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Abstract

Gravitational collapse exhibits some unexpected behaviour near the threshold of
black hole formation: self-similarity, power-law scaling and universality. These three
phenomena closely resemble the physics of second-order phase transitions in statistical
mechanics and are therefore labelled critical phenomena. In this paper, I describe
these phenomena in detail and provide some historical context for their discovery. I
also explore the analogy between critical phenomena in gravitational collapse and in
statistical mechanical systems.



1 INTRODUCTION

1 Introduction

In general relativity, a smooth distribution of matter will typically evolve into one of three
distinct end states:

1. It will disperse to infinity if the internal interactions are too weak to hold it together.

2. It will equilibrate to a stable star if an outward force (such as thermal pressure) balances
the inward gravitational attraction.

3. It will collapse to a black hole if the gravitational attraction becomes too strong to
overcome.

Given these possibilities, it is worthwhile to ask how a generic matter distribution will
evolve into one of the three end states. It is well known that for a sufficiently weak initial
configuration of matter, the system will disperse and evolve into Minkowski spacetime [1].
Likewise, a sufficiently strong configuration will collapse into a black hole [2]. However, there
remains some ambiguity in the intermediate regime when the matter is teetering on the cusp
of gravitational collapse. This raises an interesting question: what is the exact threshold of
black hole formation?

This question was first proposed by Demetrios Christodoulou to Matthew Choptuik in
the spring of 1987 [3]. Both were studying the spherically-symmetric collapse of a minimally
coupled massless scalar field. Christodoulou was considering the scalar field model in terms
of single-parameter families of spacetimes characterized by some parameter p (for example,
p could be the amplitude of the scalar field). For a given family, the parameter p can be
varied so that the scalar field will either disperse to infinity or collapse to a black hole. We
define some critical value p? as the threshold where black hole formation suddenly “turns
on”. Christodoulou’s question was whether this critical black hole would have finite or
infinitesimal mass.

Using numerical methods, Choptuik answered this question: black holes at the critical
threshold can form with infinitesimal mass [4]. His analysis also revealed some unexpected
behaviour. Notably, he found that the mass M of a black hole scales as

M ' (p− p?)γ (1)

where γ ≈ 0.37. This relation appears to hold for any choice of the parameter p and for
many different families of initial data. Secondly, he found that the scalar field near the
critical threshold exhibits self-similarity. This means that the solution resembles itself at
many different length scales according to

φ(r, t) = φ
(
en∆r, en∆t

)
(2)

where n is an integer and ∆ ≈ 3.44. Finally, it was found that the critical solutions are also
universal in the sense that γ in (1) and ∆ in (2) are the same for all one-parameter families
of initial data investigated and for any choice of the parameter p. The fact that these three
remarkable properties arise as the spacetime is tuned toward the “critical” value p? justify
their designation as critical phenomena.
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2 MATHEMATICAL OVERVIEW

In this paper, I will explore these remarkable phenomena in detail and describe the histor-
ical context of their discovery. I will also discuss the analogy between critical phenomena in
gravitational collapse and the critical phenomena that arise in second-order phase transitions
in statistical mechanics.

2 Mathematical Overview

In his original paper [4], Choptuik studied the gravitational collapse of a massless scalar
field coupled to the gravitational field in spherical symmetry. The Einstein equations for a
massless scalar field are

Gµν = 8π

(
∇µφ∇νφ−

1

2
gµν∇ξφ∇ξφ

)
. (3)

The line element is given in spherical-polar coordinates by

ds2 = −α2(r, t) dt2 + a2(r, t) dr2 + r2 dΩ2 (4)

where a(r, t) is the radial metric function, dΩ2 is the metric of the 2-sphere, and α(r, t)
is the lapse function as defined in the ADM formulation of general relativity. The line
element (4) can be cast in a more illuminating form by defining the mass-aspect function as
m(r, t) = 1

2
r (1− a(r, t)−2). With this definition we get

ds2 = −α2(r, t) dt2 +

(
1− 2m(r, t)

r

)−1

dr2 + r2 dΩ2 (5)

which resembles the Schwarzchild geometry with a time-dependent mass. Note that r can be
interpreted as an areal coordinate (that is, it represents the points occupied by origin-centric
2-spheres with surface area 4πr2). Choptuik employed the polar hypersurface condition [5]
under which the extrinsic curvature has only one non-zero component

