C Language Reference Manual

Chapter 1
Introduction

This document contains a summary of the syntax and semantics of the C programming language as
implemented on the IRIS-45eries workstations. It documents previous releases of the Silicon
Graphics® C compilers as well as the ANSI C compiler.

The Silicon Graphics compiler system supports two modes of compilation: a 32—-bit mode and a 64-bit
mode. For information on compilation modes and general compiler options, saentpéding and
Performance Tuning Guide

The term "traditional C" refers to the dialect of C described in the first edition of The C Programming
Language, by Kernighan and Ritchie.

What This Manual Contains

This manual also includes information formerly in #SI C Transition Guidel'hat material is now in
the following chapters:

« Chapter 2, "An Overview of ANSI C," discusses some effective strategies in porting your traditional
C code to ANSI C.

« Chapter 3, "C Language Changes," presents an overview of changes that the ANSI standard
introduced to the language.
Chapters 4 through 10 of this manual describe the syntax and semantics of C, and specify ANSI C
differences.
« Chapter 4, "Lexical Conventions," lists and defines the six classes of C tokens.
< Chapter 5, "Meaning of Identifiers," describes objdetdues identifiers, and disambiguation.
« Chapter 6, "Operator Conversions," discusses object type conversions and result types.

e Chapter 7, "Expressions and Operators," defines the various types of expressions and operators and
gives their order of precedence.

e Chapter 8, "Declarations," discusses type specifiers, structures, unions, declarators of various kinds,
and initialization.

e Chapter 9, "Statements," describes expression, compound, selection, iteration, and jump statements.
« Chapter 10, "External Definitions," explains the syntax for external definitions.

e Appendix A, "Implementation—-Defined Behavior,"describes various implementation—specific aspects
of the Silicon Graphics C compiler, keyed to paragraphs from the ANSI standard.

Suggestions for Further Reading

ThisC Language Reference Maniglpart of the IRIS Developer Option (IDO), which provides the
software and documentation that you can use to write applications for Silicon Graphics platforms. A few

C Language Reference Manual — Chapter 1, Introduction — 1

IDO online and printed manuals that may be of interest to you are listed below.

e Programming on Silicon Graphics Systems:An Overpi@vides information about the IRIX
programming environment and tools available for application programming. Topics covered include
IRIX operating system, compilers, user interface and developer tools, and application libraries.

« Compiling and Performance Tuning Guidescribes the compiler system, Dynamic Shared Objects
(DSOs), programming tools and interfaces, and explains ways to improve program performance.

« dbxUser’s Guideexplains how to use the source level debugtfer,

e Topics in IRIX Programmingresents information about internationalizing an application, working
with fonts, file and record locking, and inter—process communication.

You can order a printed manual from Silicon Graphics by calling SGI Direct at 1-800-800-SGI1

(800-7441). Outside the U.S. and Canada, contact your local sales office or distributor.

Silicon Graphics also provides manuals online. To read an online manual after installing it, type
insight or double-click the InSight icon. It's easy to print sections and chapters of the online manuals
from InSight.

In addition, you may want to consult the ANSI C language specification, which is available from the
American National Standards Institute (ANSI) at 1430 Broadway, New York, NY 10018, (212)
642-4900. Specify ANSI X3.159-1989 or ANSI/ISO 9899-1990CTlsinguage Reference Manusl
not intended as a substitute for the specification.

Conventions Used in This Manual

This manual uses some typographical and notational conventions explained below.
The expression [fF] stands for "f or F."

Filenames are italicized. For exampistddef.h>is the file/usr/include/stddef.h

Syntactic categories are indicated by italic type, and literal words and characters by bold type. Alternative
categories are listed on separate lines. An optional entry is indicated by the subscript "opt" to indicate an
optional expression enclosed in braces. For example:

{ expressiogpt}

This notation is the standard BNF notation.

Chapter 2
An Overview of ANSI C

This chapter covers the following topics:
* "What Is ANSI C?" briefly discusses the scope of the new standard.
» "Helpful Programming Hints" lists some programming practices to avoid and some to use.

