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This dissertation investigates finite difference techniques which are useful for solving
radiative problems in spacetimes which contain a black hole. The singularities present in
such spacetimes are avoided by excising the interior of the black hole from the computational
domain. The boundary of the black hole is chosen at the apparent horizon. Spatial derivatives
at this boundary are tipped so that they only reference points outside the black hole. Programs
using this method are used to examine the interaction of a scalar field with a Schwarzschild
black hole in spherical symmetry and with a Kerr black hole in three dimensions.

The main spherically symmetric calculation looks at the scattering of ingoing packets
of massless scalar fiel@Quasi-normakinging and power-law tails are observed, along with
interesting coordinate and nonlinear effects. Also examined is the stability of a static solution
found by Bechmann and Lechtenfeld. This solution describes a static configuration of scalar
field with potential outside a black hole.

The three dimensional calculation looks at the scattering of packets of massless scalar
field from a fixed Kerr background. The phenomenosgperradiances examined.

The programs used in this work were constructed using the new prototyping language
RNPL. This language allows for the fairly simple construction and modification of programs
to solve time-dependent partial differential equations. RNPL and its compiler are discussed

near the end of this dissertation.
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Chapter 1. Introduction

As the title suggests, this dissertation is concerned with solving problems involving
radiation in spacetimes which contain a black hole. Due to the number and complexity of
the equations of general relativity (Einstein’s equations), exact solutions are hard to come by
except in the simplest situations. Thus, relativists turn to computers and numerical methods
to solve more realistic problems. However, computers have difficulty solving these problems
as well.

Again, because of the complexity of the equations, and in particular, because of their
nonlinear behavior, the Einstein equations are difficult to code in an error free and stable
manner. Further, calculations involving strong fields are likely to develop black holes—and
with black holes come singularities. It is important to note that these singularitiphgseal
singularitiesnear which the curvature scalar quantities experience unbounded growth. Assuch,
they can not be removed by coordinate transformations or other methods typically used to deal

with singular points in differential equations.

1.1. Black Holes, Singularities, and Horizon Boundaries

As can be expected, computers, with their finite precision, have great difficulty treating
singularities. Thus, the only hope of numerically solving relativistic problems involving
generic strong fields or initial black holes is to find some way to “avoid” the singularities which
are either present initially or likely to develop.

A common method of avoiding singularities in gravitational collapse is to make use
of the coordinate freedom allowed by general relativity to let time elapse at different rates
in different parts of the spacetime. In particular, a coordinate system can be chosen so that
time slows rapidly as one nears the singularity, stopping before it is reached. This prevents

the region of spacetime covered by the chosen coordinate system from ever encountering the
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singularity. Unfortunately, this method introduces its own problems. In order to remain at
rest (at a fixed coordinate location) near the singularity, an observer will have to experience
an unbounded acceleration as proper time progresses. This acceleration term appears in the
Einstein equations and will cause the numerical evolution to eventually halt. The space-like
physical singularity has been avoided by introducing a time-like coordinate singularity caused
by unbounded growth in the field variables. What is needed is a way to avoid the physical
singularity without introducing any coordinate singularities.

By definition, black-hole-spacetimes contain event horizons. In fact,Gbemic
Censorship Conjectugtates that any singularity will always be hidden within such a horizon.
Although it is possible to construct certain collapse situations which result in the formation of
a “naked” singularity, that is, one not hidden inside a horizon, such situations are unlikely to
develop during a generic calculation. Thuswe can reasonably expect any singularity that forms
during a calculation will be hidden inside an event horizon. This horizon is a closed surface
out of which no information can pass. This gives rise to the idea of avoiding singularities by
black hole excision. We simply confine our numerical evolution to only those events outside
the horizon, ignoring the region of spacetime inside the horizon altogether.

Unfortunately, this method is not without its problems either. Location of the event
horizon requires knowledge of the entire spacetime—knowledge not available until the
calculation is complete. But apparent horizons can be found from information about the
curvature of a single space-like slice. Like an event horizon, an apparent horizon is a trapped
surface—a surface through which no light can escape. Further, apparent horizons always lie
within the event horizon. Thus, if we stop our numerical domain at the apparent horizon, we
may evolve part of the interior of the black hole, but will still avoid any singularities that lie
within. Seidel and Suen have used such a scheme with encouraging results (see [22] and [1]).

For the research in this dissertation, | use the same approach, though withoatitaé
differencingused in the previous works. | look at the interactions of a massless scalar field
with an existing black hole in one and three spatial dimensions. In the 1D case, | evolve the
geometric variables along with the scalar field using the full Einstein-Klein-Gordon equations,

while in the 3D case, | evolve the scalar field ofd@dKerr background.
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1.2. Computer Aided Programming

Even with a good coordinate system and an apparent horizon boundary, solving the
Einstein equations is still no simple task. Finding a stable differencing scheme—especially at
the boundaries—is a time consuming, iterative task. When a given implementationis unstable,
it is often difficult to determine if the problem is due to a coding error or the differencing
scheme. Every time the differencing scheme is changed, there is a new opportunity for
introducing errors. What is needed is a computer program to assist the numerical physicist.
This program should allow difference schemesto be easily changed without introducing errors.
It should also assist in other ways by providing robust facilities for check-pointing and output
and parameter control.

| have constructed such a system which | call RNPL—Rapid Numerical Prototyping
Language. The system includesboth the language and a compiler which takes RNPL programs
and converts them to C or FORTRAN which can then be compiled and executed on a variety

of machines. |1 used RNPL to write all the programs used in this research.

1.3. Notation and Conventions

Like most numerical relativists, | will be using a metric with signature<, +, +) so
that the 3-metric is positive definite. Latin indicesj(k, . . ) on tensors range ovd, 2,
3} while Greek indicesd, 3,7, . . ) range over0, 1, 2, 3}. | observe the Einstein summation
convention in which repeated indices indicate a sum over the repeated iNdespresents
covariant differentiation with respect to the four-metiicrepresents covariant differentiation
with respect to the three-metric, aidt represents ordinary partial differentiation. | adopt
geometricized unitsinwhicB =c=1

As is usual when discussing numerical analysis, discretized functions use su-
perscripts for the time index and subscripts for the spatial indices. For instance,
ﬁ“k = f(nAt,iAXL j AXE kAXY). Further, in discussions of finite difference equationsill re-

fer to the time level, while,j, andk will refer to the spatial grid location.
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2.1. General3+ 1Equations

The derivation of th& + 1 form of the Einstein equations has been carried out in detalil
many times (see for example [24] and [18]). Here, | will simply give a brief description of
the 3+ 1 method and state the equations in a coordinate independent form as given in [13].
However, | will show the derivation of the Klein-Gordon equation.

