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Abstract

Numeric simulation of physical processes can be a highly useful tool that enables experi-

menters to investigate situations and processes that would otherwise be difficult or impossi-

ble to examine in the lab. Applied to the subject of electron diffraction and the simulation

of transmission electron microscope images, numerical methods enable experimenters to

examine the effects of defects in materials and help to identify imaging artifacts [4].

In this thesis, two important aspects of image simulation, specimen potential and calcu-

lation methodology have been investigated. An alternative and more accurate method of

calculating the specimen potential is investigated and two variants on the multislice method

(originally developed by Cowley and Moodie [2]) for transmission electron microscope im-

age simulation are presented and analyzed. Additionally, a brief overview of the effects of

super-cell size on real space and reciprocal space images is given.

It is shown that the standard method of calculating the specimen potential gives results

consistent with the new potential calculation method when the simulation slice thickness is

made small. This observation indicates that Kirkland’s minimum slice thickness hypothesis

may be in error [4]. In addition, it is demonstrated that the multislice method is not conver-

gent on a direct numeric integration of the Schrödinger equation and that the dimensions

of the simulated super cell contribute significantly to image formation.

xiii





Chapter 1

Introduction

1.1 Motivation

Numeric simulation of physical processes can be a highly useful tool that enables experi-

menters to investigate situations and processes that would otherwise be difficult or impossi-

ble to examine in the lab. Applied to the subject of electron diffraction and the simulation of

transmission electron microscope (TEM) images, numerical methods enable experimenters

to examine the effects of defects in materials and help to identify imaging artifacts [4].

Numerical methods help experimenters identify the best equipment and conditions for the

task at hand by minimizing the trial and error process while facilitating the interpretation

of experiments [4].

Inherently, the utility of a simulation tool is limited by its accuracy; if a numerical method

gives results that differ substantially from the correct result, its applicability is limited and

conclusions drawn from it may be erroneous. Specifically, for the case of TEM diffraction

patterns presented in this thesis, two important aspects of image simulation, specimen

potential and calculation methodology have been investigated. An alternative and more

accurate method of calculating the specimen potential is investigated, and two variants on

the multislice method (originally developed by Cowley and Moodie [2]) for TEM image

simulation are presented and analyzed.
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1.2 Thesis Structure

The topic of this thesis is the simulation of Convergent Beam Electron Diffraction (CBED)

patterns using various modification of the standard multislice method to improve accuracy.

A background knowledge of crystallography, electron microscope operation and diffraction

pattern analysis is assumed. The focus is on the numerical methods themselves and the

results of the simulations.

Chapter 2 presents an in-depth derivation of the standard multislice method closely following

the conventions and derivation presented in Kirkland [4]. Following the derivation of the

standard multislice method two new multislice methods, which attempt to include the

contribution from a term neglected in the standard multislice solution, are derived. In

addition, a brief derivation of a finite difference method and a Runge-Kutta method are

given.

In Chapter 3, the numerical stability of the methods presented in Chapter 2 are explored

using a form of Fourier stability analysis. It is shown that the standard multislice solution

and wave solution are unconditionally stable while the second derivative multislice solution

is unstable. This demonstrates the utility of both the standard multislice solution and

wave solution while indicating that the second derivative multislice solution is unsuitable

for implementation.

The subject of Chapter 4 is the calculation of the specimen potentials and the relationship

between atomic scattering factors and atomic potentials. An alternative method of calcu-

lating the projected atomic potential (a quantity used by all of the methods introduced in

Chapter 2) is presented.

The potential calculation methods introduced in Chapter 4 are investigated in Chapter 5

and it is demonstrated that the standard multislice solution with unbounded potentials is

accurate to much smaller slice thicknesses than indicated by Kirkland. The results of the

multislice simulations are then compared to a series of Runge-Kutta simulations and it is

shown that the two methods give substantially different results. Additionally, it is shown

2



that there are substantial variations between thickly and thinly sliced simulations and that

the the size of the super-cell used in the simulation can have a significant effect on both the

real space and reciprocal space images.

Finally, in Chapter 6, the findings are summarized and conclusions and recommendations

for future work are discussed.
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Chapter 2

Derivations

This chapter is divided into four sections detailing the derivation of the Schrödinger equation

for fast electrons as presented in [4] and the derivation of three multislice methods to solve

this equation. For the purposes of this thesis, the multislice method presented by Kirkland

[4] and derived in section 2.2 is referred to as the “standard multislice solution” while the

additional methods derived in sections 2.3 and 2.4 are referred to as the “second derivative

multislice solution” and the “wave solution”, respectively.

2.1 Approximating the Schrödinger Equation

The Schrödinger equation for an electron of mass m, charge e and kinetic energy E moving

in an electrostatic field V is written as:

[
~2

2m
∇2 − eV (x, y, z)

]

ψf (x, y, z) = Eψf (x, y, z) (2.1)

where ψf (x, y, z) is the electron wave function.

In addition to the electrostatic field encountered by an electron traveling through the spec-

imen in a TEM, the electron will also interact with the magnetic field of the objective lens.

According to Kirkland, the action of the objective lens magnetic field is negligible on the

scale of the specimen thickness [4].

5



In an electron microscope, the energy of the imaging electrons (>100 keV) is large compared

to the energy gained or lost by these electrons within the sample. If the electron motion is

aligned initially along the z axis, is it possible to treat the interaction with the specimen

as a relatively minor perturbation [4]. In order to remove the rapidly varying part of the

solution due to the short wavelength of the electrons, the wave function is factored into a

plane wave traveling along the z axis and another function which varies more slowly in z

and captures the motion of the electron due its interaction with the specimen.

ψf (x, y, z) = ψ (x, y, z) exp (2πiz/λ) (2.2)

For the sake of conciseness, ψ (x, y, z) will be replaced with ψ in subsequent equations.

When a term such as ψ (z + Δz) appears in an equation, it is shorthand for ψ (x, y, z + Δz) .

It is assumed that only elastic scattering processes are involved, so the total kinetic energy

of the electron is:

E =
h2

2mλ2
(2.3)

where m and λ are the relativistic mass and wavelength, respectively. Applying the ∇2

operator to equation 2.2, results in:

∇2ψf = ∇2ψ exp (2πiz/λ)

=

[

∇2
xy +

∂2

∂z2

]

ψ exp (2πiz/λ)

= ∇2
xy [ψ exp (2πiz/λ)] +

∂2

∂z2
[ψ exp (2πiz/λ)]

= exp (2πiz/λ)

[

∇2
xyψ +

∂2ψ

∂z2
+

4πi

λ

∂ψ

∂z
−

4π2

λ2

]

(2.4)

Substituting equations 2.4 and 2.3 into equation 2.1 gives,

−~2

2m
exp (2πiz/λ)

[

∇2
xyψ +

∂2ψ

∂z2
+

4πi

λ

∂ψ

∂z

]

− eV ψ exp (2πiz/λ) = 0 (2.5)

6



and simplifying equation 2.5, the Schrödinger equation for fast electrons is obtained:

[

∇2
xy +

∂2

∂z2
+

4πi

λ

∂

∂z
+

2meV

~2

]

ψ = 0 (2.6)

7



2.2 Multislice Derivation

The standard multislice solution neglects the ∂2ψ
∂z2 term in equation 2.6 given that

w
w
w∂2ψ

∂z2

w
w
w�

w
w
w4πi

λ
∂ψ
∂z

w
w
w. The validity of this approximation has been tested and plotted in Figure 2.1 for

the case of [100] oriented gold. The multislice formalism presented in Kirkland is therefore

a solution to equation 2.7:

[

∇2
xy +

4πi

λ

∂

∂z
+

2meV

~2

]

ψ = 0 (2.7)

Figure 2.1: The relative magnitudes of the first and second derivative terms taken from a
point directly above a [100] gold atomic column with the atoms located at the principle
peaks. As gold is a heavy nuclei, the scattering should be more pronounced than for lighter
atoms leading to a significant second derivative term. It should be noted that this figure is
only approximately correct as the data was calculated from a form of the multislice solution
which neglects the second derivative term.

Although the full derivation of the multislice solution is presented in [4], an expanded

derivation is presented below for completeness as well as to provide the background for the

derivations presented in sections 2.3 and 2.4.
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Rearrange equation 2.7 for ∂ψ
∂z ,

∂ψ

∂z
=

λi

4π
∇2

xyψ +
2meV λi

4π~2
ψ (2.8)

collecting variables, σ = meλ
2π~2 , and substituting into equation 2.8 leads to:

∂ψ

∂z
=

λi

4π
∇2

xyψ + iσV ψ (2.9)

Using a finite difference approximation to evaluate equation 2.9 would lead to an algorithm

that is essentially Euler’s method; it would require excessively small step sizes to remain

accurate and would likely suffer from frequency degradation as certain spatial frequencies

were promoted or deteriorated unequally [4]. If the solution is cast into an exponential form

with a mostly imaginary argument, the norm of the function will be preserved [4]. Hence,

we approximate ψ by a Taylor series expansion in Δz:

ψ (z + Δz) = ψ + Δz
∂

∂z
ψ +

Δz2

2
∂2

∂z2
ψ + ∙ ∙ ∙

= ψ + Δz
∂

∂z
ψ + O

(
Δz2

)
(2.10)

Substituting 2.9 into 2.10, the wave function at z + Δz is given by:

ψ (z + Δz) = ψ + Δz

[
λi

4π
∇2

xyψ + iσV ψ

]

+ O
(
Δz2

)

=

[

1 + Δz

(
λi

4π
∇2

xy + iσV

)]

ψ + O
(
Δz2

)
(2.11)

Comparing equation 2.11 with the Taylor series expansion of exp x,

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + ∙ ∙ ∙ (2.12)

≈ 1 + x + O
(
x2
)

(2.13)

9



the two equations are identical to second order in Δz. Thus, to second order in Δz, equation

2.11 may be expressed as:

ψ (z + Δz) = exp

[

Δz
λi

4π
∇2

xy + iσV Δz

]

ψ + O
(
Δz2

)
(2.14)

In the previous equation, V (x, y, z)Δz is not a physically accurate parameter as it repre-

sents the projected atomic potential to only first order accuracy. A more physically realistic

picture can be achieved by replacing V (x, y, z)Δz with V̄ =
∫ z+Δz
z V (x, y, z2) dz2

