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MASSLESS SCALAR FIELD COLLAPSE IN BRANS-DICKE
THEORY
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Using the adaptive mesh code of Matthew Choptuik, I have modeled
a spherically symmetric, time-dependent spacetime in the Brans-Dicke theory
with a minimally coupled scalar field as a source term. The constraint equations
for initial data on a 3-dimensional slice of the spacetime are solved, and then
evolved using the adaptive code. As with the scalar field collapse in general
relativity, data which lead to black hole formation and those which do not are
separated by some critical value of a parameter determining the strength of
the initial pulse. Also, for those initial parameters serving to create a black
hole upon collapse, the logarithm of the black hole mass is found to scale
with the logarithm of the distance from a critical value of some parameter.
Finally, for data near the critical value, discrete scaling in time and space of
the waveform is observed. These critical phenomena are quite similar to those
found by Choptuik. Results for both the mass scaling exponent, ~, and the
scale periodic exponent, A,, are in agreement with those found by Choptuik

for the minimally coupled, scalar field in Einstein gravity.
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Chapter 1

Introduction

More than three-quarters of a century after Einstein first formulated
his General Theory of Relativity, researchers are still examining its implica-
tions. The non-linearity of the Einstein field equations and the difficulty in
finding their solutions have spawned the growth of numerical relativity. Ever-

increasing computer power has nurtured this growth.

As complex as the solutions are, and as expensive as the ultimate
in computer power is, simple problems in general relativity merit research.
Spherically symmetric universes provide the simplest of non-trivial solutions
involving only one spatial coordinate and a time coordinate. Work by Choptuik
[Choptuik,1993] has already investigated the behavior of a scalar field in a

spherically symmetric general relativistic universe.

In his work, Choptuik discovered critical behavior and scale period-
icity of solutions forming black holes. Specifically he found, given some initial
waveform for the scalar field parameterized by some parameter p (e.g. Gaus-
sian amplitude or width), a specific value for p could be found, p*, such that
fields with p > p* formed a black hole while those with p < p* did not. Further,
with the critical solution p = p* of any initial waveform (e.g. Gaussian, tanh,
etc.), its evolution approached a universally identical spacetime. He also found

for data with p > p*, the logarithm of the black hole mass scaled with the



logarithm of p — p*. Specifically, Mgy o (p — p*)? with v = 0.37.

This thesis seeks to look again at the massless scalar field, but this
time in a universe ruled by Brans-Dicke Theory instead of general relativity.
Work presented here seeks similar effects when the gravitational constant is
allowed to vary. The work is motivated both by a desire to study Brans-Dicke
theory and also as an introduction to numerical relativity with a very tractable

problem in numerical modeling.

1.1 Reasons to study Brans-Dicke Theory

Brans-Dicke theory differentiates itself from general relativity by al-
lowing the gravitational constant G to vary[Brans,1961]. This freedom is moti-
vated by the idea that inertial mass should be defined with respect to the rest
of the mass of the universe. Experimenters researching whether the observed
Universe follows general relativity have succeeded only in limiting any variance
of G to extremely small values. As such, Brans-Dicke theory is not considered

to represent reality.

Brans-Dicke theory does present a different environment within which
one can look for interesting critical phenomena. Particularly of interest is
the theory’s allowance of gravitational radiation in a spherically symmetric
universe. In general relativity, gravitational radiation lacks any monopole or
dipole sources and thus does not appear in spherically symmetric universes.
However, Brans-Dicke universes, with the freedom in its scalar field, allow
for such radiation. Scheel mentions the possibility that gravitational wave

detectors such as LIGO may be able to differentiate between general relativity



and Brans-Dicke radiation[Scheel, 1995b].

Though experiments have shown any possible variance in G' to be neg-
ligible, theorists seeking a method for inflation discuss the possibility that at
early times in the Big Bang, the effects might have been significant. These the-
orists have yet to fully resolve the reasons for the homogeneity of the Universe.
Inflation appears to be a possible unifying theory, and the simplest methods for
inflation would involve a scalar/tensor theory of gravity such as Brans-Dicke

[Scheel, 1995b)].
1.2 Other Related Research

Other research in Brans-Dicke theory has been minimal lately. Scheel,
Shapiro, and Teukolsky model collisionless matter in a Brans-Dicke universe by
initially avoiding the singularity, and then truncating their grid inside the ap-
parent horizon [Scheel,1995a]. In the second part of their paper, they describe
the results obtained with the numerical code, showing that the final black holes

produced are equivalent to those of Einstein’s theory [Scheel,1995b].

Choptuik’s work [Choptuik,1993] has elicited many responses both to
duplicate and to explain the effects he observed. David Garfinkle has produced
similar results [Garfinkle,1995]. A group in Japan has recently applied renor-
malization group theory to the similar problem of a radiation fluid collapse and

found a value for the critical exponent of v ~ 0.356 [Koike,1995].



1.3 Expected Implications

The possibility of observing interesting phenomena similar to those of
Choptuik [Choptuik,1993] motivates this research. Of course interesting results
different than those found for general relativity would likewise be satisfactory.
Further, the research has served as a worthwhile introduction to numerical

relativity.

The research discussed here studies the evolution of a minimally cou-
pled, massless, Klein-Gordon scalar field within the framework of a universe
ruled by the Brans-Dicke field equations [Brans,1961]. In Chapter 2, I derive
the governing equations from the Brans-Dicke theory. The conclusion of Chap-
ter 2 discusses the process by which I have solved these equations computation-
ally. Namely, I briefly discuss how the highly non-linear, differential equations
are approximated by finite differencing whereby differentials appearing in the

equations are replaced by finite differences.

Chapter 3 discusses the results. Specifically, I present both the mass
scaling and the scale periodic behavior which had been anticipated. Finally,

conclusions are presented in Chapter 4.



Chapter 2

Methodology

The field equations of general relativity provide equations with which
to determine the geometry of the universe at all times and space. In keep-
ing with dynamics as conventionally studied in physics, these four-dimensional
equations are re-written to follow data on a three-dimensional slice in time. I
take an initial slice, 3,_; , and determine the evolution equations to construct
the four-dimensional universe. Some of the field equations then necessarily
constrain the geometry of this slice. This method is called the 3+1 formalism
and was first developed by Arnowitt, Deser and Misner[ADM,1962]. Work here

has relied primarily on the discussions found in [Misner,1973] and [York,1979].

For simplicity, I adopt the convention of letting the speed of light be
unity such that ¢ = 1. Further, as the Einstein frame contains the universal
gravitational constant, G, I let G = 1. In addition, Greek letters span the four

dimensions running 0. ..3, while Latin indices span the spatial indices 1...3.

2.1 341 Overview
2.1.1 Slicing, lapse and shift

In constructing the four-dimensional universe, one begins by taking
an initial, three-dimensional, spacelike hypersurface, ,_; and evolves it to

other slices, ;. Upon each of these slices, a metric is defined, which is called



the three-metric, ¢ gij. This metric yields the proper distances between points
on that surface. The evolution of this three-metric to other slices is dependent

on the choice of slicing.

