Solutions for Quiz 7 - Week of October 29, 2007

20.40. Visualize: The function $D(x, t)$ represents a pulse that travels in the positive x-direction without changing shape.
Solve: (a)

(b) The leading edge of the pulse moves forward 3 m each second. Thus, the wave speed is $3.0 \mathrm{~m} / \mathrm{s}$.
(c) $|x-3 t|$ is a function of the form $D(x-v t)$, so the pulse moves to the right at $v=3 \mathrm{~m} / \mathrm{s}$.
20.43. Visualize: Please refer to Figure P20.43.

Solve: (a) We see from the history graph that the period $T=0.20 \mathrm{~s}$ and the wave speed $v=4.0 \mathrm{~m} / \mathrm{s}$. Thus, the wavelength is

$$
\lambda=\frac{v}{f}=v T=(4.0 \mathrm{~m} / \mathrm{s})(0.20 \mathrm{~s})=0.80 \mathrm{~m}
$$

(b) The phase constant ϕ_{0} is obtained as follows:

$$
D(0 \mathrm{~m}, 0 \mathrm{~s})=A \sin \phi_{0} \Rightarrow-2 \mathrm{~mm}=(2 \mathrm{~mm}) \sin \phi_{0} \Rightarrow \sin \phi_{0}=-1 \Rightarrow \phi_{0}=-\frac{1}{2} \pi \mathrm{rad}
$$

(c) The displacement equation for the wave is

$$
D(x, t)=A \sin \left(\frac{2 \pi x}{\lambda}-2 \pi f t+\phi_{0}\right)=(2.0 \mathrm{~mm}) \sin \left(\frac{2 \pi x}{0.80 \mathrm{~m}}-\frac{2 \pi t}{0.20 \mathrm{~s}}-\frac{\pi}{2}\right)=(2.0 \mathrm{~mm}) \sin \left(2.5 \pi x-10 \pi t-\frac{1}{2} \pi\right)
$$

where x and t are in m and s , respectively.
20.44. Solve: The time for the sound wave to travel down the tube and back is $t=440 \mu$ s since 1 division is equal to $100 \mu \mathrm{~s}$. So, the speed of the sound wave in the liquid is

$$
v=\frac{2 \times 25 \mathrm{~cm}}{440 \mu \mathrm{~s}}=1140 \mathrm{~m} / \mathrm{s}
$$

20.63. Model: We have a sinusoidal traveling wave going in the $+y$-direction. We will assume a sound speed of $343 \mathrm{~m} / \mathrm{s}$.
Solve: The wave's frequency is 686 Hz . Thus the wavelength is $\lambda=v / f=0.500 \mathrm{~m}=50.0 \mathrm{~cm}$. Since one crest is located at $y=12.5 \mathrm{~cm}$ at $t=0 \mathrm{~s}$, the other crests will be spaced every 50 cm . The crests will be at $62.5 \mathrm{~cm}, 112.5$ cm , and so on, as well as at $-37.5 \mathrm{~cm},-87.5 \mathrm{~cm}$, and so on. This is sufficient information to draw the snapshot graph at $t=0 \mathrm{~s}$. Note that the y-axis is drawn horizontally in this representation of the wave, even though the wave is physically moving along the y-axis in a vertical direction.

(b) The displacement at $y=0 \mathrm{~m}$ and $t=0 \mathrm{~s}$ is

$$
D(0 \mathrm{~m}, 0 \mathrm{~s})=A \sin \phi_{0}=0 \mathrm{~m} \Rightarrow \phi_{0}=\sin ^{-1}(0)=0 \text { or } \pi \mathrm{rad}
$$

How do we distinguish between these two mathematically possible answers? Consider the rest of the y-axis at $t=$ 0 s . The displacement is

$$
D(y, t=0)=A \sin \left(\frac{2 \pi y}{\lambda}+\phi_{0}\right)=A \sin \left(\frac{2 \pi y}{50 \mathrm{~cm}}+\phi_{0}\right)
$$

We know that the displacement at $y=12.5 \mathrm{~cm}$ is a crest at $t=0 \mathrm{~s}(D=A)$, so the sine must equal to 1 at $t=0 \mathrm{~s}$. Using the displacement equation at $y=12.5 \mathrm{~cm}$ yields:

$$
D(12.5 \mathrm{~cm}, t=0 \mathrm{~s})=A \sin \left(\frac{2 \pi(12.5 \mathrm{~cm})}{50 \mathrm{~cm}}+\phi_{0}\right)=A \sin \left(\frac{\pi}{2}+\phi_{0}\right)
$$

$\phi_{0}=0$ correctly gives $D=A$, whereas $\phi_{0}=\pi$ rad gives $D=-A$. So the phase constant is $\phi_{0}=0 \mathrm{rad}$.
(c) Using the known values of λ, f, and ϕ_{0}, we can write the wave equation as

$$
D(y, t)=A \sin \left(\frac{2 \pi y}{\lambda}-2 \pi f t+\phi_{0}\right)=A \sin \left[\left(12.57 \mathrm{~m}^{-1}\right) y-\left(4310 \mathrm{~s}^{-1}\right) t\right]
$$