= V (x, y, z)Δz + O
(
Δz2

)
. Although this substitution appears to introduce an additional

second order error term, it ensures that the correct projected atomic potential is used for a

given slice:

ψ (z + Δz) = exp

[

Δz
λi

4π
∇2

xy + iσV̄

]

ψ + O
(
Δz2

)
(2.15)

Unfortunately, as equation 2.15 contains exponential operators, it cannot be easily evalu-

ated. A Taylor series expansion of equation 2.15 would lead to a complicated and difficult-

to-evaluate function, so equation 2.15 is simplified by casting the exponential term into a

form more suitable for evaluation. Let,

A =
iλ

4π
∇2

xy (2.16)

B =
iσV̄

Δz
(2.17)

and substituting equations 2.16 and 2.17 into equation 2.15 allows equation 2.15 to be

rewritten as:

ψ (z + Δz) = exp [AΔz + BΔz]ψ + O
(
Δz2

)
(2.18)

Desiring to find to what accuracy one may write,

exp [AΔz + BΔz] = exp [AΔz] exp [BΔz] (2.19)

10



a Taylor series is used to expand equation 2.18 to second order accuracy,

exp [AΔz + BΔz] = 1 + (A + B)Δz +
1
2

(
A2 + B2 + AB + BA

)
Δz2 + O

(
Δz3

)
(2.20)

and a similar expansion is performed on exp [AΔz] exp [BΔz]:

exp [AΔz] exp [BΔz] =
[
1 + AΔz + A2Δz2 + O

(
Δz3

)]

∙
[
1 + BΔz + B2Δz2 + O

(
Δz3

)]

= 1 + (A + B)Δz +
1
2

(
A2 + B2 + AB

)
Δz2 (2.21)

To find the error in approximating exp [AΔz + BΔz] as exp [AΔz] exp [BΔz], equation 2.21

is subtracted from equation 2.20 to give:

exp [AΔz + BΔz] − exp [AΔz] exp [BΔz] =
1
2
BAΔz2 −

1
2
ABΔz2 + O

(
Δz3

)

=
Δz2

2
[B,A] + O

(
Δz3

)
(2.22)

Therefore, ψ (z + Δz) can be approximated to first order accuracy in Δz as:

ψ (z + Δz) = exp

[
iλ

4π
∇2

xyΔz

]

exp
[
iσV̄

]
ψ + O

(
Δz2

)
(2.23)

The standard multislice method is computationally very efficient since equations of the

form of 2.23 can be structured to use fast fourier transform (FFT) based algorithms. Let

t = exp
[
iσV̄

]
be the transmission function for a given slice and substituting in equation

2.23:

ψ (z + Δz) = exp

[
iλ

4π
∇2

xyΔz

]

(tψ) + O
(
Δz2

)
(2.24)

11



Fourier transforming the resulting equation allows the evaluation of the exponential opera-

tors:

FTxy [ψ (z + Δz)] = FTxy

[

exp

(
iλΔz

4π
∇2

xy

)

(tψ)

]

=
∫ ∫

exp

(
iλΔz

4π
∇2

xy

)

(tψ) exp (2πi [kxx + kyy])dxdy

=
∫ ∫

exp

(
iλΔz

4π

∂2

∂x2

)

exp

(
iλΔz

4π

∂2

∂y2

)

(tψ)

∙ exp (2πi [kxx + kyy])dxdy

(2.25)

Noting that the commutator
[

∂
∂x , ∂

∂y

]
= 0, the exponential ∇2

xy term can be separated

without introducing further error. Hence equation 2.25 is uncoupled in x and y and may

be written as:

FTxy [ψ (z + Δz)] = FTy

[

exp

(
iλΔz

4π

∂2

∂y2

)

FTx

[

exp

(
iλΔz

4π

∂2

∂x2

)

(tψ)

]]

(2.26)

Expanding the exponential derivatives in 2.26,

exp

(
iλΔz

4π

∂2

∂x2

)

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n( ∂2

∂x2

)n

(2.27)
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and substituting the result into 2.26 leads to:

FTx

[

exp

(
iλΔz

4π

∂2

∂x2

)

(tψ)

]

=
∫ [ ∞∑

n=0

1
n!

(
iλΔz

4π

)n( ∂2

∂x2

)n

(tψ)

]

exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n ∫ [( ∂2

∂x2

)n

(tψ)

]

exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n ∫ [( ∂2

∂x2

)n

FT−1
x [FTx (tψ)]

]

∙ exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n ∫ [

FT−1
x

[(
∂2

∂x2

)n

FTx (tψ)

]]

∙ exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n ∫ [∫ ( ∂2

∂x2

)n

FTx (tψ)

∙ exp (2πi [kxx])dkx] exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n ∫ (
4π2i2k2

x

)n
(tψ) exp (−2πi [kxx])dx

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n (
4π2i2k2

x

)n
FTx (tψ)

=
∞∑

n=0

1
n!

(
−iπk2

xλΔz
)n

FTx (tψ)

= exp
(
−iπk2

xλΔz
)
FTx (tψ) (2.28)

Subsequently, performing a Fourier transform in y reduces equation 2.26 to:

FTxy [ψ (z + Δz)] = FTy

[

exp

(
iλΔz

4π

∂2

∂y2

)

FTx

[

exp

(
iλΔz

4π

∂2

∂x2

)

(tψ)

]]

= FTy

[

exp

(
iλΔz

4π

∂2

∂y2

)

exp
[
−iπλΔzk2

x

]
FTx [tψ]

]

= exp
[
−iπλΔzk2

x

]
FTy

[

exp

(
iλΔz

4π

∂2

∂y2

)

FTx [tψ]

]

= exp
[
−iπλΔz

(
k2

x + k2
y

)]
FTxy [tψ]

= P (kx, ky) FTxy [tψ] (2.29)
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where the propagator function, P (kx, ky), is given by:

P (kx, ky) = exp
[
−iπλΔz

(
k2

x + k2
y

)]
(2.30)

By taking the inverse Fourier transform of equation 2.29, the solution to 2.24 may be written

to first order accuracy in Δz as:

ψ (z + Δz) = FT−1
xy [P (kx, ky) FTxy (tψ)] + O

(
Δz2

)
(2.31)

It is worth noting that there is another completely equivalent form of the multislice solu-

tion which results from factoring exp (AΔz + BΔz) as exp (BΔz) exp (AΔz) rather than

as exp (AΔz) exp (BΔz). Following the same derivation presented above, the solution be-

comes:

ψ (z + Δz) = tFT−1
xy [P (kx, ky) FTxy (ψ)] + O

(
Δz2

)
(2.32)

Examining the expansion of exp (AΔz) exp (BΔz) and exp (BΔz) exp (AΔz) more closely,

if can be shown that exp (AΔz + BΔz) may be factored as:

exp (AΔz + BΔz) = 1 + Δz (A + B) + Δz2
(
A2 + AB + BA + B2

)
+ O

(
Δz3

)

=
1
2

[exp (AΔz) exp (BΔz) + exp (BΔz) exp (AΔz)] + O
(
Δz3

)
(2.33)

Thus, if we average equations 2.31 and 2.32, the solution becomes, to one higher order of

accuracy in Δz:

ψ (z + Δz) =
1
2
FT−1

xy [P (kx, ky) FTxy (tψ)] +
1
2
tFT−1

xy [P (kx, ky) FTxy (ψ)]

+ O
(
Δz3

) (2.34)

In the following sections, the results and methodology developed in this section will be used

to develop new multislice algorithms which attempt to include the contribution from the

neglected second derivative term.
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2.3 Second Derivative Multislice Derivation

In this section a version of the multislice solution that includes the second derivative term

is derived. The reason for this was two fold; first to provide a more accurate solution which

can act as a reference solution for more approximate methods, and secondly to test the

approximation that
w
w
w∂2ψ

∂z2

w
w
w �

w
w
w4πi

λ
∂ψ
∂z

w
w
w and that the second derivative term is therefore

unimportant.

Although this method is shown to be unstable in section 3.3, the derivation is presented

below for the sake of completeness and because it pertains to research performed during

the summer of 2011. Hopefully the reader will be able to gain insight from this section and

avoid similar problems of their own.

Following a similar derivation as given in section 2.2, rearrange equation 2.6 for ∂ψ
∂z ,

∂ψ

∂z
=

λi

4π

(

∇2
xyψ +

∂2ψ

∂z2

)

+ iσV ψ (2.35)

and expand ψ (z + Δz) in a Taylor series about z yielding:

ψ (z + Δz) =

[

1 + Δz

(
λi

4π

[

∇2
xy +

∂2

∂z2

]

+ iσV

)]

ψ + O
(
Δz2

)
(2.36)

As with equation 2.14, equation 2.36 can be cast into an exponential form as:

ψ (z + Δz) = exp

[

Δz

(
λi

4π

[

∇2
xy +

∂2

∂z2

])

+ iσV̄

]

ψ + O
(
Δz2

)
(2.37)

Letting t = exp
[
iV̄
]

as before, and performing the exponential expansion as in the previous

section reduces equation 2.37 to:

ψ (z + Δz) = exp

[
iλ

4π
∇2

xyΔz

]

exp

[
iλ

4π

∂2

∂z2
Δz

]

(tψ) + O
(
Δz2) (2.38)

Finally, equation 2.38 can be evaluated through the use of Fourier transforms. Noting that

the commutators
[

∂
∂x , ∂

∂y

]
=
[

∂
∂y , ∂

∂z

]
=
[

∂
∂z , ∂

∂x

]
= 0, the Fourier transforms in x and y can
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be separated to yield:

FTxy [ψ (z + Δz)] = exp

(
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy [tψ]

= exp

(
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy [tψ]

=
∞∑

n=0

1
n!