With the universe sliced into this one parameter family of slices, their
relation to each other must be formally expressed to preserve the original struc-
ture of the four-dimensional space. For an observer deciding to travel between
slices, she is constrained by the arrangement of the slices. In other words,
the observer’s proper time and position must be connected from slice to slice.
Defining a function of both space and time which measures the proper time
between slices constrains the last degree of freedom of the three-dimensional
slice. With this function, termed the lapse, and a three-vector describing how
coordinate points shift between the slices, the four-dimensional metric can be

constructed from the the three-metric.

Letting a(z*, ) be a measure of the proper time difference between two
slices measured by an observer moving orthogonally to the slices, and 3¢(z%, t)
be a measure of the infinitesimal shift of the spatial coordinates relative to

4)

normal propagation, then the general four-metric, 9w, can be written

ds® = ®g,;(da’ + Fidt)(da’ + Fdt) — (adt)? (2.1)

Given this metric, one can compute the Einstein tensor, G, which

describes the geometry of the spacetime. Using Einstein’s field equations
1
G =R, — EguvR = 81T, (2.2)

where R, is the Ricci curvature tensor, R, the Ricci scalar, is the trace of



the curvature tensor, R = g"’R,,, and T}, is the stress-energy tensor, one can

obtain the evolution and constraint equations for general relativity.

Einstein’s field equations consist of ten independent equations, which,
in the 3+1 formalism, decompose into six evolution equations and four con-
straint equations. The constraint equations are obtained by re-expressing the
Einstein tensor in terms of a three-tensor, K;, and the three-geometry curva-
ture scalar, B)R. The three tensor K;; is termed the extrinsic curvature and

represents the curvature of a slice with respect to the enveloping four-space.

Each three-dimensional slice resides in a four-dimensional manifold.
A normal, n*, defined at all points on that slice represents the orientation
of that slice with respect to the four-geometry just as a normal to a plane
in Euclidean three-space identifies the orientation of the plane in that space.
Clearly, were this normal to remain everywhere constant on the slice, the slice
would have no extrinsic curvature. Hence, it is in terms of changes in the
normal with respect to differing position on the slice that extrinsic curvature

is defined. Mathematically, this idea is expressed as [Misner,1973]
(4)V1‘nj = —K; (2.3)

This formulation allows certain components of the left side of equation (2.2)
to be rewritten in terms of quantities which are defined on a single slice

[Misner,1973|

1 1 1 ;
Gy = —OR+4 _K?— K™K, =87p (2.4)
2 2 2



where K is the trace of the extrinsic curvature, K = ¢ K;; = g;; K” = K. The
symbol “|” represents covariant differentiation in the three-geometry. Here, p

is the energy density and j; is the momentum density defined as

p = nun,aJ" (2.6)

In addition, the spatial stress tensor S;; is defined by S;; = T;;.

By restricting the modeled universe to be spherically symmetric, the
above expressions become simplified. The general three-metric, itself necessar-
ily spherically symmetric, can be expressed in terms of two arbitrary functions

of r and ¢, a(r,t) and b(r,t) [Choptuik,1986]. Working in spherical coordinates
(t,7,0,¢) yields
a> 0 0
(3)91']' = 0 b2T‘2 0 (28)
0 0 b*r?sin’f

so the four-metric becomes according to equation (2.1)

a’f?—ao® a3 0 0
2 2
(4), _ a ﬂ a 0 0
9= 0 0 b2 0 (2.9)
0 0 0 b’r’sin?6

Because of spherical symmetry, the shift vector has only one non-zero compo-
nent 3° = (3,0,0) with 3; = ®)g;;37. Spherical symmetry also implies that the

extrinsic curvature is diagonal [Choptuik,1986].

. Kr 0 0
Ki=|0 Kj 0 (2.10)
0 0 K

with both angular components equal by symmetry.



The equations (2.4, 2.5) in spherical symmetry have previously been
solved by Choptuik [Choptuik,1986]. The Hamiltonian constraint (2.4) along
with (2.6) takes the form

2 (((”’)')I + % ((T_b (rb)')l — a)) +4KTKf 4+ 2K5? = 16mp  (2.11)

arb a a

while the momentum constraint (2.7) produces only one non-trivial equation

01 (Tb)l 0 N\ _ ps
Ky 4 (Kf — K7) = 45, (2.12)

In addition, six evolution equations are derivable from (2.3) found in

[Choptuik,1986] as

Gij = =209 K} + B*gix + g5 + 945 05 (2.13)

The Einstein equations which contain second derivatives of the metric compo-

nents result in [Choptuik,1986]

K = B*Kl} + KiB% — K3 — ol + o (R] + KK] + 47 (S — p) 6] — 8787)
(2.14)

2.1.2 Polar/radial scheme

The above equations are tensor equations, and thus allow freedom in
choosing the coordinate scheme. This freedom can be used to simplify further
the equations. In accordance with the polar/radial scheme, I let b = 1 and
b= 0, so that the coordinate r is related to the proper surface area of a sphere
with constant ¢ and r, by 4772, In other words, integration of the metric over

the area of a sphere yields a surface area of 47r?.
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With freedom in the choice of slicing, I choose a polar slicing scheme

in which slices are chosen such that
TTK =K, = K’ (2.15)
This requirement immediately implies that
Kj=0=K} (2.16)

One nicety of the polar/radial scheme is that the evolution equation for the

metric function b obtained from (2.13)

b=—abK? + g(r )’ (2.17)
becomes, with K¢ = 0 and b = 0,

B=0 (2.18)

These gauge choices greatly simplify the equations in Section 2.1.1 so

that the Hamiltonian constraint and slicing equation reduce to [Choptuik,1986]
2 1\ 1 ™\’
a \\a r \\a

1— 2 !
a'+< ¢ —3>a = 0 (2.19)
T a

2.2 Brans-Dicke Equations

Brans-Dicke theory asserts that inertia should be tied to the mass
distribution of the Universe [Brans,1961] [Weinberg,1972]. This assertion led
Brans and Dicke to the idea that the gravitational constant G' should be de-
pendent upon a scalar field ¢ which reflects the distribution of mass in the

universe.
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Brans and Dicke proposed, instead of using a constant gravitational
constant G in the field equations, letting GG vary over space and time. They
defined G as the inverse of a scalar field ¢ such that G = ¢~!. This addition

of a scalar field necessitates an added term to the stress-energy tensor

1 8
G" = R — ¢ R = XW [T+ 18] (2.20)

where T}, is the stress-energy tensor due to the matter and 7" is the contri-

bution due to the Brans-Dicke field, ¢.

They also proposed the simplest generally covariant field equation for
the scalar field as

O¢ = 47Ty (2.21)

where T}/ is the trace of the stress-energy tensor for matter Ty = Ti/h. Here,
A is a constant representing the strength of the coupling of the Brans-Dicke
field to matter. Also, for some arbitrary scalar field 6,

. (T®g0,,) (2.22)
r N

where I' = \/T‘l)g and “;” represents covariant differentiation in the four-
geometry. Through use of the Bianchi identities, Weinberg [Weinberg,1972]

determines that the above equation yields

1 1
Tfy = 8;’}—(15 (¢,u¢,u - 59uu¢,p¢’p) + g (¢,u,u - guuD¢) (2-23)
with A = 2/(3 + 2w).

From inspection of equation (2.20), it appears that the Brans-Dicke

equations can be found from the appropriate general relativity equations with
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the transformations

p? + pM

34+ jir (2.24)
SO 4 sM

K

¢

where S is the spatial-momentum tensor, and x is simply a constant depen-

L1 14

dent on the system of units used. In the units used here, xk = 8.