In order to write the equations B+ 1 form, we must break the coordinates into one
“time” coordinate and three “space” coordinates. To do this, we choose a “time” furiction
and use it to “slice” spacetime into a set of hypersurfacesf constant. We also choose a
“time flow” vector fieldt" satisfyingt“vut =1 If n"is a unit vector field normal to th¥,, we

can decompos# into parts normal and tangential 1g.
t* = ant' + 3. (2.1.2)

Equation (2.1.1) defines thapsefunction«a and theshift vectorﬁi. Given the normaft’, we

can define the three-metric by:
h,=g,+tnn,. (2.1.2)
Theextrinsic curvatures defined as:

_1
Ky =5y, (2.1.3)

where£ is the Lie derivative along”. Written in3+ 1form, the line element is:

df = —o®d*+ h, (dX + G'dt) (dX + Fdt). (2.1.4)
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The metric and its inverse in matrix notation are:

—a?+48, 8
_ i 2.1.
9y ( 5 n) (2.1.5)
and
1 f
g’ = f‘z O‘Zij . (2.1.6)
B i BB
012 042

The covariant form of the Klein-Gordon equation is
V'V = V(). (2.1.7)

whereV( ¢ ) is an interaction potential. This reduces to

1 Iy
whereg is the determinant of the metric. If we multiply hy—g then the right hand side is
simplyay/h 8¢V, whereh is the determinant of the three-metric. From the left hand side, we

get
0, (av/ N g"d,0) +0,(an/ T g"0,0) =
8, [aﬁ(gttatcb +9'9,0) } +0 [O‘ﬁ(dta@ +d'00) } -

) [ﬂ (5'9,~ ) ¢} +0 [@ B'(0,~ )¢ +avhho q&} _

(0% (e

o[ LR30,-3)8] - S [L0 0 -0)6] +a(aAHY ) =avhoy . @19)

(0% «
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If we define four auxiliary variables by

©,-069)9, (2.1.10)
and

b =00, (2.1.11)
then we can write (2.1.9) as an evolution equation/lionamely

1T = 0, (5‘n+aﬁ(h”¢j)) —avho,V. (2.1.12)
Differentiating (2.1.10) gives us evolution equations for the tidreariables

0P, = 0, (%nwj@j). (2.1.13)

The Einstein equations ®+ 1form are

R+K?—K; K' =16rmp,, (2.1.14)

DK -D/K=8rS, (2.1.15)

9K = —DDa+a [R'j +KK', — 818, +4md (S— pH)} , (2.1.16)
d,hy= —2aK;+D 3 +D,3, (2.1.17)

WhereF?'j is the Ricci tensor an® is the Ricci scalar. The source terms for the scalar field

are
1 i 1 2
S= _IL{ig 2.1.19
vh ! ( )
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S =t (S + L 1P~V () ) +n o, (2.1.20)
S— _lhiigs.qs.+§n2_3V(¢) (2.1.21)
THee+2 . 1

Substituting the source terms into equation (2.1.16), we get

16— #o) K| = KK, =10 90— I'90) +R|

~8r (a8 +0V (9) ) +2(K\9, 8~ K 9,). (2.1.22)
Similarly, equation (2.1.17) becomes
k k k
109 h = — 2K, +2(h0, 8 +n 3, 5"). (2.1.23)
The Hamiltonian constraint (2.1.14) becomes

2 ij_ 1 1 42
R+K?—K; K! = 16r (S e+ 2 1174V (9) ) (2.1.24)

and the momentum constraints (2.1.15) become

DK.-DK=—8riL o, (2.1.25)

Vvh

2.2. Numerical Analysis

There are many problems that can occur when trying to solve a set of partial differential
equations numerically. As mentioned in Section 1.2, when an attempted solution method
proves unstable, it is often difficult to determine the cause of the problem. Isit a programming
error or is it the finite difference scheme?

More importantly, if the solution method appears to be stable, we need rigorous methods

for deciding if it really is stable, and if so, is it in fact solving the correct set of equations.
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Following [6] and [8], | will give some methods for rigorously determining the correctness and

stability of a finite difference scheme.

2.2.1. Definitions

We are concerned with numerically solving a set of continuum partial differential
equations using finite differencing. This means that we apply finite difference approximations
of the differential operators to discretized versions of the functions. | will represent the
discretized versions of functions and operators by hatted quantities, while using unhatted
guantities for the continuum versions.

Given a functioru and a differential operatdr satisfying the equation

Lu=0, (2.2.11)
we define théruncation errorby

7 =Lu (2.2.1.2)
and the solution error by

e=u—Uu. (2.2.1.3)

We say that the finite difference operatopik-order accurate if = O(hp) ,When actingon a
function discretized on a grid with spacihg The schemes | will be using in this dissertation
are all 2nd-order accurate, so for the remaining discussion | will aspum2

If L is made up of centered difference operators, then as the grid spacing goes to zero, we

get the following continuum expansion for the discretized function [21]:
U=u—h’e—h'e,—- -, (2.2.1.4)

wheree is anh-independent error function. Similarly,lifis not completely centered, we will,

in general, get the following continuum expansion for the discretized function:
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U=u—h’e—h'e,—h'g—- - (2.2.1.5)

2.2.2. Methods

Assume that we have a program to generate solutionsto the s@étem. This program
appearsto be stable, that is, for the time we have evolved the solution, nothing has “blown up.”
How can we check to make sure the method is really stable? We must check for convergence.
If the solution is not convergent, then it is not stable.