(
iλΔz

4π

)n( ∂2

∂z2

)n

P (kx, ky) FTxy [tψ]

≈

(

1 +
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy [tψ] (2.39)

By taking the inverse Fourier transform of equation 2.39, the solution to may be written to

first order accuracy in Δz as:

ψ (z + Δz) = FT−1
xy

[(

1 +
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy [tψ]

]

+ O
(
Δz2

)

=

(

1 +
iλΔz

4π

∂2

∂z2

)

FT−1
xy [P (kx, ky) FTxy [tψ]] + O

(
Δz2

)
(2.40)

In common with the standard multislice solution derived in section 2.2, the second derivative

multislice solution has a number of equally valid alternate forms. Whereas there were two

possible ways to rearrange the exponentials in the standard multislice solution, there are

now six possible way to arrange the new solution:

ψ (z + Δz) =

(

1 +
iλΔz

4π

∂2

∂z2

)

FT−1
xy [P (kx, ky) FTxy [tψ]] + O

(
Δz2

)
(2.41)

ψ (z + Δz) =

(

1 +
iλΔz

4π

∂2

∂z2

)

tFT−1
xy [P (kx, ky) FTxy [ψ]] + O

(
Δz2

)
(2.42)

ψ (z + Δz) = FT−1
xy

[(

1 +
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy t[ψ]

]

+ O
(
Δz2

)
(2.43)

ψ (z + Δz) = tFT−1
xy

[(

1 +
iλΔz

4π

∂2

∂z2

)

P (kx, ky) FTxy [ψ]

]

+ O
(
Δz2

)
(2.44)

ψ (z + Δz) = FT−1
xy

[

P (kx, ky) FTxy

[(

1 +
iλΔz

4π

∂2

∂z2

)

tψ

]]

+ O
(
Δz2

)
(2.45)

ψ (z + Δz) = tFT−1
xy

[

P (kx, ky) FTxy

[(

1 +
iλΔz

4π

∂2

∂z2

)

ψ

]]

+ O
(
Δz2

)
(2.46)

If the second derivative terms are neglected, the above equations reduce to those obtained

in section 2.2 for the standard multislice solutions.
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2.4 Wave Solution Derivation

Due to the fact that the solution presented in section 2.3 was found to be unstable, an

alternative method which preserved the second order derivative was derived. Owing to

time constraints this method was not implemented in code, however the stability analysis

presented in the next chapter suggests this method should be stable.

A third technique to solve equation 2.6 was developed using a Method of Lines (MOL)

algorithm. Due to time constraints, this technique is not presented in detail, but the theory

is provided as stimulus for future investigation.

In a MOL solution, the partial differential equation (PDE) being investigated is discretized

in all but one dimension (the “time” dimension) into a system of coupled ordinary differential

equations (ODEs). The coupling terms are evaluated before the start of the integration and

assumed constant over the range of the integration (a single slice). This results in a system

of decoupled differential equations which may be independently integrated over small time

steps.

As related to the Schrödinger equation for fast electrons, the PDE 2.6 is subdivided into

a two dimensional grid of ODEs with the potential and Laplacian terms assumed constant

over a single slice (the average potential will be in the place of the point potential for

increased accuracy). In this approximation, and using primed notation to highlight the

discretization into a system of ODEs in z, equation 2.6 becomes:

ψ
′′

xy +
4πi

λ
ψ

′

xy +

(

∇2
xy +

2meV

~2

)

ψxy = 0 (2.47)

Making the following variable substitutions and noting that equation 2.47 has the form of

a second order ODE,

a = 1 (2.48)

b =
4πi

λ
(2.49)

c = c
′
+ c

′′
=

2meV

~2
+ ∇2

xy (2.50)
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allows the solution to equation 2.47 to be written as:

ψxy (z + Δz) = exp

([
−b

2a
+

√
b2 − 4ac

2a

]

Δz

)

d+xy + exp

([
−b

2a
−

√
b2 − 4ac

2a

]

Δz

)

d−xy

(2.51)

The eigen-solutions to 2.51 are therefore (note that d±xy are functions of x and y):

ψ±xy (z + Δz) = exp

([
−b

2a
±

√
b2 − 4ac

2a

]

Δz

)

d±xy

= exp







−b

2a
±

b
√

1 − 4ac
b2

2a



Δz



d±xy (2.52)

Since 1− 4ac/b2 ≈ 1, except perhaps very close to the core of an atom, the term under the

radical can be approximated by a binomial expansion,

√
b2 − 4ac = b

√

1 −
4ac

b2

= b

√

1 −
4a (c′ + c′′)

b2

≈ b −
2a
(
c
′
+ c

′′
)

b
(2.53)

and the eigenfunctions (equation 2.52) are given by:

ψ±xy (z + Δz) = exp

(
−b

2a
Δz

)

exp

(
±b

2a
Δz

)

exp

(
∓c

′

b
Δz

)

exp

(
∓c

′′

b
Δz

)

d±xy

= exp

(
−2πi

λ
Δz

)

exp

(
±2πi

λ
Δz

)

exp

(
±imeλV

2π~2
Δz

)

∙ exp

(
±iλΔz

4π
∇2

xy

)

d±xy

(2.54)

The solution given by equation 2.54 is not particularly useful as the exp
(
±iλΔz

4π ∇2
xy

)
term

cannot be evaluated directly. However, noting that only the final term in equation 2.54 is

dependant on x and y, and following the same procedure and notation outlined in section
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2.2, equation 2.54 can be written as:

ψ±xy (z + Δz) = exp

(
−2πi

λ
Δz

)

exp

(
±2πi

λ
Δz

)

exp

(
±imeλV

2π~2
Δz

)

∙ FT−1
xy

[

FTxy

[

exp

(
±iλΔz

4π
∇2

xy

)

d±xy

]]

= exp

(
−2πi

λ
Δz

)

exp

(
±2πi

λ
Δz

)

exp

(
±imeλV

2π~2
Δz

)

∙ FT−1
xy

[
exp

(
∓iπλΔz

(
k2

x + k2
y

))
FTxy

[
d±xy

]]
(2.55)

Therefore the two eigenfunctions are (if we replace exp
(
±imeλV

2π~2 Δz
)

with exp
(
iσV̄

)
as in

section 2.2):

ψ+xy (z + Δz) = exp
(
iσV̄

)
FT−1

xy

[
exp

(
−iπλΔz

(
k2

x + k2
y

))
FTxy

[
d+xy

]]
(2.56)

ψ−xy (z + Δz) = exp

(
−4πi

λ
Δz

)

exp
(
−iσV̄

)
FT−1

xy

[
exp

(
iπλΔz

(
k2

x + k2
y

))

∙ FTxy

[
d−xy

]
(2.57)

Interestingly, equation 2.56 is the solution to the standard multislice solution if d+xy = ψ (z).

One could then use initial conditions defining the value of the wave function, Ω (x, y), and

its derivative, Θ (x, y) , at (x, y, z),

ψ (x, y, z) = Ω (x, y) (2.58)

∂ψ

∂z
(x, y, z) = Θ (x, y) (2.59)

to solve for d+xy and d−xy at the beginning of each slice.

19



2.5 Finite Difference Approximations

In addition to the multislice method, Kirkland proposes a second order finite difference

solution for equation 2.1 [4]. Substituting the central, first order, finite difference approxi-

mations for ∂ψ
∂z and ∂2ψ

∂z2 ,

∂ψ (x, y, z)
∂z

=
ψ (x, y, z + Δz) − ψ (x, y, z − Δz)

2Δz
+ O

(
Δz2

)
(2.60)

∂2ψ (x, y, z)
∂z2

=
ψ (x, y, z + Δz) − 2ψ (x, y, z) + ψ (x, y, z − Δz)

Δz2
+ O

(
Δz2

)
(2.61)

and rearranging for ψ (x, y, z + Δz) yields a solution for equation 2.1 of significantly higher

accuracy:

ψ (x, y, z + Δz) =
1
c+

[

2 − Δz2

(

∇2
xy +

4πσ

λ
V (x, y, z)

)]

ψ (x, y, z)−
c−
c+

ψ (x, y, z)+O

(
Δz4

c+

)

(2.62)

c+ = 1 + 2πiΔz/λ (2.63)

c− = 1 − 2πiΔz/λ (2.64)

σ = 2πmeλ/h2 (2.65)

In equation 2.62, the V (x, y, z) term represents an electrostatic potential at a single point.

However, since the atomic potential function is sharply peaked near the center of each atom,

this method of evaluation often either “skips” over the vast majority of an atomic potential

or otherwise weighs the contribution of the atom incorrectly. This issue can be solved in

part by reducing the slice thickness, but considering that atomic potentials obey roughly a

1
r2 dependance, reducing the slice thickness to the point were the atomic potential appears

smooth is computationally inefficient. While running preliminary simulations, equation 2.62

was found to produce better results when V (x, y, z) is replaced with the averaged potential
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1
b−a

∫ b
a V (x, y, z2) dz2. With this substitution, equation equation 2.62 becomes:

ψ (x, y, z + Δz) =
1
c+

[

2 − Δz2

(

∇2
xy +

4πσ

λ

1
b − a

∫ b

a
V (x, y, z2) dz2

)]

ψ (x, y, z)

−
c−
c+

ψ (x, y, z) + O

(
Δz4

c+

)

(2.66)

Due to stability issues encountered using equation 2.66 while evaluating CBED patterns, it

was decided to write a MOL algorithm with a fourth order Runge-Kutta (RK4) integrator

for the discretized ODEs. In the interest of expedient evaluation and ease of implementation,

the algorithm used did not include error checking or adaptive step size control. As with the

multislice method and finite difference solution, the PDE was evaluated on a rectangular

region with periodic boundary conditions discretized in both the x and y directions (In

order to use FFTs in the evaluation process it is necessary that the x and y discretizations

be powers of 2).

