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Overview
• The Nature of Numerical Relativity

• ADM / 3+1 Formalism

• Initial Value Problem

• New Formalisms for Evolving Einstein’s Equations

• Black Hole Excision and Apparent Horizon Location

• Black Hole Evolutions
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The Nature of Numerical Relativity
• As with many other areas of computational science, basic job is the solution of

a system of non-linear, time-dependent, partial differential equations using
numerical methods

• Field Equations
Gµν = 8πTµν

are generally covariant, giving rise to separation of equations into those of
evolution type, plus constraints

• Determination of initial data is already highly non-trivial due to the constraints,
particularly to set “astrophysically realistic” conditions

• Tensorial nature of field equations, plus constraints, plus coordinate freedom
invites development of multitude of “formalisms”:

• Specific choice of dynamical variables (i.e. those quantities that will be
advanced in time via evolution equations)

• Specific form of field equations (e.g. multiples of constraints can be added
to evolution equations)

• Specific choices of coordinates, or classes of coordinate systems
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The Nature of Numerical Relativity
• Mathematical (as well as empirical) evidence shows that choice of formalism

can have significant impact on continuum well-posedness, as well as ability to
compute a convergent numerical solution

• STABILITY IS THE KEY ISSUE both at the continuum and numerical level

• Continuum: Well-posedness is always tied to some notion of stability

• Discrete: Lax equivalence theorem (or variations thereof) suggest that
stability and convergence are equivalent given consistency

• Constraints/coordinate freedom lead to many options in how discrete solution
is advanced from one time step to the next (Piran 1980)

• Free evolution: Constraints are solved at initial time, but then all dynamical
variables are advanced using evolution equations

• Partially constrained evolution: Some or all of the constraints are re-solved
at each time step for specific dynamical variables, in lieu of use of the
corresponding evolution equation

• Fully constrained evolution: All of the constraints are re-solved at each time
step, and all four degrees of coordinate freedom are used to eliminate
dynamical variables, leaving precisely two dynamical degrees of freedom to
be advanced using evolution equations
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The Nature of Numerical Relativity
• 3D work (i.e. computations in three space dimensions plus time) has been

biased to free evolution schemes

• Elliptic PDEs are considered expensive to solve

• Better formal understanding of treatment of boundaries for equations of
evolutionary type, particularly for strongly hyperbolic systems

• Theory is generally in better shape for hyperbolic systems than for mixed
hyperbolic/elliptic

• At the same time, empirical evidence from 1-, 2-, and even some recent 3D
calculations indicate that constrained schemes are “more stable” than free
evolution

• Substantial evidence that at least some free evolution schemes admit
non-physical modes, and that these tend to grow exponentially; boundary
conditions further complicate matters

• Expect constrained versus free evolution to be continued in the future, though
developments with, e.g., generalized harmonic approaches, may make such
studies less pressing
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Nature of Black Hole Computations
• Solution properties

• Don’t expect (physical) shocks to (generically) develop in gravitational
variables

• Do expect singularities, and must be avoided in numerical work, unless one is
interested in probing singularity structure

• Large dynamic range intrinsic in all BH calculations; for example in binary
BH collisions, must resolve dynamics on the scale of the BH horizon, as well
as many wavelengths of characteristic gravitational radiation
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ADM / 3+1 Formalism
(Choquet-Bruhat 1956, ADM 1962, York 1979)

• Manifold with metric (M, gµν) foliated by spacelike hypersurfaces Σt

• Coordinates xµ = (t, xi)

• Future directed, timelike unit normal

nµ = −α∇µt

where α is the lapse function

• Shift vector βµ defined via
tµ = αnµ + βµ

βµnµ = 0
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ADM / 3+1 Formalism

• Hypersurface metric γµν induced by gµν

γµν = gµν + nµnν

• Mixed form of γµν projects into hypersurface

⊥µ
ν = δµ

ν + nµnν

• Metric compatible covariant derivative in slices

Dµ ≡⊥ν
µ∇ν

Dµγαβ = 0
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ADM / 3+1 Formalism

• 3+1 line element

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
• Extrinsic curvature (second fundamental form)

Kij = −1
2
Lnγij

• 3+1 form of Einstein’s equations Gµν = 8πTµν derived by considering various
projections of Einstein/Ricci and stress-energy tensors

• Projections of Tµν

ρ ≡ nµnνTµν

jµ ≡ − ⊥α
µn

βTαβ

Sµν ≡ ⊥α
µ ⊥β

νTαβ
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ADM / 3+1 Formalism

• Constraint Equations: From G0i = 8πT0i, which do not contain 2nd time
derivatives of the γij

• Hamiltonian Constraint

R+K2 −KijK
ij = 16πρ (1)

where R is the 3-dim. Ricci scalar, and K ≡ Ki
i is the mean extrinsic

curvature.