« "Areas of Major Change" lists the major changes to C made by the ANSI standard.

What Is ANSI C?

The ANSI standard on the programming language C is designed to promote the portability of C programs
among a variety of data—processing systems. To accomplish this, the standard covers three major areas:
the environment in which the program compiles and executes, the semantics and syntax of the language,
and the content and semantics of a set of library routines and head&tfittly. conforming programs

are programs that:

« use only those features of the language defined in the standard
« do not produce output dependent on any ill-defined behavior

e do not exceed any minimum limit.

IlI-defined behavidncludesmplementation—defined, undefineddunspecifiedehavior. The term
refers to areas that the standard does not specify.

This ANSI C environment is designed to be, in the words of the standamdfoaming hosted
implementationwhich is guaranteed to accept atrjctly conforming programExtensions are allowed,
as long as the behavior of strictly conforming programs is not altered.

Besides knowing which features of the language and library you may rely on when writing portable
programs, you must be able to avoid naming conflicts with support routines used for the implementation
of the library. To avoid such naming conflicts, ANSI divides the space of available names into a set
reserved for the user and a set reserved for the implementation. Any name that does not begin with an
underscore and is neither a keyword in the language nor reserved for the ANSI library, is in the user’s
namespace. (This rule is given for simplicity. The space of names reserved for the user is actually
somewhat larger than this.)

Strictly conforming programs may not define any names unless they are in the user's namespace. New
keywords as well as those names reserved for the ANSI library are discussed in"Standard Headers".

Compiling ANSI Programs

To provide the portable clean environment dictated by ANSI while retaining the many extensions
available to Silicon Graphics users, two modes of compilation are provided for ANSI programs. Each of
these modes invokes the ANSI compiler and is selected by a swidi o

-ansi enforces a pure ANSI environment, eliminating Silicon Graphics extensions. The

C Language Reference Manual — Chapter 2, An Overview of ANSIC -1

ANSI symbol indicating a pure environment §TDC) is defined to be 1 for the
preprocessor. Use this mode when compititiggtly conforming programsas it
guarantees purity of the ANSI namespace.

-Xansi adds Silicon Graphics extensions to the environment. This mode is the default. The
ANSI preprocessor symbol (STDC) is defined to be 1. The symbol to include
extensions from standard headersEXTENSIONS) is also defined, as is the
symbol to inline certain library routines that are directly supported by the hardware (
__INLINE_INTRINSICS Note that when these library routines are made to be
intrinsic, they may no longer be strictly ANSI conforming (eegno may not be set
correctly).

Some key facts to keep in mind when you use ANSI C are listed below:

e UseonlyIc and/or-Im to specify the C and/or math libraries. These switches ensure the incorporation
of the ANSI version of these libraries.

* The default compilation mode is shared and the libraries are shared.

« Use the switchfullwarn to receive additional diagnostic warnings that are suppressed by default.
Silicon Graphics recommends using this option with-thaff option to remove selected warnings
during software development.

« Use the switchwlint (-32mode only) to get lint-like warnings about the compiled source. This
option provides lint-like warnings for ANSI arad¢kr modes and can be used together with the other
cq1) options and switches.

If you want to compile code using traditional C (that is, non—ANSI), use the svagkchThe dialect of C
invoked by-cckr is referred to interchangeably-askr, "the previous version of Silicon Graphics C,"
and "traditional C" in the remainder of this document.

You can find complete information concerning ANSI and non—-ANSI compilation modes in the online
manual page farq1).

Helpful Programming Hints

Although the ANSI Standard has added only a few new features to the C language, it has tightened the
semantics of many areas. In some cases, constructs were removed that were ambiguous, no longer used,
or obvious hacks. The next two sections give two lists of programming practices. The first section
recommends practices that you can use to ease your transition to this new environment. The second
section below lists common C coding practices that cause problems when you use ANSI C.

Recommended Practices

Follow these recommendations as you code:

« Always use the appropriate header file when declaring standard external functions. Avoid embedding
the declaration in your code. Thus you avoid inconsistent declarations for the same function.

