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1 Introduction

This project investigates the spherically symmetric gravitational collapse of an
SU(2) Yang-Mills field as described in [1, 2]. For the purposes of this project
we focus on Type I critical behaviour where dispersive and collapse solutions
are separated by an unstable critical solution. This critical solution is the static
solution first discovered by Bartnik and McKinnon who assumed the existence
of a static solution and solved the resulting ODEs via a shooting technique to
find the critical solutions [2, 3].

1.1 Equations of Motion

By restricting the problem to spherical symmetry, adopting the purely magnetic
ansatz of the Yang-Mills field and adopting polar/areal (PA) coordinates, a
simple lagrangian for the model may be written down which is very similar to
that of a simple scalar field [1].

The metric is:

ds2 = −α(r, t)2dt2 + a(r, t)2dr2 + r2dΩ2 (1)

and the matter is described by a single scalar field W (r, t) with a Lagrangian [1]:

LM = −

(
gμν∇μW∇νW

r2
+

(
1 − W 2

)2

2r2

)

(2)

The total Lagrangian density, L, is [1]:

L = LG + αMLM =
√
−g (R + αMLM ) (3)

where αM is a coupling constant of arbitrary magnitude. Defining the stress
energy tensor as [1]:

Tμν =
αM

8π

(

−
∂LM

∂gμν
+

1
2
gμνLM

)

(4)
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then extremization of the action with respect to gμν yields the Einstein field
equations while variation with respect to the matter fields produces the equa-
tions of motion.

Defining:

Φ = W ′ (5)

Π =
a

α
Ẇ (6)

and varying the action with respect to W , we can immediately write:

Φ̇ = Ẇ ′ =
(α

a
Π
)′

(7)

Π̇ =
αa

r2
W (1 − W 2) + (

α

a
Φ)′ (8)

The Hamiltonian constraint, momentum constraint and polar slicing condi-
tion [4],

R = 16πρ (9)

−4πjr = Kθ
θ

′
+

(rb)′

rb

(
Kθ

θ − Kr
r

)
(10)

K̇θ
θ = β +

α

(rb)2
−

1
a(rb)2

(
αrb

a
(rb)′

)′

+ α
(
KKθ

θ + 4π (Sr
r − ρ)

)
(11)

require the determination of the 3+1 quantities:

ρ = nμnμTμν (12)

ji = −nμTμ
i (13)

Si
j = γi,kSk,j = γikTkj (14)

While in polar areal coordinates we have [4]:

β = 0 (15)

K = Kr
r (16)

Kθ
θ = Kφ

φ = 0 (17)

Evaluating the relevant quantities (setting αM = 4), we find:

ρ =
1

2πα2

(
Ẇ 2

2r2
+

α2

a2

W ′2

2r2
+

α2

4r4

(
1 − W 2

)2
)

(18)

jr = −
ẆW ′

2παr2
(19)

jθ = jφ = 0 (20)

Sr
r =

1
2πa2

(
W ′2

2r2
+

a2

α2

Ẇ 2

2r2
−

a2

4

(
1 − W 2

)2

r4

)

(21)
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And the full set of equations may be written:

Φ̇ = Ẇ ′ =
(α

a
Π
)′

(22)

Π̇ =
αa

r2
W (1 − W 2) + (

α

a
Φ)′ (23)

a′

a
= −

a2 − 1
2r

+
1
r

(

Φ2 + Π2 +
a2

2r2

(
1 − W 2

)2
)

(24)

α′

α
=

a2 − 1
2r

+
1
r

(

Φ2 + Π2 −
a2

2r2

(
1 − W 2

)2
)

(25)

ȧ =
2α

r2
ΠΦ (26)

In the above system of equations, the equations for α and a are constraints
that are applied at every timestep. As such, equation 26 is superfluous but yields
a non trivial consistency check for the system; differentiating equation 24 with
respect to time and 26 with respect to position should yield identical expressions.
It is of course possible to do this by hand, but a symbolic manipulation program
such as Maple easily verifies the consistency of the equations.

1.2 Vacuum States and Regularity Conditions

The Yang-Mills field has exactly two vacuum states, W (r, t) = ±1 [1]. During
evolution we demand that W remains in specific vacuum states at r = 0 and
r → ∞. We set W (0, t) = W0 = 1 and anticipating the Bartnik-McKinnon
critical solution, demand that W (r → ∞, t) = −1. It can be shown that the
regularity of Yang-Mills field and the geometric variables requires [1]:

lim
r→0

W (r, t) = 1 + r2W2 + O(r4) (27)

lim
r→0

a(r, t) = 1 + r2a2 + O(r4) (28)

lim
r→0

α(r, t) = α0 + r2α2 + O(r4) (29)

(30)

