20.71. Model: We have a traveling wave radiated by the tornado siren.

Solve: (a) The power of the source is calculated as follows:

$$
I_{50 \mathrm{~m}}=0.10 \mathrm{~W} / \mathrm{m}^{2}=\frac{P_{\text {source }}}{4 \pi r^{2}}=\frac{P_{\text {source }}}{4 \pi(50 \mathrm{~m})^{2}} \Rightarrow P_{\text {source }}=\left(0.10 \mathrm{~W} / \mathrm{m}^{2}\right) 4 \pi(50 \mathrm{~m})^{2}=(1000 \pi) \mathrm{W}
$$

The intensity at 1000 m is

$$
I_{1000 \mathrm{~m}}=\frac{P_{\text {source }}}{4 \pi(1000 \mathrm{~m})^{2}}=\frac{(1000 \pi) \mathrm{W}}{4 \pi(1000 \mathrm{~m})^{2}}=250 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

(b) The maximum distance is calculated as follows:

$$
I=\frac{P_{\text {source }}}{4 \pi r^{2}} \Rightarrow 1.0 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}=\frac{(1000 \pi) \mathrm{W}}{4 \pi r^{2}} \Rightarrow r=15.8 \mathrm{~km}
$$

20.73. Model: The bat's chirping frequency is altered by the Doppler effect. The frequency is increased as the bat approaches and it decreases as the bat recedes away.
Solve: The bat must fly away from you, so that the chirp frequency observed by you is less than 25 kHz . From Equation 20.38,

$$
f_{-}=\frac{f_{0}}{1+v_{\mathrm{s}} / v} \Rightarrow 20,000 \mathrm{~Hz}=\frac{25000 \mathrm{~Hz}}{1+\left(\frac{v_{\mathrm{S}}}{343 \mathrm{~m} / \mathrm{s}}\right)} \Rightarrow v_{\mathrm{s}}=85.8 \mathrm{~m} / \mathrm{s}
$$

Assess: This is a rather large speed: $85.8 \mathrm{~m} / \mathrm{s} \approx 180 \mathrm{mph}$. This is not possible for a bat.
20.74. Model: The sound generator's frequency is altered by the Doppler effect. The frequency increases as the generator approaches the student, and it decreases as the generator recedes from the student.
Solve: The generator's speed is

$$
v_{\mathrm{S}}=r \omega=r(2 \pi f)=(1.0 \mathrm{~m}) 2 \pi\left(\frac{100}{60} \mathrm{rev} / \mathrm{s}\right)=10.47 \mathrm{~m} / \mathrm{s}
$$

The frequency of the approaching generator is

$$
f_{+}=\frac{f_{0}}{1-v_{\mathrm{s}} / v}=\frac{600 \mathrm{~Hz}}{1-\frac{10.47 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}}=619 \mathrm{~Hz}
$$

Doppler effect for the receding generator, on the other hand, is

$$
f_{-}=\frac{f_{0}}{1+v_{\mathrm{s}} / v}=\frac{600 \mathrm{~Hz}}{1+\frac{10.47 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}}=582 \mathrm{~Hz}
$$

Thus, the highest and the lowest frequencies heard by the student are 619 Hz and 582 Hz .
20.82. Model: The wave pulse is a traveling wave on a stretched wire.

Visualize:

Solve: (a) At a distance y above the lower end of the rope, the point P is in static equilibrium. The upward tension in the rope must balance the weight of the rope that hangs below this point. Thus, at this point

$$
T=w=M g=(\mu y) g
$$

where $\mu=m / L$ is the linear density of the entire rope. Using Equation 20.2, we get

$$
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{\mu y g}{\mu}}=\sqrt{g y}
$$

(b) The time to travel a distance $d y$ at y, where the wave speed is $v=\sqrt{g y}$, is

$$
d t=\frac{d y}{v}=\frac{d y}{\sqrt{g y}}
$$

Finding the time for a pulse to travel the length of the rope requires integrating from one end of the rope to the other:

$$
\Delta t=\int_{0}^{T} d t=\int_{0}^{L} \frac{d y}{\sqrt{g y}}=\frac{1}{\sqrt{g}}\left(\left.2 \sqrt{y}\right|_{0} ^{L}\right)=\frac{2}{\sqrt{g}} \sqrt{L} \Rightarrow \Delta t=2 \sqrt{\frac{L}{g}}
$$