To check for convergence, we must compute solutions on three grids with different
resolutions. It is convenient to choose one with spabjrane with spacin@h, and one with
spacingdh. We will call these solutions,, 0, andl,,, respectively. From (2.2.1.4), we can

see that for a centered scheme, these solutions should have the following expansions:
U,=u—h'e,—h'g,—---
A 2 4
U, =u—4h’e,—16hg—---
U, = u—16h’e,— 256n"e,— - - -
= S 4 :
Then
U, — U, = 12h°e + 24th’%e, + - - -
oh — Ugn = & 73
and

" 2 4
U,— Uy, =3n"e,+15'g +- - -

Theconvergence factds defined as

—u
=_2 (2.2.2.1)
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In this caseC; =4+ O(hz) . Going through a similar series of expansions, we can see that for
a 1st-order accurate scheme weQ@gt 2+ O(hz) . If the difference operators are not properly
centered, then we will ge; = 4+ O(h) andC; = 2+ O(h) for 2nd and 1st-order schemes.

Thus, if we've constructed a 2nd-order accurate scheme, we should expect the
convergence factor to be approximately four. If we compute a convergence factor that is less
than one, we know that the scheme is unstable. If we make the grid spacing small enough, the
solution will “blow up.” However, if we compute a convergence factor of four, then we know
the scheme is stable for the data being evolved. Other data can cause the scheme to exhibit
other behavior, especially if the equations are nonlinear. Itisimportantto check any interesting
or unexpected solutions for convergence to make sure they are not numerical artifacts.

The fact that a program is stable and convergent simply means that it is correctly
solving the set of algebraic finite-difference equations. In order to show that it is actually
approximating the desired set of differential equations, we construct another finite difference
approximation ta. which we will call L. We then computd;.ﬁ. For a 2nd-order, centered

approximation, we should get
A2 4
Lu=h f2+h f4+~ e

where againt,, f ,, etc. aren-independent error functions. We then compute the convergence
factor from (L{,, Ly, L0, ). If we get four, then we can be sure that we are solving the
desired set of equationll is called aresidualand sincei was found using., L is called an

independentesidual evaluator.
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3.1. Spherically Symmetric Einstein-Klein-Gordon Equations

The Einstein-Klein-Gordon equations (see Section 2.1) can be specialized to spherical
symmetry resulting in a tremendous simplification of the system. | will adopt the usual names

for spherical coordinates, name(lyr, 0, ¢ ) In this coordinate syster’nij andKij are diagonal.

We have
hy = diag(’ (t,r) 12" (t.r) ,r?0’sinfo) (3.11)

K'; = diag(K', (t.r) K’y (t.r) .K',) (3.1.2)

g = (4 (tr),00) = (.00 (3.1.3)

a=a(tr),o=or). (3.1.4)

%= (2,(tr).0,0) = (2,00 (3.1.5)

The Christoffel symbols are given by

Fijk = :QL hf (Odhy + Oy — dhy).- (3.1.6)

In spherical symmetry, the non-zero components are

0a rbo (rb) 0 (rb)
Frrr:% Fr%:_ I’a2 Fart?: I’rb

11
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12
r _, Tho, (rb) o 0O(b)
F¢¢:—sm9 2 Fr¢: D
9 . o
F¢¢_ —siné cosd I 0= —coté

The two non-zero components of the Ricci tensor are

2 ar(rb)

= “ab’ " a (3.1.7)
b

R, = ar%bz la— ) (ra 9, (b) )] . (3.1.8)

From now on, we will denoté, by a prime and, by an over dot. Equation (2.1.23) becomes

a= —aoK' + (ag)’ (3.1.9)

b= —abk’, +Z(rp)". (3.1.10)

For the extrinsic curvature (2.1.22) we get

T ar! r 1/a'\' 2 (rb)" &
KT = 8K, +aKrK—a(%) —a_%{T] —7ra<¥+V(¢)> (3.1.11)

K' = BK") +aK® K +—a_ 1 (%b(rb)’)'—SwV(q&). (3.1.12)

Following [6] we change our definition fdd slightly

1 a; .
I — II=2(¢— ¢, (3.1.13)
r2o%sing 0‘( )
while the definition for® remains the same
' (3.1.14)

DP=¢.
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Using these variables, (2.1.12) becomes

> 1 22 o! ' _ob_
and (2.1.13) becomes

b= (po+211)"

The Hamiltonian constraint (2.1.24) is

_alrb[(@)' +%((%(rb)’>'—a>] +4K" K09+2K992:

2 2
8r <@ I oy (¢)>

a

and the momentum constraint (2.1.25) is

rb)’
(o)’ (K% —K') —K%) = —ar 2L,

3.2. Minimally-Modified Ingoing Eddington-Finkelstein Coordinates
For the spherically symmetric calculations, | use a coordinate system introduced in [7]
from earlier work [5]. Figure 3.1 shows how the Ingoing Eddington-Finkelstein coordinates

relate to Kruskal-Szekeres coordinates. Notice that the slices all penetrate the horizon and

meet the singularity.

To specify this coordinate system mathematically, we must fix the lapse and the shift.

13

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

First, we introduce a “shifted” areal coordinagelefined bys =r + f (t) for some as yet

undetermined functioh. Our metric is now

d§ = (— az + aZﬁz) dtZ + 2a2ﬁ dtdr + azdrz + SdeZI

(3.2.1)



14 Chapter 3. Spherical Symmetry I: Theory

Figure 3.1. The Ingoing Eddington-Finkelstein slices in Kruskal-Szekeres coordinates.
The dotted lines are constantvhile the dashed lines are constaniThe dark curves are the

singularity. The diagonal lines are the horizor{2M).
From this we see tha=rb sob=1+ ; . Then from (3.1.10) we see that
(tb) = —arbK’, + B(tb)’ (3.2.2)
and hence
B=f+saK’ . (3.2.3)

— —
To set the lapse, we demand that the ingoing combination of tangent végctots be null.

This gives a condition on the metric, namely— 29, +9d,, = 0. Using (3.2.1) this implies
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a= +a(l-0). (3.2.4)

We choose the sign sois positive for[ﬁ ] <1l thatisa = a(1- ). Using (3.2.3) and (3.2.4)

we get
3 0
f +saK”,
f=——7F (3.2.5)
1+s&K’,
a(—f
LGN 026
1+saK',
And hence, the metric takes the form
ds = (28— 1) d* + 2823 dtdr + aldr® + Sd2”. (3.2.7)
Factoring the first three terms yields
df = a( (26— D)dt-+dr) (dt+dr) +d?, (3.2.8)
which shows that the characteristic speeds are
c=-1,1-25. (3.2.9)

Now we are ready to write down the evolution and constraint equations in their final form.