Using an MOL evaluation procedure, equation 2.6 was reduced to a system of coupled

ODE’s which were then evaluated using RK4 integration for each z-step. At each point in

the region, the PDE was discretized as:

dψ1

dz
= ψ2 (2.67)

dψ2

dz
= −∇2

xyψ1 −
2meV

~2
ψ1 −

4πi

λ
ψ2 (2.68)

where ψ1 and ψ2 are given by:

ψ1 (x, y, z) = ψ (x, y, z) (2.69)

ψ2 (x, y, z) =
∂ψ (x, y, z)

∂z
(2.70)

The evaluation of equations 2.67 and 2.68 is carried out simultaneously by the standard

RK4 method which is reproduced for the reader’s convenience below [8]. Let y′ = f (t, y)

21



with y (t0) = y0. The RK4 solution is then:

k1 = hf (tn, yn) (2.71)

k2 = hf

(

tn +
1
2
h, yn +

1
2
k1

)

(2.72)

k3 = hf

(

tn +
1
2
h, yn +

1
2
k2

)

(2.73)

k4 = hf (tn + h, yn + k3) (2.74)

tn+1 = tn + h (2.75)

yn+1 = yn +
1
6

(k1 + 2k2 + 2k3 + k4) (2.76)

It should be noted that as both of the finite difference methods described in this section

are second order in z, the initial conditions must specify both the initial wave function

and its z derivative. For the simulations presented in chapter 5, the initial derivative was

determined by propagating the initial conditions backward several steps in z using the

standard multislice method and then computed using finite differences.
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Chapter 3

Stability Analysis

Before using one of the methods developed in Chapter 2, it is necessary to determine the

conditions under which each can be used effectively. In general, it is desired to find the

conditions under which each solution is stable. For the case of the multislice solution and

wave solutions, it is shown that not only are the solutions unconditionally stable, but that

probability is also conserved.

3.1 Background

This section uses a form of Fourier analysis similar to von Neumann stability analysis to

determine the stability of the various multislice methods presented in Chapter 2. In a von

Neumann stability analysis, the algorithm under investigation is applied to a set of initial

conditions with a small error term (εn) resulting in a solution for the next time-step plus

a new error term (εn+1) written in terms of algorithm variables (typically slice thickness,

maximum spatial frequency and other such parameters). Subsequently, these error values

are used to solve for the stability condition; the set of simulation conditions that cause the

error term to remain constant or decay in time (
∣
∣
∣ εn+1

εn

∣
∣
∣≤ 1).

In many cases, a Von Neumann analysis would be sufficient to demonstrate the conditions

for stability. Although undeniably useful, finding the bandwidth limiting conditions which

prevent a single spatial frequency from experiencing exponential growth is not the primary
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interest. Instead, the interest is in determining whether or not the norm of a solution is

preserved from slice to slice. There is no problem if a particular spatial frequency grows

in magnitude so long as that growth comes at the expense of other spatial frequencies. In

physical terms, the wave function must remain normalized from slice to slice.
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3.2 Multislice

The multislice solution has several advantages over other numerical methods used to solve

PDEs. The most obvious of these is the speed by which the method can be evaluated

through the use of FFTs and multicore processing. A more subtle advantage, which is

demonstrated presently, is that the standard multislice method is unconditionally stable.

The magnitude of ψ is given by
∫ ∫

ψψ∗dxdy and the magnitude of any function multiplied

by a purely imaginary exponential is unchanged:

‖ψ exp (ia (x, y))‖2 =
∫ ∫

ψ exp (ia (x, y))ψ∗ exp (−ia (x, y))dxdy

=
∫ ∫

ψψ∗ exp (ia (x, y) − ia (x, y))dxdy

=
∫ ∫

ψψ∗dxdy

= ‖ψ‖2 (3.1)

In the case of the multislice solution, the transmission function, t (x, y), is a purely imaginary

function so that ‖ψt‖2 = ‖ψ‖2. In order to save considerable mathematical difficulty in the

following analysis, define ψt = ψt.

It is known that the magnitudes of ψt, ψt and ψ are equal. Therefore, if ψt is used in place

of ψt in equation 2.31, it is expected that the magnitude of ψ (z + Δz) will be equal to

that of ψ. In order to show this, ψt will be decomposed into an infinite Fourier series, the

analysis performed for a single-frequency mode and subsequently the results generalized to

the entire function.

Let ψt, ψt and ψ obey periodic boundary conditions with x and y defined on [−a, a] and

[−b, b], respectively. Then ψt may be represented as a Fourier series:

ψt =
∑

m

∑

n

amn exp (2πi (kmxx + knyy)) (3.2)
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Since ψ is defined on x ⊂ [−a, a] and y ⊂ [−b, b], the only permitted values of kmx and kny

are kmx = m
2a and kny = n

2b :

ψt =
∑

m

∑

n

anm exp

(
imπx

a

)

exp

(
inπy

b

)

(3.3)

Using a discretized version of equation 2.31, a single frequency component is transformed

as:

ψnm (z + Δz) = FT−1
xy

[

exp

(

−iπλΔz

(
m′2

4a2
+

n′2

4b2

))

FTxy

[

anm exp

(
imπx

a
+

inπy

b

)]]

= FT−1
xy

[

exp

(

−iπλΔz

(
m′2

4a2
+

n′2

4b2

))
1

4ab

∫ a

−a

∫ b

−b
anm

∙ exp

(
imπx

a
+

inπy

b

)

exp

(
−im′πx

a
+

−in′πy

b

)

dxdy

]

= FT−1
xy

[

exp

(

−iπλΔz

(
m′2

4a2
+

n′2

4b2

))

anmδmm′δnn′

]

=
∑

m′

∑

n′

exp

(

−iπλΔz

(
m′2

4a2
+

n′2

4b2

))

anmδmm′δnn′ exp

(
im′πx

a
+

in′πy

b

)

= anm exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

exp

(
imπx

a
+

inπy

b

)

(3.4)

As shown in equation 3.1, the magnitude of each frequency component of ψt is preserved

by the standard multislice algorithm. This is not to say that the magnitude of frequency

components does not vary between ψ and ψ (z + Δz), but that the magnitude of the fre-

quency components of ψt and ψ (z + Δz) is unchanged. Summing all of the frequency terms

together, the solution to ψ (z + Δz) is represented by:

ψ (z + Δz) =
∑

m

∑

n

anm exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

exp

(
imπx

a
+

inπy

b

)

(3.5)
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To find the magnitude of ψ (z + Δz), multiply by its complex conjugate and integrate over

x and y:

‖ψ (z + Δz)‖ =
∫ a

−a

∫ b

−b
ψ (z + Δz) ψ (z + Δz)∗ dxdy

=
∫ a

−a

∫ b

−b

[
∑

m,n

anm exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

exp

(
imπx

a
+

inπy

b

)]

∙

[
∑

m,n

a∗mnanm exp

(

iπλΔz

(
m2

4a2
+

n2

4b2

))

exp

(
−imπx

a
+

−inπy

b

)]

dxdy

(3.6)

Due to the orthogonality of the basis functions, the cross terms cancel and equation 3.6 can

be rewritten as:

‖ψ (z + Δz)‖ =
∫ a

−a

∫ b

−b

∑

m

∑

n

amna∗mn exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

∙ exp

(
imπx

a
+

inπy

b

)

exp

(

iπλΔz

(
m2

4a2
+

n2

4b2

))

∙ exp

(
−imπx

a
+

−inπy

b

)

dxdy (3.7)

=
∫ a

−a

∫ b

−b

∑

m

∑

n

amna∗mndxdy (3.8)

which is exactly the same magnitude as ψt, ψt and ψ. Therefore, the multislice algorithm

preserves the norm of the wave function to within numerical accuracy.
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3.3 Second Derivative Multislice

Let: ψ obey periodic boundary conditions in x and y and and be defined on x ⊂ [−a, a] and

y ⊂ [−b, b]. Consider the case where the wave function does not necessarily obey periodic

boundary conditions in z. A single frequency component of ψt can therefore be written as:

ψt =
∑

m

∑

n

anm exp

(
imπx

a

)

exp

(
inπy

b

)

exp (2πikzz) (3.9)

Substituting equation 3.9 for tψ in equation 2.41 and simplifying as in section 3.2 gives:

ψ (z + Δz) =

(

1 +
iλΔz

4π

∂2

∂z2

)

exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

∙ anm exp

(
imπx

a
+

inπy

b
+ 2πikzz

)

= exp

(

−iπλΔz

(
m2

4a2
+

n2

4b2

))

anm exp

(
imπx

a
+

inπy

b
+ 2πikzz

)

∙
(
1 − iλΔzπk2

z

)
(3.10)

Taking the magnitude of ψ (z + Δz), ‖ψ (z + Δz)‖ =
(
1 + λ2Δz2π2k4

z

)
> 1 for all possible

choices of Δz. Therefore, the magnitude of any frequency component will grow without

bound as the solution is advanced through the sample, resulting in massive instability. This

is exactly the behaviour observed in simulations using this method.

Originally, when this method was first tested, the solutions were relatively stable and agreed

very well with the standard multislice solution. It was discovered, however that there was

an error in the code implementing the algorithm which acted to minimize the contributions

of the second derivative term. Once this error was corrected, it became obvious that im-

plementation of algorithms based on equation 2.41 were extremely unstable. It should be

noted that the stability of equations 2.42 through 2.46 have not been investigated to date,

but are expected to be likewise unstable.
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3.4 Wave Solution

Examining equation 2.56, it is observed that the first eigenfunction of the wave solution

has exactly the same form as equation 2.31 and should therefore be unconditionally stable.

The only differences between the first and second eigenfunctions of the wave solution are

the addition of an imaginary exponential prefactor and oppositely signed exponentials. For

this reason, the analysis presented in 3.2 will hold for the second eigenfunction of the wave

solution and the total wave solution should therefore be unconditionally stable.
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3.5 Finite Difference Approximations

In [4], Kirkland uses a form of von Neumann stability analysis to determine the approximate

conditions for stability required by the finite difference method discussed in section 2.5. It

is shown that the maximum spatial frequency which permits stable free-space propagation

is given by:

k2
e <

1
4π2z2

[√
1 + 4π2Δz2/λ2 − 2

]
(3.11)

However, due to time constraints, the finite difference methods were not thoroughly inves-

tigated.

The conditions for stability of the RK4 method were not investigated. As a result, the

precise conditions for stability for the RK4 method are unknown. For the RK4 simulations

presented in Chapter 5, the method was experimentally found to be stable when the slice

thickness was decreased below 0.005 Å.
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Chapter 4

Atomic Potentials

In this section the relationship between atomic scattering factors and atomic potentials

is explored. Two methods of calculating the atomic potentials are introduced and the

parameterization of the potentials and atomic scattering factors are compared.