• Momentum Constraint
DiK

ij −DjK = 8πji (2)
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ADM / 3+1 Formalism
• Evolution Equations: From definition of extrinsic curvature, Gij = 8πTij, and

Ricci’s equation.

Ltγij = Lβγij − 2αKij (3)

LtKij = LβKij −DiDjα+ α
(
Rij +KKij − 2KikK

k
j

)
−

8πα(Sij −
1
2
γij(S − ρ)) (4)

• Cauchy Problem for Einstein’s Equations (vacuum): Prescribe {γij,Kij} at
t = 0 subject to (1-2), specify coordinates via choice of α and βi, evolve to
future (or past) using (3-4)

• Bianchi identities guarantee that if constraints are satisfied at t = 0, will be
satisfied at subsequent times; i.e. evolution equations preserve constraints

• Extent to which this is the case in numerical calculations has been a perennial
issue in numerical relativity
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Initial Value Problem
(Lichnerowicz 1944, York 1979, Cook 2000, Pfeiffer 2003)

• Key question: Which of the 12 {γij,Kij} do we specify freely at the initial
time, and which do we determine from the constraints?

• York-Lichnerowicz approach: Specify dynamical variables only up to overall
conformal scalings, and perform decomposition of extrinsic curvature into trace,
longitudinal, and transverse pieces.

• Introduce base/background metric, γ̃ij, conformal factor ψ

γij = ψ4γ̃ij

• Decompose Kij into trace/trace-free (TF) parts

Kij = Aij +
1
3
γijK

γijAij = 0
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Initial Value Problem
• Define

Aij = ψ−10Ãij

(motivated by DjA
ij = ψ−10D̃jÃ

ij)

• Split Ãij into longitudinal/transverse pieces

Ãij = Ãij
TT + Ãij

L

D̃jÃ
ij
TT = 0

Ãij
L = 2D̃(iW j) − 2

3
γ̃ijD̃kW

k ≡ (˜̀W )ij

W i is a vector potential.

• Consider divergence of Ãij

D̃jÃ
ij = D̃j(˜̀W )ij ≡ (∆̃`W )i

∆̃` ≡ vector Laplacian
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Initial Value Problem
• In practice, is more convenient to give freely specifiable part of Ãij as a

symmetric trace free (STF) tensor itself; “reverse decompose” Ãij
TT as

Ãij
TT = T̃ ij − (˜̀V )ij

where T̃ ij is STF and V i is another vector potential.

• Define Xi ≡W i − V i, then

Ãij = T̃ ij + (˜̀X)ij

• Constraints become

∆̃ψ =
1
8
R̃ψ +

1
12
K2ψ5 − 1

8
ÃijÃ

ijψ−7 − 2πψ5ρ

(∆̃`X)i = −D̃jT̃
ij +

2
3
ψ6D̃iK + 8πψ10ji

which are 4 quasi-linear, coupled elliptic PDEs for the 4 “gravitational
potentials” {ψ,Xi}
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Initial Value Problem
• Common simplifying assumptions:

• Conformal flatness: γij = fij, with fij the flat 3-metric

• Maximal slice: K = 0
• “Minimal radiation”: T̃ ij = 0

• Constraints become

∆̃ψ = −1
8
ÃijÃ

ijψ−7 − 2πψ5ρ = −1
8
(˜̀X)ij(˜̀X)ijψ−7 − 2πψ5ρ

(∆̃`X)i = 8πψ10ji

• Note that in vacuum (ρ = ji = 0), the momentum constraint is linear and
decouples from the Hamiltonian constraint
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Consider vacuum constraints with previously mentioned simplifying assumptions

∆̃ψ +
1
8
(˜̀X)ij(˜̀X)ijψ−7 = 0

(∆̃`X)i = 0

where ∆̃, ˜̀ and ∆̃` are flat-space operators

• The momentum constraints can be solved analytically (Bowen & York 1980) to
produce data corresponding to black holes with specified linear and angular
momentum

• These solutions can then be superimposed to generate solutions of momentum
constraints representing multiple holes

• Hamiltonian constraint must then be solved numerically, and one must deal
with singular behaviour of ψ as r → 0
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Traditional approach introduced inner boundaries at ri = ai around each hole
with ri measured from hole center, then imposed mixed (Robin) conditions to
guarantee that final solution did describe one or more black holes (i.e. that the
solution contained apparent horizons)

• In context of finite difference methods, inner boundaries proved troublesome,
particularly in 3D case in cartesian coordinates (not so much of a problem for
finite element, spectral approaches)

