F(X)] — B, [F(X)] . (7.101)

Therefore for every function F' that is bounded by a polynomial and that
satisfies Nj (Dp) = 0,

E, o [Xe(l)F(X)] — B, o [XE(I)F(X)] . (7.102)
Define
0 L if X (1) < A
FL =11 o _ (7.103)
X0 otherwise.

Then F; continuous except at X¢(1) = A, and is bounded above by %, Lemma 7.4.1
and (7.102) show that

E

pnh?t (X)L F] — Eunhtjl (X (1)FLF], ie.

(7.104)
B, x> Fl = By o [Tixcsn -

0

7.5 A note on convergence of finite dimensional distri-
butions

Recall the definitions of u, (depending on L) and Ny in (1.17) and Definition 7.1.3
respectively. In this section give a brief discussion about how Conjecture 7.2.1
follows from the following conjecture.
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Conjecture 7.5.1. There exists an Ly > 1 such that for every L > Ly, and for
every € > 0,
pn(S >¢€) = No(S > e). (7.105)

Fix € > 0 and define 5, N§ € My (D(Mp(R?))) by
pr(®) = pn(e, S >¢), Nj(e) =Ny(e,5 > ¢). (7.106)

That these are finite measures follows from Theorem 7.1.2 and the fact that y, is a
finite measure for each n. We wish to apply Proposition 7.3.3 to the finite measures
P> Np .-

Using the representation of SBM as Poisson point process with intensity Ny,
one can show that (for the §(f) of Lemma 7.4.1) for all ||0]|o < 6,

EN(s]ht:I [62211 eiXi(l)] = ENO [62;(11 eiXt”i(l)IS>€ < 00. (7107)

This verifies condition 1 of Proposition 7.3.3.
The | = 0 (m = 0) case of the second condition of Proposition 7.3.3 is
provided by (7.105) since,

pr, (1) = pp(S >¢e) > Ny(S>¢) =N (1) < o0. (7.108)

By definition of the finite dimensional distributions, and the fact that if
X:(1) =0 then X;(1) =0 for all ¢ > ¢, we have for ¢ > ¢,

By po HHX (¢35) =B, 5 HHX i) | 5 (7.109)

zljl 11]1
and

By HHX (613 | = Bygnz HHX (¢ij) | - (7.110)

zl]l 11]1

Now F = {e*** : k € [-m, 7%} is a convergence determining class for Mp(R?)
containing 1. In view of (7.109)—(7.110), Theorems 1.4.3 and 1.4.5 show that for
every [ > 1,7 € (0,00)!, 11 € Z4 \ 0 and every ¢ € F2mi,

Epept HHX (4i3) | = Bgpn HHX ($:)] - (7.111)

1=1j=1 i=1j=1

Applying Proposition 7.3.3 to the measures p;,, Nj shows that for every m € N and
every t € (g,00)™

prphet =5 Noho ', (7.112)
which is exactly the statement that u, 2% Ny (Conjecture 7.2.1). O
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Appendix A
Extending the inductive approach

A.1 Motivation

We have already noted in Chapter 1 why we expect a Gaussian scaling limit for our
lattice trees model in dimensions d > 8. We have also discussed results of Derbez
and Slade [7] in Chapter 7, and in particular how their analysis might be used
to verify Gaussian behaviour of the 2-point and 3-point functions. An alternative
method is to attempt to analyse the 2-point function by extending the inductive
approach of van der Hofstad and Slade [19].

Suppose we have for every z € [0,2] say, sup,, j |fn(k;2)| < K with fo =1,

and
n+1

fn+1(k;z) = Z gm(k; z)fnJrlfm(k; Z) + en+1(k; Z), (n Z O) (Al)

m=1
For the following nonrigorous argument we also suppose that g;(k;1) =

D(k) = D(0) — £22° where D is defined in 1.2.4, and that e, gm1 ~ 0 for m > 1.