The constraints are

3
a +2_1S(a3_a) +5‘75|<"€(2Krr +K%) —27rsa(g132+172+2a2 (gb)) =0, (3.2.10)
. K —K'
K, 40 o dmll_ (3.2.11)
S a

The evolution equations are
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a= —a(1-p)K' + (a3)", (3.2.12)

K.ee — ﬁng' +a(1- ) (Kaa(Krr +2K9€) - 87rv(¢)> + 1_ﬁ(a—l) _,_ﬁ’ (3.2.13)

K', = BK', +a(1—B)K' (K, + 2K%)) +

_ " " 2 , I o "
571{%_ &) _25%+87r(¢2+a2v@)ﬂ +i_"2"+%, (3.2.14)
&= (5qs+ (1-6) H)', (3.2.15)
I :glz[sz(mn (1-5) @)]—z—séﬂ—az(l— 8OV . (3.2.16)

We can get an evolution equation fofrom the apparent horizon equation. dfis an

outward-pointing, space-like unit normal to a trapped surface, then it obeys the equation [6]
D,s—K+89K; =0. (3.2.17)
In spherical symmetry, this reduces to
(rb)’ —arbK’, =0, (3.2.18)
which, in MMIEF is simply

ax’) = 1. (3.2.19)

To keep the horizon at fixed we demand tha(tasKee) ‘ =0, wherer is the initial position
h

of the apparent horizon,= 2M. This gives the following equation fdr.

xS (@ +17)°

_ Za o) | (3.2.20)
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Since we wish to examine spacetimes which contain a black hole, it will be useful to
write down the Schwarzschild solution in MMIEF coordinates. First, we note that the Ingoing

Eddington-Finkelstein metric is usually written as [18]:
dg = —( —@) dv’ + 2dVdr +r2d 22 (3.2.21)

Instead of using the null coordinate we can use a time-like coordinate defined asV —r.

With this coordinate, the metric becomes

d< — _(1_@) dt2+¥dtdr+ (1+¥) dr® +r3dn? (3.2.22)

We can then set this equal to tBet 1 metric (3.2.7) to determine thg + 1 form of the

Schwarzschild solution in these coordinates. The results are:

_ r
a= /55 (3.2.23)

oM™
8= (3.2.24)

a— ,/ﬂ. (3.2.25)

Using these and equations (3.1.9) and (3.1.10), we can find the extrinsic curvature
components.

M (r + 2M)
K= —— (3.2.26)

(r(r+2M))32,

L = 2M(r+ M)
Kn=——~ /| (3.2.27)

(r(r +2M))3/2

Finally, we note that the mass in these coordinates can be computed from the surface area
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as
M(s) = 35(1— (26n4) A" ), (3.2.28)
whereA = 4r<. In MMIEF, this becomes

M(r) :%s(l—ﬂ). (3.2.29)

a

By making use of the evolution and constraint equations, we can write this mass as an integral

over the mass-density. In this form we have

S "2+ II° | 40 PIT
M(r) :§+47r rhs - +K 9?+V(¢>) dr, (3.2.30)
wherer is the location of the apparent horizon agds the value ofsatr,. Both forms of

the mass will be computed numerically to provide checks on the accuracy of the program.

3.3. Regularity at the Origin

In cases where a black hole is not initially present or there is insufficient mass in the scalar
field to form a black hole through collapse, the infalling matter will encounter the coordinate
origin. The origin is one boundary of the computational domain, so we need boundary
conditions to find the function values at this point. Since this is not a physical boundary,
however, we do not have boundary values. Rather we must use regularity conditions to

determine the behavior of the functions near the origin (see [2] for an extensive discussion).

3.3.1. Expansions

Sinces is a scalar and,K’;, andK', are elements of rank-two tensors, we know they are

even inr. Thus, near the origin, they have the following expansions:
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B(r) = gy + 2+ g+ (3.3.11)
ar)=a,+ar’+ari+. . (3.3.1.2)
KO(r) = ko + kr2+ K+ (3.3.1.3)
K' () =Ko+ K2+ K r*+ (3.3.1.4)

These expansions immediately give us the following conditions on the spatial

derivatives:
9 =0 (3.3.1.5)
a=0 (3.3.1.6)
K’ =0 (3.3.1.7)
Krr =0. (3.3.1.8)

3.3.2. Geometric Variables

Since our spacetime must be locally flat near the origin, we &8@ye- 1L An examination
of the momentum constraint shows thd, = K, at the origin. We can find further conditions
by examining the potentially divergenttermsin (3.2.13). These terms are the ones with powers

of r in the denominator. When collected, they can be written as

(1— ﬁ) (az— l) +r3
ra '

(3.3.2.1)

Clearly, asr — 0 both the numerator and the denominator of (3.3.2.1) go to zero. Thus
we must use I'HOspital’s rule to find the correct limit. The derivative of the numerator
is 2(1— ﬁ) ad — [ (az— 1) +06 +rp". Asr — 0 this goes tog'. The derivative of the

denominator is%’ + 2ra. Clearly this goes to zero asgoes to zero. Thus, we must have
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im # =0
Since we still have zero over zero we use I'Hospital’s rule again. The derivative of the
numerator ig(1— ) (2aa” +2(a) 2) - 3" (az— 1) —2a3'a +20" +r(". Asr goesto zero,
this goes t@(1- g)a" +28". The derivative of the denominaton@” + 4ra’ + 2a. The limit
of thisis2. Thus, the limit ag — 0 of equation (3.3.2.1) i§1— ﬂ) a' +pg".
Let us take a moment to examine the structurg.ofVhen there is no black hole present,

the shift is defined by

rang
=—". (3.3.2.2)
1+raK”,
From this we can easily see thats zero at the origin. Now
, raKee' + ra'Keg + aKee
g = ™ : (3.3.2.3)
(1+rakK’)
So,
0=lim 5 =K’y = K’ (0) =0. (3.3.2.4)
Now the second derivative ¢f is
n I I 9 !
rak’, +2aK’, +2raK’, + 2aK’ +ra"K’, 2<(raK 0) >
g" = - (3.3.2.5)

(1+ raKga) 2 (1+ raK‘ge)