4.1 The Born Approximation

The wave function resulting from a scattering event between an electron and a potential

V (r′) may be obtained as an integral equation in ψ (r)[6],

ψ (r) = φinc (r) −
μ

2π~2

∫ ∞

−∞

exp (ik |r − r′|)
|r − r′|

V
(
r′
)
ψ
(
r′
)
d3r′ (4.1)

where φinc (r) is the incident wave function and μ is the vacuum permeability. In the

first approximation, ψ (r′) is substituted for φinc (r) in the integrand. Making the far-field

approximation, r � r′, results in the first Born approximation [6]:

ψ (r) = φinc (r) −
μ

2π~2

∫ ∞

−∞

exp (−ik ∙ r′)
r

V
(
r′
)
φinc

(
r′
)
d3r′ (4.2)
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Letting the incident wave function be given by a plane wave and setting q = k0−k, equation

4.2 reduces to:

ψ (r) = exp
(
ik0 ∙ r′

)
−

μ

2π~2r

∫ ∞

−∞
exp

(
i (k0 − k) ∙ r′

)
V
(
r′
)
d3r′

= exp
(
ik0 ∙ r′

)
−

μ

2π~2r

∫ ∞

−∞
exp

(
iq ∙ r′

)
V
(
r′
)
d3r′ (4.3)

This may be simplified this further, by introducing the quantity f (θ, φ), the electron scat-

tering factor:

f (θ, φ) =
μ

2π~2r

∫ ∞

−∞
exp

(
iq ∙ r′

)
V
(
r′
)
d3r (4.4)

ψ (r) = exp
(
ik0 ∙ r′

)
−

f (θ, φ)
r

(4.5)

In the first Born approximation, therefore, the electron scattering factors are the three

dimensional Fourier transform of the atomic potentials. Hence, to a first approximation,

the atomic potential at a displacement r from an atomic nuclei may be calculated as (in

the notation of Kirkland) [4]:

V (r) = 2πea0

∫ ∞

−∞
fe (q) exp (−2πiq ∙ r)d3q (4.6)

fe (q) =
1

2πea0

∫ ∞

−∞
V (r) exp (2πiq ∙ r)d3r (4.7)

where fe (q) are the electron scattering factors, and q = sin (α) /λ is the magnitude of the

difference between the incident and scattered electron wavevectors [4] (in the formula above,

α is the scattering semi-angle). Conversely, in the notation of Doyle and Turner [7], the

scattering factors are parameterized according to s = sin (α/2) /λ, where q ≈ 2s.

In the evaluation of the multislice method, the primary interest is in calculating the pro-

jected atomic potential between two slices for use in evaluating the transmission function:

t = exp

(

i

∫ z+Δz

z
V (r) dz

)

(4.8)

32



The integral in equation 4.8 may then be represented as:

∫ z+Δz

z
V (r) dz = 2πea0

∫ z+Δz

z

∫ ∞

−∞
fe (q) exp (−2πiq ∙ r)d3q dz (4.9)

In order to evaluate equation 4.9 efficiently, the electron scattering factors, fe (q), must be

parameterized such that the integral may be evaluated analytically.
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4.2 Parameterization of Electron Scattering Factors

The electron scattering factors used in Kirkland [4] were fit using a combination of three

Gaussian distributions and three Lorentzian distributions so as to give the correct form for

the scattering factors at both low and high scattering angles. The parameterization used

by Kirkland for the electron scattering factors takes the form[4],

fe (q) =
3∑

i=1

ai

q2 + bi
+

3∑

i=1

ci exp
(
−diq

2
)

(4.10)

where the constants ai, bi, ci and di are fitting parameters. Using equations 4.6 and 4.10

the atomic potential a distance r from a given atomic nuclei is given by:

V (x, y, z) = 2π2a0e
3∑

i=1

ai

r
exp

(
−2πr

√
bi

)
+ 2π5/2a0e

3∑

i=1

cid
−3/2
i exp

(
−π2r2/di

)
(4.11)

Upon substituting equation 4.11 in equation 4.9, it is found that the projected atomic

potential may be solved analytically only when the integral is over all z:

∫ ∞

−∞
V (r) dz = 4π2a0e

3∑

i=1

aiK0

(
2πr

√
bi
)

+ 2π2a0e
3∑

i=1

ci

di
exp

(
−π2r2/di

)
(4.12)

Although this enables equation 4.9 to be fit as a series of splines in ρ =
√

x2 + y2 and

evaluated with great computational efficiency [4], there is a potential issue with Kirkland’s

formulation of the multislice solution as illustrated in Figure 4.1.

In order to be as accurate as possible it is desirable to integrate the atomic potential between

z and z + Δz such that there is a proper accounting of the contribution from all nearby

atoms in the lattice (for the purpose of the simulation, any atom within 3 Å of the top or

bottom of the slice was considered a contributor). Using the Kirkland formulation of the

projected atomic potential, slices which contain no atoms are treated as propagating the

electron through free space; the projected atomic potential calculation effectively ignores

the contribution to the projected atomic potential from atoms outside the slice interval.

34



Figure 4.1: In Kirkland’s formulation of the multislice method, only atoms between z and
z+Δz (shown in white) contribute to the projected atomic potential and their contribution
is integrated from −∞ to ∞. Ideally, neighbouring atoms (shown in black) would also
contribute to the projected atomic potential and the contribution would be bounded by z
and z + Δz.

According to Kirkland [4], this problem can be remedied in part by maintaining the slice

thickness greater than one angstrom so that atoms are not “lost” in between the slices [4].

However, noting from equation 2.31 that the standard form of the multislice solution is

only accurate to first order in Δz (depending on the order in which the transmissions and

propagations are applied, the multislice solution may be actually interpreted as second order

accurate in Δz [4, 3]). As such, when using the Kirkland formulation of the potential, one

encounters the problem that if the slice thickness is too large, the multislice method may

become inaccurate while if the slice thickness is too small, the transmission layer calculation

may become inaccurate.

If the electron scattering factors are parameterized as Gaussians however, equation 4.9 can

be solved analytically for any upper and lower bounds. This form of the projected atomic

potential will be referred to as the bounded potential.

∫ z+Δz

z
V (r) dz = π2a0e

n∑

i=1

ci

di
exp

(
−π2

[
x2 + y2

]

di

)[

erf

(
π [z + Δz]

√
di

)

+ erf

(
πz
√

di

)]

(4.13)
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The Gaussian distributions used in the new simulations are those developed by Peng et al.

[5]. Although the Gaussian distributions fail to completely account for the singular nature

of the atomic potential near the atom, both the parameterizations developed by Kirkland

and Peng were fit from q = 0Å to q = 12 Å [4, 5] (s = 0 Å to s = 6 Å in the notation

of Doyle and Turner [4, 5, 7]). Thus, if angles of observation are restricted, results should

remain consistent. For acceleration potentials of 100 KeV and 300 KeV, this condition

becomes θ 6 444 mrad and θ 6 236 mrad, respectively.
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4.3 Comparison of Electron Scattering Factors

The Peng (Gaussian parameterization) and Kirkland (Gaussian and Lorentzian parameter-

ization) electron scattering factors for gold and silicon are plotted in Figures 4.2 and 4.3,

respectively, for q = 0 Å−1 to q = 12 Å−1. For both elements, the parameterizations are

nearly identical out to 6 Å−1, but begin to show some deviation from one another at higher

angles.

Figure 4.2: Kirkland and Peng electron scattering factors for gold plotted against the mag-
nitude of the scattering vector. Note that the y axis has been log scaled.
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Figure 4.3: Kirkland and Peng electron scattering factors for silicon plotted against the
magnitude of the scattering vector.
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4.4 Comparison of Atomic Potentials

The Peng and Kirkland atomic potentials for gold and silicon are plotted in Figures 4.4

and 4.5 respectively, for r = 0 Å to r = 0.8 Å. For both elements, the parameterizations

are nearly identical above 0.1 Å, but show substantial variation at small radii. This seem-

ingly large variation is relatively unimportant, however, as any electrons which approach

substantially close to the atoms to experience the potential difference will be scattered to

extremely high angles.

The electron scattering factors are related to the atomic potentials through equations 4.6

and 4.7 which are essentially Fourier transforms. As the Peng electron scattering factors are

parameterized by Gaussians and the Fourier transform of a Gaussian is likewise a Gaussian,

the Peng parameterizations, unlike the Kirkland parameterizations, shown in Figures 4.4

and 4.5 are not singular at r = 0.

Figure 4.4: Kirkland (Gaussian and Lorentzian) and Peng (Gaussian) parameterizations of
atomic potentials for gold plotted as a function of distance from the center of the atom

In the simulations, the electron approach distance is limited to about 0.01 Å for a 512 x

512 pixel simulation of a 20 x 20 Å sample. This limitation of the approach distance is

justified as the electron scattering factors were parameterized up to q = 12 Å−1. Hence,
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Figure 4.5: Kirkland (Gaussian and Lorentzian) and Peng (Gaussian) parameterizations of
atomic potentials for silicon plotted as a function of distance from the center of the atom

any component of the electron wave function which approaches close enough to encounter

a divergent potential will be scattered out to angles greater than those recorded.
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Chapter 5

Comparison of Methods

This chapter presents a series of results comparing the potential integration schemes in-

troduced in Chapter 4, a brief comparison of the standard multislice and RK4 methods,

and some preliminary data on the effects of super cell size on CBED patterns. Due to

time constraints, the utility of the wave solutions and finite difference schemes are not

investigated.

5.1 Conditions and Methodology

Unless otherwise noted, the results presented in this chapter were calculated for [111] silicon

using CM30 conditions, the input file for which may be found in Appendix A. The unit

cell used was a 7.6792 Å x 13.3007 Å x 9.4050 Å rectangular basis of 48 silicon atoms tiled

three times in the x direction, twice in the y direction and fifty four times in the z direction

giving super cell x and y dimensions of 23.0376 Å and 26.6014 Å, respectively. The spherical

aberration coefficient was set to 2.0 mm and the objective aperture was set to 3.1 mrad.

For 300 KeV simulations, the average defocus value was set to 471 Å, while for 100 KeV

simulations the average defocus value was set to 645 Å. The CBED probe itself was placed

at the upper left hand corner of the cell at x = 0, y = 0.