• Key idea of puncture approach: “Factor out” singular behaviour of ψ via
following ansatz for N black holes:

ψ =
1
α

+ u =
N∑

i=1

M

2|~r − ~ri|
+ u

where the ~ri are the locations of the punctures, and 1 + 1/α is the
Brill-Lindquist conformal factor
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Puncture Method for Black Hole Initial Data
(Brandt & Brügmann 1997)

• Hamiltonian constraint becomes

∆̃u+
1
8
α7(˜̀X)ij(˜̀X)ij(1 + αu)−7 = 0

with boundary condition

lim
R→∞

u = 1 +O(R−1)

• Authors showed that by solving this equation everywhere on R3 (i.e. without
any points excised), data that is asymptotically flat near punctures is generated,
but more importantly, data do represent time instants of black hole spacetimes

• Technique has become very popular over the past few years, primarily due to its
ease of implementation in 3D Cartesian coordinates
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BSSN Formalism
(Shibata & Nakamura 1995, Baumgarte & Shapiro 1998)

• Key ideas: Eliminate mixed second derivatives in Rij via introduction of
auxiliary vbls; evolve conformal factor, K separately in spirit of “spin
decomposition” of geometric quantities

• Conformal metric
γ̃ij = ψ4γij = e−4φγij

φ =
1
12

ln γ so that γ̃ = 1

• TF part of extrinsic curvature (note different scaling relative to initial data
approach)

Ãij = e−4φAij

Ãij = γ̃imγ̃jmÃij = e4φAij

• Conformal connection functions

Γ̃i ≡ γ̃jkΓ̃i
jk = −∂jγ̃

ij
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BSSN Formalism
• Get set of evolution equations

∂tφ =
1
6
αK + βi∂iφ+

1
6
∂iβ

i

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1
3
K2) + 4πα(ρ+ S) + βi∂iK

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k

∂tÃij = e−4φ((−DiDjα)TF + α(RTF
ij − 8πSTF

ij )) + α(KÃij − 2ÃilÃ
l
j) +

βk∂kÃij + 2Ãk(i∂j)β
k − 2

3
Ãij∂kβ

k

∂tΓ̃i = −2Ãij∂jα+ 2α(Γ̃i
jkÃ

kj − 2
3
γ̃ij∂jK − 8πγ̃ijSj + 6Ãij∂jφ)

βj∂jΓ̃i − Γ̃j∂jβ
i +

2
3
Γ̃i∂jβ

j +
1
3
γ̃mi∂m∂jβ

j + γ̃mj∂m∂jβ
i

• Crucially, momentum constraint is used to eliminate ∂jÃ
ij in the derivation of

∂tΓ̃i
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BSSN Formalism
Comparison with Standard ADM

• Evolution of the extrinsic
curvature component Kzz at
the origin using harmonic
slicing and βi = 0. Solid line
computed using the BSSN
equations, dotted lines with
standard ADM. (Source:
Baumgarte & Shapiro 1998)

• As a result of this work, the
BSSN approach was rapidly
and widely adopted in 3D
numerical relativity

• Additional modifications
leading to better numerical
performance have also been
introduced, some will be
mentioned below
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KST Formalism
(Kidder, Scheel & Teukolsky 2001)

• Performed systematic investigation of impact of constraint addition, definition
of dynamical variables on hyperbolicity of field equations and efficacy for
numerical calculations

• Constraints:

C ≡ 1
2
(R−KijK

ij +K2)− 8πρ = 0

Ci ≡ DjK
j
i −DiK − 8πji = 0

• Auxiliary variables:
dkij ≡ ∂kγij

• Additional constraints:

Ckij ≡ dkij − ∂kγij = 0

Cklij ≡ ∂[kdl]ij = 0 ⇒ ∂k∂lγij = ∂(kdl)ij
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KST Formalism
• Evolution equations:

∂̂0γij ≡ −2αKij

∂̂0dkij ≡ −2α∂kKij − 2Kij∂kα

∂̂0Kij ≡ F [ ∂adbcd, ∂a∂bα, ∂aα, · · ·]

where ∂̂0 ≡ ∂t − Lβ

• Introduce densitized lapse, Q

Q ≡ ln(αγ−σ)

where σ is the densitization parameter, Q, βi considered arbitrary gauge
functions independent of the dynamical vbls.
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KST Formalism
• System 1: Add constraints via 4 parameters {γ, ζ, η, χ}

• New evolution system: (γ here not to be confused with det γij)