21.36. Model: The wavelength of the standing wave on a string is $\lambda_{m}=2 L / m$, where $m=1,2,3, \ldots$ We assume that 30 cm is the first place from the left end of the string where $A=A_{\max } / 2$.
Visualize:

Solve: The amplitude of oscillation on the string is $A(x)=A_{\max } \sin k x$. Since the string is vibrating in the third harmonic, the wave number is

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{(2 L / 3)}=3 \frac{\pi}{L}
$$

Substituting into the equation for the amplitude,

$$
\frac{1}{2} A_{\max }=A_{\max } \sin \left(\frac{3 \pi}{L}(0.30 \mathrm{~m})\right) \Rightarrow \sin \left(\frac{3 \pi}{L}(0.30 \mathrm{~m})\right)=\frac{1}{2} \Rightarrow \frac{3 \pi}{L}(0.30 \mathrm{~m})=\frac{\pi}{6} \mathrm{rad} \Rightarrow L=5.40 \mathrm{~m}
$$

21.37. Model: The wavelength of the standing wave on a string vibrating at its fundamental frequency is equal to $2 L$.
Solve: The amplitude of oscillation on the string is $A(x)=2 a \sin k x$, where a is the amplitude of the traveling wave and the wave number is

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2 L}=\frac{\pi}{L}
$$

Substituting into the above equation,

$$
A\left(x=\frac{1}{4} L\right)=2.0 \mathrm{~cm}=2 a \sin \left[\left(\frac{\pi}{L}\right)\left(\frac{L}{4}\right)\right] \Rightarrow 1.0 \mathrm{~cm}=a\left(\frac{1}{\sqrt{2}}\right) \Rightarrow a=\sqrt{2} \mathrm{~cm}=1.41 \mathrm{~cm}
$$

21.38. Visualize: Please refer to Figure 21.4.

Solve: You can see in Figure 21.4 that the time between two successive instants when the antinodes are at maximum height is half the period, or $\frac{1}{2} T$. Thus $T=2(0.25 \mathrm{~s})=0.50 \mathrm{~s}$, and so

$$
f=\frac{1}{T}=\frac{1}{0.50 \mathrm{~s}}=2.0 \mathrm{~Hz} \Rightarrow \lambda=\frac{v}{f}=\frac{3.0 \mathrm{~m} / \mathrm{s}}{2.0 \mathrm{~Hz}}=1.50 \mathrm{~m}
$$

21.40. Model: The wave on a stretched string with both ends fixed is a standing wave.

Solve: We must distinguish between the sound wave in the air and the wave on the string. The listener hears a sound wave of wavelength $\lambda_{\text {sound }}=40 \mathrm{~cm}=0.40 \mathrm{~m}$. Thus, the frequency is

$$
f=\frac{v_{\text {sound }}}{\lambda_{\text {sound }}}=\frac{343 \mathrm{~m} / \mathrm{s}}{0.40 \mathrm{~m}}=857.5 \mathrm{~Hz}
$$

The violin string oscillates at the same frequency, because each oscillation of the string causes one oscillation of the air. But the wavelength of the standing wave on the string is very different because the wave speed on the string is not the same as the wave speed in air. Bowing a string produces sound at the string's fundamental frequency, so the wavelength of the string is

$$
\lambda_{\text {string }}=\lambda_{1}=2 L=0.60 \mathrm{~m} \Rightarrow v_{\text {string }}=\lambda_{\text {string }} f=(0.60 \mathrm{~m})(857.5 \mathrm{~Hz})=514.5 \mathrm{~m} / \mathrm{s}
$$

The tension is the string is found as follows:

$$
v_{\text {string }}=\sqrt{\frac{T_{\mathrm{s}}}{\mu}} \Rightarrow T_{\mathrm{S}}=\mu\left(v_{\text {string }}\right)^{2}=(0.001 \mathrm{~kg} / \mathrm{m})(514.5 \mathrm{~m} / \mathrm{s})^{2}=265 \mathrm{~N}
$$