The results are given for the first slice occurring after the 500 Å depth in the sample and are

averaged over sixteen trials to account for thermal vibration effects (simulated by displacing
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the atoms in the lattice according to gaussian distributions). Hence, results for simulations

run with different Δz will not correspond to exactly the same depth in the sample. In

addition, the simulations run with bounded potentials were initiated approximately 3 Å

above the top surface of the sample, while those run with unbounded potentials were initi-

ated at the surface of the sample. Had the bounded potential calculations been initiated at

the surface of the sample, half of the projected atomic potential of the first layer of atoms

would have been neglected. Unless otherwise noted, the simulations were run with thermal

vibrations effects included at a temperature of 300 K.

According to Kirkland, running simulations with slice thicknesses that differ substantially

from an integer fraction of the unit cell depth can result in the appearance of artificial Laue

zones. To eliminate the possibility of this occurrence, all simulations are run with slice

thicknesses equal to fractions of the unit cell depth.

Figure 5.1 gives an example of the radially integrated CBED intensity shown beside the

corresponding log scaled CBED pattern. The radially integrated intensity is typically mea-

sured outwards in mrads and this integration is performed in such a way that if the CBED

pattern is stretched due to uneven super cell dimensions, the angular dependence of the

radially integrated intensity plot is unaffected.
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(a)

(b)

Figure 5.1: a) CBED pattern and b) corresponding graph of the radially integrated intensi-
ties for 50 nm of [111] silicon at 300 KeV using CM30 simulation conditions. The location
of the zeroth order Laue zone (ZOLZ), first order Laue zone (FOLZ) and second order Laue
zone (SOLZ) can be readily determined. Due to the uneven super cell dimensions, the
CBED pattern a) has been stretched.
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5.2 Thermal Variation

In order to accurately quantify the differences between the potential calculation methods

presented in Chapter 4, it is crucial to know the typical variance within a given method.

To quantify the variance within a single method, four identical simulations of [111] silicon

were run at Δz = 3.135 Å for the case of unbounded potentials. The radially integrated

intensities of the simulations are shown below in Figure 5.2.

Figure 5.2: Radially integrated intensity of four identical simulations of [111] silicon at
300 KeV using the unbounded potential formulation. The observed variation is due to the
random thermal motions of the atoms.

The coefficient of variance (also known as the relative standard deviation), enables quanti-

zation of the variation exhibited in Figure 5.2. Defining μ and σ as the mean and standard

deviation of a given quantity respectively, the coefficient of variance, cv, is given as:

cv =
σ

μ
(5.1)

Applying equation 5.1 to each point of Figure 5.1, the average coefficient of variance, c̄v, is

found to be c̄v = 0.0327. The results presented in the subsequent sections compare only two

runs, so c̄v = 0.0327 may not be ideally representative of the variance levels encountered in
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subsequent sections. If the coefficient of variance is calculated Runs 1 and 2 in Figure 5.2

instead, the coefficient of variance is found to be c̄v = 0.0287.

Since all of the simulations plotted in Figure 5.2 were initialized with identical starting

conditions, any two simulation with an average coefficient of variance below c̄v ≈ 0.03 are

essentially indistinguishable.
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5.3 Kirkland versus Peng Parameterization

In Chapter 4 the Kirkland and Peng potential parameterizations were introduced. It was

argued that since the corresponding electron scattering factors were parameterized to q =

12 Å−1, there should be little variation between simulations using the Kirkland and Peng

potentials provided that both sets of simulations use either the bounded or unbounded

formulation.

In this chapter, the assumption of identical behaviour is tested for the case of bounded

potentials using a variety of slice thicknesses at both 100 KeV and 300 KeV. As the Kirk-

land potentials can not be evaluated analytically between arbitrary bounds, the Kirkland

potentials were integrated numerically with a maximum relative error set to 1 in 100000.

Figures 5.3, 5.4 and 5.5 compare the Kirkland and Peng potentials at 100 KeV for slice

thicknesses of 3.135 Å, 0.3135 Å and 0.1045 Å respectively. Figures 5.6, 5.7 and 5.8 com-

pare the Kirkland and Peng potentials at 300 KeV for slice thicknesses of 3.135 Å, 0.3135 Å

and 0.1045 Å, respectively.

Figure 5.3: Radially integrated intensity of two simulations of [111] silicon at 100 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0203.
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Figure 5.4: Radially integrated intensity of two simulations of [111] silicon at 100 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0214.

Figure 5.5: Radially integrated intensity of two simulations of [111] silicon at 100 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0194.
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Figure 5.6: Radially integrated intensity of two simulations of [111] silicon at 300 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0343.

Figure 5.7: Radially integrated intensity of two simulations of [111] silicon at 300 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0318.

The Peng and Kirkland potential parameterizations plotted in Figures 5.3 through 5.8

compare favourably with one another with coefficients of variation typically around c̄v =
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Figure 5.8: Radially integrated intensity of two simulations of [111] silicon at 300 KeV using
the bounded potential formulation for both the Peng and Kirkland potential parameteriza-
tions. The average coefficient of variance between these two simulations was determined to
be c̄v = 0.0265.

0.02 or c̄v = 0.03. Hence there is little difference in using the Peng or Kirkland potential

parameterizations other than the time required for evaluation, with the numeric integration

typically being much slower than the analytic evaluation.
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5.4 Unbounded Potentials versus Bounded Potentials

According to Kirkland, due to the unbounded nature of the atomic potential calculation, the

multislice solution is only accurate at slice thicknesses greater than Δz ≈ 1.0 Å [4]. In this

section, this hypothesis is tested through the simulation of [111] silicon using both Kirkland’s

formulation of the potential and the unbounded formulation developed in Chapter 4. Figures

5.9 and 5.10 plot radially integrated intensities for a series of bounded simulations at 100

KeV and 300 KeV, respectively.

Figure 5.9: Radially integrated intensity of three simulations of [111] silicon at 100 KeV
using the bounded potential formulation. Note that both the Δz = 0.1045 Å and Δz =
0.3135 Å appear to be nearly convergent with c̄v = 0.0247. In addition, note that the
intensity of the SOLZ is significantly reduced in the Δz = 0.1045 Å and Δz = 0.3135 Å
simulations compared to the Δz = 3.135 Å simulation.

Since the multislice method with bounded potentials becomes more accurate as the slice

thickness decreases, the Δz = 0.1045 Å simulations shown in Figures 5.9 and 5.10 should

be more accurate than either the Δz = 0.3135 Å or Δz = 3.135 Å simulations. Examining

Figures 5.9 and 5.10, it is observed that the Δz = 3.135 Å simulations overestimate the

magnitude of the higher order Laue zones (HOLZ). Hence, simulations with Δz ≈ 3 Å will

show features which are not present in more accurate simulations.
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Figure 5.10: Radially integrated intensity of three simulations of [111] silicon at 300 KeV
using the bounded potential formulation. Note that both the Δz = 0.1045 Å and Δz =
0.3135 Å appear to be nearly convergent with c̄v = 0.0288. In addition, note that the
magnitude of both the FOLZ and SOLZ are significantly reduced in the Δz = 0.1045 Å and
Δz = 0.3135 Å simulations compared to the Δz = 3.135 Å simulation.

Desiring to test the validity of Kirkland’s minimum slice thickness hypothesis for the case

of unbounded potentials, a series of simulations were run with Δz < 1.0 Å. Figures 5.11,

5.12, 5.13 and 5.14 plot comparisons of bounded and unbounded 300 KeV simulations for

slice thicknesses of Δz = 3.135 Å, Δz = 0.3135 Å, Δz = 0.1045 Å and Δz = 0.01045 Å,

respectively.

Examining Figures 5.11, 5.12, 5.13 and 5.14 and noting that for each comparison c̄v ≈ 0.03,

it is evident that the difference between the bounded potential and unbounded potential

formulations in the multislice method becomes small as the slice thickness decreases. How-

ever, it is possible that the similarities between the formulations are due in some way to

random thermal vibrations blurring out the differences between the methods. To test this,

several additional simulations were run without thermal vibrations. Figures 5.15, 5.16, 5.17

and 5.18 plot comparisons of bounded and unbounded 300 KeV simulations without ther-

mal vibrations for slice thicknesses of Δz = 3.135 Å, Δz = 1.045 Å, Δz = 0.3483 Å and

Δz = 0.1161 Å, respectively.
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Figure 5.11: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations. At Δz = 3.135 Å, there is a significant difference
between the bounded and unbounded potential formulations.

Figure 5.12: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations. The simulations for bounded and unbounded poten-
tial formulations agree very well with c̄v = 0.0339. It should be noted however, that between
4 mrad and 8 mrad and the coefficient of variation is considerably higher (cv ≈ 0.09).
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Figure 5.13: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations. The simulations for bounded and unbounded po-
tential formulations agree very well with c̄v = 0.0344. It should be noted however, that
between 4 mrad and 8 mrad and again at about 17 mrad the coefficient of variation is
cv ≈ 0.11.

Figure 5.14: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations. Due to the small slice thickness of Δz = 0.01045 Å,
running the full 500 Å simulation would have been prohibitively time consuming, so the
simulation was instead run for 50 Å. The simulations for bounded and unbounded potential
formulations agree very well with c̄v = 0.0322. It should be noted however, that between 4
mrad and 8 mrad and again at about 15 mrad the coefficient of variation is cv ≈ 0.12.
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Figure 5.15: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations with no thermal effects. The simulations for bounded
and unbounded potential formulations are in poor agreement on average with c̄v = 0.7776.

Figure 5.16: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations with no thermal effects. The simulations for bounded
and unbounded potential formulations are in poor agreement on average with c̄v = 0.3158.
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Figure 5.17: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations with no thermal effects. The simulations for bounded
and unbounded potential formulations are in fairly poor agreement with c̄v = 0.1092. It
should be noted that between 4 mrad and 8 mrad the coefficient of variation is cv ≈ 0.66.

Figure 5.18: Radially integrated intensity of [111] silicon at 300 KeV for both the bounded
and unbounded potential formulations. The simulations for bounded and unbounded po-
tential formulations are in fairly good agreement on average with c̄v = 0.0476. For angles
greater than 20 mrad c̄v = 0.0319, but between 4 mrad and 8 mrad and again at about 15
mrad the coefficient of variation is cv ≈ 0.48.
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The consistent overestimation of the trough between between 4 mrad and 8 mrad by the

unbounded potential formulation (shown in Figures 5.15, 5.16, 5.17 and 5.18) demonstrates

that the two potential formulations do not fully converge as the slice thickness decreases.