« Always use function prototypes, and write your function prologues in function prototype form.

C Language Reference Manual — Chapter 2, An Overview of ANSI C - 2

Use theoffsetof()macro to derive structure member offsets. dffigetof()macro is in stddef.b.
Always use casts when converting.

Be strict with your use of qualified objects, such as witlatile andconst Assign the addresses of
these objects only to pointers that are so qualified.

Return a value from all return points of all nawid functions.

Use only structure designators of the appropriate type as the structure desigaat#n
expressions (that is, ensure that the right side is a member of the structure on the left side).

Always specify the types of integer bitfieldssegnedor unsigned

Practices to Avoid

Avoid these dangerous practices:

Never mix prototyped and nonprototyped declarations of the same function.

Never call a function before it has been declared. This may lead to an incompatible implicit
declaration for the function. In particular, this is unlikely to work for prototyped functions that take a
variable number of arguments.

Never rely on the order in which arguments are evaluated. For example, what is the result of the code
fragmenfoo(a++,a, ...)?

Avoid using expressions with side effects as arguments to a function

Avoid two side effects to the same data location between two successive sequence points (for
examplex=++x;).

Avoid declaring functions in a local context, especially if they have prototypes.

Never access parameters that are not specified in the argument list unless ssilaggifecilities.
Use thestdarg facilities only on a function with an unbounded argument list (that is, an argument list
terminated with..).

Never cast a pointer type to anything other than another pointer type or an integral type of the same
size (unsigned long), and vice versa. Use a union type to access the bit—pattern of a pointer as a
nonintegral and nonpointer type (that is, as an array of chars).

Don't hack preprocessor tokens (for exampf@QO/**/BAR).
Never modify a string literal.

Don't rely on search rules to locateludefiles that you specify with quotes.

Areas of Major Change

Major changes to C made by the ANSI standard include:

Somepreprocessor changese noteworthy. The changes are in practices that, although

C Language Reference Manual — Chapter 2, An Overview of ANSI C - 3

guestionable, are not uncommon.

Rules fordisambiguating namdsave been more clearly defined. Most of these changes allow
greater freedom to use the same name in different contexts.

Typeshave undergone some significant changes in the argasnbtionsand more strictly
enforceccompatibilityrules. In addition, the compiler is more strict about mixjoglifiedand
unqualifiedtypes and their pointers.

Function prototypeare more completely observed. Many warnings concerning prototypes in
traditional C are now errors under ANSI.

A few external names have been changed for conformance.

Chapter 3
C Language Changes

This chapter describes changes to the C language including:

* "Preprocessor Changes" discusses two changes in the way the preprocessor handles string literals and
tokens.

« "Changes in Disambiguating Identifiers” covers the four characteristics ANSI C uses to distinguish
identifiers.

* "Types and Type Compatibility" describes ANSI C changes to type promotions and type
compatibility.

« "Function Prototypes" explains how ANSI C handles function prototyping.
» "External Name Changes" discusses the changes in function, linker—defined, and data area names.

+ "Standard Headers" lists standard header files.

Preprocessor Changes

When compiling in an ANSI C mode (which is the default unless you specify
-cckr), ANSI-standard C preprocessing is used. The preprocessor is built into the C front end and is
functionally unchanged from the version appearing on [RR€lease 3.10.

The 3.10 version of the compiler had no built—in preprocessor and used two standalone preprocessors for
-cckr (cpp(1)) and ANSI C4cpf5)) preprocessing respectively. If you compile using-82option, you

can activatacppor cppinstead of the built—in preprocessor by usingdliepp option, andacppin

-cckr mode by using theacppoption. Silicon Graphics recommends that you always use the built—in
preprocessor, rather thapporacpp since these standalone preprocessors may not be supported in future
releases of the compilers.

acppis a public domain preprocessor and its source is includedritsrc/gnu/acpp

Traditionally, the C preprocessor performed two functions that are now illegal under ANSI C. These
functions are the substitution of macro arguments within string literals and the concatenation of tokens
after removing a null comment sequence.