2.2.1 Transformation to Einstein Frame

The equations found for Brans-Dicke are quite similar to those of
general relativity except for the appearance of an additional field ¢. However,
the equations can be transformed so that they more clearly coincide with those
of general relativity. The model is then said to be in the Einstein frame.
By such a transformation, the model will consist simply of two scalar fields,
generically denoted as @, obeying some general source equation dependent on
the geometry

06 = Sy (2.25)

where Sy represents a general source term.

By transforming the metric as g, — f(2#)Pg, for some general
scalar field f raised to some power p and some general metric, a change is
introduced which effects a local change in scale. The transformation is said to
be conformal because the transformation retains original angles between vectors

[Wald,1984]. In particular, the physical metric representing the geometry in
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the Brans-Dicke frame can be conformally transformed to the Einstein frame

by using the Brans-Dicke field itself as the conformal factor

gl“’ = ¢gyu
g o= ¢7tg" (2.26)
& = Inog

where a bar over a variable indicates the variable defined in the Einstein frame.
The actual physics of the problem occur in the Brans-Dicke frame which makes
physical interpretations more difficult in the Einstein frame. This problem is
deferred until Section 3.3. However, the transformation to the Einstein frame
avoids the appearance of second derivatives of the Brans-Dicke field in the

equations and thus greatly simplifies the equations.

In order to compute the equations of motion in the Einstein frame,

the tensors Rﬂ,, and R must first be computed.

With the Christoffel symbols I') ) defined as

1
Fll/tp = iglw (g'yu,p + Gvpv — gl/p,’y) (227)

the transformed connections are [York,1979]

1

=3 (Gspy + Gov.p — Gpv.8)

Fg’)’ 2

o 1 o
= I+ 59 *(£,958 + €895y — E6987)

o (e 1 oo
= TGy 0680 = 59980 (2.28)

where the parenthesis indicate symmetrization defined on a general tensor Wp,

as

1
Wiy = 9 (Wsy + Wop) (2.29)
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and where 65 is the Kronecker delta defined by

o | 1 ifta=g
05 = { 0 otherwise (2.30)

With the Christoffel symbols in the Einstein frame computed, R,“, may be

found by taking the general form in terms of some constants a, b, ¢, and d

R,uu = R/w + ag,ug,l/ + bg,uug,agﬂ + Cg;u;u + dg,uuD§ (231)

The necessary calculations are done in Wald [Wald,1984] with the result for

n = 4 dimensions:

_ 1 1 i 1
RILU = Rul/ + 56:#6,1/ - 59}“/6,057 - g;,u;’/ - 59#’/56 <2'32)

And with R = g;u/R,u,l/ = (b_lg”"Ruw
o 3
R=¢ (R —e.E - 3D§) (2.33)

At this point, the Einstein tensor components in the Einstein frame are found

using the results (2.33) and (2.32):

_ 1 _

Ry.u - §§uvR
1 1 i 1 1
= Ry + 55,/15,1/ - 59/1”5,05’ — &S — 59111/5& - igle
3 . 3
- Zg,m/g,cré‘7 + ig#l/Dé‘

1 1 1 0
- R;w - ig;wR + 55,#6,1/ + Zg,u.uf,a'g’ - g;,u;l/ + gul/Dg

1 3 _ 1 i
= R/.w - ig/.wR‘F §¢ 2 (¢,u¢,u - iguv¢,a¢’ ) -
1

¢ ((b,,u,u - g,uuD(b) (234)
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The original Brans-Dicke equation (2.20),

1 &
B = g0 B =g

where T'?, is given by equation (2.23), becomes using the previous results (2.34)

(12, + 1) (2.35)

_ 1. -
RI“’ — igI“/R =
3 42 1 o o 1 ;p)
2¢ (¢,u¢,u 29;W¢,0¢ ) 87 (¢,u¢,u 2guu¢;p¢
8T
= ?Tjﬁ (2.36)
Letting T, = ¢~'T,, and once again using £ = In ¢ this becomes
- 3+ 2w . _
G = (F522) (€uto = S0ndE 8 ) + 87T (2.37)

From result (2.37) the equations of motion are ultimately derived (see Section

2.2.3).

With the scalar field satisfying the equation (2.21), the equation of

motion of £ = In ¢ can be found

O¢ = 47Ty = g™ (o)
= OGSy — (T, — 6,80 + TG ) )
= ¢*(¢p7'0p— ¢ %m)
= 006 — 7" dud,
O¢ = ¢ (2.38)

Since T = g"T,, = (05" )(¢T,,) = ¢*T, this becomes

0¢ = 4Ty (2.39)
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At this point, I introduce 1) to represent the massless, minimally coupled, Klein-
Gordon scalar field. This field is a physical source to which the Brans-Dicke
field can couple. To compute Ty, the trace of the matter stress-energy, first
the actual tensor T% in the Einstein frame is obtained from the original tensor

M
T,

1
T = (%ﬂﬁ,u — igwg7”w,7w,p) (2.40)
so that
= 1
M M
le = gTuv
1 1 TP
= a (w,,uw,u - Eguug w,'yw,p) (241)

From this, the trace is computed by contracting with the metric
— =puvpM
TM = g“ le
[ 1
= g" [¢ ! <w,uw,u - Eguu97p¢,7¢,p)]
_ y [
= ¢ 1 (w, w,y _ 5 (QM glw) w,pw,p)
1

_ vy 4
¢w P, (2.42)

Equation (2.39), with the value for Ty found above, yields the equation of

motion for &

€ = —dmde S, (2.43)

With G, calculated using equation (2.37) and the other results, con-
sistency can be checked via the contracted Bianchi identity in the Einstein

frame [Choptuik,1995].

G = 3 (€4 — L €60)") 87 (€ (6,400 — L (0,07)) )
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= )‘_1 (g,ug,u;u + g,uig - g,pg,u;p) +
37 (—ee” (6,60 = 5006,6" ) +e 106, (2.44)

To continue this check, the equation of motion for the scalar field in the Einstein
frame, v, is computed in terms of (v, the Klein-Gordon equation for the

scalar field

Oy = 0
= I (Tg",),
= 17 (o 265" )
= ¢ - 6.5,

0 = OY— g™, (2.45)

W

Recalling equation (2.43) along with the above result, the two scalar field equa-

tions of motion are

Oy = g€, =8 (2.46)
06 = —dmde S*ep, =S’ (2.47)

Using these two equations, the Bianchi identity (2.44) becomes
G’ = amE (Tar + €Y 0°) = 0 (2.48)

which, from equation (2.42) for T}y, is indeed zero. Thus, the calculated G,

(2.37) is consistent with the Bianchi identities.