Asr goes to zero, this expression vanishes. THU$)) = 0.
SinceK% is fixed at the origin, we must have the right hand of (3.2.13) side vanish.
This will only happen if the limit of (3.3.2.1) is zero. This limit is zero onlyaf = 0 at the

origin.
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3.3.3. Scalar Field

The evolution of the scalar field is accomplished through two auxiliary variablasd
II. These are defined by (3.1.14) and (3.1.13). The conditioh isrobvious (see (3.3.1.5)),

namely
®(0) =0. (3.3.3.1)

The condition on/I however, is a bit more complicated. First, since the slicing condition
givesa = a(1-f), we haveaa = (1-8) - Further, the shift is given by equation (3.3.2.2).
Thus, we havdl (0) = gb(o) # 0. We look, then, tdI'. We have

IT' = ¢' + (rak’) " (6 — ¢') +raK’y(¢' — ¢"). (3.3.3.2)

Ast — Owe see thall' — aK’,¢ — 0. Thus we have the condition

T (0) =0. (3.3.3.3)
3.3.4. Summary
We have three conditions @n
a(0) =1,
a(0) =0,
a’'(0) =0.

Thus, the expansion farisa= 1+ a4r4 + aer6 +-

We have four conditions on the extrinsic curvature
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K’, (0) =0,
K',(0) =0,
K', (0) =0

Thus, the expansions for the extrinsic curvature componentK%re k2r2 + k4r4+ ---and
r 2 4
K, =Ko+ K+

And finally, we have three conditions on the scalar field variables

(0) =0,
(0) #0,
' (0) =0

Thus, the expansions afe= 2¢,r +4¢,r>+- - -andIl = ¢, + ¢,r2+ - -

Unfortunately, these conditions are inconsistent with the Hamiltonian constraint, equation
(3.2.10). The spatial derivative of this equation gives an expressiad fadpon taking the
limit of this expression as — 0, we see thah” g #+ 0. This leads us to the conclusion
that the MMIEF coordinate system will admit no non-singular curvature at the origin. The
only consistent solutions near the origin are flat space or a black hole. Thus, MMIEF is only
a “good” coordinate system to use when a black hole already exists in the spacetime. In a
spacetime without a black hole, the equations will remain consistent as long as no energy
encounters the origin. This will be the case if the scalar field is outgoing or if it collapses to
form a black hole before it encounters the origin. For a collapse problem, the best thing to
do would be to start with another coordinates system and change to MMIEF coordinates if
a horizon forms. If no horizon forms, there is really no need for the special horizon tracking

properties of MMIEF coordinates anyway.
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3.4. Initial Data

In order to perform a calculation, we must have initial data for six functions
(9,11, 5, a,Kee,Krr). These functions must satisfy three equations, (3.2.10), (3.2.11), and
(3.2.5). This means that three of these functions can be arbitrarily specified.

| wish to examine the the “scattering” of compact (mostly) ingoing pulses of scalar
radiation off a black hole. The womtatterings in quotes because scattering doesn't always
occur. Long enough wavelengths® M) will simply reflect through the origin as if the black
hole were not present.

Of course it is impossible to construct a strictly ingoing pulse since the scalar field will
back-scatter from its own gravitational potential. However, we can get a nearly ingoing pulse
using the following method.

Let¢(r,t) = F(u=r +t)/r. Since the ingoing characteristic speed is ang an
ingoing coordinate. Thug; = o F/rand¢’ = 0 F/r — F/r%. For a compact pulse we sét

to a Gaussian of the form
F(u) = Al exp( — (u—c) d/ad> , (3.4.1)

whered is an integer and is ther coordinate of the center of the pulse. This results in initial

data for¢ of the form

o(r) =Ar eXID( —(r—9 d/ad) , (3.4.2)
#(r) =¢ [%—%(r —¢) d_l} , (3.4.3)

and
o) = ¢ [%—%(r ~9) d_l} . (3.4.4)

These equations can be used to&and!. | solve forg, a, andKeg using equations (3.2.5),

(3.2.10), and (3.2.11), respectivel, can be specified freely and the constraints can still be
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satisfied by adjusting the other geometric variables. However, an arhﬁfavyould almost
certainly not represent the desired configuration of a scalar field around a black hole.

| tried a number of methods for settil’(gjr, including finding the initial data in polar-radial
coordinates and then transforming to MMIEF coordinates. However, because of the different
slicings, one MMIEF slice crosses many polar-radial slices. This requires that the data be
evolved in the polar-radial system for enough time so that the initial MMIEF slice is covered.
| elected to use a different approach which seems to give good results. 1use the Schwarzschild
form (3.2.27) forKrr, but with varying mass. That is, | solve fdt(r) (3.2.30) along with the
constraints and then substitute this mass profile into (3.2.27) in place of the black hole mass
M.

3.5. Tails

There are a number of physical effects that we can expect to observe during the scattering
of the scalar field. The first of these is the so-called power law tails (see [10] and [19]). This
effect is due completely to the curvature and would occur around any mass. What happens is
that outgoing radiation is back-scattered by the curvature and reaches the interior at late times.
This causesthe scalar field at the horizon or any fixed areal radiusto fall off as a power of time,
independent of the shape of the scattered pulse (see [11)).

According to this reference, given Gaussian initial data, we should expect the scalar field
to go liket >at fixed areal radius and like at the horizon, whereis time at infinityy =t + r*

is the advanced time, and
r“=r +2MIn(r — 2M) (3.5.2)

is the “tortoise” coordinate. In MMIEF coordinates/aries liket at the horizon, so we should

expect the scalar field to fall off like ® at both the horizon and fixed areal radius.
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3.6. Ringing

Another effect we should observeajsasi-normal ringing This effect was observed from
studying perturbations on a fixed Schwarzschild background [20]. If the perturbatiofield

Is written as a sum of spherical harmonics

¢ = Iz%wl (t1)Yim(6,9), (3.6.)
then the radial part will obey the Regge-Wheeler equation

(= 0+ )W, =V (1) . (3.6.2)

r* is defined by (3.5.1). (3.6.2) is just a one dimensional flat-space wave equation with an

effective potential

V(1) = (1—@) (I (I;l) +2%1), (3.6.3)
whereq = —3, 0, 1 for gravitational, electromagnetic, or scalar perturbations, respectively
[15].