∂̂0Kij = (· · ·) + γαγijC + ζαγmnCm(ij)n

∂̂0dkij = (· · ·) + ηαγk(iCj) + χαγijCk

• Hyperbolicity analysis: Compute characteristic speeds, eigenvectors of principal
part of evolution system as function of {σ, γ, ζ, η, χ}

• Find two cases yielding strong hyperbolicity; in both instances must have
σ = 1/2; one case has two free parameters, other has one

• Show that constraints evolve as per the evolution equations; same characteristic
speeds; constraint evolution is strongly hyperbolic when evolution scheme is
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KST Formalism
• System 2: Start with System 1, but redefine dynamical variables Kij, dkij

using 7 additional parameters {â, b̂, ĉ, d̂, ê, k̂, ẑ}

• Generalized extrinsic curvature: Pij

Pij = Kij + ẑγijK

• Generalized metric derivative: Mkij

Mkij = Mkij[ dkij, γ
mndkmn, γ

mndmnk, γij, {â, b̂, ĉ, d̂, ê, k̂}]

• Redefinitions do not change:

• Eigenvalues of evolution system

• Strong hyperbolicity of system

• Redefinitions do change:

• Eigenvectors, characteristic fields

• Nonlinear terms in non-principal parts of evolution systems
26



KST Formalism
• Recover several previously studied systems (Fritelli & Reula 1996,

Einstein-Christoffel (Anderson & York 1999)) with appropriate choices of the
12 parameters.

• System 3: Sub-case of System 2; generalized Einstein-Christoffel system with
free parameters {η, ẑ}

• Study numerical evolution of Schwarzschild hole using spectral method and
Painlevé-Gullstrand coordinates

ds2 = −dt2 +

(
dr +

√
2M
r
dt

)2

+ r2dΩ2

(fixed gauge) on domain from inside horizon to some Rmax

• Search parameter space for particularly long lived evolutions

• Find evidence for exponentially growing “constraint violating” mode, that
appears not to be due to the numerics.

• Some dependence of longevity of runs on Rmax, but only up to a point
27



KST Formalism
Illustration of Constraint Violating Instability

• Momentum constraint CX vs
time for evolutions of a
Painlevé-Gullstrand slicing of
a Schwarzschild black hole
using the Generalized
Einstein-Christoffel system
with η = 4/33 and ẑ = −1/4
Angular and temporal
resolutions are fixed, and the
various lines show several
radial resolutions. Outer
boundary is at 11.9M ; if it is
moved out to 40M run time
extends to ∼ 1300M for the
same accuracy. (Source:
Kidder, Scheel & Teukolsky
2001)
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Harmonic Coordinates
• Coordinate functions xµ are harmonic

∇α∇αx
µ = 0

• In 3+1 context yield following for lapse and shift

(∂t − βj∂j)α = −α2K

(∂t − βj∂j)βi = −α2
(
γij∂j lnα+ γjkΓi

jk

)
• Appeal is that field equations reduce to non-linear wave equations, widely used

in early hyperbolic formulations (e.g. Choquet-Bruhat 1952)

• Used in 3D by Landry & Teukolsky 2000 in preliminary study of neutron star
coalescence
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Harmonic Coordinates
• Also used in 3D by Garfinkle 2002 to study generic singularity formation in

spacetimes with topology T 3 ×R with scalar field matter source.

• Harmonic slicing (or variants) has also been used in several other 3D
computations over the past few years

• Disadvantages:

• Harmonic slices may tend to be singularity seeking instead of singularity
avoiding

• Harmonic coordinates may be susceptible to coordinate singularities
(coordinate shocks, Alcubierre 1997)
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Generalized Harmonic Coordinates
• Introduce specified source functions, Hµ

∇α∇αx
µ = Hµ

Hµ to be chosen, for example, to stave off coordinate singularities

• Harmonic coords. yield wave equations for gµν—can discretize directly in
second order form without need for auxiliary vbls.

• Frans will have much more to say about this in his talk later this week
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Black Hole Excision Techniques
(Unruh c1982)

• Motivation 1: Simulation of BH spacetimes need to avoid physical singularities

• Traditionally, coord. freedom was used for this purpose (e.g. maximal slicing),
but coordinate pathologies generally arose on a dynamical timescale

• Lead to violation of principle of simulation linearity (A. Brandt’s Golden Rule of
Numerical Analysis)

Cost of simulation ∝ Amount of physical process simulated

• Typically in BH calcs., dynamical vbls. and/or their gradients would grow
without bound, while “physical dynamics” was perfectly bounded.

• Resulted in disheartening and persistent era wherein exponential increase in
computer power yielded approximately linear increase in physical time for which
BH spacetimes could be simulated
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Black Hole Excision Techniques
• Motivation 2: BH simulations need to abide by the “Golden Rule” (eventually

at least!)