(d) At $t=0 \mathrm{~s}$, one crest is located at $y=12.5 \mathrm{~cm}$ and the others are spaced every 50 cm . This leads to the wave front diagram shown below. The wave fronts are numbered.
(e) The period of the wave is

$$
T=\frac{1}{f}=\frac{1}{686 \mathrm{~Hz}}=1.458 \mathrm{~ms}
$$

0.729 ms is exactly $\frac{1}{2} T$-half a period. During half a period, the wave crests each move forward half a wavelength, or 25 cm .
(f) The phase of the wave is the full value of the argument of the sine function at a particular point in space and time. At $y=-12.5 \mathrm{~cm}$, the phase is

$$
\begin{aligned}
\phi=k y-\omega t+\phi_{0} & =\left(12.57 \mathrm{~m}^{-1}\right) y-\left(4310 \mathrm{~s}^{-1}\right) t \\
& =\left(12.57 \mathrm{~m}^{-1}\right)(-0.125 \mathrm{~m})-\left(4310 \mathrm{~s}^{-1}\right)(0.000729 \mathrm{~s})=-4.70 \mathrm{rad}=-\frac{3}{2} \pi \mathrm{rad}
\end{aligned}
$$

This phase corresponds to a wave crest. In the wave front graph at $t=0.729 \mathrm{~ms}$, you can see a crest at $y=-12.5 \mathrm{~cm}$. Similarly, the phase at $y=+12.5 \mathrm{~cm}$ is $\phi=-1.57 \mathrm{rad}=-\frac{1}{2} \pi \mathrm{rad}$. This is a trough.

20.71. Model: We have a traveling wave radiated by the tornado siren.

Solve: (a) The power of the source is calculated as follows:

$$
I_{50 \mathrm{~m}}=0.10 \mathrm{~W} / \mathrm{m}^{2}=\frac{P_{\text {source }}}{4 \pi r^{2}}=\frac{P_{\text {source }}}{4 \pi(50 \mathrm{~m})^{2}} \Rightarrow P_{\text {source }}=\left(0.10 \mathrm{~W} / \mathrm{m}^{2}\right) 4 \pi(50 \mathrm{~m})^{2}=(1000 \pi) \mathrm{W}
$$

The intensity at 1000 m is

$$
I_{1000 \mathrm{~m}}=\frac{P_{\text {source }}}{4 \pi(1000 \mathrm{~m})^{2}}=\frac{(1000 \pi) \mathrm{W}}{4 \pi(1000 \mathrm{~m})^{2}}=250 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

(b) The maximum distance is calculated as follows:

$$
I=\frac{P_{\text {source }}}{4 \pi r^{2}} \Rightarrow 1.0 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}=\frac{(1000 \pi) \mathrm{W}}{4 \pi r^{2}} \Rightarrow r=15.8 \mathrm{~km}
$$

20.73. Model: The bat's chirping frequency is altered by the Doppler effect. The frequency is increased as the bat approaches and it decreases as the bat recedes away.
Solve: The bat must fly away from you, so that the chirp frequency observed by you is less than 25 kHz . From Equation 20.38,

$$
f_{-}=\frac{f_{0}}{1+v_{\mathrm{s}} / v} \Rightarrow 20,000 \mathrm{~Hz}=\frac{25000 \mathrm{~Hz}}{1+\left(\frac{v_{\mathrm{s}}}{343 \mathrm{~m} / \mathrm{s}}\right)} \Rightarrow v_{\mathrm{s}}=85.8 \mathrm{~m} / \mathrm{s}
$$

Assess: This is a rather large speed: $85.8 \mathrm{~m} / \mathrm{s} \approx 180 \mathrm{mph}$. This is not possible for a bat.
20.74. Model: The sound generator's frequency is altered by the Doppler effect. The frequency increases as the generator approaches the student, and it decreases as the generator recedes from the student.
Solve: The generator's speed is

$$
v_{\mathrm{S}}=r \omega=r(2 \pi f)=(1.0 \mathrm{~m}) 2 \pi\left(\frac{100}{60} \mathrm{rev} / \mathrm{s}\right)=10.47 \mathrm{~m} / \mathrm{s}
$$

The frequency of the approaching generator is

$$
f_{+}=\frac{f_{0}}{1-v_{\mathrm{s}} / v}=\frac{600 \mathrm{~Hz}}{1-\frac{10.47 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}}=619 \mathrm{~Hz}
$$

Doppler effect for the receding generator, on the other hand, is

$$
f_{-}=\frac{f_{0}}{1+v_{\mathrm{s}} / v}=\frac{600 \mathrm{~Hz}}{1+\frac{10.47 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}}=582 \mathrm{~Hz}
$$

Thus, the highest and the lowest frequencies heard by the student are 619 Hz and 582 Hz .
20.82. Model: The wave pulse is a traveling wave on a stretched wire.

Visualize:

Pictorial representation
Physical representation

Solve: (a) At a distance y above the lower end of the rope, the point P is in static equilibrium. The upward tension in the rope must balance the weight of the rope that hangs below this point. Thus, at this point

$$
T=w=M g=(\mu y) g
$$

where $\mu=m / L$ is the linear density of the entire rope. Using Equation 20.2, we get

$$
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{\mu y g}{\mu}}=\sqrt{g y}
$$

(b) The time to travel a distance $d y$ at y, where the wave speed is $v=\sqrt{g y}$, is

$$
d t=\frac{d y}{v}=\frac{d y}{\sqrt{g y}}
$$

Finding the time for a pulse to travel the length of the rope requires integrating from one end of the rope to the other:

$$
\Delta t=\int_{0}^{T} d t=\int_{0}^{L} \frac{d y}{\sqrt{g y}}=\frac{1}{\sqrt{g}}\left(\left.2 \sqrt{y}\right|_{0} ^{L}\right)=\frac{2}{\sqrt{g}} \sqrt{L} \Rightarrow \Delta t=2 \sqrt{\frac{L}{g}}
$$

