Solutions for Quiz 9 - Week of November 12, 2007

21.13. Model: A string fixed at both ends forms standing waves.

Solve: (a) Three antinodes means the string is vibrating as the $m=3$ standing wave. The frequency is $f_{3}=3 f_{1}$, so the fundamental frequency is $f_{1}=\frac{1}{3}(420 \mathrm{~Hz})=140 \mathrm{~Hz}$. The fifth harmonic will have the frequency $f_{5}=5 f_{1}=700 \mathrm{~Hz}$.
(b) The wavelength of the fundamental mode is $\lambda_{1}=2 L=1.20 \mathrm{~m}$. The wave speed on the string is $v=\lambda_{1} f_{1}=$ $(1.20 \mathrm{~m})(140 \mathrm{~Hz})=168 \mathrm{~m} / \mathrm{s}$. Alternatively, the wavelength of the $n=3$ mode is $\lambda_{3}=\frac{1}{3}(2 L)=0.40 \mathrm{~m}$, from which $v=$ $\lambda_{3} f_{3}=(0.40 \mathrm{~m})(420 \mathrm{~Hz})=168 \mathrm{~m} / \mathrm{s}$. The wave speed on the string is given by

$$
v=\sqrt{\frac{T_{\mathrm{s}}}{\mu}} \Rightarrow T_{\mathrm{S}}=\mu v^{2}=(0.0020 \mathrm{~kg} / \mathrm{m})(168 \mathrm{~m} / \mathrm{s})^{2}=56.4 \mathrm{~N}
$$

Assess: You must remember to use the linear density in SI units of kg / m. Also, the speed is the same for all modes, but you must use a matching λ and f to calculate the speed.
21.45. Model: The steel wire is under tension and it vibrates with three antinodes.

Visualize: Please refer to Figure P21.45.
Solve: When the spring is stretched 8.0 cm , the standing wave on the wire has three antinodes. This means $\lambda_{3}=\frac{2}{3} L$ and the tension T_{S} in the wire is $T_{\mathrm{S}}=k(0.080 \mathrm{~m})$, where k is the spring constant. For this tension,

$$
v_{\text {wire }}=\sqrt{\frac{T_{\mathrm{s}}}{\mu}} \Rightarrow f \lambda_{3}=\sqrt{\frac{T_{\mathrm{S}}}{\mu}} \Rightarrow f=\frac{3}{2 L} \sqrt{\frac{k(0.08 \mathrm{~m})}{\mu}}
$$

We will let the stretching of the spring be Δx when the standing wave on the wire displays two antinodes. This means $\lambda_{2}=L$ and $T_{\mathrm{S}}^{\prime}=k x$. For the tension T_{S}^{\prime},

$$
v_{\text {wire }}^{\prime}=\sqrt{\frac{T_{\mathrm{s}}^{\prime}}{\mu}} \Rightarrow f \lambda_{2}=\sqrt{\frac{T_{\mathrm{s}}^{\prime}}{\mu}} \Rightarrow f=\frac{1}{L} \sqrt{\frac{k \Delta x}{\mu}}
$$

The frequency f is the same in the above two situations because the wire is driven by the same oscillating magnetic field. Now, equating the two frequency equations,

$$
\frac{1}{L} \sqrt{\frac{k \Delta x}{\mu}}=\frac{3}{2 L} \sqrt{\frac{k(0.080 \mathrm{~m})}{\mu}} \Rightarrow \Delta x=0.18 \mathrm{~m}=18 \mathrm{~cm}
$$

21.48. Model: A tube forms standing waves.

Solve: (a) The fundamental frequency cannot be 390 Hz because 520 Hz and 650 Hz are not integer multiples of it. But we note that the difference between 390 Hz and 520 Hz is 130 Hz as is the difference between 520 Hz and 650 Hz . We see that $390 \mathrm{~Hz}=3 \times 130 \mathrm{~Hz}=3 f_{1}, 520 \mathrm{~Hz}=4 f_{1}$, and $650 \mathrm{~Hz}=5 f_{1}$. So we are seeing the third, fourth, and fifth harmonics of a tube whose fundamental frequency is 130 Hz . According to Equation 21.17, this is an open-open tube because $f_{m}=m f_{1}$ with $m=1,2,3,4, \ldots$ For an open-closed tube m has only odd values.
(b) Knowing f_{1}, we can now find the length of the tube:

$$
L=\frac{v}{2 f_{1}}=\frac{343 \mathrm{~m} / \mathrm{s}}{2(130 \mathrm{~Hz})}=1.32 \mathrm{~m}
$$

(c) 520 Hz is the fourth harmonic. This is a sound wave, not a wave on a string, so the wave will have four nodes and will have antinodes at the ends, as shown.
(d) With carbon dioxide, the new fundamental frequency is

$$
f_{1}=\frac{v}{2 L}=\frac{280 \mathrm{~m} / \mathrm{s}}{2(1.32 \mathrm{~m})}=106 \mathrm{~Hz}
$$

Thus the frequencies of the $n=3,4$, and 5 modes are $f_{3}=3 f_{1}=318 \mathrm{~Hz}, f_{4}=4 f_{1}=424 \mathrm{~Hz}$, and $f_{5}=5 f_{1}=530 \mathrm{~Hz}$.
21.50. Model: The nodes of a standing wave are spaced $\lambda / 2$ apart.

Visualize:

$$
\Delta L=14.2 \mathrm{~cm}
$$

$$
\Delta L=14.2 \mathrm{~cm}
$$

Solve: The wavelength of the m th mode of an open-open tube is $\lambda_{m}=2 L / m$. Or, equivalently, the length of the tube that generates the m th mode is $L=m(\lambda / 2)$. Here λ is the same for all modes because the frequency of the tuning fork is unchanged. Increasing the length of the tube to go from mode m to mode $m+1$ requires a length change

$$
\Delta L=(m+1)(\lambda / 2)-m \lambda / 2=\lambda / 2
$$

That is, lengthening the tube by $\lambda / 2$ adds an additional antinode and creates the next standing wave. This is consistent with the idea that the nodes of a standing wave are spaced $\lambda / 2$ apart. This tube is first increased $\Delta L=$ $56.7 \mathrm{~cm}-42.5 \mathrm{~cm}=14.2 \mathrm{~cm}$, then by $\Delta L=70.9 \mathrm{~cm}-56.7 \mathrm{~cm}=14.2 \mathrm{~cm}$. Thus $\lambda / 2=14.2 \mathrm{~cm}$ and thus $\lambda=28.4 \mathrm{~cm}=$ 0.284 m . Therefore the frequency of the tuning fork is

$$
f=\frac{v}{\lambda}=\frac{343 \mathrm{~m} / \mathrm{s}}{0.284 \mathrm{~m}}=1208 \mathrm{~Hz}
$$