• Unruh’s first suggestion: Given that BH interiors are causally disconnected from
the exterior universe, excise insides of BHs from the computational domain
(was originally greeted with considerable scepticism in the NR community, but
has since transmuted into an “obvious” idea that verges on dogma)

• Unruh’s second suggestion: Since event horizons require knowledge of the
complete spacetime, use the apparent horizons as surfaces within which to
excise

• Idea was championed and explored by Thornburg in his graduate work, but first
successful implementation (in spherical symmetry) was due to Seidel & Suen
1992, and is now used extensively in 3D black hole work
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Excision: Mathematical/Computational
Considerations

• Free evolution schemes particularly those where α, βi are either specified
functions or satisfy evolution equations themselves have advantage

• Key idea is that equations of motion themselves are applied at excision
surface—i.e. no boundary conditions per se are required

• Hyperbolic formulations even more advantageous due to identification of
characteristics, and fact that all disturbances propagate along characteristics

• Especially natural for spectral methods, since evaluation of EOM (derivatives)
is independent of location within computational domain

• In principle, “No BC” approach should also work for finite difference codes, but
generally require modification of difference equations at/near excision surface
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Finding Apparent Horizons / Marginally Trapped
Surfaces

• On any hypersurface, Σt, consider closed 2-surface, S with outward pointing
normal, sµ, sµsµ = 1. Then

kµ = sµ + nµ

is tangent field to outgoing null geodesics emanating from S

• Marginally trapped surface (MTS) has vanishing expansion, Θ

Θ = ∇µk
µ = 0

• In 3+1 language, find (York 1979)

Θ = Dis
i −K + sisjKij = 0 (5)
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Finding Apparent Horizons
• Adopting spherical coordinates on S, and some origin interior to S, consider

ϕ(r, θ, φ) = r − ρ(θ, φ) (6)

where r is the coordinate distance from the origin.

• MTS is then defined by the level surface ϕ = 0

• Substitution of (6) in (5) yields 2nd order elliptic equation for ϕ (in S) that can
be solved in a variety of ways

• Finite difference approach: (Huq et al 2002, Thornburg 2003); solve non-linear
elliptic equation for ϕ directly using finite difference approximation, global
Newton iteration, and sparse solver (such as incomplete LU-conjugate gradient)

36



Finding Apparent Horizons
• Spectral methods: (Nakamura et al 1984/1985); expand ρ in spherical

harmonics

ρ(θ, φ) =
lmax∑
l=0

l∑
m=−l

almYlm(θ, φ)

and then use iterative algorithm to determine coefficients alm that solve MTS
equation.

• Variation (Libson et al 1994), convert root-finding to minimization of∫
Θ(alm)2

• Curvature flow: (Tod 1991); convert elliptic problem to parabolic one by
deformation of trial surface S via

∂xi

∂τ
= −siΘ
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Finding Apparent Horizons
• Level flow: (Shoemaker et al 2000). Extends curvature flow by tracking

collection of level surfaces; can detect change in topology of apparent horizon.
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Black Hole Evolutions
• 3D finite-difference codes universally adopt Cartesian coordinates even if

simulating single black hole (possibly with perturbations)

• Principal rationale is that singularities in curvilinear coordinate systems are very
difficult to deal with numerically (regularity issues), and is in fact one reason
that axisymmetric studies have been largely abandoned

• However, for generic scenarios, Cartesian coordinates make sense unless
multiple coordinate patches are to be used

• Current 3D codes typically use BSSN formalism or some variant; i.e. are free
evolution codes

• STABILITY is still a key issue, although less so than it was a decade ago

• Codes largely use a single finite difference grid (unigrid codes), with a single
resolution ∆x = ∆y = ∆z = h, ∆t = λh (λ is known as the Courant number
and typically must be less than one for explicit schemes for stability)
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Black Hole Evolutions
• Unigrid design, coupled with computer resource limitations (often memory)

restrict computational domain to be quite small, or resolution of near-horizon
regions to be quite coarse

• Outer boundary conditions are still largely ad hoc; sometimes Dirichlet (perhaps
with “blending”), or some form of Sommerfeld (outgoing radiation conditions)

• Spatial compactification offers alternative to conversion of Cauchy problem to
mixed initial/boundary value problem (talk by Pretorius)

• Complexity of field equations means that there are literally thousands of
floating point operations to be performed per spatial grid point per time step;
combined with locality of finite difference operators, makes these codes ideal
candidates for parallelization