For the rest of this chapter, the equations are valid in the Einstein

frame, and the use of bars to denote as such is dropped.
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2.2.2 Scalar Field Equations

As a matter of convenience and recalling that i) represents the scalar
field while & represents the logarithm of the Brans-Dicke field, I introduce the

following auxiliary variables

Q= ¢
o =
_ 4 /
P = a(g_gg) (2.49)
0= =(¢-pv)

With these defined, some simple quantities become

vto= g™+ 9"y,

- () (o) (2)+

= (2.50)
YT o= g+ g™,
1 2
- (@‘9 @+ 5 (G se)
- i (%@ + 5H> (2.51)

and also with the scalar field lacking derivatives in 8 or ¢ directions because of

spherical symmetry

P, = P+,
_ (So+m) + [ (So+pm)] (9

aa \a
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I1? g
a aa a aa
(I)Z _ H2
Vi, = (2.52)

a2

Also

glww,/.zé‘,u = W’f,u
= P, + U,

e ()] @ - (55) (Gr+0)

oQ — P
_ Qa2 (2.53)

The previous results allow the equations of motion for the two fields
to be computed in terms of the introduced auxiliary variables. The equations
of motion for both ¥ and £ are defined in terms of general sources S, and S’

respectively

Dw = F_l (Fguywnu)’l/

= S (2.54)
D¢ = I (Tg"€,),
= g (2.55)

where once again I' = (/—|g| = aar??sinf. The angular part of the deter-
minate passes through the derivative and thus cancels with its multiplicative

inverse. For example, the result for the field 9 is

= g (0 (- 5) -
= 2(aK]—B(rb)"" (rb)') I - aaS (2.56)
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® can be found by solving algebraically for the time derivative of the field
from the defining relation for II and then taking the spatial derivative. In this

manner
. o !
b — (5@ + —H) (2.57)
a

With the general form of the solution found, the source terms S and S’ must
only be found to have the evolution equations for both sets of scalar field

variables.
The general equations of motion for the two fields are found in equa-

tions (2.46) as

06 = —dmnde ™ g™ 0, (2.58)

Dw = guuw,,uf,u (259)

From the general relations (2.56, 2.57) substituting for S, where I have used
b=1,3=0, and K = 0, the variables for both fields become

O = (%P)I (2.60)
P = %(%‘Q) +47rAe—f% (<I>2—H2) (2.61)
b = (gn>l (2.62)
. 1 (r?2a_\ «a

1 = T—2<T<b> +— (IIP — &Q) (2.63)

These equations, along with those for ¢ and «, determine the evolution of the

two fields.
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2.2.3 Determining Geometry Equations from Einstein Equations

I have already stated that the solutions for the Brans-Dicke universe
can be obtained from the transformations (2.24). Before substituting the new
densities piota; and ji,.; into the Einstein equations, these values must be com-

puted.

The densities can be calculated from the defining relations (2.6, 2.7).
The stress-energy tensor involved in the definition, however, is that which oc-

curs in the Einstein frame. Relation (2.37) shows that

= 3+ 2w 1
BD __ o
T = < 167 ) (’57“5’” - §9uv9” §,p§,a) (2.64)

which has the same form as that for the scalar field up to a constant.

I compute using the relations

ntn, = -1 (2.65)
n, = (-a,0,0,0) (2.66)
0o = 0 (2.67)
b, = 0 (2.68)

Calculating for 8 = 1 or § = £ to within a multiplicative constant gives

p = ntn"T,,
—nw(ee 1 5799)
— wY.v 2g;wg OV y

1
= n'n"0,0,+ 59’59,5

1 1
= —0.0,+ 59’59,5 (2.69)

o
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so that
®2 + 112
2 2
sp _ Q°+P
A T (271)

The momentum density must also be calculated. Using the defining

relation (2.7), I compute, again for the general field, ¢
gy = 9%

= —g*n, T} (2.72)

Clearly, terms appearing in (2.72) with u # ¢ vanish so that j" for the scalar

field becomes

D

- e (3) (%)

= (2.73)
and
= _e(fan (2.74)
With these results, the Hamiltonian constraint (2.11) in the polar/radial
scheme is )
%I +2 2; L 4rra’p (2.75)

which, with the two energy density terms (2.70, 2.71), becomes

ad a*-1 o [ @2 + I 1
+ 2 + 2
a 2r 2a2eé 16m\a

(@ + P’Z)] (2.76)
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Again from Choptuik [Choptuik,1986], the surviving momentum con-

straint (2.12) in the polar/radial scheme is

K] = —4nrj, (2.77)

T

which given (2.74) is

Admr 1
K=" (¢ 4+ P) 9.78
T a (e + 87T/\Q ( )

The slicing constraint is dependent only on geometry, and therefore
remains the same as for the Einstein case. That this constraint does not
involve the matter variables is a special feature of the polar/radial scheme

[Choptuik,1986]

1— 2 !
o/+< = —3)04:0 (2.79)
T a

From the evolution equations (2.13) the evolution equation for the

metric function a can be found as

a=—aak, (2.80)

Though not needed by the code to evolve the fields, the time evolution

of the extrinsic curvature is found from (2.14) which computes to

. 1/a\’ 2 71\’ 8 1
Kr=— (%) +a-— <—) + K- <ef<1>2 + —QZ) (2.81)
al\a ra \a a? 8T

In summary, the equations derived in this section for the geometry

are

1 — 2 !
o = —( a —3>a (2.82)
a
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a® —a 1
/ _ —¢ (&2 2 2 2
a + 5 = 2mar (e (<I> +1I ) + X (Q +P )) (2.83)
Arr 1
Kr = — (e oIl + — P) 2.84
T a (e + 87r)\Q ( )
a = —aaK] (2.85)

1 2 /1Y 8 1
K+-|—| = - (—) K™ — —( L S p— 2) 2.86
T+a<a> a< ra \a T a2 \° +87r/\Q (2.86)
Along with equations (2.60 - 2.63), these determine the entire model.

2.3 Evolution Scheme

Equipped with the necessary equations, determining analytic solu-
tions appears quite daunting, if possible at all. Instead, the solutions are found
using computational methods. The idea involved is to determine initial data
consistent with the constraints of the equations and evolve that data using

finite differences [Choptuik,1986].

In a time dependent simulation, initial data is specified, and then,
armed with equations specifying the evolution, the data is evolved. A problem
present with the 341 formalism, is that the initial data are not freely specifiable
because they are constrained by certain of the field equations. However, with
the scheme used, the profiles of the scalar fields can be freely specified, and

then the geometry is computed consistent with the constraints.

With the all the initial data determined, the evolution is governed by
the equations for the time derivatives of the fields. For example, given some
field O(z",t = 0) = 6y(x*) specified at the initial time whose equation of motion

specifies the time derivative of # as some function, L, of space, time, and other
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fields as
dé -
— =1L L T 2.
o (0,a%,t,...) (2.87)

the profile of € at some later time is simply
O(z',t+dt) = 0(2',t) + Ldt (2.88)

Continually applying (2.88) will evolve € through time. Computationally, it
is necessary to express dt as some small quantity At instead of an infinites-
imal quantity. This method of approximating differentials as finite differ-
ences is appropriately called finite differencing and is discussed in the following

section|Choptuik,1986].

Once the fields in this problem are evolved one unit of At, the geo-
metric variables a and « are then updated via the constraint equations (2.83)

and (2.82) using finite differences for the spatial derivatives.

The data that initially need to be provided here are the values of the
scalar fields, ¢/ and ¢. These are freely specifiable, and in general throughout
this thesis, I pick a Gaussian pulse of the form

0= Aexp [— (T _AR")Q] (2.89)

with Ry, A, and A constants defining the initial shape of the pulse. In addition
to these fields at the initial time, the functions a, and a must be computed to
evolve the system. However, these two functions are determined once the scalar

fields have been specified from the geometric equations found in Section 2.2.2.