n
Then we have fp11 = g1fn and so f,(k) = g1 (k)" =~ (1 - k;‘j) . Thus

k EA\" g

The inductive method of [19], which followed on from previous work of van

der Hofstad, den Hollander and Slade [14] proves an important result detailing

specific bounds on the quantities appearing in the recursion equation (A.1), that
2

ensures that there exists a critical z. = 1 at which f, (\/%;zc) — 6_37. The
result of [19] is applied to sufficiently spread out models of self-avoiding walk [19],
oriented percolation [20] and the contact process [16], each of which is believed to
have critical dimension d. = 4. In each case the lace expansion is used to derive a
recursion relation of the form (A.1) and the required bounds on the quantities in
the recursion equation are shown to hold (provided d > 4) by estimating Feynman
diagrams. The required bounds are typically of the form |h,(k,z)| < %, for
some functions h,, and power b > 0 that varies from bound to bound. WTﬁat turns
out to be important in the analysis is that % = % =2+ % is greater than 2 when
d> 4.

In unpublished work [18] the authors note that the analysis of [19] should be
robust enough to permit extension to certain other models where the lace expansion
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is applicable, above d. # 4. In particular they outline how [19] might be adapted to
analyse lattice trees in dimensions d > 8. While deviating somewhat in the details,
our analysis in this chapter (and its application to lattice trees) is based on the ideas
of [18].

In our analysis we introduce two new parameters 6(d), p* and a set B. We will
discuss the significance of p* and B when they appear shortly. The most important
parameter, 0(d), is taking the place of % in exponents appearing in various bounds.
As in [19] we require that 6 > 2, and we apply the results of this chapter to lattice
trees model with the choice § = 2 + ‘12;8. We also expect the result to be applicable
to other models where the lace expansion is used in the analysis above a critical
dimension d.. In such cases the lace expansion for d > d. suggests setting 8 =

2+ d_2dc. In particular for percolation (d, = 6) we would expect 6 = 2 + %. Note

that in the case d. = 4, 2 + d_2d° = %, which is that appearing in [19].
There is an unpublished version [15] of this chapter consisting of full proofs

of the material in [19], adapted to our more general setting, with generally only
cosmetic changes (e.g. % — 0) required. In this thesis we will state the assumptions
and results explicitly, but for the sake of brevity we will present only significant
changes in the proof and leave the reader to refer to [19] when the changes are only
cosmetic.

Therefore the chapter is organised as follows. In Section A.2 we state the
assumptions S, D, Fy, and Gy on the quantities appearing in the recursion equation,
and the “O-theorem” to be proved. In Section A.3, we introduce the induction
hypotheses on f, that will be used to prove the #-theorem. We advancement of
the induction hypotheses is highly technical and our extension does not require
significant alterations from the analysis of [19]. We therefore briefly discuss the role
of 0 in this section and direct the interested reader to [19] for the analysis. Once the
induction hypotheses have been advanced the #-theorem follows without difficulty.

A.2 Assumptions on the Recursion Relation

Suppose that for z > 0 and k € [—7,7]%, we have fo(k;z) = 1 and

n+1
Far1(B52) = D gm(k; 2) fir-m (ks 2) + enii(k;2),  (n>0), (A.3)

m=1

where the functions g,, and e,, are to be regarded as given. The goal is to understand
the behaviour of the solution f,(k; z) of (A.3).
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A.2.1 Assumptions S,D,E,,Gy

The first assumption, Assumption S, requires that the functions appearing in the
recursion equation (A.3) respect the lattice symmetries of reflection and rotation,
and that f, remains bounded in a weak sense. This assumption remains unchanged
from [19].

Assumption S. For every n € N and z > 0, the mapping k — f,,(k; z) is symmetric
under replacement of any component k; of k by —k;, and under permutations of the
components of k. The same holds for e,(-;z) and g,(-; 2z). In addition, for each n,
| f(k; 2)| is bounded uniformly in k € [—, 7]? and z in a neighbourhood of 1 (which
may depend on n).