• Community has invested significant effort in parallelization infrastructure
(dating back to the time of the NSF-funded Binary Black Hole Grand
Challenge), and Cactus (www.cactuscode.org) in particular, has seen
widespread use; Pretorius will discuss results generated using another
framework—PAMR/AMRD—in his talk
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Single Black Hole
(Alcubierre & Brügmann 2001)

• Consider Schwarzschild hole in ingoing Eddington-Finkelstein (IEF) coordinates

• Modifications to BSSN

• Enforce tracelessness of Ãij at each time step

• Use independently evolved Γ̃i only in terms involving their derivatives,
otherwise recompute via Γ̃i ≡ γjkΓ̃i

jk

• Coordinate conditions

• Slicing: Needed “dynamical” condition for stability, used ∂tK = 0; solve
resulting elliptic equation for α at each time step, but keep K constant “by
hand”

• Shift: Experimented with several conditions including “Gamma driver”, but
also used analytic IEF value
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Single Black Hole
(Alcubierre & Brügmann 2001)

• Computational details

• Crank-Nicholson time differencing, solved (approximately) via iteration

• Upwind differencing for ∂iβ
i (advective) terms, centred otherwise

• Excise a cube within horizon

• For update on cube faces use RHSs of evolution equations computed from
neighboring grid points (O(∆x) extrapolation of RHSs)

• Used grids up to 1003, outer boundaries 10− 40M , 5 to 20 grid points
across BH.

• Had to impose octant symmetry for stability

• Were able to evolve essentially forever in certain cases (discrete solutions
appeared to be asymptoting to stationary states)

• Calabrese et al 2003 point out that cube excision must be treated carefully; for
Schwarzschild, excised cube must have edge length < 4

√
3M/9 or some

characteristic directions will be pointing out of the cube.
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Single Black Hole
(Alcubierre et al 2001a)

• Approach follows Alcubierre & Brügmann 2001, but focus is on evolution of
single black holes distorted with Brill wave

• Initial data
ds2 = Ψ4

(
e2q
(
dη2 + dθ2

)
+ sin2 θdφ2

)
where η ∼ ln(r), and q is the adjustable “Brill wave function”

• Coordinate conditions:
∂tα = −2α(K −K0)

where K0 is the initial mean extrinsic curvature

∂2
t β

i =
0.75
Ψ4

Γ̃i − 3
M
∂tβ

i

• Choose q to produce highly distorted BH: M = 1.83

• Computational domain: Octant symmetry, 0 ≤ x, y, z,≤ 25.6, ∆x = 0.2, 1283

grid points
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Single Black Hole
Illustration of Evolution of Lapse & Shift
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• Coordinate conditions
apparently quickly drive
metric to almost static
configuration, evolution
proceeds beyond t = 100M ,
and waveforms from
“perturbation” of BH and
subsequent ring-down can be
reliably extracted
(≈ 10−3MADM emitted.)
Source: Alcubierre et al
2001a
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Single Black Hole
Illustration of Evolution of Apparent Horizon Mass
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• The solid line shows the
development of the apparent
horizon mass, MAH during
the simulation of a
Schwarzschild black hole,
while the dashed lines show
the AH mass obtained using
2D and 3D codes with no
shift and no excision.
Source: Alcubierre et al
2001a
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Single Black Hole
(Yo, Baumgarte & Shapiro 2002)

• Consider Kerr hole in Kerr-Schild coordinates, adopt BSSN formalism

• Additional constraints

A ≡ γ̃ijÃij = 0

D ≡ det(γ̃ij)− 1 = 0

Gi ≡ Γ̃i − γ̃jkΓ̃i
jk = 0

• Imposed A, D dynamically by solving for Ãzz, γ̃zz in lieu of corresponding
evolution equations

• Modified ∂tΓ̃i via

∂tΓ̃i = · · · −
(
χ+

2
3

)
Gi∂jβ

j

where χ is an adjustable parameter chosen so that the overall factor in RHS of
evolution equation ∝ Γ̃i∂jβ

j is negative
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Single Black Hole
(Yo, Baumgarte & Shapiro 2002)

• For rapidly rotating holes, also used

∂tγ̃ij = · · · − κ1αCγ̃ij

where C = 0 is the Hamiltonian constraint, and k1 > 0 is an adjustable
parameter

• Coordinate conditions

• Slicing: “1 + log”
∂tα = Diβ

i − αK

• Shift: “Gamma driver”
∂tβ

i = λ∂tΓ̃i

as well as analytic (Kerr-Schild) value

• Computational domain: −12M ≤ x, y, z ≤ 12M ,
h = ∆x = ∆y = ∆z = 0.4M , 603 mesh points