Replacement of Macro Arguments in Strings
Suppose you define two mactidsandPLANTas shown in this example:

#define IN(x) ‘X
#define PLANT(y) "placing y in a string"

Later, you invoke them as follows:

IN(hi)
PLANT(foo)

C Language Reference Manual — Chapter 3, C Language Changes — 1

Compiling with -cckr makes these substitutions:

lhi!
"placing foo in a string"

However, since ANSI C considers a string literal to be an atomic unit, the expected substitution doesn’t
occur. So, ANSI C adopted an explicit preprocessor sequence to accomplish the substitution.

In ANSI C, adjacent string literals are concatenated. Thus
"abc" "def"

becomes

"abcdef"

A mechanism for quoting a macro argument was adopted that relies on this. When a macro definition
contains one of its formal arguments preceded by a singhte substituted argument value is quoted in
the output.

The simplest example of this is as follows:
#define STRING_LITERAL(a) #a

For example, the above code is invoked as:
STRING_LITERAL(foo)

This code vyields:

"foo

In conjunction with the rule of concatenation of adjacent string literals, the following macros can be
defined:

#define ARE(a,c) #a"are"#c
Then
ARE(trucks,big)

yields

"trucks" " are " "big"
or
"trucks are big"

when concatenated. Blanks prepended and appended to the argument value are removed. If the value has
more than one word, each pair of words in the result is separated by a single blank. Thus, theEnacro
above could be invoked as the following:

ARE(fat cows,big)
ARE(fat cows, big)

Each of the above yields (after concatenation):

C Language Reference Manual — Chapter 3, C Language Changes — 2

"fat cows are big"

Be sure to avoid enclosing your macro arguments in quotes, since these quotes are placed in the output
string. For example,

ARE (“fat cows", "big")

This code becomes:

"\"fat cows\" are \"big\

No obvious facility exists to enclose macro arguments with single quotes.

Token Concatenation

When compiling -cckr, the value of macro arguments can be concatenated by entering
#define glue(a,b) a/**/b

glue(FOO,BAR)

The result yieldFOOBAR

This concatenation does not occur under ANSI C, since null comments are replaced by a blank. However,
similar behavior can be obtained by using#i®perator inansiand-xansimode## instructs the
precompiler to concatenate the value of a macro argument with the adjacent token. Thus

#define glue_left(a) GLUED ## a
#define glue_right(a) a ## GLUED
#define glue(a,b) a ## b
glue_left(LEFT)
glue_right(RIGHT)
glue(LEFT,RIGHT)

yields

GLUEDLEFT
RIGHTGLUED
LEFTRIGHT

Furthermore, the resulting token is a candidate for further replacement. Note what happens in this
example:

#define HELLO "hello"
#define glue(a,b) a ## b
glue(HEL,LO)

The above example yields the following:

"hello"

Changes in Disambiguating ldentifiers

Under ANSI C, an identifier has four disambiguating characteristicscapelinkage namespaceand

C Language Reference Manual — Chapter 3, C Language Changes — 3

storagedurationEach of these characteristics was used in traditional C, either implicitly or explicitly.
Except in the case eforage durationwhich is eithestaticor automatic the definitions of these
characteristics chosen by the standard differ in certain ways from those you may be accustomed to, as
detailed below. For a discussion of the same material with a different focus, see "Disambiguating Names

Scoping Differences

ANSI C recognizes fowscope®f identifiers: the familiafile andblock scopeand the neviunctionand
function prototype scopes.

« Function scopéncludes only labels. As in traditional C, labels are valid until the end of the current
function.

« Block scopeules differ from traditional C in one significant instance: the outermost block of a
function and the block that contains the function arguments are the same under ANSI C. For
example:
int f(x)
int x;

{
int x;
Xx=1;

}

ANSI C complains of a redeclaratiomgfvhereas traditional C quietly hides Hrgument xvith the
local variable x as they were in distinct scopes.