In order to finite difference, the domain over which the functions are

defined, 0 < r < R, must be discretized. With some arbitrary maximum, R,
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the domain, now called a 1-dimensional grid or mesh, is constructed according
to
r;=jh = j=0...J (2.90)

with h = R/J and J + 1 is the number of points in the grid. Time is likewise

discretized where discrete times are denoted by
t"=nAt = n=0...N (2.91)

Choosing a Gaussian pulse for the initial configuration of both fields, 1 and &

are given values at the discrete points in the mesh

e

L 2
£ = ABDexpl(%)] (2.92)

where A is a parameter specifying the amplitude of the pulse, and A the width.
The value of R specifies the initial position of the peak of the pulse. The

associated derivatives of these two fields, @, II, P, ), are similarly be initialized.

At this point, exact initial data, sampled at regular intervals in the
continuum, have been placed in storage as arrays. The finite differencing takes
these data and evolves them. Again, for an arbitrary field §(x',t), the corre-
sponding grid function, é, could be computationally evolved via equation (2.88)

with the replacement of differentials with finite differences
2 n+1 n 1 n dé
9(7']',15 =t +At):9(7‘],t)+At —

g (2.93)

Given some data determined at some time t" = nAt and some evolution equa-

tion for df/dt, the field at time t"*! can be computed. Work done here uses a
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modified form (2.93) in which differencing is performed around 6(r;,t") as

Br;, £71) = A(r;, £71) + 2A¢ Bﬂ (2.94)

which is discussed in Section 2.3.1.

Recall that the constructed universe contains two dynamic fields, one
the massless scalar field representing some initial mass-energy, ¢, and one the
Brans-Dicke field representing the variations of the gravitational constant, ¢ =
ef. The constraint equations specify, however, constraints on the structure
of the universe with respect to the mass distribution. Thus, they apply at
the initial time and at all subsequent times. The constraints here serve to
completely determine the initial form of the metric once the dynamic fields have
been specified. With the simplification provided by the polar/radial scheme,

solving for the two metric functions a and « yields the entire four-metric ) G-

The metric function a depends only on the source terms of the fields,
those being the derivatives II, ®, P, and @, as is shown in Section 2.2.2. This
equation is solved using a pointwise Newton method. With this method, I solve

the Hamiltonian constraint (2.83) which has the form
H(a,d')=d + f(a)+g(...)=0 (2.95)

for some functions H (a,a’), f(a), and g(), which is independent of a. Centered

differencing this around a;;1/2 provides

=20 (2 ey a) ) +4() = 0 (2.96)

The above equation is then solved for every a;,;. One begins with some guess

(0) (m )

a;, where the mth iteration provides the value a;j. The iterative process

aftf = af}} = ooy (2.97)
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obtains successive approximations to the differential equation (2.96). The cor-

rection factor (5a§7}:)1 is described according to the procedure as

H(m)
OH™ [0aji1 | m)
j+1

3a\T) = (2.98)

where H(™) is the residual whose value approaches zero for a convergent scheme.
This process is iterated on m until the residual is below some threshold. The
process begins again for j + 2 where the initial guess is extrapolated from the
previous two results

), = 211 — a; (2.99)

In this manner, at every time step ¢", the values of a} for all j are found.

The final function for which one must solve is the lapse function,

a(r,t). As discussed previously, this is the function which measures the lapse

in time between slices. Since r and t parameterize the universe and with the

shift 3 = 0, when o = 1, t represents proper time. This is because proper time

T is determined by integrating the metric between two points spread in time
yielding

7(0) = | Ca(r t)di (2.100)

Introducing Ty = T'(r = 0,¢) = central proper time, the slices could be labeled,

instead of with the coordinate ¢, with this central proper time. Because
t ~
Ty = / a(0,t)di (2.101)
0

setting a(r = 0,t) = 1 would re-label each slice with the central proper time.

The idea behind the slicing is that near the developing singularity

a — 0. Thus proper time proceeds extremely slowly, effectively freezing the
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evolution near the singularity. This avoids the complications when indeed it
becomes a singularity. The evolution equation for « is simply an ordinary
differential equation which is solved for « in terms of a, again using second

order finite difference techniques.

2.3.1 Finite Differencing

The previous section details the general method by which the ini-
tial data is found and evolved. However, given some constraint or evolution
equation, it must be expressed in terms of small differences as opposed to the

infinitesimal differentials. The differential can be approximated as

9 a) = Ury) — (i) =l
ox Tj — Tj—1 h

(2.102)

where z; — ;-1 = h and 4; = 4u(z;). Notice here, the analytic function
u(x) has no hat, while the finite differenced @ has values only for z; = jh.
Again, variables with hats represent function defined on the grid, whereas those
without represent continuum solutions. This construction is called backward
differencing because it approximates the differential with respect to change
from the previous (hence backwards) value. We could have similarly forward

differenced u(x).

This is all well and good, but one may wonder how accurate such an
approximation is. By Taylor expanding the arbitrary function u(x — h) around

x and using a prime to denote 9/0x

1 1
u(z —h) =u(x) —u'h + Eu”h2 - gu'"h?’ +... (2.103)
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Solving for u' in terms of the backwards difference seen in equation (2.102)

—h) — 1 1
o= u(z h})l u(x) iu”h n éuth .. (2.104)

and thus the backwards difference has error terms shown in brackets below

U(.’L‘ — h}z — U(I) —u + —%U”h + éuth + ... (2105)

which means that backward differencing is O(h). This error, the truncation

error, is defined explicitly in the following section.

Forward differencing yields the similar equation
/ 1 "y2 1 "y 3
u(:c—i—h):u(:c)—i-uh—i—iuh —l—éuh—i-... (2.106)

which is also O(h). Consider, however, the result of subtracting equation

(2.103) from equation (2.106):
1
u(x +h) —u(x —h) =2u'h + QEU"'h?’ +... (2.107)

yielding a center differenced approximation for u’

,_u(z+h) —u(x—h) 9
= o +O(h?) (2.108)

The above shows that center-differencing has an error term O(h?) and is thus

termed a second order difference scheme.

With this formalism in hand, we re-express the determining equations

found in Section 2.2.2 in terms of second order, center-differences as:

At [a? I o (117
q)?ﬂ _ (I);z—l_i__ it S b S fod S k| (2.109)
h ajy1 a
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ntl  _ el 6A¢ (ri)*ad o, (r} 1)°07 1 o
M+ = It 4 T T
Tj1 —Tj1 ajy 51
o
o (mpy - o) 2110
J
At [a™, , P™ o Pt
Q;H_l _ Q?—1+7[ J+111 i+l 111 J 1] (2.111)
541 aj—1
') n— GAt (’r‘n )QQTL n (r"_ )2an_ 7
Pj+1 _ Pj Ly . ; [ J+1n J+1Qj+1_ J ln J le_l
Tiy1 — Tj1 aji1 aj—1
e
+mAe™ (072 + 117 (2.112)
J

where At is the finite increment in time taken. Here I am using the notation

such that X7 indicates the value of the function at r = jh and ¢ = nAt.