However, as shown in Figures 5.19 and 5.20, the unbounded potential formulation most

accurately approximates the bounded potential formulation when the slice thickness is made

small. Hence, the hypothesis that the multislice method with unbounded potentials is

accurate for only Δz > 1 Å does not necessarily hold true. Although the unbounded

potential formulation does not converge perfectly to the bounded potential formulation, the

variation becomes smaller as the slice thickness is decreased.

Figure 5.19: Radially integrated intensity of [111] silicon at 300 KeV for the bounded po-
tential formulation with Δz = 0.1161 Å and each of the unbounded potential formulations
simulations plotted in Figures 5.15 through 5.18. As the slice thickness is decreased, the un-
bounded potential formulations closely approach the bounded potential formulation. Since
the multislice method with bounded potential formulation becomes more accurate as the
slice thickness is decreased, the simulation with Δz = 0.1161 Å is the most accurate of
the unbounded simulations run and serves as a reference solution. Since the unbounded
potential formulation approaches the reference solution as the slice thickness is decreased,
the hypothesis that the multislice method with unbounded potential formulation is only
accurate when Δz > 1 Å does not necessarily hold true.
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Figure 5.20: Coefficient of variance between the bounded potential formulation with Δz =
0.1161 Å and each of the unbounded potential formulations simulations plotted in Figures
5.15 through 5.18. The average coefficients of variance, c̄v, were determined to be 0.0476,
0.0695, 0.1314 and 0.5236 respectively.
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5.5 Multislice versus RK4

Desiring to determine what effects, if any, were caused by neglecting the contribution of the

second derivative term in z, a RK4 integrator was written to solve equation 2.6. Due to

the fact that the RK4 integrator was found to be stable for only very small slice thicknesses

(Δz . 0.005 Å), running the full 500 Å simulation would have been prohibitively time

consuming. Instead, the simulation was instead run for 28.215 Å. The data presented

in this section was taken from the 25.08 Å slices of the simulations. Figures 5.21 and

5.22 plot comparisons between the unbounded and bounded potential formulation of the

multislice method at 300 KeV for silicon. The slice thicknesses for Figures 5.21 and 5.22

were Δz = 0.003135 Å and Δz = 0.0003135 Å respectively.

Figure 5.21: Runge-Kutta, bounded multislice and unbounded multislice simulations of 300
KeV [111] silicon for Δz = 0.003135 Å. At high angles it is observed that the Runge-Kutta
simulation deviates substantially from the multislice simulation. The average coefficient of
variance between the multislice simulations was determined to be c̄v = 0.0216, reinforcing
the earlier observation that as the slice thickness is made small, the unbounded and bounded
potential formulations tend to converge.

Figures 5.21 and 5.22 indicate that the Runge-Kutta method deviates fairly substantially

from the multislice methods at high angles, while Figure 5.23 demonstrates that the Runge-

Kutta method is quickly convergent. Although the multislice methods reproduces all of the

same features of the Runge-Kutta method, the scaling of these features appears to be sub-
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Figure 5.22: Runge-Kutta, bounded multislice and unbounded multislice simulations of 300
KeV [111] silicon for Δz = 0.003135 Å. At high angles it is observed that the Runge-Kutta
simulation deviates substantially from the multislice simulation. The average coefficient of
variance between the multislice simulations was determined to be c̄v = 0.0213, reinforcing
the earlier observation that as the slice thickness is made small, the unbounded and bounded
potential formulations tend to converge.

stantially different. Therefore, if the Runge-Kutta method is representative of the actual

physical process the electrons undergo as they diffract through the specimen, the multi-

slice method may not be the ideal simulation to compare with experiment (for additional

information see Rother [1]).
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Figure 5.23: Runge-Kutta simulations of 300 KeV [111] silicon for Δz = 0.003135 Å and
Δz = 0.0003135 Å. The average coefficient of variance between the two simulations was
determined to be be c̄v = 0.0006, indicating that the RK4 method converges quickly as
expected.
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5.6 Effects of super cell Size

Implicit in the multislice solution is the assumption that the sample can be accurately

modeled through the use of periodic boundary conditions. However, although it is true

that the sample can be considered periodic in many cases (for the case of non-periodic,

defected samples see Kirkland [4]), the wave function should almost certainly never be.

When a discrete Fourier transform (or other process assuming periodic boundary conditions)

is used to evaluate derivatives and convolutions, the functions in question can be effectively

considered as tiling all of space as in Figure 5.24. Any portion of the initial wave function

that “crosses” the super cell boundaries is reinstated at the opposite side of the cell with

the same orientation (alternatively one can consider the reinstated wave function to be from

a neighbouring super cell). This means that any portion of the wave function that would

normally spread out throughout the specimen beyond the borders of the super cell will

instead remain confined within the super cell.

Figure 5.24: Applying periodic boundary conditions is equivalent to tiling the finite size
initial conditions throughout all space. Any portion of the wave function that would nor-
mally spread out throughout the specimen beyond the borders of the super cell will instead
remain confined within the super cell due to the action of the neighbouring wave functions
in each tile.

If the evolution of the wave function depended only on the specimen potential, one would

expect the CBED pattern, as an image of the reciprocal space wave function, to remain

unaffected while the real space image would show substantial deviation from experimental
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results. However, the evolution of the wave function does not simply depend on the local

specimen potential but also on the local curvature of the wave function.

Since applying periodic boundary conditions prevents the wave function from spreading out

throughout the sample, the curvature of a wave function confined within a super cell will

be different than one permitted to spread out throughout the sample. As such, the wave

functions may evolve substantially differently in the two cases.

Figure 5.25 shows the effect of different super cell sizes on the radially integrated intensity

of a CBED pattern. The simulations presented earlier in the chapter were run with super

cell dimensions of x = 23.0376 Å and y = 26.6014 Å corresponding to a 3x2 tiling of the

rectangular silicon unit cell. The plots shown in Figure 5.25 were each simulated using

different sized silicon super cells as indicated in the legend. In order to maintain the same

angular dependance in each of the simulation, the image size was scaled accordingly; 1x1

simulations were run at 512x512 pixels while 2x2 simulations were run at 1024x1024 pixels

and so on.

Figure 5.25: Radially integrated intensity of [111] silicon at 300 KeV for various super cell
sizes as indicated in the legend. In these simulations, the unbounded potential formulation
of the multislice method was used for the sake of computational efficiency. The simulations
themselves are in fairly poor agreement with one another ( c̄v ≈ 0.10) with one exception;
between the 4x4 and 8x8 simulations c̄v = 0.0190
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In Figure 5.25, the majority of the simulations are in fairly poor agreement with one another

(between the 1x1 and 8x8 simulation, c̄v = 0.1949). The exceptions to this are the 4x4 and

8x8 runs, indicating that at these sizes the super cells are large enough that the distortion

due to periodic boundary conditions in minimal. Despite the majority of the simulations

being in poor agreement with one another, Figure 5.25 demonstrates that each of the

simulations reproduces the same basic features with similar intensities (the 1x1 simulation

is an exception to this with an additional low angle maximum). The same cannot be said

for the real space images of those respective simulations.

Figure 5.26 shows the effect of different super cell sizes on the radially integrated intensity of

real space patterns. These patterns were formed by Fourier transforming the wave functions

used to generate the plots in Figure 5.25 to real space.

Figure 5.26: Radially integrated real space intensity of [111] silicon at 300 KeV for various
super cell sizes as indicated in the legend. In these simulations, the unbounded potential
formulation of the multislice method was used for the sake of computational efficiency and
the image was centered at the location of the CBED probe. The simulations themselves are
in fairly poor agreement with one another between r = 0 Å and r = 7 Å (c̄v ≈ 0.23) with
one exception; between the 4x4 and 8x8 simulations c̄v = 0.0520. Note that unlike other
plots in this chapter, the y axis has not been log scaled.

From Figure 5.26, it can be observed that there are significant differences in the real space

images formed by simulations of different super cell sizes. Even between the 4x4 and
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8x8 plots there some deviation at small radii (c̄v = 0.0520) which becomes increasingly

pronounced at larger radii. The 1x1 image is observed to have intensity maxima that

are entirely absent in the other simulations and those maxima it shares with the other

simulations are often shifted.

To give a better idea of the differences between the real space images plotted in 5.26, the

total radially integrated intensity of each of the simulations is plotted in Figure 5.27 as a

function of radius.

Figure 5.27: Total radially integrated real space intensity plotted as a function of radius.
As with Figure 5.26, the plots are of [111] silicon at 300 KeV for various super cell sizes
as indicated in the legend. In these simulations, the unbounded potential formulation of
the multislice method was used for the sake of computational efficiency and the image was
centered at the location of the CBED probe.

Figure 5.27 demonstrates that as the super cell is made larger, more of the intensity is found

further away from the initial probe. Figures 5.25, 5.26 and 5.27 indicate that using a small

super cell can cause a significant amount of distortion and may lead to erroneous results.

For this reason, it is preferable to use a larger super cell whenever possible.

This result is particularly relevant as all of the simulation in the previous sections of the

chapter were run using a 3x2 super cell. Examination of Figures 5.25, 5.26 and 5.27 indicates

that simulations using a 3x2 unit cell would not be fully convergent on the non-periodic
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case for 500 Å simulations. As such, future simulations should be run using significantly

larger super cells to reduce this source of error.
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Chapter 6

Conclusions

6.1 Summary of Results

In Chapter 5 it was demonstrated that, although the unbounded and bounded formulations

of the potential did not converge completely, using a smaller slice thickness for the un-

bounded potential formulation nevertheless produced more accurate results. These findings

indicate that the minimum slice thickness hypothesis made made by Kirkland [4], may not

be correct.

Comparisons between simulations using the multislice method and simulation of equation

2.6 using Runge-Kutta methods indicate that there is a substantial difference between the

two methods. If the Runge-Kutta method is in fact the more physically accurate simulation,

this indicates that the multislice method can show substantial deviations from physically

accurate results. Interestingly it was found that both the bounded and unbounded formu-

lations of the multislice method produced equally deviant results.

