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Motivation
• String Theory in a Nutshell

• String theory is a model of fundamental physics whose building blocks are
one-dimensional extended objects (strings) rather than the zero-dimensional
points (particles) that are the basis of the Standard Model of particle physics.

• We also have branes, membranes and higher-dimensional objects.

• Extra Dimensions?

• One intriguing feature of string theory is that it predicts the number of
dimensions which the universe should possess.

• string theory allows one to compute the number of spacetime dimensions
from first principles (Lorentz invariance)

• Nowdays this field is very active due to the possible experimental searches for
signatures of extradimensions in particle accelerator experiments and tests of
Newton’s square law at short distances.
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The Model: Timelike Minimal Surfaces

• Problem: Embedding of a higher dimensional bulk spacetime into a target space

• Membrane located inside the bulk, where we have an induced metric.

• The membrane is then a minimal (timelike) surface that describes the evolution
of the string in time.

• This is relevant for string and M-theory, because these backgrounds are
explicitly time dependent.

• In terms of the physics, the timelike minimal surface problem comes up in both
”regular” string theory and in so-called m-theory. In the m-theory case, it is the
equation governing membrane motion.

• The equations of motion are difficult so we need to solve them numerically

• Baby Model: From the d-brane action we obtain the minimal surface functional
by turning off all the physics tensors. .
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Specific Model
• What is a Metric function?

• Consider an embedding of R1+n into Minkowski spacetime R1+n+q given by
the functions (fields) f I, I = 1, . . . , q.

• Following a suggestion by Jim Isenberg1, I intend to solve the equations of
motion for this problem which are the EOM’s for a scalar field in the
background geometry:

hαβ = ηαβ + f I
αfJ

β δIJ (1)

where f I
α = ∂αf I. We will solve the problem in 1 + 1 dimensions so we have a

2-dimensional “target” surface embedded in a 3-dimensional “bulk” space, so
q = 1 i.e. α, β = 1, 2 = t, r and I, J = 1, then η = diag(−1, 1). The extra
field induces perturbations in the 2d metric.

1Allen, P., Andersson, Lars and Isenberg, James; Time-like Minimal Surfaces of General Co-dimension in Minkowski
Spacetime, private communication.
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The Equations of Motion

• Timelike Minimal Surfaces (branes, membranes)

• The equations of motion are the Klein-Gordon equation in this background
geometry,

∂µ

[√
deth hµν∂νf

I
]

= 0 (2)

• We need to calculate

I compute the metric components:

h11 = η11 + f I
1fJ

1 δIJ (3)

h22 = η22 + f I
2fJ

2 δIJ (4)

h12 = f I
1fJ

2 δIJ (5)

h21 = f I
2fJ

1 δIJ (6)
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• So we have the metric

hµν :=
[
−1 + f11 2 f11 f21
f11 f21 1 + f21 2

]

• The inverse is

hµν :=
1

det(hµν)

[
1 + f21 2 −f11 f21
−f11 f21 −1 + f11 2

]

• with the determinant of the metric

det(hµν) = (−1 + f11 2)(1 + f22 2)− (f11 2 f21 2) (7)
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The equations of Motion (Cont)
• Explicitly we have,

∂t

[√
−deth htν∂νf

I
]

+ ∂r

[√
deth hrν∂νf

I
]

= 0 (8)

∂t

[√
−deth(htt∂tf

I + htr∂rf
I)
]

+ ∂r

[√
−deth(hrt∂tf

I + hrr∂rf
I)
]

= 0 (9)

After performing the calculations in a maple worksheet (see website) we obtain
the following partial differential equation for the field:

− ∂2f

∂t2
+

∂2f

∂x2
= (

∂f

∂t
)2(

∂2f

∂x2
)− 2

∂f

∂t

∂f

∂x

∂2f

∂t∂x
+

∂2f

∂t2
(
∂f

∂x
)2 (10)
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Numerical Scheme

• Discretization: First i get a first order set of equations with the following
changes of variables:

Π =
df

dt
Φ =

df

dx
(11)

Then equation (9) takes the form:

Π2Φ′ − 2ΠΦΠ′ + Π̇Φ2 + Π̇− Φ′ = 0 (12)

where tilde indicates the derivative with respect to x and the dot wrt to t, as
usual.