« Function prototype scops a new scope in ANSI C. If an identifier appears within the list of
parameter declarations in a function prototype that is not part of a function definition, it has function
prototype scope, which terminates at the end of the prototype. This allows any dummy parameter
names appearing in a function prototype to disappear at the end of the prototype.

Consider the following example:
char * getenv (const char * name);
int name;

Theint variable name does not conflict with the parame#enesince the parameter went out of
scope at the end of the prototype. However, the prototype is still in scope.

« ldentifiers appearing outside of any block, function, or function prototypefimgeope
One last discrepancy in scoping rules between ANSI and traditional C concerns the scope of the function
foo()in the example below:

float f;

funcO() {
extern float foo() ;
f=foo() ;

C Language Reference Manual — Chapter 3, C Language Changes - 4

}
funcl() {

f=foo() ;
}

In traditional C, the functiofoo() would be of type float when it is invoked in the functioncl1(),since

the declaration fofoo(hadfile scope even though it occurred within a function. ANSI C dictates that the
declaration fofod)) hasblock scopeThus, there is no declaration foo()in scope irfuncl() and it is
implicitly typedint. This difference in typing between the explicitly and implicitly declared versions of
foo() results in a redeclaration error at compile time, since they both are linked to the same external
definition forfoo() and the difference in typing could otherwise produce unexpected behavior.

Name Space Changes

ANSI C recognizes four distinct name spaces: oné&fyg one forlabels one formemberf a particular
struct orunion, and one for everything else. This division creates two discrepancies with traditional C:

* In ANSI C, eaclstruct orunion has its own name space for its members. This is a pointed departure
from traditional C, in which these members were nothing more than offsets, allowing you to use a
member with a structure to which it does not belong. This usage is illegal in ANSI C.

< Enumeration constantgsere special identifiers in versions of Silicon Graphics C prior to IRIX
Release 3.3. In ANSI C, these constants are simply integer constants that can be used anywhere they
are appropriate. Similarly, in ANSI C, other integer variables can be assigned to a variable of an
enumeration type with no error.

Changes in the Linkage of Identifiers

An identifier’s linkage determines which of the references to that identifier refer to the same object. This
terminology formalizes the familiar concept of variables declexéern and variables declarethtic and
is a necessary augmentation to the conceptage

extern int mytime;
static int yourtime;

In the example above, bothytimeandyourtimehavefile scopeHowevermytimehasexternal linkage
whileyourtimehasinternal linkage An object can also have no linkage, as is the case of automatic
variables.

The above example illustrates another implicit difference between the declaratioytodand
yourtime The declaration ofourtimeallocates storage for the object, whereas the declaratioytiofe
merely references it. thytimeis initialized as follows:

int mytime=0;

This also allocates storage. In ANSI C terminology, a declaration that allocates storage is referred to as a
definition Herein lies the change.

In traditional C, neither of the declarations below was a definition.

C Language Reference Manual — Chapter 3, C Language Changes - 5

extern int bert;
int bert;

In effect, the second declaration included an impdigiern specification. This is not true in ANSI C.

Note: Objects with external linkage that are not specifiegixéern at the end of the compilation unit are
considered definitions, and, in effect, initialized to zero. (If multiple declarations of the object are in the
compilation unit, only one needs tbgtern specification.)

The effect of this change is to produce "multiple definition" messages from the linker when two modules
contain definitions of the same identifier, even though neither is explicitly initialized. This is often
referred to as the strict ref/def model. A more relaxed model can be achieved by using the compiler flag
-common

The ANSI C linker issues a warning when it finds redundant definitions, indicating the modules that
produced the conflict. However, the linker cannot determine whether the definition of the object is
explicit. The result may be incorrectly initialized objects, if a definition was given with an explicit
initialization, and this definition is not the linker's random choice.

Thus, consider the following example:
nodul el. c:

int ernie;
modul e2. c:
int ernie=5;

ANSI C implicitly initializeserniein modulel.do zero. To the linkeernieis initialized in two different
modules. The linker warns you of this situation, and chooses the first such module it encounters as the
true definition ofernie This module may or may not contain the explicitly initialized copy.