Because the equations are hyperbolic, gradients in the spatial dimen-
sions are the same magnitude as those in time. Hence, setting the spatial res-
olution roughly equal to that attained in time is the logical approach. I let o
denote the ratio between the two via 0 = At/h. Whenever a series of computa-
tions is performed using the same initial data, but different resolutions, sigma
is kept constant. Because of stability issues discussed in [Choptuik,1986], o

should be strictly less than unity.
2.3.2 Richardson Expansion

The previous section shows how finite differencing takes operators
such as 0f/0x = (f;4+1 — fj—1)/(2h). Work by Richardson [Richardson,1910]
called Richardson Expansion examines the error involved in finite differencing

[Choptuik,1986].

Given some differential equation of a function « in terms of a general
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differential operator L expressed as
Lu=0 (2.113)

a finite difference approximation in terms of the finite difference operator L
and the solution % becomes

Li=0 (2.114)

Equation (2.114) represents the approximation to (2.113), though L is exactly
equal to 0. The error in the difference operator L is called the truncation error,

7 and is defined in terms of the difference operator and the exact solution as

Lu (2.115)

7’;

With this definition, recalling equation (2.105) one can see that this definition

leads to the bracketed term being the truncation error.

Likewise, we have the solution error é defined as

(2.116)

D>
Il
IS
|
<>

As discussed in the above section, these error terms are said to be m order
accurate if 7 = O(h™) and if é = O(h™). Clearly, we intuitively assume both
error terms to be of the same order in which case the scheme is said to be
optimally convergent. Choptuik in [Choptuik,1991] argues that schemes such

as those used here are indeed optimally convergent.

For the cases at hand for which the exact solution is unknown, the
truncation error, 7, is unknown as well because its computation necessitates

the exact solution u. In an effort to measure this error, Richardson makes
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the assumption based on reasoning discussed in the previous section, that the
differenced solution @; can be expanded in terms of the exact solution and error

functions e; (assuming solutions of O(h?)) [Richardson,1910]
ii; = u(x) + hPey(w) + . .. (2.117)

This analysis can then be used to test convergence of the solutions.

With solutions @y, gy, and g4y, the differences using equation (2.117) appear

fop — U, = 4h* = R°

Gigp, — o, = 16h% — 4R* (2.118)

Thus, after completion of the modeling code, taking solutions at the three
discretization levels of h, 2h, and 4h, a researcher can compute the convergence
factor

M (2.119)
Ugp — U2h

which should, for O(h?) solutions, converge to the value 1/4.

2.3.3 Boundary Conditions

Since centered differencing of wave equations of the form found in
(2.109 - 2.112) requires values both to the left and the right of the destination
value, one must determine appropriate edge conditions for the scalar fields.
With these boundary conditions, I may specify the values of the quantities to
be evolved at each of the boundaries, while using difference equations to solve

the interior (see [Choptuik,1994] pg. 2-3).

The following boundary conditions apply for either scalar field. Thus,

the discussion uses 6 to represent either ¢ or £. Near the origin, 6 is assumed
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regular such that

lim 6(r, ¢) = 6o(t) + 6 (t) + . .. (2.120)

which shows that near the inner boundary
=0 =2r(t)+ ... (2.121)

which, at the inner boundary r = 0, yields ® = 0.

Similarly, the temporal derivative at the origin is found using a second

order quadratic fit. Specifically, with
= fo(t) +r°folt) +... (2.122)

the first three values of the field at » = 0, h, 2h are to second order

Lo = folt)
M—n = fo(t) + h*fa(t) (2.123)

Moo = folt) + (2h)%fa(t)

Solving the system of equations (2.123), yields the condition

AT,y —TI,_
Lo = folt) = h 3 2 (2.124)

The outer boundary condition assumes that no energy is coming from
r > R and that the geometry near r = R is almost flat. Thus, 76 near the
outer boundary is a function of (r — t)

lim r6(r,t) = f(r —t) (2.125)

T—>00
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which implies that
a(r0) af(r—t)

S = o (2.126)
ord)  Of(r—1t)
or or
Since Of (r —t)/0t = —0f(r —t)/Or
lim cl + % + b_ 0 (2.127)

im 0T L 9T LT
reo 9t or 1
. 0P 0 @ 0
lim —+——+——— =0 (2.128)

The above results (2.128) become after second order backwards dif-

ferencing and neglecting terms of O(r2)[Choptuik,1994]

3 3 2 -1 4p" — (I)nfl 4(pn+1 - Cbn+1
J AR AT D (2129)
3 03 2\Tl/4Im -1t 4t — 1ot
H’n—|—1 — (_ e _) J J J—1 J—2 2130
7 AR A D (2.130)

where r; = R is the outermost grid point.

2.4 Adaptive Mesh Refinement

As mentioned previously, the error in these numerical results is ex-
pected to be of the order of the square of the mesh spacing. Thus, for ev-
ery halving of the mesh spacing, the error should drop to a fourth its previ-
ous value. For the extreme gradients involved in the non-linear regimes en-

countered, a fine grid is invaluable. In the non-linear regime encountered by
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Choptuik[Choptuik,1993], the detail occurs at scales that shrink exponentially

in both time and space.

With a single grid of uniform mesh spacing, a tremendous amount of
overhead is incurred by maintaining a fine grid for large radii where no sharp
gradients occur. The computation time involved in solving such an over-refined
grid is very long. In addition, the memory necessary to store such a tremendous

amount of data is enormous.

However, Berger and Oliger [Berger,1984] have outlined a method by
which the grid is dynamically adapted such that the resolution is provided only
where necessary. Choptuik[Choptuik,1994] has implemented the algorithm in
spherical symmetry. In this scheme, the algorithm, after determining where
and when a new grid is necessary, constructs one of an appropriate length.
The algorithm recurses up to some maximum resolution, such that the fine

grids are nested inside coarser grids.

Upon each of these grids, the evolution routines are called solving for
the updated fields. Since the fine grid boundaries are, in general, not physical
boundaries, the evolution routines are passed the values at the boundaries
found via interpolation in the next coarsest grid, called the parent grid. The

evolution and constraint equations are then solved on this fine grid.

A crucial element of the adaptive-mesh technique, is the determina-
tion of when a new grid is needed. Berger and Oliger’s idea is to create a new
grid when the truncation error exceeds some threshold. Since the truncation
error is unknown, an approximation technique is needed. In Section 2.3.2, I

outline a method by which two solutions are found on two mesh spacings and
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subtracted. This same method can be applied on the same grid by simply
using values on the same grid spaced 2h apart. Thus, for some grid evolution
operator @, which advances the solution from ¢" to ¢t"*!, the truncation error

at point j can be estimated by
7 =QIQT — Q" (2.131)

where, for the smaller grid of spacing h, the evolution is applied twice and
where Q%" is computed as a center-difference around j using the values at j + 2
and j — 2. Because the coarse step has a mesh spacing twice that of the fine
grid and because on each grid At = oh, the step Q?h takes a time step of 2Aft.
For that reason, the evolution operator Q;? is applied twice before the values

obtained are compared.
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Chapter 3

Results

Because of the conformal transformation which took the Brans-Dicke
equations into the Einstein frame, the fields involved in the evolution can be
interpreted very much like those in the general relativistic case. In this frame,
mass varies according to the Brans-Dicke field, while the gravitational constant
remains fixed. This behavior is in contrast to the canonical Brans-Dicke frame
in which rest masses remain constant while the gravitational constant varies
[Scheel, 1995b].  As such, the evolutions show the two fields, one the Klein-
Gordon field and the other the Brans-Dicke field, traveling in the computational
domain. The ingoing component of each field travels towards » = 0 at which
point it explodes through the origin and travels outwards. If a black hole forms,
some of the field, and hence its mass, remains near the origin. In the case of
black hole formation, one observes mass leaving the domain until a steady
state is reached in which some portion of the mass, Mgy remains in the region
enclosed by the black hole radius, Rgy. This mass is that of the black hole

formed. Where no hole forms, all the mass leaves the computational domain.