1.3 Generation of Bartnik-McKinnon Solutions

The Bartnik-McKinnon solutions are unstable static solutions characterized by
the number of zero crossing the the Yang-Mills potential. Assuming a static
solution, the equations become:

a′

a
= −

a2 − 1
2r

+
1
r

(

Φ2 + Π2 +
a2

2r2

(
1 − W 2

)2
)

(31)

W ′ = Φ (32)

Φ′ = −
(a2 − 1)

r
Φ +

a2

r3

(
1 − W 2

)2
Φ −

a2

r2
W
(
1 − W 2

)
(33)
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Recalling our regularity conditions at r = 0 it can be seen that the solution in
the vicinity of the origin must have the form:

a(r, t) = 1 + 2W 2
2 r2 (34)

W (r, t) = 1 + W2r
2 (35)

Φ(r, t) = 2W2r (36)

Where W2 is a free parameter describing the curverature of the Yang-Mills
potential at r = 0. A program was written which used a binary search technique
to converge in on the static solutions for the Yang-Mills potential. This program
was originally written in Fortran using LSODA but the limits of double precision
prevented the evolution of the equations past r ≈ 5000 (i.e. the solutions would
diverge at this point no matter how refined the search became). In order to
integrate the equations out further, the solution was instead computed using
Maple’s numerical ODE tools with a tolerance set to 1E-20 and 40 digits of
precision. Figure 1 shows the first three Bartnik-McKinnon solutions.
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Figure 1: The first three Bartnik-McKinnon solutions generated in Maple. The
n = 1 solution corresponds to W2 ≈ −.453743610 while the n = 2 and n = 3
solutions correspond to W2 ≈ −.697070562 and W2 ≈ −.706199269 respectively.

1.4 Boundary and Initial Conditions

From the above sections, it can be seen that the required boundary conditions
are can be found by specifying W (r, 0) with W (0, 0) and W (∞, 0) = ±1. We
may then compute Φ(r, 0), Π(r, 0), a(r, 0) and α(r, 0) from the constraint equa-
tions and requiring the initial data to be approximately ingoing.
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Far from the origin, the metric must be flat and in the absence of matter we
must approach the Schwarzschild solution. Therefore, we require limr→∞ α(r, t) =

1
a(r,t) . In this limit the Sommerfeld boundary conditions become:

Π̇ = −Π
′

(37)

Φ̇ = −Φ
′

(38)

while the expression for and approximately ingoing initial conditions are:

W (r, 0) = f(r) (39)

Φ = f ′ (40)

Π =
a

α
f ′ (41)

Note that the initial conditions for Π require knowledge of a and α while
specification of a and α requires knowledge of Π. Rather than solving this
system iteratively, we assume when specifying the initial conditions that a

α ≈ 1,
find Π then calculate a and α. Although far from exact, the initial conditions
are, in the first place, only approximate and this does give a good approximation
of initially ingoing initial data in the weak field limit.

2 Methodology

2.1 Numerics

The program was written in RNPL [5] using Crank-Nicholson differencing with
implicit Kreiss-Oliger-style dissipation. The Hamiltonian and momentum con-
straints were implemented separately using an RK3 solver with the Hamilto-
nian constraint integrated from the known boundary condition at the origin to
r = rmax and the Momentum constraint integrated backwards from r = rmax

by requiring α(rmax, t) = 1/a(rmax, t) (i.e. the geometry far from the sources
should be Schwarzschild).

Black holes are detected through the use of the ”black hole function”,

Z(r, t) =
2m(r, t)

r
=
(
1 − a−2

)
(42)

which terminates the execution of the program when a user defined threshold
(indicating imminent black hole formation Z = 0.95) is reached.

2.2 Initial Data

We consider the following initial data for W with Φ and Π subject to the initial
conditions defined in the previous section:

W0 =
1 +

(
r2
0 − r2

)
/δ2

(
(1 + (r2

0 − r2) /δ2)2 + 4r2
)1/2

(43)
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where r0 = 30 describes the location of the kink and δ is an adjustable parameter
describing the width of the kink.

3 Results

Starting with very subcritical (dispersive) and very supercritical (quick black
hole formation) solutions, a binary search in δ was performed to hone in on a
value which resulted in the formation of the critical solution. Figure 2 shows
the evolution of slightly supercritical and subcritical solutions compared to the
static critical solution. Before dispersing or collapsing, the solutions approach
the critical solution and remain there for a time after radiating excess Yang-Mills
radiation. Videos of the evolution may be seen on my website [?].
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Figure 2: Evolution of a slightly supercritical and slightly subcritical initial
configuration. After radiating excess Yang-Mills radiation, the two solutions
approach the critical solution then diverge. Likely due to scattering off the
approximate outgoing boundary conditions and small value of rmax, we were
unable to find solutions which stuck close to the critical solution for long times.
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