Types and Type Compatibility

Historically, C has allowed free mixing of arithmetic types in expressions and as arguments to functions.
(Arithmetic types include integral and floating point types. Pointer types are not included.) C’s type
promotion rules reduced the number of actual types used in arithmetic expressions and as arguments to
three:int, unsigned anddouble This scheme allowed free mixing of types, but in some cases forced
unnecessary conversions and complexity in the generated code.

One ubiquitous example of unnecessary conversions is fidatvariables were used as arguments to a
function. C’s type promotion rules often caused two unwanted expensive conversions across a function
boundary.

ANSI C has altered these rules somewhat to avoid the unnecessary overhead in many C implementations.
This alteration, however, may produce differences in arithmetic and pointer expressions and in argument
passing. For a complete discussion of operator conversions and type promotions, see Chapter 6,
"Operator Conversions."

Type Promotion in Arithmetic Expressions

C Language Reference Manual — Chapter 3, C Language Changes - 6

Two differences are noteworthy between ANSI and traditional C. First, ANSI C relaxes the restriction
that all floating point calculations must be performed in double precision. In the example below,
pre—ANSI C compilers are required to convert each operand to double, perform the operation in double
precision, and truncate the result to float.

extern float f,f0,f1;

addf() {
f=f0+f1;

}

These steps are not required in ANSI C. In ANSI C, the operation can be done entirely in
single—precision. (In traditional C, these operations were performed in single—precision if the -float
compiler option was selected.)

The second difference in arithmetic expression evaluation involves integral promotions. ANSI C dictates
that any integral promotions balue—preservingraditional C usednsignedness—preserving
promotions. Consider the example below:

unsigned short us=1,them=2;
inti;
test() {

i =us — them;

}

ANSI C’s value—preserving rules cause eaclsahdthemto be promoted timt, which is the expression

type. The unsignedness—preserving rules, in traditional C, cause aaahdihemto be promoted to

unsigned which is the expression type. The latter case yields alasignednumber, whereas ANSI C

yields —1. The discrepancy in this case is inconsequential, as the same bit pattern is stored inithe integer
in both cases, and it is later interpreted as —1.

However, if the case is altered slightly as in the following example:

unsigned short us=1,them=2;
float f;
test() {

f = us - them;

}

The result assigned tis quite different under the two schemes. If you usewtiat option, you'll be
warned about the implicit conversions framh or unsignedtofloat.

For more information on arithmetic conversions, see "Arithmetic Conversions".

Type Promotion and Floating—Point Constants

The differences in behavior of ANSI C floating—point constants and traditional C floating point constants
can cause numerical and performance differences in code ported from the traditional C to the ANSI C
compiler.

For example, consider the result type of the computation below:

C Language Reference Manual — Chapter 3, C Language Changes — 7

#define Pl 3.1415926
float a,b;

b=a*Pl;

The result type db depends on which compilation options you use. Table 3-1lists the effects of various
options.

Table 3—-1The Effect of Compilation Options on Floating—Point Conversions

Compilation Option P1 Constant Type Promotion Behavior

-cckr double (float)((double)a *
PI)

-cckr -float float a*Pl

-Xansi double (float)((double)a *
PI)

-ansi double (float)((double)a *
PI)

Each conversion incurs computational overhead.

The-float flag has no effect if you also specifynsior-xansi To prevent the promotion of floating
constants to doulleéand thus promoting the computation to double precision mulfiplfesi must
specify the constant as a single precision floating point constant. To continue the example, use:

#define Pl 3.1415926f /* single precision float */

Traditional C (compiled with thecckr option) doesn’t recognize th#oat qualifier, however. You may
want to write the constant definition like this:

#ifdef _ STDC__
#define Pl 3.1415926f
#else

#define Pl 3.1415926
#endif

If you compile with theansior-xansioptions, STDC__is automatically defined as though
-D__STDC__=1 were used on your compilation line.