• So we end up with the following set of equations:

Π̇ = −(Π2 − 1)Φ′

Φ2 + 1
+

2ΠΦΠ′

Φ2 + 1
(13)

Φ̇ = Π′ (14)
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Where the last equation follows from the Schwarz theorem.
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Discretization (Cont)

• The I apply a Crank-Nicholson scheme, From eqn (13) we have:(
Πn+1

j −Πn
j

dt

)
=

1
2
(opn+1 + opn) (15)

where each operator is: (space derivatives are centered, 2nd order)

opn+1 =

[
−

(Π2)n+1
j − 1

(Φ2)n+1
j + 1

(
Φn+1

j−1 − Φn+1
j+1

2dx

)
+

2Πn+1
j Φn+1

j

(Φ2)n+1
j + 1

(
Πn+1

j+1 −Πn+1
j−1

2dx

)]

opn =

[
−

(Π2)n
j − 1

(Φ2)n
j + 1

(
Φn

j−1 − Φn
j+1

2dx

)
+

2Πn
j Φn

j

(Φ2)n
j + 1

(
Πn

j+1 −Πn
j−1

2dx

)]

and from eqn (14) we have:(
Φn+1

j − Φn
j

dt

)
=

1
2

[(
Πn+1

j−1 −Πn+1
j+1

2dx

)
+
(

Πn
j−1 −Πn

j+1

2dx

)]
(16)
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Kreiss-Oliger Dissipation
• Most FD schemes can not propagate acurrately high-frequency components of

the solution

• Dissipation is a low-pass filter applied to the grid function, supressing
high-frequency components in the numerical solution

• High frequency means wavelenghts on the order of the mesh spacing h

• Moreover, it is the high-frequency components that tend to exhibit the fastest
growth in an unstable scheme

• A popular dissipation technique is the Kreiss-Oliger method, whereby a term of
the form

Dk0ûi =
ε

16
(ûi−2 − 4ûi−1 + 6ûi − 4ûi+1 + ûi+2) (17)

is added to the differential equation. ε is a positive, adjustable parameter
controlling the amount of dissipation added, and must be less than 1 for
stability.

• The taylor expansion of this operator about xi shows that adding it to a
second-order accurate FDA should not affect the convergence properties of the
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scheme (its 4th order).
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Preliminary Results
• The solution of this equation tells us how the string, or the brane if we add

more dimensions, propagates in time i.e. the dynamics of this geometry.

• For a low amplitude limit of the initial profile, say A = 0.0001, I expect a
wavelike solution behaviour

• Its reasonable to expect a solitionic solution. For large amplitudes the
non-linearities dominate

Wave Equation
15



Final Comments
• Work to do:

• Perform an independent residual evaluation

• Explore different initial profiles and different amplitudes

• Determine if the asymmetry between right and left that I see is a numerical
bug

• Try a curved geometry and maybe two spatial dimensions (lots of algebra)

• All the material in this talk is located in
http://laplace.physics.ubc.ca/People/benjamin/projects/timelike

• The RNPL website
http://laplace.physics.ubc.ca/People/matt/Rnpl/index.html
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RNPL
• Now I code the equations in RNPL (Rapid Numerical Prototyping Language

• This is a high purpose language developed by Matthew Choptuik and Robert
Marsa, fort at UT Austin and then here at UBC.

• The objective is to have a rapid prototyping tool for time dependent systems
of PDEs

• Focused on numerical relativity but flexible to solve most types of PDEs

• The RNPL uses a parser (lex) to generate code in Fortran or C

• Then using symbolic manipulation for point-wise Newton-Gauss-Seidel
relaxation to generate update functions, for explicit and implicit schemes

• The user defines the operators, the coordinates, the gri functions, the initial
profile and RNPL generates and compiles the code for the update and
residual functions
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How RNPL code looks like
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