When waves impinge on the black hole, the perturbation field will oscillate at certain
frequencies which depend only on the mass of the black hole. These frequencies can be found
from the poles of the scattering amplitude (see [15] for a detailed treatment). The half-period

for an oscillation due to a spherical scalar perturbation is 28.442].

3.7. Mass Scaling

The final mass of the black hole should scale as a power of the initial amplitude of the
scalar field. To find out what this power should be, we can use equation (3.2.30) which gives
the mass as an integral of the scalar field. If we take the integral throughout space (neglecting

the potentiaV), we get
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00 o (&2 4 172
M, =M, +4r [ sz<¢ s +s|<99ﬂ7> dr, (3.7.0)
M 2a a
whereM, = ' is the mass of the black hole. Since the mass is consevi/gds a constant.

2
HoweverM, is not constant. As the scalar field encounters the horizon, some mass will be

transferred from the integraltermhd,. The mass of the black hole willincrease by an amount
proportional to the massin the scalar field. For a very narrow pulse, the entire mass of the field
will go into the black hole, while for a very wide pulse, almost none of it will. So, to see how
the final mass of the black hole scales with the amplitude of the scalar pulse, we need only
examine the integral term in equation (3.7.1).

The initial data is given by equations (3.4.2) , (3.4.3), and (3.4.4). Using these along with
equations (3.1.13) and (3.1.14), we get

d-1
P 1. 4(-9 (3.7.2)
r o4
and
d-1
H:qﬁ{ 2—p —d(r_f) } (3.7.3)
r(l—ﬁ) o

Thus,® and IT are both proportional t¢ and hence té\. This means that the integrand is
proportional to¢2 and thus t&?>. Now this assumes that the dependenca drtee, andgon¢

is much less than the dependencé&/bbn ¢ which seems a reasonable assumption. However,
the mass scaling will be easy to check numerically. If it turns outlthat A% then we know

this assumption is valid.
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4.1. Finite Difference Equations

| will solve equations (3.2.10) - (3.2.20) using finite difference techniques on a uniform
mesh with spacingar and At.

Table 4.1 shows the operators | will use in the discretizations. Note that while
the derivative operators take a lower precedence than the arithmetic operators, that is

A, fi”Z: (fir‘+12—fir‘_12) /Ar, the time averaging operator takes a higher precedence, that is

ATY = (A1) andA (atf) = Al AL

linitially intended to use a free evolution scheme for this set of equations, but was unable
to difference equation (3.2.14) in a stable way. Thus, | use equations (3.2.12),(3.2.13),(3.2.15),
(3.2.16), and (3.2.20) to evol\aeKeg ,®, 11, andf; equation (3.2.11) to finh[rr; and equation
(3.2.5) to finds.

In the interior, | use the following finite difference equations:

n

A = —/\(az(l— ﬁ))i +A; (a8) In (4.11)
sy = Ay e A (10 (a- ) ” AA(aﬂs)
+ A (a(l— ﬁ) KO@ (2K09 + Krr) ) -n’ (4.1.2)

27
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Operator  Definition Expansion
af n
A (BT A ) 24 i i+o(Ar2)
b of |
n n n 2
AT (3] —af +f ) /24r | +O(Ar9)
6f n
n 2
A (fi,—fl ) /24r a i+O(Ar)
1 (9f n+%
n n+ 2
A (f—1]) /At 1l +0(A)
d 1 of |™*
n n+ 2
acfi (F7-1) A 5|, o)
Edis[6fir]+firlz+fir]+2_
(o + 1) | /164t
Al (7)) /2 f+0(ar)
A} (fi+fl) /2 f I, +O(Ar )
f f of |
agn n 2 2
f! AN ar . +O(Ar”+ At
b b of | ™"
agn n 2 2
Nt AN T ol +O(Ar + At
of |
n n 2 2
£ Ant S| ot a@)
1 1 of |
Sgn n+ n+ n n 2 2
AT (fi = f +f — ) /24r . + O(Ar®+ At + Ar At)

Table 4.1. Two-Level Finite Difference Operators

K9 _Kr n
A(Ar K’ +—2 _ r_47r¢6111> _0, (4.1.3)
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n

N =3 (B2 + (1-6) 1) | (4.1.4)
A= L p8(8 BIT+ (1- )& n—mq“a I n (4.1.5)
A y )),-28)
. S(@] +II}) \ *
= 4TA | ———— ) 4.1.6
AT A&( a]_n ) ( )
g =+ (4.1.7)
" «K’y"
P\5F=At AR, (4.1.8)

1+ A (ax’) I”
These equations are applied everywhere in the interior except at the two points next to
the boundary points. At these points, | use the same equations except the dissipative time
derivatives,gfI are replaced by regular time derivativessince the value at+ 2 ori — 2is not
available at these locations. It is interestingto note that all of the spatial derivatisesped

(Af) except for the derivative off in equation (4.1.2) and the derivative Kf’@ in equation

(4.1.3). Switching any of these derivatives from angled to non-angled or from non-angled to
angled results in an instability.

The inner boundary is fixed to the apparent horizon. Thus, there is no physical condition
available for the evolution equations. Rather, due to the tipping of the light cones, the function
values on the horizon can be advanced using only the points outside the black hole. Therefore,
| use the same equations as | use in the interior, except the centered derivatives are replaced by

forward derivatives. For example, equation (4.1.1) becomes

n

AR = —A(az(l— ﬁ)), + A (ad) In (4.1.9)

Since the computational grid must be finite, the outer boundary can not be extended to

infinity. 1 adopt outgoing conditions at the outer boundary, that is, | assume that no radiation
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will enter the grid from larger. While this is not strictly true (there will be curvature
back-scattering from the outgoing pulse), it provides a good computational solution.

