Solutions for Quiz 10 - Week of November 19, 2007

21.48. Model: A tube forms standing waves.

Solve: (a) The fundamental frequency cannot be 390 Hz because 520 Hz and 650 Hz are not integer multiples of it. But we note that the difference between 390 Hz and 520 Hz is 130 Hz as is the difference between 520 Hz and 650 Hz . We see that $390 \mathrm{~Hz}=3 \times 130 \mathrm{~Hz}=3 f_{1}, 520 \mathrm{~Hz}=4 f_{1}$, and $650 \mathrm{~Hz}=5 f_{1}$. So we are seeing the third, fourth, and fifth harmonics of a tube whose fundamental frequency is 130 Hz . According to Equation 21.17, this is an open-open tube because $f_{m}=m f_{1}$ with $m=1,2,3,4, \ldots$ For an open-closed tube m has only odd values.
(b) Knowing f_{1}, we can now find the length of the tube:

$$
L=\frac{v}{2 f_{1}}=\frac{343 \mathrm{~m} / \mathrm{s}}{2(130 \mathrm{~Hz})}=1.32 \mathrm{~m}
$$

(c) 520 Hz is the fourth harmonic. This is a sound wave, not a wave on a string, so the wave will have four nodes and will have antinodes at the ends, as shown.

$520 \mathrm{~Hz} \quad m=4$
(d) With carbon dioxide, the new fundamental frequency is

$$
f_{1}=\frac{v}{2 L}=\frac{280 \mathrm{~m} / \mathrm{s}}{2(1.32 \mathrm{~m})}=106 \mathrm{~Hz}
$$

Thus the frequencies of the $n=3,4$, and 5 modes are $f_{3}=3 f_{1}=318 \mathrm{~Hz}, f_{4}=4 f_{1}=424 \mathrm{~Hz}$, and $f_{5}=5 f_{1}=530 \mathrm{~Hz}$.
21.50. Model: The nodes of a standing wave are spaced $\lambda / 2$ apart. Visualize:

$$
\Delta L=14.2 \mathrm{~cm}
$$

Solve: The wavelength of the m th mode of an open-open tube is $\lambda_{m}=2 L / m$. Or, equivalently, the length of the tube that generates the m th mode is $L=m(\lambda / 2)$. Here λ is the same for all modes because the frequency of the tuning fork is unchanged. Increasing the length of the tube to go from mode m to mode $m+1$ requires a length change

$$
\Delta L=(m+1)(\lambda / 2)-m \lambda / 2=\lambda / 2
$$

That is, lengthening the tube by $\lambda / 2$ adds an additional antinode and creates the next standing wave. This is consistent with the idea that the nodes of a standing wave are spaced $\lambda / 2$ apart. This tube is first increased $\Delta L=$ $56.7 \mathrm{~cm}-42.5 \mathrm{~cm}=14.2 \mathrm{~cm}$, then by $\Delta L=70.9 \mathrm{~cm}-56.7 \mathrm{~cm}=14.2 \mathrm{~cm}$. Thus $\lambda / 2=14.2 \mathrm{~cm}$ and thus $\lambda=28.4 \mathrm{~cm}=$ 0.284 m . Therefore the frequency of the tuning fork is

$$
f=\frac{v}{\lambda}=\frac{343 \mathrm{~m} / \mathrm{s}}{0.284 \mathrm{~m}}=1208 \mathrm{~Hz}
$$

21.60. Model: Constructive or destructive interference occurs according to the phases of the two waves. Solve: The phase difference between the sound waves from the two speakers is

$$
\Delta \phi=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}
$$

With no delay between the two signals, $\Delta \phi_{0}=0$ rad and

$$
\Delta \phi=\frac{2 \pi(2.0 \mathrm{~m})}{v / f}=2 \pi(2.0 \mathrm{~m})\left(\frac{340 \mathrm{~Hz}}{340 \mathrm{~m} / \mathrm{s}}\right)=4 \pi \mathrm{rad}
$$

According to Equation 21.22, this corresponds to constructive interference. A delay of 1.47 ms corresponds to an inherent phase difference of

$$
\Delta \phi_{0}=\left(\frac{2 \pi}{T}\right)(1.47 \mathrm{~ms}) \mathrm{rad}=(2 \pi f)(1.47 \mathrm{~ms}) \mathrm{rad}=2 \pi(1.47 \mathrm{~ms})(340 \mathrm{~Hz}) \mathrm{rad}=\pi \mathrm{rad}
$$

The phase difference $\Delta \phi$ between the signals is then

$$
\Delta \phi=2 \pi\left(\frac{\Delta x}{\lambda}\right)+\Delta \phi_{0}=4 \pi \mathrm{rad}+\pi \mathrm{rad}=5 \pi \mathrm{rad}
$$

Thus, the interference along the x-axis will be perfect destructive.
21.61. Model: Interference occurs according to the difference between the phases of the two waves.

Visualize:

Solve: (a) The phase difference between the sound waves from the two speakers is

$$
\Delta \phi=2 \pi \frac{\Delta x}{\lambda}+\Delta \phi_{0}
$$

We have a maximum intensity when $\Delta x=0.50 \mathrm{~m}$ and $\Delta x=0.90 \mathrm{~m}$. This means

$$
2 \pi \frac{(0.50 \mathrm{~m})}{\lambda}+\Delta \phi_{0}=2 m \pi \mathrm{rad} \quad 2 \pi\left(\frac{0.90 \mathrm{~m}}{\lambda}\right)+\Delta \phi_{0}=2(m+1) \pi \mathrm{rad}
$$

Taking the difference of the above two equations,

$$
2 \pi\left(\frac{0.40 \mathrm{~m}}{\lambda}\right)=2 \pi \Rightarrow \lambda=0.40 \mathrm{~m} \Rightarrow f=\frac{v_{\text {sound }}}{\lambda}=\frac{340 \mathrm{~m} / \mathrm{s}}{0.40 \mathrm{~m}}=850 \mathrm{~Hz}
$$

(b) Using again the equations that correspond to constructive interference,

$$
2 \pi\left(\frac{0.50 \mathrm{~m}}{0.40 \mathrm{~m}}\right)+\Delta \phi_{0}=2 m \pi \mathrm{rad} \Rightarrow \Delta \phi_{0}=\phi_{20}-\phi_{10}=-\frac{\pi}{2} \mathrm{rad}
$$

We have taken $m=1$ in the last equation. This is because we always specify phase constants in the range $-\pi \mathrm{rad}$ to $\pi \mathrm{rad}$ (or 0 rad to $2 \pi \mathrm{rad}$). $m=1$ gives $-\frac{1}{2} \pi \mathrm{rad}$ (or equivalently, $m=2$ will give $\frac{3}{2} \pi \mathrm{rad}$).