Kr
r = TrK. (6)

The advantage of this condition is that it forces the radial component of the shift vector βi

to vanish. Moreover, it yields a relatively simple form for the Einstein equations1,

0 =
1

a

da

dr
+
a2 − 1

2r
− 2πr

(
(∂rφ)2 +

( a
α
∂tφ
)2
)

(7)

0 =
1

α

dα

dr
− 1

α

da

dr
+

1− a2

r
. (8)

The scalar field φ(r, t) also obeys a wave equation

∇µ∇µφ = ∇µ∂µφ = 0. (9)

1For a thorough derivation of the evolution equations, please refer to [6].
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2 MATHEMATICAL OVERVIEW

In order to solve the evolution equations numerically, it is useful to define new variables
that cast the system in first-order form. These variables are

Φ(r, t) = ∂rφ(r, t), Π(r, t) =
a

α
∂tφ(r, t). (10)

Using (10), the system of equations (7)-(9) becomes

∂tΦ = ∂r

(α
a

Π
)

(11)

∂tΠ =
1

r2
∂r

(
r2α

a
Φ
)

(12)

0 =
1

a

da

dr
+
a2 − 1

2r
− 2πr

(
Φ2 + Π2

)
(13)

0 =
1

α

dα

dr
− 1

α

da

dr
+

1− a2

r
. (14)

These equations are sufficient to numerically evolve the coupled Einstein-scalar field. In
order to do so, Choptuik used an O(h2) finite-difference discretization and the Berger-Oliger
algorithm for adaptive mesh refinement. The details of the numerical methods are discussed
in [4].

It is notable that the system of equations (11)-(14) are invariant under rescalings (r, t)→
(kr, kt), as are its solutions. This hints that there is no intrinsic length scale in the problem.
It is therefore convenient to re-express the scalar field in terms of form-invariant variables
such as

X(r, t) ≡
√

2π
(r
a

)
Φ =

√
2π
(r
a

)
∂rφ (15)

Y (r, t) ≡
√

2π
(r
a

)
Π =

√
2π
( r
α

)
∂tφ. (16)

Another advantage of these variables is that the mass-aspect function can be expressed in
terms of them:

dm

dr
= X(r, t)2 + Y (r, t)2. (17)

This permits us to get a measure of the total mass of a spacetime using

M =

∫ ∞
0

dm

dr
dr =

∫ ∞
0

(
X(r, t)2 + Y (r, t)2

)
dr (18)

where M is known as the ADM mass.
Finally, solutions to the evolution equations are generated by defining an initial profile

φ(r, t = 0) for the scalar field. The canonical example is an ingoing pulse of the form

φ(r, t = 0; φ0, r0, ∆, q) = φ0 r
3 exp(−((r − r0)/∆)q) (19)

or equivalently specifying Φ(r, t = 0) or Π(r, t = 0) as defined in (10). Note that while (19)
is perhaps the simplest form of initial data, it is not the only choice. Other families studied
in Choptuik’s original work include

φ(r) = φ0[r5(exp(1/r)− 1)]−1 (20)
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3 SOME UNEXPECTED PHENOMENA

and
φ(r) = φ0 tanh[(r − r0)/δ]. (21)

In the case of (19) there are 4 parameters that can be varied: φ0, r0, ∆, and q. Denote
one of the 4 parameters by p and hold the rest fixed. For example, p could be the central
amplitude of the pulse with the width and position held constant, or the width of the pulse
with the position and amplitude held constant, or the position of the pulse with the width
and amplitude held constant. In any case the initial data becomes constrained to a 1-
parameter family of the form φ(r, t = 0; p). For certain values of p < p?, where p? is some
critical threshold value, the scalar field disperses to infinity upon evolution via the equations
above. For other values p > p?, a black hole forms. The game is then to use a bisection
search to numerically find the critical value p?. Choptuik did this by picking an initial data
configuration, evolving it for a sufficiently long time and then monitoring the quantity 2m/r.
If a black hole is formed, this quantity will eventually asymptote to r/2m = 1.

3 Some Unexpected Phenomena

In general there is no a priori way to determine whether some arbitrary initial data will
collapse to a black hole or not. Only by evolving many initial data configurations with
various values of p can the behaviour near the critical value p? be uncovered. Choptuik did
so by systematically fine-tuning p closer and closer to p?. This was carried out to the limits
of machine precision which at that time was roughly one part in 1015. In the regime of p ≈ p?

a plethora of unexpected non-linear behaviour emerged: scale periodicity, power-law mass
scaling, and universality.