Finally, it was demonstrated the the dimensions of the super cell can play a significant role

in the formation of both real space and CBED (reciprocal space) patterns. It was suggested

that future simulations should take this effect into consideration by using an artificially

large super cell to simulate the non-periodic case.
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6.2 Recommendations for Future Work

Future work should concentrate on first establishing an accurate simulation method by

which the other simulations can be judged. For the work presented in this thesis, the

RK4 method was used to this end. However, it should be stressed that no independent

verification of the correctness of the code or accuracy of the simulation was performed for

the RK4 method. As such, all results pertaining to the RK4 method should be reexamined

in the future.

Once a more accurate method is established, the differences between the various methods

could be more accurately quantified and a maximally efficient (in terms of accuracy versus

computation time) method could be developed. Of particular interest is the wave solution

presented which is both unconditionally stable and includes the contributions from the

second derivative term in equation 2.6.
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Appendix A

Simulation Conditions

The input file (haadf.xyz) for [111] silicon at 100 KeV using CM30 conditions is:

One unit cell of 111 silicon.
Type the x, y and z lattice parameters in Angstroms below.
7.6792 13.3007 9.4050
Number of times the unit cell is replicated in x, y and z directions.
3 2 54
X and Y dimensions for HAADF image.
1 1
Average defocus(angstroms), Standard deviation of defocus (angstroms), Defocus
delta (angstroms).
645 10.0 2.0
Spherical aberration coefficient (C3) in mm.
2.0
Fifth order aberration coefficient (C5) in mm.
0.0
Objective or condensor aperture in millirads.
3.1
Magnitude (angstroms) and angle (degrees) of 2-fold astigmatism.
0.0 0.0
Magnitude (angstroms) and angle (degrees) of 3-fold astigmatism.
0.0 0.0
Incident beam energy in keV.
100.0
Wavefunction size in pixels. Must be a factor of 2for FFT algorithms to work.
512 512
Crystal tilt in the x and y directions in milliradians.
0.0 0.0
Slice thickness in angstroms. Should be greater than about 1.0 angstroms for
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a stable calculation.
3.135
Include the effects of thermal vibrations? 1 = yes, 0 = no.
1
Temperature in degrees Kelvin.
300.0
Simulation Type (1=Earl, 0=new)
0
List the atomic number, x, y and z positions of atoms in unit cell
(angstroms), and occupancy factor, thermal vibration amplitude
(angstroms).
14 5.759385 9.975547 0.000000 1.000000 0.078000
14 5.759385 9.975547 2.351259 1.000000 0.078000
14 0.000000 6.650365 0.000000 1.000000 0.078000
14 1.919795 9.975547 0.000000 1.000000 0.078000
14 0.000000 6.650365 2.351259 1.000000 0.078000
14 1.919795 9.975547 2.351259 1.000000 0.078000
14 0.000000 11.083941 3.135012 1.000000 0.078000
14 0.000000 11.083941 5.486271 1.000000 0.078000
14 3.839590 0.000000 0.000000 1.000000 0.078000
14 1.919795 3.325182 0.000000 1.000000 0.078000
14 5.759385 3.325182 0.000000 1.000000 0.078000
14 3.839590 0.000000 2.351259 1.000000 0.078000
14 1.919795 3.325182 2.351259 1.000000 0.078000
14 5.759385 3.325182 2.351259 1.000000 0.078000
14 3.839590 6.650365 0.000000 1.000000 0.078000
14 3.839590 4.433576 3.135012 1.000000 0.078000
14 1.919795 7.758759 3.135012 1.000000 0.078000
14 5.759385 7.758759 3.135012 1.000000 0.078000
14 3.839590 6.650365 2.351259 1.000000 0.078000
14 3.839590 4.433576 5.486271 1.000000 0.078000
14 1.919795 7.758759 5.486271 1.000000 0.078000
14 5.759385 7.758759 5.486271 1.000000 0.078000
14 3.839590 11.083941 3.135012 1.000000 0.078000
14 3.839590 8.867153 6.270024 1.000000 0.078000
14 1.919795 12.192335 6.270024 1.000000 0.078000
14 5.759385 12.192335 6.270024 1.000000 0.078000
14 3.839590 11.083941 5.486271 1.000000 0.078000
14 3.839590 8.867153 8.621283 1.000000 0.078000
14 1.919795 12.192335 8.621283 1.000000 0.078000
14 5.759385 12.192335 8.621283 1.000000 0.078000
14 5.759385 1.108394 3.135012 1.000000 0.078000
14 5.759385 1.108394 5.486271 1.000000 0.078000
14 5.759385 5.541971 6.270024 1.000000 0.078000
14 5.759385 5.541971 8.621283 1.000000 0.078000
14 0.000000 0.000000 0.000000 1.000000 0.078000
14 1.919795 1.108394 3.135012 1.000000 0.078000
14 -0.000000 0.000000 2.351259 1.000000 0.078000
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14 1.919795 1.108394 5.486271 1.000000 0.078000
14 0.000000 4.433576 3.135012 1.000000 0.078000
14 0.000000 2.216788 6.270024 1.000000 0.078000
14 1.919795 5.541971 6.270024 1.000000 0.078000
14 0.000000 4.433576 5.486271 1.000000 0.078000
14 0.000000 2.216788 8.621283 1.000000 0.078000
14 1.919795 5.541971 8.621283 1.000000 0.078000
14 0.000000 8.867153 6.270024 1.000000 0.078000
14 0.000000 8.867153 8.621283 1.000000 0.078000
14 3.839590 2.216788 6.270024 1.000000 0.078000
14 3.839590 2.216788 8.621283 1.000000 0.078000
-1

The input file (haadf.xyz) for [111] silicon at 300 KeV using CM30 conditions is:

One unit cell of 111 silicon.
Type the x, y and z lattice parameters in Angstroms below.
7.6792 13.3007 9.4050
Number of times the unit cell is replicated in x, y and z directions.
3 2 54
X and Y dimensions for HAADF image.
1 1
Average defocus(angstroms), Standard deviation of defocus (angstroms),
Defocus delta (angstroms).
471 10.0 2.0
Spherical aberration coefficient (C3) in mm.
2.0
Fifth order aberration coefficient (C5) in mm.
0.0
Objective or condensor aperture in millirads.
3.1
Magnitude (angstroms) and angle (degrees) of 2-fold astigmatism.
0.0 0.0
Magnitude (angstroms) and angle (degrees) of 3-fold astigmatism.
0.0 0.0
Incident beam energy in keV.
300.0
Wavefunction size in pixels. Must be a factor of 2for FFT algorithms to work.
512 512
Crystal tilt in the x and y directions in milliradians.
0.0 0.0
Slice thickness in angstroms. Should be greater than about 1.0 angstroms for
a stable calculation.
3.135
Include the effects of thermal vibrations? 1 = yes, 0 = no.
1
Temperature in degrees Kelvin.
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300.0
Simulation Type (1=Earl, 0=new)
1
List the atomic number, x, y and z positions of atoms in unit cell
(angstroms), and occupancy factor, thermal vibration amplitude
(angstroms).
14 5.759385 9.975547 0.000000 1.000000 0.078000
14 5.759385 9.975547 2.351259 1.000000 0.078000
14 0.000000 6.650365 0.000000 1.000000 0.078000
14 1.919795 9.975547 0.000000 1.000000 0.078000
14 0.000000 6.650365 2.351259 1.000000 0.078000
14 1.919795 9.975547 2.351259 1.000000 0.078000
14 0.000000 11.083941 3.135012 1.000000 0.078000
14 0.000000 11.083941 5.486271 1.000000 0.078000
14 3.839590 0.000000 0.000000 1.000000 0.078000
14 1.919795 3.325182 0.000000 1.000000 0.078000
14 5.759385 3.325182 0.000000 1.000000 0.078000
14 3.839590 0.000000 2.351259 1.000000 0.078000
14 1.919795 3.325182 2.351259 1.000000 0.078000
14 5.759385 3.325182 2.351259 1.000000 0.078000
14 3.839590 6.650365 0.000000 1.000000 0.078000
14 3.839590 4.433576 3.135012 1.000000 0.078000
14 1.919795 7.758759 3.135012 1.000000 0.078000
14 5.759385 7.758759 3.135012 1.000000 0.078000
14 3.839590 6.650365 2.351259 1.000000 0.078000
14 3.839590 4.433576 5.486271 1.000000 0.078000
14 1.919795 7.758759 5.486271 1.000000 0.078000
14 5.759385 7.758759 5.486271 1.000000 0.078000
14 3.839590 11.083941 3.135012 1.000000 0.078000
14 3.839590 8.867153 6.270024 1.000000 0.078000
14 1.919795 12.192335 6.270024 1.000000 0.078000
14 5.759385 12.192335 6.270024 1.000000 0.078000
14 3.839590 11.083941 5.486271 1.000000 0.078000
14 3.839590 8.867153 8.621283 1.000000 0.078000
14 1.919795 12.192335 8.621283 1.000000 0.078000
14 5.759385 12.192335 8.621283 1.000000 0.078000
14 5.759385 1.108394 3.135012 1.000000 0.078000
14 5.759385 1.108394 5.486271 1.000000 0.078000
14 5.759385 5.541971 6.270024 1.000000 0.078000
14 5.759385 5.541971 8.621283 1.000000 0.078000
14 0.000000 0.000000 0.000000 1.000000 0.078000
14 1.919795 1.108394 3.135012 1.000000 0.078000
14 -0.000000 0.000000 2.351259 1.000000 0.078000
14 1.919795 1.108394 5.486271 1.000000 0.078000
14 0.000000 4.433576 3.135012 1.000000 0.078000
14 0.000000 2.216788 6.270024 1.000000 0.078000
14 1.919795 5.541971 6.270024 1.000000 0.078000
14 0.000000 4.433576 5.486271 1.000000 0.078000
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14 0.000000 2.216788 8.621283 1.000000 0.078000
14 1.919795 5.541971 8.621283 1.000000 0.078000
14 0.000000 8.867153 6.270024 1.000000 0.078000
14 0.000000 8.867153 8.621283 1.000000 0.078000
14 3.839590 2.216788 6.270024 1.000000 0.078000
14 3.839590 2.216788 8.621283 1.000000 0.078000
-1
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