For the scalar field variable&and !, the outgoing conditions come from the condition
on ¢, namelysp ~ F (s—ct), with ¢ = 1— 23 being the speed of outgoing waves. This means
that

. S+1—-26—253 S+1-—26+2s3
qﬁ+(1—2ﬁ)dﬁ'+( S )@—( 2 )

$=0 (4.1.10)

and

(1-20) +3

(1-8) (T +9) + ¢ =0. (4.1.11)

These equations are discretized as

+1— n_ b gn
e e
NS *1- ZABLZA%HA%FAQ&“:O w112)
A9’
and
A[a—ﬂ)UI+¢”?+1_2ﬁé;1¥§A@F:o. (4.1.13)

We can get approximate conditionsaandK% from their Schwarzschild forms (3.2.25)
and (3.2.26) and the integral expression for the mass (3.2.30). Outside of any matter (very
weak scalar field)a and Koe should take on their Schwarzschild forms. For lasgge can

take asymptotic expansions of these to get

a~1+%+0@6 (4.1.14)
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and

g
Thus, at large we have basically
s(@-1) ~M
and
ZK’) ~ M,

31

(4.1.15)

(4.1.16)

(4.1.17)

Now how doesvl behave in the largeweak-field limit? Sincex — 1andK’, — 0we have

M ~ 4wf52(§l52+]72) ds.

(4.1.18)

From the condition o we can see thab ~ G (u) /sandIl ~ G(u) /s whereu =s—ct.

Thus

M ~ 87 [G*(u)du~H(U),

(4.1.19)

that is,M is “outgoing” at larges. Therefore we get the following conditions fatandKee

s(a— 1) ~H (s— ct)
and
£K’ ~H (s—ct).

These are discretized as

Ay <s(a— 1) ) In +(1-2A8) Af’(s(a— 1))

and

(4.1.20)

(4.1.21)

(4.1.22)
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Figure 4.1. Sponge filter coefficient function fgk= 1.0 andn = 2.

n n
A (SK) + (1-2A8)) 7 (SK,) =0, (4.1.23)

The outgoing boundary condition reduces the amplitude of reflections off the boundary,
but unless the boundary is placed at very largiaese reflections can still interfere with the
results of a calculation. To minimize the reflections, | usgpange filteras detailed in [6].

This means that in the interior of the grid, | apply the usual evolution equation along with a

coefficient times the outgoing condition. For instance, in the cade thfe equation is

I

- (5@+ (1-B) H)

—y[q's+ (1-20) @ + 317 25_258@5—3*1_2;*258' s, (@124

wherev (r) is the coefficient function given by
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0 M ST <Tg

v(r) = A=) ) () 7n72(n+1) 2 rr<r (4.1.25)

Here ,Aandn are parameters. Figure 4.1shaw®r A= 10andn = 2, the values used in this

thesis.

4.2. Initial Data

Section 3.4 gives the equations used to compute the initial data. These equations are
solved using an iterative procedure. First, the scalar field is set to an “ingoing” pulse (see
Section 3.4) and the geometric variables are set to their Schwarzschild values (see Section 3.2).
ThenaandKao are integrated from equations (3.2.10) and (3.2.11). Usingthese, the new forms
of M(r) andg are computed. Finall}(rr iscomputed. The program then compLadega
again and so on until each of the geometric functions converges to a final value. In practice,
this takes about twenty iterations.

The resulting initial data is shown in Figures 4.2 and 4.3. It seems to behave as a strictly
ingoing pulse, however, it may contain an outgoing piece which only shows up at large

amplitudes (see Section 4.6).

4.3. Tails

Figure 4.4 show® at constant for runs withr = 42, 82, 162. Itis clear that the
position of the outer boundary has a large effect on the fall-off of the scalar field, even with
the sponge filter. There is enough reflection to cause the field to fall off much more slowly
than it should. In order to accurately measure the tails, it would be necessary to either use an
adaptive scheme so that the boundary can be moved out to several thMisamgb match
the interior evolution to a characteristic scheme which would evolve the region of spacetime
from the boundary to spatial infinity.

However, with the outer boundarygf, = 162, it will take at leasBOOM for reflections

from the scattered pulse to travel in from the outer boundary and interfere with measurements
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Figure 4.2. Initial data for the scalar field with = 30 x 103 c=10 ando = 2.
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Figure 4.3. Initial data for the geometric variables and the mass profile #ith3.0 x 10°
c= 10 ando = 2.
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Figure 4.6. log|¢ | at the horizon verses ldg

atr = 30. This should give enough time to measure the rate of fall off of the scalar field.

Figure 4.5 shows the accurate part of the evolution. A fit to this curve bet@@eh and

300M showsg falling off ast 332, A run at twice the resolution yields the same exponent.
The evolution ofp at the horizon is shown in Figure 4.6. A linear fit to this curve between

200M and300M showsy falling off ast 3% for runs at both resolutions.

4.4. Ringing

Figure 4.7 shows the waveforms generated by packets of various widths for medium field
data Q1™ < M, < 052M). Thisgraph shows the initial pulse of reflected scalar field. Figure
4.8 shows Iobyﬁ ‘ at the horizon for the same data. In this graph the subsequent oscillations are
apparent. Itis also apparent that the frequency is independent of the pulse width. The period
for one oscillation is approximateB3M giving a half-period 0f265M which is close to the
predicted value 02844M. A Higher resolution run with the same data yields a half-period of
2625M.
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Figure 4.8. log|¢ | at the horizon verses time for various pulse widths-{ 2.0 x 10).
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Figure 4.9. log|¢| at the horizon verses time for various pulse amplitudes

(o = 20, amplitudes are< 10 %).
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Figure 4.10. log| ¢ | at the horizon verses time for various pulse widtAs<{ 20 x 10°°).
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Figure 4.12. log|¢| at the horizon verses time for various pulse amplitudes

(o = 20, amplitudes arex 10 ®).
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Figure 4.13. log¢| at r = 30 verses time for various pulse amplitudes

(o = 20, amplitudes arex 10 °).

Figure 4.9 shows the waveforms generated by pulses of varying amplitude for strong field
data (O5M < M, < 47™). Inthiscase,the frequency of oscillations decreaseswith increasing
amplitude. However, the mass of the black hole changes from 1.0 to 1.46 during the evolution
of the strongest data, so the period is expected to increase.

The weak-field data shown in Figures 4.10-4.13 gives an oscillation period of
approximately53M. This period is independent of the initial pulse amplitude as expected.
For large widths, the late-time waveform differs from that of a small width. As the width
becomes larger,less and less of the initial pulse is absorbed by the black hole. This meansthere
is more scalar field available to be reflected from the outer boundary and cause differencesin

the late-time evolution at fixed radius.