3.1 Scale Periodicity

One interesting feature of the critical solution is that is exhibits symmetry under changes
of scale. Intuitively this means that the solution will resemble itself if you “zoom in” to a
smaller length scale or “fast-forward” the solution in time. This can be seen by rewriting
the critical solution φ(r, t) (or equivalently a or α) in terms of new scale-invariant variables

x = − r

t− t?
, τ = − ln

(
−t− t

?

L

)
(22)

where t < t?, and t? and L depend on the family of initial data under study. When expressed
in these coordinates it is found that the critical solution φ?(x, τ) is periodic in τ :

φ?(x, τ) = φ?(x, τ + ∆). (23)

In the original (r, t) coordinates this takes the form φ(r, t) = φ
(
en∆r, en∆t

)
and the solution

is said to be scale periodic. In the case of a massless scalar field the value of ∆ is found to
be ∆ ≈ 3.4. An illustration of this behaviour is given in Figure 1.
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3 SOME UNEXPECTED PHENOMENA
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Figure 1: The emergence of scale periodicity in the quantity 2M/r. Plotted are late-time
snapshots from the evolution of four separate families of initial data that differed only in
their initial scalar field amplitude φ0. (a) As the amplitude φ0 is tuned closer to the critical
value φ?0 (toward the bottom of the figure), oscillations appear for small r. (b) The same
data as in (a) except plotted with a logarithmic radial coordinate. In these coordinates we
observe the emergence of scale-periodic “echoes” as φ0 → φ?0. If the initial data was exactly
critical (i.e. φ0 = φ?0) then we would expect an infinite number of echoes, each a factor of
e∆ smaller than the previous one. Figure adapted from [3].
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3 SOME UNEXPECTED PHENOMENA

3.2 Mass Scaling

By independently varying r0, ∆, φ0 and q of (19) away from the critical values, it is found
that the black hole mass obeys the scaling relation

M ' c (p− p?)γ (24)

with the value of γ empirically determined to be γ ≈ 0.37 for any choice of p and any family
of initial data2. Only the constant c is found to depend on the specific family of initial data
that is used.

To understand this result, we can appeal to perturbation theory [7]. The basic idea is to
apply linear perturbations around the critical solution φ? (or equivalently a or α) to obtain
the scaling exponent γ. Following [8] we expand a near-critical solution φ around the critical
solution φ? in the coordinates given by (22):

φ(x, τ ; p) = φ?(x, τ ; p?) +
∑
i

Ci (p− p?) e−λiτ ξi(x, τ) (25)

where ξi is an eigenfunction periodic in τ with time dependence e−λiτ and Ci are real con-
stants. We assume only one eigenfunction will have λ < 0 and therefore grow as τ in-
creases [9]. Label this mode by λ0 < 0. We therefore expect all other modes with λ > 0 to
eventually decay. This yields

φ(x, τ0; p)− φ?(x, τ0; p?) = C0 (p− p?) e−λ0τ0 ξ0(x, τ0) (26)

where τ0 is some late time where all decaying modes have sufficiently died out. Since this is
a growing mode we expect it to continue to grow until some later time τ1 where it becomes
of order unity,

C0 (p− p?) e−λ0τ1 ξ0(x, τ1) ≈ 1. (27)

Taking the logarithm of both sides yields

ln(p− p?) + ln
(
e−λ0τ1

)
+ const. = 0 =⇒ τ1 ∝ ln(p− p?)1/λ0 (28)

Since black hole mass has dimensions of length, and since τ1 is the only length scale in the
above solution, we must have M ∝ τ1. Comparing to (24), this implies γ = 1/λ0. This is
the origin of the mass-scaling relation from dimensional analysis and perturbation theory.

3.3 Universality

The third phenomenon is universality. By this we mean that the critical solution in the
limit p → p? is the same for any choice of the parameter p. A second justification for
the label “universal” is that the critical phenomena appear for a large class of initial data
configurations. This means that no matter whether we take (19), (20) or (21) as the initial
scalar field profile, the critical values γ and ∆ are found to be the same.