If you compile with theansi -ansiposixor -xansioptions, _ STDC___is automatically defined, as
though you useedD__ STDC__=1 on your compilation line. Thus, with the last form of constant
definition noted above, the calculation in the example is promoted as described in Table 3-2

Table 3-2Using__ STDC__to Affect Floating Point Conversions

Compilation Option PI Constant Type Promotion Behavior

-cckr double (float)((double)a *
PI1)

-cckr -float float a*Pl

-Xansi float a*Pl

-ansi float a*Pl

C Language Reference Manual — Chapter 3, C Language Changes — 8

Compatible Types

To determine whether or not an implicit conversion is permissible, ANSI C introduced the concept of
compatible typedAfter promotion, using the appropriate set of promotion rules, two non—pointer types are
compatiblef they have the same size, sighedness, integer/float characteristic, or, in the case of aggregates,
are of the same structure or union type. Except as discussed in the previous section, no surprises should
result from these changes. You should not encounter unexpected problems unless you are using pointers.

Pointers are compatible if they point to compatible types. No default promotion rules apply to pointers.
Under traditional C, the following code fragment compiled silently:

int *iptr;
unsigned int *uiptr;
foo() {
iptr = uiptr;
}

Under ANSI C, the pointetiptr anduiptr do not point to compatible types (as they differ in
unsignedness), which means that the assignment is illegal. Insert the appropriate cast to alleviate the
problem. When the underlying pointer type is irrelevant or variable, use the wildcavaitype

Argument Type Promotions

ANSI C rules for the promotion of arithmetic types when passing arguments to a function depend on
whether or not a prototype is in scope for the function at the point of the call. If a prototype is not in
scope, the arguments are converted using the default argument promoticshorteandchar types
(whethersignedorunsigned are passed asts, other integral quantities are not changed, and floating
point quantities are passeddmibles. These rules are also used for arguments in the variable-argument
portion of a function whose prototype ends in ellipses (

If a prototype is in scope, an attempt is made to convert each argument to the type indicated in the
prototype prior to the call. The types of conversions that succeed are similar to those that succeed in
expressions. Thus, amt is promoted to #Hoat if the prototype so indicates, bupainter to unsignedis

not converted to pointer to int. ANSI C also allows the implementation greater freedom when passing
integral arguments if a prototype is in scope. If it makes sense for an implementatiorskmpass
arguments as 16-bit quantities, it can do so.

Use of prototypes when calling functions allows greater ease in coding. However, due to the differences
in argument promotion rules, serious discrepancies can occur if a function is calidtbatidwithout

a prototype in scope. Make sure that you use prototypes consistently and that any prototype is declared to
be in scope for all uses of the function identifier.

Mixed Use of Functions

To reduce the chances of problems occurring when calling a function with and without a prototype in
scope, limit the types of arithmetic arguments in function declarations. In particular, avoishosirg
char types for arguments; their use rarely improves performance and may raise portability issues if you

C Language Reference Manual — Chapter 3, C Language Changes — 9

move your code to a machine with a smaller word size. This is because function calls made with and

without a prototype in scope may promote the arguments differently. In addition, be circumspect when
typing a function argumeffibat, because you can encounter difficulties if the function is called without a
prototype in scope. With these issues in mind, you can solve quickly the few problems that may arise.

Function Prototypes

Function prototypes are not new to Silicon Graphics C. In traditional C, however, the implementation of
prototypes was incomplete. In one case, shown below, a significant difference still exists between the
ANSI C and the traditional C implementations of prototypes.

You can prototype functions in two ways. The most common method is to simply create a copy of the
function declaration with the arguments typed, with or without identifiers for each, such as either of the
following:

int func(int, float, unsigned [2]);
int func(int i, float f, unsigned u[2]);

You can also prototype a function by writing the function definition in prototype form, as:

int func(int i, float f, unsigned u[2])

{

< code for func >

}

In each case, a prototype is createddac()that remains in scope for the rest of the compilation unit.

One area of confusion about function prototypes is that you must write functions that have prototypes in
prototype form. Unless you do this, the default argument promotion rules apply.