The next assumption, Assumption D, introduces a function D = Dy, which
defines the underlying random walk model and involves a non-negative parameter
L which will typically be > 1. This serves to spread out the steps of the random
walk over a large set. An example of a family of D’s obeying the assumption was
given in Definition 1.2.4 and the remarks following it. In particular Assumption D
implies that D has a finite second moment, and we define

d 2 )
ol =-V’D(0) = | % > e*7D(x) = |z/*D(z). (A.4)
j=1 J =z k=0 T
Let
a(k) =1 — D(k). (A.5)

Assumption D. We assume that
fi(k:z) = zD(k), ei(k;z) =0. (A.6)

In particular, this implies that g (k; z) = zD(k). As part of Assumption D, we also
assume:
(i) D is normalised so that D(0) = 1, and has 2+ 2¢ moments for some 0 < € < —2,
ie.,
> |zt D(z) < oco. (A7)
z€Z4

(ii) There is a constant C' such that, for all L > 1,

IDllw < CL™,  o0* =0® < CI? (A.8)
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(iii) There exist constants 7, ¢, ¢y > 0 such that

a1 L2k? < a(k) < oLk (||k]|oo < L71), (A.9)
a(k) >n  ([klleo > L™, (A.10)
a(k) <2—-n (ke[ n]%). (A.11)

Assumptions E and G of [19] are now adapted to general § > 2 as follows.
The relevant bounds on f,,, which a priori may or may not be satisfied, are that
for some p* > 1, some nonempty B C [1,p*] and

B=pBp) =1 (A.12)

we have for every p € B,

192 fm(:2)llp < o) [fml0:2)| S K, [V2fm(0;2)] < KoPm,  (A.13)

d )
Lgm@/\e

for some positive constant K. The full generality in which this has been presented is
not required for our application to lattice trees where we have p* = 2 and B = {2}.
This is because we require only the p = 2 case in (A.13) to estimate the diagrams
arising from the lace expansion for lattice trees and verify the assumptions Eg, Gy
which follow. In other applications it may be that a larger collection of || e ||, norms
are required to verify the assumptions and the set B is allowing for this possibility.
The parameter p* serves to make this set bounded so that B(p*) is small for large
L.

The bounds in (A.13) are identical to the ones in [19](1.27), except for the
first bound, which only appears in [19] with p =1 and § = %.
Assumption Ey. There is an Ly, an interval I C [1 — a,1 + o] with a € (0,1),
and a function K +— C.(K), such that if (A.13) holds for some K > 1, L > Ly,
z € I and for all 1 < m < n, then for that L and z, and for all k € [—m,7]¢ and
2 <m < n+ 1, the following bounds hold:

lem (k; 2)| < Co(K)Bm™,  lem(k; 2) — em(0;2)| < Ce(K)a(k)Bm™0TL.  (A.14)

Assumption Gy. There is an Ly, an interval I C [1 — a,1 + o] with @ € (0,1),
and a function K +— Cy(K), such that if (A.13) holds for some K > 1, L > Ly,
z € T and for all 1 < m < n, then for that L and z, and for all k € [—m,7]¢ and
2 <m < n+ 1, the following bounds hold:

|9 (k5 2)| < Cg(K)pm ™", [V2gu (05 2)| < Cy(K)o®pm =0+, (A.15)
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10:9m(0; 2)| < Cg(K)/Bm_0+1, (A.16)
[9m (ks 2) = gm (05 2) — a(k)o ">V g (0; 2)| < Cy(K)Ba(k) 'm0+, (A.17)
with the last bound valid for any €' € [0, €], with 0 < € < § — 2 given by (A.7).

Theorem A.2.1. Let d > d, and 0(d) > 2, and assume that Assumptions S, D,
Ey and Gy all hold. There exist positive Ly = Lo(d,€), z. = z.(d, L), A = A(d, L),
and v =wv(d, L), such that for L > Ly, the following statements hold.
(a) Fiz v € (0,1 A€) and 6 € (0,(1 A€) —). Then
2
fu( i 2e) = Ae~ 11 + O(k*n ) + O(n0+2)] (A.18)
vo?n
with the error estimate uniform in {k € R : a(k/vvo?n) < yn~'logn}.
v ? fn(0; 2c)
V= fn(0; 2¢ 2 -5
- = 1 . Al
70 20) o*n[l+ O(Bn"°)] (A.19)