2It is interesting that the value γ ≈ 0.37 is close to e−1 ≈ 0.367. It is unknown whether this is merely a
numerical coincidence or if it could be expected from theoretical arguments.
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3 SOME UNEXPECTED PHENOMENA
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ln M
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Figure 2: An illustration of the mass-scaling relationship (24) in logarithmic coordinates. It
is apparent from the figure that black holes can form with infinitesimal mass in the limit
p → p?. The value of γ in (24) is found from the slope of this graph to be γ ≈ 0.376. This
data is taken from [3].

Universality can be better understood in the context of dynamical systems. Loosely
speaking, a dynamical system consists of (1) a phase space in which all possible states of the
system are represented and (2) some notion of evolution in time3. For massless scalar fields
the phase space is the space of all possible initial data and the time evolution is governed
by (11)-(14). The phase space is divided into two basins of attraction, which are regions in
phase space toward which the system tends to evolve for a wide range of starting points. In
our case there are two such basins: one corresponding to collapse to a black hole and the
other to Minkowski space (“dispersion to infinity”). There is a natural boundary between
these two basins called the critical surface. Whether a given set of initial data evolves to
a black hole or to Minkowski space depends on which side of the critical surface it is on.
Within the critical surface, there exists a third attractor known as the critical solution. This
is illustrated in Figure 3.

The trajectory of a spacetime in phase space will tend toward one of the attractors.
For example, a spacetime that lies in the critical surface (i.e. one that has p = p?) will
evolve into the critical solution. A trajectory that lies near the critical surface, but not
in it, will first evolve toward the critical spacetime on a trajectory that lies parallel to the
critical surface. The parallel movement will slow down when the spacetime is closest to the
critical solution. It will linger here for a finite time before finally moving away and evolving
toward the Minkowski attractor or the black hole attractor. This lingering behaviour is

3There are some subtleties here that I am ignoring for the sake of brevity. Refer to [8] for a discussion.
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4 OTHER MATTER MODELS

Minkowski attractor

black hole attractor

p > p ?

p = p ?

p < p ?

critical surface

critical
solution

Figure 3: A picture of phase space for the critical collapse of massless scalar fields. The
critical surface (black hole threshold) is represented by the grey plane. On each side of the
critical surface lies an attractor corresponding to one of the possible end states of the system.
The solid lines with arrows represent the time evolutions (trajectories) of solutions in phase
space. The density of arrows represent the “speed” of evolution through phase space. The
dashed line represents a family of initial data for some parameter p. Note the phenomenon of
universality: trajectories that start near the critical surface appear to approach the attractors
from the critical solution itself.

another illustration of universality: any near-critical solution will closely resemble the critical
solution for some finite time. This means that when a solution finally approaches the black
hole attractor it will appear to do so from the critical solution itself. The details of the initial
data become irrelevant. The only property that is “remembered” is the original distance from
the critical surface, |p−p?|, which manifests in the final mass of the black hole: M ≈ (p−p?)γ.

4 Other Matter Models

The discussion in this paper has been limited to massless scalar fields. However, the same
critical phenomena will appear in virtually any model that permits black hole formation. The
simplest extension is for non-minimal coupling of the scalar radiation [6]. Critical behaviour
is found that closely resembles the minimally-coupled case. Another simple model of interest
is the massive scalar field [10] . Including a massive term introduces an intrinsic length scale
into the problem and therefore breaks scale invariance. With this model, two types of phase
transitions emerge depending on the details of the initial data. In “Type I” transitions,
a finite mass gap appears at the threshold of black hole formation. This occurs when the
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5 STATISTICAL MECHANICS

radial extent λ of the initial pulse exceeds the Compton wavelength µ−1: λµ > 1. The label
“Type I” comes from the resemblance of this phenomenon to first-order phase transitions in
statistical mechanics. The second type is labelled “Type II” and is analogous to the case for
massless scalar fields with continuous transitions at the black hole threshold. These occur
for λµ < 1 and yield values of γ ≈ 0.37 and ∆ ≈ 3.44, in agreement with the massless case.

Another study of historical interest was the critical collapse of pure gravitational waves
[11]. This was the first study to go beyond spherical symmetry by using axisymmetry
to model pulses of ingoing gravitational radiation. Type II behaviour was observed with
γ ≈ 0.37 and ∆ ≈ 0.6, indicating that critical phenomena can occur outside of spherical
symmetry.