4.5. Mass Scaling

The infalling scalar field can exhibit two main behaviors depending on the amplitude and

width of the pulse. These argcatteringfrom the existing black hole ancbllapseto form
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Figure 4.15. Final black hole mass verses amplitude of the scalar field pdise2).
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Figure 4.16. Final black hole mass verses amplitude of the scalar field pdise %) for
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Figure 4.17. Final black hole mass verses amplitude of the scalar field pdise).
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Figure 4.18. Final black hole mass verses amplitude of the scalar field pdise 4) for

super-critical amplitudes.

a new horizon outside the existing horizon. These two behaviors are separatexitigah
value of either amplitude or width. For initial data with= 2, ¢ = 10, andd = 2, the critical
amplitude isA =~ .0037 while for initial data withd = 4, the critical amplitude i&\ ~ .0019

Figure 4.14 shows a spacetime diagram of the motion of the horizon for various
amplitudes of initial data. Notice that this diagram uses the areal coordiraatd not the
radial coordinate. The solid dark vertical line which jogs right and then continues vertically
represents the critical path of the horizon. The dotted lines are sub-critical paths and the
vertical dashed lines are super-critical paths. The two thin, diagonal lines represent the bounds
of the ingoing pulse of scalar field. A super-critical pulse moves inward until it crosses its
gravitational radius. Once this happens, the apparent horizon jumps from its initial position to
this new position where it remains. A sub-critical pulse moves inward until it encounters the
horizon. If the field is very weak, the horizon is unaffected. For stronger fields, the horizon

moves out until the pulse is entirely inside. For a critical pulse, the horizon moves out at the
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speed of light. Note however, that unless the energy density is a square wave, the horizon will
not move along the straight lines as shown in the diagram, but will move along a curve with
gradually increasing and then decreasing slope.

The final mass of the black hole should scale with the amplitude of the initial data as
shown in Section 3.7. If the picture in Figure 4.14 is correct, both super-criticaland sub-critical
data should exhibit the same mass scaling. Figure 4.15 shod led) versesA for initial
datawithd = 2,0 = 2,andc= 10. The squares are for data with amplitude less than the critical
value, while those with crosses are for data with amplitude greater than the critical value. This

graph is fit by the line
log(M — 1) = 201logA+4.96, (4.5.2)

indicating that the mass grows with the square of the amplitude as expected. The graph also
shows there is no difference in behavior for sub- and super-critical data. Thatis, the final mass
of the black hole exhibits the same dependence on the amplitude when the hole grows by
accretion or when it forms by collapse.

Figure 4.16 shows only super-critical data. The mass values are asymptdirg 222
indicating a mass gap between the smallest super-critical black hole and the largest sub-critical
black hole. In fact, the super-critical massMg = 2.2281725while the sub-critical mass
isM_ = 22125908 This effect is purely numerical. The method for solving the difference
equations demands that the horizon be located on a grid point. The radial distance between
grid points,Ar is also the areal distaneés. The mass of the black holess/2 (see equation
(3.2.30)). Now the location of the horizon should be accurate to wiftnif2. Thus, we would
expect the mass gap to be approximatéty4. The data plotted in the figures was computed
on a grid withAr = .1 Thus, the mass gap should be abdiM ~ 025 The actual mass
gap is about .0155. For a grid withr = .05we getM, = 2.316354andM_ = 2.309658or a
difference ofAM ~ .0067 while a grid withAr = .025givesM, = 2.3660016M_ = 23635547
andAM =~ .0024

Figures 4.17 and 4.18 show similar behavior for data @ith4. Figure 4.17 is fit by the

line
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log(M — 1) = 199logA+519, (4.5.2)

indicating again that the mass grows with the square of the amplitude.

Figure 4.18 again shows a mass gap. Of course this too is numerical and shrinks with the
grid spacing. The grid witk\r = .1givesAM = 024, the grid withAr = 05givesAM ~ 006
and the grid withAr = 025givesAM ~ 002

4.6. Coordinate Effects

The evolutions exhibit some interesting effects which are due to the use of MMIEF

coordinates. The shiftis given by (3.2.5). At the horizon, (3.2.19) holds, so we have

+ (4.6.1

NI

-}
From (3.2.9) we can see that when no matter is crossing the hofizen5 so the outgoing
characteristicspeed is zero. Howevef, i 1, thens = 1and the outgoing characteristicspeed

is -1. In this case, the light cone is degenerate. In fact, from (3.2.5) we can seefthal,if
thens = 1everywhereDoesf ever equal one? The most likely place for this to happen is the
critical solution because that is when the “maximum” amount of energy is crossing the horizon
for a given pulse shape. The valuesét the horizon and at the outer boundary-(42M)

are plotted in Figure 4.19. Thisis for the critical solution with- 2,d = 2, andc = 10. § gets

up around .95, but never reaches 1. The critical solution for pulsesiwitd gives a slightly
higher maximun®g, but still less than one. |think itis likely that a narrow enough pulse could
cause to reach one for an instant, but this has not been verified.

Whenever3 > .5, the outgoing characteristic speed is negative. Thus, outgoing pulses
will appear to move inward. Figure 4.20 shows an evolutio%lg!ffor the critical solution
referred to above. The frames are spatdd apart in time. The vertical scale changes at
t = 5M so the outgoing pulse can be observed. The vertical lines passing through the frames

are to provide a common horizontal reference so the retrograde motion of the outgoing pulse
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Figure 4.19. 3 at the horizon and the outer boundary for the critical solution with 2,

d=2,andc=10.

can be seen. There are two periods of backwards motion; one at abband the other at
aboutlOM. These are the timeswhen each of the “bumps” crossesthe horizon. The retrograde
motion is easier to see in Figure 4.21. This figure shows contours onenses plot for the

same evolution. Figure 4.22 shows a fairly weak field evolutio%bréffor comparison. There

is no retrograde motion in this case.

4.7. Nonlinear Effects

There is a sharp “bump” at the front of the outgoing pulse in Figure 4.20. This feature
Is absent from the weak-field evolution of Figure 4.22 and is certainly amplitude dependent.
Figure 4.23 shows a series of initial pulse shapes for data with various amplitudes-a2g

d =2, andc = 10. Figure 4.24 shows the corresponding pulse shapes after scattering. The