(c) For allp > 1,

1D? fn( 2e)lp < ——— (A.20)
L

(d) The constants z., A and v obey

o0
1= gm(052c),
m=1

PR S em(0;2¢) (A.21)
Zronozl mgm (05 2c)
Efnozl V29m(0§ Zc)
02 Y =1 Mgm (05 2c)”
It follows immediately from Theorem A.2.1(d) and the bounds of Assump-
tions E and G that

v=—

2e=1+0(8), A=1+0(8), v=1+0(p). (A.22)

A.3 Induction hypotheses

The recursion relation (A.3) is analysed using induction on n, as done in [19].
The induction hypotheses involve a sequence v,, which is defined exactly as
in [19] as follows. We set vgp = by = 1, and for n > 1 we define

1 br,
bn:——zvzgm O;Z, C”_Z _1ngZ) Un:1+cn- (A'23)
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The induction hypotheses also involve several constants. Let 6 > 2, and
recall that e was specified in (A.7). We fix 7,d > 0 and A > 2 according to

0<y<1IA(O—-2)ANe
0<d<(IA(@—-2)Ne)—7 (A.24)
0—vy<A<@.
Here XA replaces p + 2 from [19] simply to avoid confusion with p(0) from other

chapters in this thesis.
We also introduce constants K, ..., K5, which are independent of 8. We define

K} = max{C,(cKy4),Cy(cKy), K4}, (A.25)

where c is a constant determined in Lemma A.3.6 below. To advance the induction,
we will need to assume that

Ks> K| > Ki >Kyi>1, Ky> K1,3K!1, Ky > Ky. (A26)

Here a > b denotes the statement that a/b is sufficiently large. The amount by
which, for instance, K3 must exceed K; is independent of 3, but may depend on
p*, and will be determined during the course of the advancement of the induction
in Section A.4.

Let zg = z1 = 1, and define z, recursively by

n+1
Znt1=1— Z 9m (05 zp), n>1. (A.27)
m=2
For n > 1, we define intervals
In = [zn — K180 % 2, + K1 B0 01, (A.28)

In particular this gives I = [1 — K1 3,1 + K1 ].

Recall the definition a(k) =1 — D(k) from (A.5). Our induction hypotheses
are that the following four statements hold for all z € I, and all 1 < 5 < n.
(H1) |z — 2j_1| < K18570.
(H2) [vj —vj1| < Ko~

(H3) For k such that a(k) <vj~'logj, f;(k;2) can be written in the form

j
filks2) =[] 1 - via(k) +7i(R)],

i=1
with r;(k) = r;(k; z) obeying

7i(0)] < K3Bi**',  |ri(k) —ri(0)| < KaPa(k)i™.
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(H4) For k such that a(k) > vj~'logj, f;(k;z) obeys the bounds

|fi(k; 2)] < Kaa(k) 570 [ f5(ks2) = fi—1(ks 2)| < Ksa(k) 1570

Note that these four statements are those of [19] with the replacement
p+2- A (A.29)

in (H4) and the global replacement

d
3 0, (A.30)

By global replacement we also mean that % =01, % — 0 — 2, etc. whenever
such quantities appear in exponents.

A.3.1 Initialisation of the induction

The verification that the induction hypotheses hold for n = 0 remains unchanged
from the p = 1 case, up to the replacements (A.29-A.30).

A.3.2 Consequences of induction hypotheses

The key result of this section is that the induction hypotheses imply (A.13) for all
1 < m < n, from which the bounds of Assumptions Fy and Gy then follow, for
2<m<n+1.

As in [19] throughout this chapter:

e C denotes a strictly positive constant that may depend on d,~,d, A, but not
on the Kj, not on k, not on n, and not on B (provided f is sufficiently small,
possibly depending on the K;). The value of C may change from line to line.

e We frequently assume 8 < 1 without explicit comment.

Lemmas A.3.1 and A.3.3 are proved in [19] and the proof in our context requires
only the global change (A.30).

