Numerical Investigation of the Schrödinger-Poisson System

Andrew Inwood UBC Physics

Supervisor: Matthew Choptuik

PHYS 449—April 2009

Outline

- Schrödinger-Poisson (SP) System
- <u>Goals</u>
 - Gravitational collapse, Singularity formation
- Numerical Implementation
- <u>Results: SP System</u>
- Introduce Non-linearities
- <u>Results: Modified SP System</u>

Matter Model

Complex massive scalar field in spherical symmetry.

<u>Schrodinger-Poisson System</u> Newtonian limit of Einstein-Klein-Gordon equation

$$\begin{cases} i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\nabla^2\Psi + gV\Psi \\ \nabla^2 V = |\Psi|^2 \\ c = G = \hbar = 1 \end{cases}$$

Partially motivated by work on critical collapse of Newtonian isothermal gas

Looking For ...

"Blow-up Solutions"

-Challenging to do numerically.

-Provide clues to the nature of singularity formation.

<u>Self Similarity</u>

-Common feature of gravitational collapse in spherical symmetry.

Singularities

Penrose-Hawking Singularity Theorems (1960's)

Guarantee singularity formation of sufficiently dense mass and energy configurations.

Sufficiently weak gravitating systems **never** become singular

Naked Singularities

Phase Diagram

Gundlach, 2002

Resources

<u>Code:</u>

RNPL (Rapid Numerical Prototyping Language) -Simplifies input of information necessary to solve PDE's

Manual updates written in FORTRAN 77.

Visualization:

XVS: Time-dependent PDE's

Discretize Equations of Motion

 V_1^n V_{Nr}^n

Boundary Conditions

Forward-difference leap frog operator:

$$\frac{-\frac{3}{2}f_1^n + 2f_2^n - \frac{1}{2}f_3^n}{h} = (f_r)_1^n + \mathcal{O}(h^2)$$

$$\begin{array}{c} \bullet \bullet \bullet \\ f_1 & f_2 & f_3 \end{array}$$

$$\begin{cases} V_1^n = -\frac{1}{3}V_3^n + \frac{4}{3}V_2^n \\ V_{\rm Nr}^n = 0 \end{cases}$$

Tridiagonal Form

$$\begin{cases} d_{-}\Psi_{j-1}^{n+1} + d_{0}\Psi_{j}^{n+1} + d_{+}\Psi_{j+1}^{n+1} = F_{j}^{n+1} \\ c_{-}V_{j-1}^{n+1} + c_{0}V_{j}^{n+1} + c_{+}V_{j+1}^{n+1} = \left(\Psi_{j}\Psi_{j}^{*}\right)^{n+1} \end{cases}$$

Back and forth until converge

$$\begin{pmatrix} d_0 & d_+ & 0 & 0 \\ d_- & d_0 & d_+ & 0 \\ 0 & d_- & d_0 & d_+ \\ 0 & 0 & d_- & d_0 \end{pmatrix} \begin{pmatrix} V_2 \\ V_3 \\ V_4 \\ V_5 \end{pmatrix} = \begin{pmatrix} \Psi_2 \\ \Psi_3 \\ \Psi_4 \\ \Psi_5 \end{pmatrix}$$

Invert using routines in LAPACK (Linear Algebra PACKage)

Comparison with Previous Work

Infinite set of static solutions called "Newtonian Boson Stars".

Search for Critical Behaviour

Change Matter Model to Induce Blow-up

Modified Schrödinger Poisson System

$$\begin{cases} i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\nabla^2\Psi + gV\Psi \\ \nabla^2V = |\Psi|^\epsilon \end{cases}$$

So far have done investigations where $\epsilon = 3$

Critical Solution?

Summary

- Schrödinger-Poisson (SP) System was solved numerically using a Crank-Nicolson finite-difference approximation scheme
- Varying a 1-parameter family of initial data, no evidence of blow-up was found.
- Introduced a non-linearity into SP system, through the gravitational coupling.
- Blow-up solutions were found for sufficiently large nonlinearity.
- Evidence for a critical solution at the threshold between dispersive and blow-up solutions.

Future Outlook

- Find threshold on epsilon for which blow-up solutions do not occur.
- Construct the exact form of the critical solution.
- Improve treatment at outer boundary to allow for longer integration.
- Implement mesh refinement techniques.
- Test stability of critical solutions and blow-up outside of spherical symmetry.
- Try to solve equations in cylindrical symmetry or other.