• Finite differencing a la Alcubierre & Brügmann, and excision using both cubical
/ spherical surfaces
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Single Black Hole
Illustration of Long Time Stability
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• Plotted is the RMS of the
chance in K between
consecutive time steps as
functions of time for
evolutions of Schwarzshild
with octant symmetry.
Different lines correspond to
different choices of
coordinates as well as
modifications to original
BSSN equations mentioned
above
Source: Yo, Baumgarte &
Shapiro 2002

• Ran extensive series of experiments, with evolution times typically in range
3000− 6000M ; in many case seeing no evidence for instability, except as a→ 1
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Single Black Hole
(Scheel et al, 2002)

• Consider Schwarzschild hole in Painlevé-Gullstrand (PG) coordinates

ds2 = −dt2 +

(
dr +

√
2M
r
dt

)2

+ r2dΩ2

at initial time, plus small perturbations, adopt KST formalism.

• Were particularly interested in isolating growth of constraint-violating modes
(CVMs), so wanted perturbations to be controlled (i.e. not simply due to
round-off)

• Used analytic results of Lindblom and Scheel 2002 showing that growth rate of
CVMs dependent only on {γ, ζ, ẑ}

• Explored {γ, ẑ} parameter space, other parameters fixed to Generalized
Einstein-Christoffel values from KST 2001.

• Coordinate conditions: densitized lapse, shift fixed to PG values
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Single Black Hole
(Scheel et al, 2002)

• Computational details: Pseudo-spectral collocation technique, domain is a
spherical shell 1.9M ≤ r ≤ 11.9M , method-of-lines (MOL) temporal
integration using fourth order Runge-Kutta

• Find quite sensitive dependence of instability growth on ẑ, less so for γ, and
considerable dependence on location of outer boundary.

• For appropriately tuned parameters, could achieve evolution times > 8000M ,
again using fixed coordinate conditions

• Not clear what would happen if outer boundary were moved to ∞
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Constraint Growth & Outer Boundary Impact
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• Solid curve shows the evolution of
the integral norm of all the
constraints for the most stable set of
evolution parameters. Dotted curves
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• Instability growth as a function of
the location of the outer boundary
of the computational domain for the
evolution parameter values
γ = −12, ẑ = −0.425

Source: Scheel et al 2002
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Single Black Hole
(Anderson & Matzner 2003)

• Consider Schwarzschild hole in IEF coordinates

• Adopt standard ADM variables {γij,Kij} and equations

• Modify extrinsic curvature evolution equation

∂tKij = · · · − αC(0.464 γij + 0.36Kij)

where C = 0 is the Hamiltonian constraint, and the numerical coefficients are
determined empirically to maximize evolution time

• Coordinate conditions: lapse (not densitized), shift fixed to IEF values

• Computational details: Spherical excision surface, fourth order spatial
discretization, appropriately one-sided near excision surface, variable order MOL
temporal integration

• Typical computational domain: −10M ≤ x, y, z ≤ 10M , h = M/5, 1003 mesh
points

• Achieve evolution time ≈ 1000M
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Single Black Hole
(Anderson & Matzner 2003)

• More interestingly, investigated constrained evolution—re-solution of
constraints at each time step or every few steps)

• After initial explicit time advance of dynamical variables {γij, Aij}, view those
values as conformal trial functions {γ̃ij, Ãij}

• Then solve constraint equations for potentials ψ, Xi, and dress conformal
quantities to get new {γij,Kij} (for BCs, use ψ = 1, Xi = 0 at both inner and
outer boundaries)

• Demonstrated evolution times in excess of 200M even without “constraint
subtraction”
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Single Black Hole

• The `2 norm of the Hamiltonian constraint violation for constrained and
unconstrained simulation of a Schwarzschild black hole with excision. Neither
simulation used any constraint subtraction. The simulations were performed at
a resolution of M/5 on a domain size of ±M .

Source: Anderson & Matzner 2003
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“Moving” Single Black Hole
(Sperhake et al 2003)

• Consider single Schwarzschild black hole in IEF coords., but then adopt
coordinate transformation

t = t̄

xi = x̄i + ξi(t̄)

with ξi chosen to produce circling or spiraling motion of hole in computational
domain

• Adopt BSSN approach and following Yo et al 2002, dynamically enforce
tracelessness of Ãij and modify evolution equation for Γ̃i

• Also use densitized lapse q
q = γ−n/2α

and find best results for n = 1

• Coordinate conditions: analytic shift, analytic lapse or compute dynamically via
“1 + log” condition
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“Moving” Single Black Hole
(Sperhake et al 2003)

• Outer boundary conditions: set to analytic values

• Computational details: Use O(h2)/O(h3) extrapolations of evolution equation
source terms/dynamical variables for updating excision boundary values as well
as for “populating” previously undefined sites, used both cubical and spherical
excision with similar results

• Static hole: computational domain (octant symmetry), 0 ≤ x, y, z ≤ 12M , 603

gird points, evolve for 10000M with no signs of instabilities

• Moving hole: computational domain (equatorial symmetry), typical run
−10M ≤ x, y ≤ 10M , 0 ≤ z ≤ 7M , 60× 60× 30 grid points

• Evolution times: 1000− 6000M treatment of outer boundaries likely limiting
factor.