Lemma A.3.1. Assume (H1) for 1 <j<mn. Then Iy DI D --- D I,.

Remark A.3.2. We were unable to verify [19](2.19) as stated. Instead of [19](2.19)
we use

|5i(k)| < K3(2 + C(Ka2 + K3)B)Ba(k)i™, (A.31)
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the only difference being the constant 2 appears here instead of a constant 1 in
[19](2.19). This does not affect the proof. To wverify (A.31) we use the fact that
Lm <142z for0<z< % to write for small enough B,

|si(k)| < [1+2K3B][(1 + |vi — 1))a(k)ri(0) + |ri(k) — i (0)]]

< [1+2K30] |(1 4+ CKapB)a(k) fﬁ?’? + Kgf? ®) (A.32)

< K3ﬂa( ) K3ﬂa( )

———[1+2K38][2 + CK2f] < ———[2 + C(K2 + K3)B].

Here we have used the bounds of (H3) as well as the fact that 0 — 1 > 4.

Lemma A.3.3. Let z € I, and assume (H2-H3) for 1 < j < n. Then for k with
a(k) <vj 'logj,
|fJ(k, Z)| < eCKg,Be—(l—C(K2+K3),3)ja(k)' (A33)
The middle bound of (A.13) follows, for 1 < m < n and z € I, directly
from Lemma A.3.3. We next state two lemmas which provide the other two bounds
of (A.13). The first concerns the || ® ||, norms and contains the most significant
changes from [19]. As such we present the full proof of this lemma.

Lemma A.3.4. Let z € I, and assume (H2), (H3) and (H4). Then for all1 < j <
n, and p > 1,

1525532l < % (A34)
where the constant C may depend on p,d.
Proof. We show that

1D £5 (5 2) 15 < % (A.35)

For j = 1 the result holds since |fi(k)| = |zD(k)| < z < 2 and by using (A.8) and
the fact that p > 1. We may therefore assume that j > 2 where needed in what
follows, so that in particular logj > log 2.

Fix z € I, and 1 < j < n, and define

Ry = {k € [-mn%: a(k) <vj ' logj, |[klle < L7},
Ry = {k € [-m 7" a(k) <7j 'logj, |[kllec > L'},
Ry = {k € [-m,m]*: a(k) > vj 'logj, [[klleo < L'},
Ry ={k e [-mn)%:a(k) > vj " logj, ||k|leo > L'}
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The set Ry is empty if j is sufficiently large. Then

d
|D2fj |p — Z/ |f] |)p (Zﬂ-];;d_ (A36)

We will treat each of the four terms on the right side separately.

On R;, we use (A.9) in conjunction with Lemma A.3.3 and the fact that
D2 < 1, to obtain for all p > 0,

dik I—
/R( ®)?)" 11k e =

Ry

C
—c Llcl
<||/ Ce~ Pk df; < < TGy (A.37)

< C
- Ldjd/2'

Here we have used the substitution k, = Lk;y/pj. On Ry, we use Lemma A.3.3 and
(A.10) to conclude that for all p > 0, there is an a(p) > 1 such that

R p dk _; d% »
A@mmmmﬂmsqéaﬁmzwuw, (A.38)

where |R2| denotes the volume of Ry. This volume is maximal when j = 3, so that

[Ra| < I{k'a( ) < I{k D(k) > 1 - T2}
|D2||1 < ({5mm3)*CL7,

(A.39)

S( log ) | log

using (A.8) in the last step. Therefore o 7|Ry| < CL%j~%?2 since ] < C for every
7, and

. p dik —d.—
@@me@WwMM% (A.40)

On R3 and Ry, we use (H4). As a result, the contribution from these two
regions is bounded above by

k)2 dk
( ) Z (k))kp i (A.41)

On Rs, we use D(k)? < 1 and (A.9). From (A.9), k € Rs implies that L?|k[> >
Cj~!logj so that

CK? / 1 CK?