In general relativity, the general spherically symmetric, static solution

to the field equations is the Schwarzschild solution with the metric
2 2m\ 7!
ds? = — (1 - —m> dt> + (1 - —m) dr? + 9’ (3.1)
r r

39
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Because the evolution takes place in the Einstein frame, the components of the
metric used here

ds® = —a’dt* + a*dr® + dSY? (3.2)

associate themselves with the corresponding Schwarzschild components as

o = (1—2—m) (3.3)

r

a = (1—2—”1)1 (3.4)

-
With this association, the mass aspect function, m(r,¢) can be defined such

that it represents the amount of mass within some radius r at time ¢ as
m(r,t) == (1-a7?) (3.5)
2

by which the derivative of the mass becomes

dm = ! (1 — a_Q) + g (—2a‘3a')

dr 2
ra'  a*—1
= —+ —5 3.6
ad * 2a? (36)
Using the Hamiltonian constraint (2.75), this becomes
dm
— = 4mr? 3.7
s 37

With the mass known from equation (3.5), black hole formation is
signaled by 2m/r — 1. Though the solution is singular for 2m/r = 1, a suffi-
ciently high threshold value such as 0.995 will not only signal a black hole, but
from the location of this formation, the mass can be approximately determined
as Mgy = Rpy/2. The black hole is further signaled by the behavior of the
mass. After its formation, while most of the mass travels out of the domain,

some mass remains in some sphere of radius Rgy centered at the origin.
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3.1 bd Results

Initially I wrote a non-adaptive code, bd, to test the difference equa-
tions. In this code, I include routines to update the various variables which
can then be utilized by the adaptive code. The adaptive code was generated
with the invaluable assistance of Matthew Choptuik by converting his adaptive
code previously used for the general relativistic equations to the Brans-Dicke

equations in the Einstein frame.

With the non-adaptive code, the lack of resolution involved in a uni-
form mesh prevents any significant measurements from being taken. Instead,
the code allows for the easy testing and development of the routines. These

routines, once developed, were used in the adaptive code.

A valuable test of the evolution scheme is mass conservation. Evi-
dence of mass coming in from r = oo would certainly show something wrong
with the boundary conditions. In addition, while mass is not leaving the do-

main, the mass at the boundary should remain constant.

In figure 3.1, I display the mass aspect function at the outer boundary
obtained from the metric function a as defined in equation (3.5). The data was
computed with 1024 grid points in the computational domain. These values
display the amount of mass contained within the entire domain. As shown, it
stays essentially constant at a value of m = 0.0033 until time ¢ ~ 33 (see inset
of figure 3.1). At that time the energy associated with the waves has bounced
through the origin and is now leaving the domain for 33 < ¢ < 75. For ¢ > 80,

the mass ~ 0 and it is clear that no black hole has formed.

In Section 2.3.1, T claimed that the finite differencing scheme was
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Figure 3.1: Demonstration of mass conservation for a grid of 1024 points



43

0
[ T T T T T T T T T T T T T T T T ]
S i 0 ] ]
:S I~ |
2 i
) , —0.0005 - i
m I~ |
-0.1 — g i ] |
:‘: I~ |
‘e —0.001 |- h
i g F ] |
© : :
i -0.0015 |- 7 g
70002 “' L L L ‘ L L L L ‘ L L L L ‘ L L L L i
- 10 20 30 40 50 i
r
-0.2 - |
] ‘ ! L ‘ | L | | | | ]
0 10 20 30 40 50

Figure 3.2: Demonstration of second order convergence

second order in the mesh spacing. As a test of this claim, I compute the
convergence factors for the various fields as discussed in Section 2.3.2. If the
code is run at three mesh spacings of h, 2h, and 4h, then the difference a;, —asy,
should be one fourth the magnitude of the difference asp, — a4y Figure 3.2

displays 4 (aj — agy) and aj, — agy, at a late time ¢ & 30.

That the profiles in figure 3.2 overlap so well, demonstrates that the

calculation of the metric function a is indeed second order. Because of the
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coupling of all the variables, the whole scheme would appear second order as

well. However, I also tested all other fields with equally convincing results.

As another example of the second order convergence, in the weak field
regime, the convergence factor for the metric function a is shown in figure 3.3.
The data is computed from three runs with 512, 1024, and 2048 points covering
the same domain with decreasing mesh spacing h. The data were obtained by
taking the norm of the profiles of a4, —as, and ap — agy, at times ¢ and dividing.
The I, norm was used whereby lp|z"| = [E‘J-]:O(.T?)Q/ J] 2 The theoretical
constant value of 4 represents perfect second order. The deviations from this

value are quite small in the figure.

For runs forming a black hole, the lapse function « is observed to
rapidly approach 0 in the central region. Since the proper time is determined
from « via equation (2.100), the approach of @ — 0 signifies a freezing of
the evolution in that region. The slicing conditions of the polar/radial scheme
enables the code to avoid a singularity and continue its computation. However,
a coordinate singularity at r = 2Mpgpy is approached making the scheme far

from ideal for long-term black hole evaluations.

3.2 bdad Results

bdad is the executable produced by integrating the evolution routines
of the Brans-Dicke variables with the adaptive code of Choptuik [Choptuik,1994].
Without the resolution afforded by the adaptive code, accurate observations of

black hole mass scaling and scale-periodic behavior would have been impossible.

Using the adaptive code bdad, a binary search was conducted on the
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amplitude of the initial Brans-Dicke field pulse, while letting the scalar field be
zero. Here, I let w = 1, a regime in which the scalar field couples significantly
with the gravitational fields. In contrast, as w — oo, Brans-Dicke solutions

satisfy Einstein’s field equations.

With a Gaussian shape described by

§=¢exp l(r _AR")(I] (3.8)

the critical value of &, for A = 3, R, = 20, and ¢ = 2, was p* = 0.0543 - --. The

search on p narrowed the value of p* down to machine precision such that any
value larger than p* formed a black hole, while all others did not. By taking
linear steps in In|p — p*|, and finding the mass of the black hole formed for
each p, a relation can be found for the black hole mass scaling. The points are

shown in figure 3.4. The slope is given by +, such that
My = cilp — p*[’ (3.9)

where ¢; is some constant dependent on the initial pulse. The results indicate
that the relation (3.9) holds with v = 0.37. These results are identical to those
found by Choptuik for the scalar field result [Choptuik,1993].

Further, for this example, near the critical point, scaling such as that
found by Choptuik [Choptuik,1993] was found. For the near critical regime,
form invariant quantities such as dm/dr were seen to echo. Patterns were
traced out on ever decreasing scales. Given some profile of a quantity at the
central proper time Ty, the profile of the same quantity some time et later on

a scale e smaller will be identical for a region near the center.