• ANIMATION: Rotating motion, K plotted.

• ANIMATION: Inspiral motion, K plotted.
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Head on Black Hole Collisions
(Sperhake et al 2005)

• Group has now successfully extended work to case of head on collisions; again
use black hole excision as well as ”fixed mesh refinement” to enhance
dynamical range

• Buttonhole Pablo for more information.
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Two Black Hole Grazing Collision
(Brandt et al 2000)

• Initial data: Spinning holes, equal bare mass m, positioned at (±5m,±m, 0),
initial boost speed c/2, impact parameter 2m, orbital angular momentum, L, in
z direction

• Adopt traditional ADM/3+1 formalism, dynamical variables {γij,Kij}

• Considered three cases

• Both holes have a = 0.5m anti-aligned with L

• Both holes have a = 0
• Both holes have a = 0.5m aligned with L

• Superimpose two separately boosted Kerr-Schild (KS) datasets, e.g.

γij = δij + 2B1 (Hlilj)1 + 2B2 (Hlilj)2

where B1 (B2) are attenuation/blending functions that are 1 everywhere but in
the vicinity of BH 2 (1), where they are 0
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Two Black Hole Grazing Collision
(Brandt et al 2000)

• Could take ansatz as conformal background and then resolve constraints but
argue that ansatz actually solves constraints to within level of truncation error
in discrete evolution scheme

• Coordinate conditions: Pre-merger

α = α1 + α2 − 1

βi = βi
1 + βi

2

where α1, α2, β
i
1, β

i
2 are computed from boosted KS and dynamically centred at

instantaneous location of holes

• Coordinate conditions: Post-merger: Use α, βi for single BH based on
M = M1 +M2, J = J1 + J2 + L

59



Two Black Hole Grazing Collision
(Brandt et al 2000)

• Use excision technique and locate apparent horizon at each time step using a
combined direct finite difference solver and a flow method

• Outer boundary conditions: Dirichlet for γij, “blended” Dirichlet for Kij

• Computational domain: −10M ≤ x, y, z ≤ 10M , h = M/8, 1603 grid pts.

• Find similar results for all 3 runs; common apparent horizon forms promptly
(t ∼ 2M), evolutions end at t ∼ 15M

• Calculations suggest that > 2% of total ADM mass may be radiated as
gravitational waves, but must be viewed as very rough estimate
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Two Black Hole Grazing Collision
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• Time history of apparent horizon locations for grazing collision of two equal
mass black holes (bare mass m), each with a = 0.5m anti-aligned with the
orbital angular momentum. Times corresponding to (A)-(F) are t = 0, 2.6m,
5.1m, 8.8m, 13.8m and 18.8m. After the merger the horizon oscillates through
a fraction of a cycle

Source: Brandt et al 2000
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Orbiting Black Holes
(Brügmann, Tichy & Jansen 2003)

• Key advance: Construction and use of co-moving coordinate system in
conjunction with fixed mesh refinement technique

• Initial data: Puncture data for 2 equal mass BHs, no spin, on quasi-circular
orbit based on approximate helical Killing vector

• Use modified form of BSSN equations (Alcubierre et al 2001a), with simple
excision technique described in Alcubierre & Brügmann 2001, and spherical
excision surfaces that are fixed in time

• Slicing condition
∂tα = −2αKΨ4

where Ψ is the time-independent Brill-Lindquist conformal factor (1/α in the
puncture approach)
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Orbiting Black Holes
(Brügmann, Tichy & Jansen 2003)

• Initialize shift so that if BHs were point particles in a circular orbit, coordinate
system would be exactly co-moving; involves introduction of angular and radial
velocities ω, ṙ

• Periodically recompute ω(t), ṙ(t) and adjust shift to keep “centers” of BHs (as
determined by asymmetry of α along excision boundaries) near the punctures

• Impose Sommerfeld outer boundary conditions generalized to rigid rotation

• Use fixed mesh refinement with up to 7 levels of 2:1 refinement, use single (fine
grid) time step; yields small ∆t/∆x near the outer boundary which is crucial
due to superluminal shifts at large distances from the holes

• Evolutions last more than one orbit, and no common apparent horizon is
detected for sufficiently large initial separations
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