j0pL2/\p Ra |k‘2/\p 0pL2)\p /\/m
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Since log 1 = 0, this integral will not be finite if both j =1 and p > 2)\, but recall
that we can restrict our attention to 57 > 2.
For d > 2\p, we have an upper bound on (A.42) of
CK? (I jitmwy, o CKL (C P O} Al
jﬂpLQ)\p 0 0pL2)\p Z = jOpLd' ( ) )

For d = 2\p, (A.42) is

CK} CK?} log C+/L?j CKff ) Cj Add
9pL2>\p \/Tg r GO L2p L+/log j joP L2 o8 logj /)" (A-44)

Now since d = 2\p, we have that 9p Zf‘ > % using the fact that A < 8. This gives

an upper bound on this term of €
oL

Lastly for d < 2\p, since A < 0, (A.42) is bounded by

OK? CK? (Cr%\ *" _ CK?
d 1— 2)\pd ( ) < 4 (A45)

jOp L2 / \/W GOP L2 \ log j

as required.
On Ry, we use (A.8) and (A.10) to obtain the bound

P . d Kp . d KP
C.K4/ P2k C 4/ D22k o K (A.46)
- -

77 @mi = o @n)i = L

where we have used the fact that p > 1 and \ﬁ| < 1. Since K} < (14 Ky)?, this
completes the proof. O

Lemma A.3.5. Let z € I, and assume (H2) and (H3). Then, for 1 < j <n,
[V2£3(032)| < (1+ C(K> + K3)B)o’j. (A47)

The proof is identical to [19]. We merely point out one small correction to
the first line of [19](2.35), where a constant 2 is missing. It should read

V25:(0)] =2 Z lim te’—_SZ(O) , (A.48)

t—0

however once again this does not affect the proof.
The next lemma, whose proof is the same as in [19], is the key to advancing
the induction, as it provides bounds for e, and gp41-
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Lemma A.3.6. Let z € I,,, and assume (H2), (H3) and (H}). For k € [—m, %,
2<j<n+1, and € €|0,¢, the following hold:

(i) g;(k;2)| < Kipj~*,

(ii) |V2g;(0;2)| < Kjo?B5~0*,

(iii) |0,9;(0; 2)| < KiBj~"*,

(iv) |9;(k; 2) — 9;(0;2) — a(k)o>V2g;(0; 2)| < Kjfa(k)'+e j0T1+e,

(v) lej(k;z)| < KiBj~°,

(vi) lej(k;z) — ej(0;2)| < Kia(k)Bj~0*.

A.4 The induction advanced

In this section we advance the induction hypotheses (H1)-(H4) from n to n + 1.
For (H1)-(H2) the proofs are identical to those in [19] up to the global replacement
(A.30) due to the following observations. Since § > 2 and € < ¢ < 6 — 2 we have
that

o0 o n
Y=<y S g (A49)
m:2m 0 e =09 ml—1 = (n+2—m)f2 :

m=2 ]:n+2—m

Similarly, convolution bounds used in [19] to verify (H1)—(H3) remain applicable
under the global replacement (A.30).
The above bounds are also used to advance (H3)-(H4). In addition, in (H3)

we require that there exists a ¢ > 1 but sufficiently close to 1 so that

(n+1)0VE=0, (9 #3)
log(n + 1), (0 =23),

is bounded by (n +1)7%. This holds since d ++ < 1A (6§ —2) by (A.24). This corre-
sponds to [19](3.43). Other similar bounds required to verify (H3) (corresponding
to [19](3.50)-(3.51) and [19](3.58) for example) also follow from 6 + vy < 1 A (6 — 2).

To advance (H4) we make the additional global replacement (A.29). Then
using the fact that v+ X\ — 6 > 0 we have that there exists ¢’ close to 1 so that for
a(k) < yn”logmn,

(n+1)"11og(n + 1) x { (A.50)

c C
nf ndvHA=0 = plg (k)N
This corresponds to [19](3.62), and is used to advance the first and second bounds
of (H4). In addition we use the fact that A > 2 so that a(k)* 2 < C (recall that
a(k) < 2 from (A.11)) to get ﬁ < a(k)%
The proof of Theorem A.2.1 now proceeds as in [19] with the global replace-
ment (A.30).

(A.51)
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