> | 1+3/2; |
![]() |
(1) |
> | 2.381+1/2; |
![]() |
(2) |
> | %+2; |
![]() |
(3) |
> | Pi; |
![]() |
(4) |
> | evalf(Pi,20); |
![]() |
(5) |
> | evalf(1+1/3,6); |
![]() |
(6) |
> | evalf(sqrt(2),8); |
![]() |
(7) |
> | sqrt(3); |
![]() |
(8) |
> | evalf(sin(0.2)); |
![]() |
(9) |
> | Digits := 5; |
![]() |
(10) |
> | evalf(sin(0.2)); |
![]() |
(11) |
> | I^2; |
![]() |
(12) |
> | exp(1); |
![]() |
(13) |
> | evalf(exp(I),4); |
![]() |
(14) |
> | sin(Pi/4); |
![]() |
(15) |
> | (1+x)+(2*x+5); |
![]() |
(16) |
> | expand((1+y)^2); |
![]() |
(17) |
> | factor(z^3+6*z^2+3*z-10); |
![]() |
(18) |
> | diff(sin(x),x); |
![]() |
(19) |
> | Sum(1/2^2,n); |
![]() |
(20) |
> | value(%); |
![]() |
(21) |
> | sum(1/2^2,n); |
![]() |
(22) |
> | A := 2; |
![]() |
(23) |
> | B := sqrt(A); |
![]() |
(24) |
> | C := x + y; |
![]() |
(25) |
> | x := 1.0; |
![]() |
(26) |
> | y := 2.0; |
![]() |
(27) |
> | C; |
![]() |
(28) |
> | restart; |
> | x; |
![]() |
(29) |
> | y := x^2 + 3*x + 1; |
![]() |
(30) |
> | eval(y,x=2); |
![]() |
(31) |
> | z:=cos(x)^5+sin(x)^4+2*cos(x)^2-2*sin(x)^2-cos(2*x); |
![]() |
(32) |
> | simplify(z); |
![]() |
(33) |
> | f := x -> (x-1)*(x+1)*(x-3); |
![]() |
(34) |
> | f(3); |
![]() |
(35) |
> | f(a); |
![]() |
(36) |
> | plot(f(x),x=-2..4); |
![]() |
> | A := {1,2,5}; |
![]() |
(37) |
> | map(f,A); |
![]() |
(38) |
> | B := {-1,1,3}; |
![]() |
(39) |
> | map(f,B); |
![]() |
(40) |
> | E := map(cos,A); |
![]() |
(41) |
> | E[2]; |
![]() |
(42) |
> | G := {sin(x),cos(x),exp(x)}; |
![]() |
(43) |
> | eval(G[2],x=0); |
![]() |
(44) |
> | restart; |
> | A := array(1..3); |
![]() |
(45) |
> | A[1] := 0; |
![]() |
(46) |
> | A[2] := Pi/3; |
![]() |
(47) |
> | A[3] := Pi/2; |
![]() |
(48) |
> | map(sin, A); |
![]() |
(49) |
> | B := array(1..3,1..3,[[1,3,6],[2,4,5],[3,7,9]]); |
![]() |
(50) |
> | expr := z^2+1; |
![]() |
(51) |
> | subs({z=x+y},expr); |
![]() |
(52) |
> | expr2 := a^3*b^2; |
![]() |
(53) |
> | myrule:={a*b=5}; |
![]() |
(54) |
> | simplify(expr2,myrule); |
![]() |
(55) |
> | simplify(expr2,{a=b}); |
![]() |
(56) |
> | solve({x^3-13*x+12},{x}); |
![]() |
(57) |
> | solve({x+y=3,x-y=8},{x,y}); |
![]() |
(58) |
> | eqn:={sin(x)=x/4}; |
![]() |
(59) |
> | fsolve(eqn,{x}); |
![]() |
(60) |
> | fsolve(eqn,{x}, 0.01..2*Pi); |
![]() |
(61) |
> | f:= sin(x+y)-exp(x)*y = 0: |
> | g:= x^2-y=2: |
> | fsolve({f,g}); |
![]() |
(62) |
> | fsolve({(x+1)^2=-2},x,complex); |
![]() |
(63) |
> | f := cos(x) -x; |
![]() |
(64) |
> | eqn := f=0; |
![]() |
(65) |
> | sol:=fsolve(eqn,{x}); |
![]() |
(66) |
> | Digits := 30; |
![]() |
(67) |
> | eval(f,sol); |
![]() |
(68) |
> | f:= x -> sin(x)/x; |
![]() |
(69) |
> | limit(f(x),x=0,right); |
![]() |
(70) |
> | limit(tan(x),x=Pi/2,left); |
![]() |
(71) |
> | P:= series(sin(x),x=0); |
![]() |
(72) |
> | P2 := convert(P,polynom); |
![]() |
(73) |
> | plot({P2,sin(x)},x=-Pi..Pi,-Pi..Pi); |
![]() |
> | ode1 := diff(y(t),t,t) = -g - k*diff(y(t),t); |
![]() |
(74) |
> | ode2 := diff(x(t),t,t) = -k*diff(x(t),t); |
![]() |
(75) |
> | ics1 := y(0)=0,D(y)(0)=vy; |
![]() |
(76) |
> | ics2 := x(0)=0,D(x)(0)=vx; |
![]() |
(77) |
> | sol1:=dsolve({ode1,ics1}); |
![]() |
(78) |
> | sol2:=dsolve({ode2,ics2}); |
![]() |
(79) |
> | assign(sol1); |
> | assign(sol2); |
> | x(t); |
![]() |
(80) |
> | y(t); |
![]() |
(81) |
> | with(plots); |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(82) |
> | vx:=1.0:vy:=1.0:g:=9.8: |
> | animate(plot,[[x(t),y(t),t=0..0.2]],k=0..10,trace=10,frames=100); |
![]() |
> |
> | ![]() |
![]() |
(83) |
> | ![]() |
![]() |
> |
> | ![]() |
> | ![]() |
![]() |
(84) |
> | ![]() |
![]() |
(85) |
> | ![]() |
![]() ![]() |
(86) |
> | ![]() |
> | ![]() |
![]() |
(87) |
> | ![]() |
![]() |
(88) |
> | ![]() |
![]() |
> | ![]() |
> | ![]() |
![]() |
(89) |
> | ![]() |
![]() |
(90) |
> | ![]() |
![]() |
(91) |
> | ![]() |
![]() |
(92) |
> | ![]() |
![]() |
(93) |
> | ![]() |
![]() |
(94) |
> | ![]() |
![]() |
(95) |
> | ![]() |
![]() |
(96) |
> | ![]() |
![]() |
(97) |
> | ![]() |
![]() |
(98) |
> | ![]() |
![]() |
(99) |
> | ![]() |
![]() |
(100) |
> | ![]() |
![]() |
(101) |
> | ![]() |
![]() |
(102) |
> | ![]() |
![]() |
(103) |
> | ![]() |
![]() |
(104) |
> | ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(105) |
> | ![]() |
![]() |
> | ![]() |
![]() |
(106) |
> | ![]() |
![]() |
(107) |
> | ![]() |
![]() |
(108) |
> | ![]() |
![]() |
(109) |
> | ![]() |
![]() |
(110) |
> | ![]() |
![]() |
> |