These early results inspired many subsequent studies of critical collapse in general rela-
tivity. Studies have been performed on a wide range of matter models: perfect fluids [12],
σ-models [13], and even in theories with higher spacetime dimensions [14]. In virtually all
cases, some form of critical phenomenon has been found; this suggests that critical phenom-
ena may indeed be a generic feature of gravitational collapse. However, more work is needed,
particularly in models without symmetry restrictions.

5 An Analogy to Statistical Mechanics

In statistical mechanics, the properties of a system are described by a partition function that
has the general form

Z =
∑
i

exp(−Ei/kBT ) (29)

where i is the index that labels the microstates in the system, Ei is the energy of each
microstate, T is the temperature and kB is the Boltzmann constant. The probability Pi that
the system occupies the microstate i is simply Pi = 1

Z
exp(−Ei/kBT ) which implies that the

expectation value of a general observable A is given by

〈A〉 =
∑
i

AiPi =
1

Z

∑
i

Ai exp(−Ei/kBT ). (30)

The canonical example of a statistical mechanical system is the square-lattice Ising model of
ferromagnetism. In two dimensions, it is also one of the simplest statistical models to permit
a phase transition. For instance, the average magnetization 〈M〉 for an N -spin system was
famously calculated by Onsager [15]:

〈M〉
N

=

{
± (1− sinh−4(2J/kBT ))1/8, if T < Tc

0, if T > Tc
(31)

where J is the coupling constant of nearest-neighbour pairs. It is apparent from (31) that
something strange occurs at the critical temperature T = Tc. Below Tc the system is pre-
dominantly ferromagnetic as J dictates the interaction and forces spins to co-align. Above
Tc the temperature dominates and the system appears disordered at large scales. At the
critical temperature Tc the ordering effect of J and the disordering affect of T compete.
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6 CONCLUSION

Tc marks a phase transition where the macroscopic variable 〈M〉 changes between non-zero
magnetization and disorder. As Tc is approached from below, the magnetization obeys the
scaling law

|〈M〉| ≈ (T − Tc)α. (32)

where α is a non-integer power. It so happens that other macroscopic observables, such as
heat capacity and susceptibility, obey an analogous scaling law A(T ) ∝ (T − Tc)δ for some
exponent δ. Expressions of this type are known as critical exponents and arise generically
near continuous (second-order) phase transitions in statistical mechanics.

MBH

M0

p
p?p� p?

1

|〈M〉|
N

T
Tc0

1

p� p?

Figure 4: A comparison of the black hole mass scaling law (24) and the 2D Ising magne-
tization curve (31). The plots are visually identical; it is not surprising that both systems
exhibit critical phenomena near their respective critical points, p? and Tc.

It is striking that the same power-law scaling occurs in statistical mechanics, where
the central objects are statistical ensembles of particles, and in general relativity, where
the dynamics are described by partial differential equations. This is not a coincidence; it
is because these systems share a renormalization group [16]. Although a full exposition is
beyond the scope of this short report, the basic idea is that the renormalization group reflects
the scale-invariant physics that is present in both systems. In the Ising model (for instance),
scale-invariance arises at the critical temperature when the correlation length diverges and
spins become correlated on infinite length scales. In gravitational collapse, scale-invariance
arises at the critical solution when M vanishes and the field variables repeat themselves
on periodic length scales. Therefore, one can make the connection that p − p? plays the
role of T − Tc, and the mass M of the formed black hole takes the role of the macroscopic
observables 〈A〉 in statistical mechanics.

6 Conclusion

The discovery of critical behaviour at the black hole threshold is perhaps one of the biggest
revelations to come from numerical general relativity. Although nearly 30 years have passed
since its discovery, the inescapable question is why virtually every matter model studied to
date has admitted a critical solution. It appears that critical behaviour is generic feature

10



REFERENCES

of gravitational collapse but there is no clear explanation for why this should be so. Some
heuristic arguments can be made from a dynamical systems picture, dimensional analysis
and perturbation theory but there are still many questions that remain unanswered.

There is still much to be said of critical phenomena that could not be included in this
paper. Of particular interest is the potential violation of cosmic censorship through the
formation of naked singularities. Another topic only touched on briefly was the difference
between Type I and Type II collapse. For comprehensive discussions of these ideas and more,
I will refer the reader to an excellent review paper [8].
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