5 -

\
o
I

In(mass)

-26 -24 -22 -20 -18 -16
In|p-p*|

Figure 3.4: Mass scaling for pure Brans-Dicke run (y = 0.37)
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Figure 3.5 shows three profiles of dm/dr for the near critical regime
with just a Brans-Dicke field, and w = 1. The squares represent the profile
at time t = 36.75695. The circles display the profile at a later time of t =
37.6188561 on a scale such that r — re337, where the exponent was determined
by visually minimizing discrepancy in the profiles. The last profile occurs at
t = 37.6666221 with its radius undergoing r — re® ™. All three of the profiles
are seen to overlap in all regions excluding the initial hump. Presumably, the
first hump is not in the completely non-linear regime and can be discounted.

However, all echoing proceeding the initial one, coincide remarkably well.

Choptuik [Choptuik,1993] finds that r scales as r — re>** while cen-
tral proper time rescales as T — T + €>%3. Here, I have found that r — re337
which agrees favorably. The discrepancy appears to arise due to fitting the data
after the evolution instead of during the evolution, as Choptuik does. After
the evolution, the echos have traveled some distance and the fit is less precise
than if done at times during the evolution. I was unable to find A, for this
case because the code does not yet maintain the proper time. However, given

the three times listed above, it is quite apparent that the structure is repeating

on decreasing time scales.

3.3 Brans-Dicke Considerations

The results previously discussed have all been in the Einstein frame.
This frame is so constructed as to make the gravitational constant an actual
constant while masses change. In essence, the alteration made by the Brans-

Dicke theory manifests itself as a scalar field source. However, the physical
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effects of the Brans-Dicke effects are evident only in the Brans-Dicke frame.

To observe the actual physical parameters of the system, I make the

transformation back to the Brans-Dicke frame via

L (3.10)
Gab = —Yab .
¢
Thus, the metric functions a and «, for which the model has solved, now become
_ 2 1
gw = a° = —a (3.11)
¢
1
Gw = a*— goﬂ (3.12)

The most tangible of the parameters studied here is certainly the mass
aspect function m(r,t). However, the relation by which this function is found
was obtained by associating metric components with the Schwarzschild metric.
In the Brans-Dicke frame, the field equations are not those of general relativity,
and the Schwarzschild solution is not guaranteed to hold. Thus, the mass is a

much more complicated matter than in the Einstein frame.
According to [Lee,1974], the scalar mass associated with the Brans-

Dicke field can be expressed concisely by

M,(t) =5 (¢ —1) (3.13)

N3

when calculating in an asymptotically flat, static region. These conditions are
satisfied only at both the beginning of the simulation and the end, after the

scalar field has radiated out of the computational domain.

In [Scheel,1995b], the authors find the scalar mass as function for

time for Oppenheimer-Snyder collapse of collisionless particles. For comparison
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purposes, figure 3.6 displays the values of the scalar mass computed from (3.13)
at the outer boundary for different values of w. The results appear consistent
with features found in their graph. Beginning with some small initial scalar
mass, suffering some extreme dynamics (which are not considered meaningful
given that the region is far from static or flat during these times), the mass

eventually settles to zero once the scalar field has radiated away.

Despite the apparent complexity involved in specifying mass in the
Brans-Dicke frame, work by Hawking [Hawking,1972| has shown that a Brans-
Dicke black hole will reach a static solution equivalent to a Schwarzschild black
hole. With this result, I surmise that the mass scaling found in the Einstein
frame is similar to that in the Brans-Dicke frame. All holes found for the mass
scaling relation in the Einstein frame can be transformed back to the Brans-
Dicke frame at some late time such that the fields have radiated away their
energies. At these late times, the masses can be transformed back. Thus, the

scaling should hold, but perhaps with a different scaling exponent.



Chapter 4

Conclusion

4.1 Results compared to those for Einstein Equations

It is interesting to consider the case when no matter field is present.
With the entire model defined by the equations (2.60 - 2.63, 2.82 - 2.86), set-
ting ® = 0 = II eliminates all matter from the equations. Only the Brans-
Dicke field is present coupling to gravity. By inspection, this case is just
one scalar field coupled to gravity. In other words, up to a constant, the
situation is identical to that in which Choptuik finds the interesting critical
phenomena|Choptuik,1993]. Because the situation is identical, indeed the re-

sults for the universal exponents should equal those which Choptuik found.

The results found in the previous chapter did confirm those in Chop-
tuik’s work[Choptuik,1993]. T did find, by varying a parameter p of the initial
pulse, that the Brans-Dicke field formed black holes with mass Mgy according
to

Mgy = cilp — p*[" (4.1)
where p* was the critical value of p which separates the two regimes in which
black holes did and did not form. Both Choptuik and I found for the mass

scaling exponent v = 0.37.

The results also demonstrated the scale periodic behavior of the near

critical evolution in the area near the center. For the spatial scaling exponent,
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I found A, ~ 3.37 while Choptuik found A, ~ 3.44. The discrepancy is
apparently due to the method of fitting. Choptuik computes A, by fitting the
profiles at the times during which they are evolving. I arrived at my value by
fitting the profiles at some late time by which time the features have had a
chance to propagate outwards. Choptuik’s fit is both more sophisticated and

more accurate.

In a similar manner, one can attempt to remove the Brans-Dicke field
by setting ¢(r,t = 0) = 1 for all r so that P = 0 = @ initially. However,
equation (2.61) shows that the time derivative of P is not necessarily zero for
P(r,t =0) =0 = Q(r,t = 0). Indeed, the second term of the right side of
equation (2.61) is expressed only in terms of ® and II, the derivatives of the
matter field. Thus, setting the Brans-Dicke field to a constant, only serves to
remove the effect of the Brans-Dicke field at the initial time. The coupling of
the Brans-Dicke field to the matter field results in development of features in

the initially quiescent Brans-Dicke field.

4.2 For Future Study ...

Clearly, interpreting the results in the context of the Brans-Dicke
frame has not been completed. Assigning a dynamical mass to the Brans-
Dicke field appears quite difficult. Lee [Lee,1974] derives various conserved
mass quantities in the context of superpotentials. Calculations based on the
approach of [Lee,1974] appears to hold the best hope for interpreting the results

in the Brand-Dicke frame.

Another avenue under investigation is the search for a universal be-
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havior for multiple scalar fields in the same universe. Choptuik [Choptuik,1995]
has found evidence that multiple independent scalar fields in general relativity
produce critical solutions identical to the single field case up to some scaling
factor. He proposes that the situation studied in this thesis, which amounts
to two scalar fields coupled to Einstein gravity, might also transform such that
the two transformed fields produce identical critical solutions. Specifically, if
X7, Y|" represent the critical profiles of one field, and X, Y5 represent those

of the other, then it may be possible to find two transformed fields such that

dm*
dr

=01 (X7 +Y7?) + 02 (X532 +Y57) (4.2)
For the case in which this result held, he had
O¢; =0 (4.3)

for all fields ¢;. With the fields studied here in the Einstein frame, their wave
equations appear
06 = —dnde™ g™ 1,

Oy 9" (4.4)

I have not yet found a transformation which takes these terms to zero or at

least the same potential. Further work is needed.

The results presented here have shown conclusively that the mass
scaling and scale-periodic critical effects are present in the Brans-Dicke theory.
Further study of the mixed case containing both the matter field ¢ and the
Brans-Dicke field ¢ is necessary. Preliminary findings clearly indicate the same

effects appear, however, measurements have yet to be taken.
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