ANSI C elicits an error diagnostics for two incompatible types for the same parameter in two declarations
of the same function. Traditional C elicits an error diagnostics when the incompatibility may lead to a
difference between the bit—pattern of the value passed in by the caller and the bit—pattern seen in the
parameter by the callee.

As an example, the functidanc()below is declared twice with incompatible parameter profiles.

int func (float);
int func (f)
float f;

{ ...}

The parametdrin func()is assumed to be typeuble because the default argument promotions apply.
Error diagnostics in traditional C and ANSI C are elicited about the two incompatible declarations for
func()

The following three situations produce diagnostics from the ANSI C compiler when you use function
prototypes:

< A prototyped function is called with one or more arguments of incompatible type. (Incompatible
types are discussed in Section 3.3.)

C Language Reference Manual — Chapter 3, C Language Changes - 10

» Two incompatible (explicit or implicit) declarations for the same function are encountered. This
version of the compiler scrutinizes duplicate declarations carefully and catches inconsistencies.

Note: When you usecckr you do not get warnings about prototyped functions, unless you specify
-prototypes

External Name Changes

Many well-known UNIX® external names that are not covered by the ANSI C standard are in the user’'s
name space. These names fall into three categories:

« names of functions in the C library
< names defined by the linker

¢ names of data areas with external linkage

Changes in Function Names

Names of functions that are in the user’s name space and that are referenced by ANSI C functions in the C
library are aliased to counterpart functions whose names are reserved. In all cases, the new name is
formed simply by prefixing an underbar to the old name. Thus, although it was necessary to change the
name of the familiar UNIX C library functionrite to_write, the functiorwrite remains in the library as

an alias.

The behavior of a program may change if you have written your own versions of C library functions. If,
for example, you have your own versionaofte, the C library continues to use its versionwfite

Changes in Linker—Defined Names

The linker is responsible for defining the standard UNIX symbiodsetext andedata if these symbols
are unresolved in the final phases of linking. (Se#3c) for more information.) The ANSI C linker has
been modified to satisfy references fetext edata and endas well. The ANSI C library reference to
end has been altered tend

This mechanism preserves the ANSI C name space, while providing for the definition of the non—ANSI C
forms of these names if they are referenced from existing code.

Data Area Name Changes

The names of several well-known data objects used in the ANSI C portion of the C library were in the

user's name space. These objects are listed in Table 3.1. These names were moved into the reserved name
space by prefixing their old names with an underscore. Whether these names are defined in your
environment depends on the compilation mode you are using. Recathbihsiis the default.

Table 3—3shows the effect of compilation mode on names and indicates whether or not these well-known
external names are visible when you compile code in the various modes. The left column has three sets of
names. Determine which versions of these names are visible by examining the corresponding column

C Language Reference Manual — Chapter 3, C Language Changes — 11

under your compilation mode.

Table 3-3 The Effect of Compilation Mode on Names

name compilation mode
-cckr xansi -ansi
environ environ and _envirorenviron and _enviroronly _environ
aliased aliased visible
timezone, tzname, unchanged #define to ANSI C _timezone,
altzone, daylight name if using < _tzname, _altzone,
time.h> _daylight
sys_nerr, sys_errlist unchanged identical copies widlentical copies
names _sys_nerr, with names
_sys_errlist _Sys_nerr,
_sys_errlist
In the Table:

- "aliased" means the two names access the same object.
e "unchanged" means the well-known version of the name is unaltered.

« "identical copies" means that two copies of the objectléxise with the well-known name and one
with the ANSI C name (prefixed with an underbar). Applications should not alter these objects.

« "#define" means that a macro is provided in the indicated header to translate the well-known name to
the ANSI C counterpart. Only the ANSI C name exists. You should include the indicated header if
your code refers to the well-known name. For example, thetmaameeis unchanged when
compiling-cckr, is converted to the reserved ANSI C nanteramé by a macro if you include
<time.h>when compilingxansi, and is available only as the ANSI C versiotzijame if
compiling-ansi. (Recall thatxansiis the default.)

Standard Headers

Functions in the ANSI C library are declared in a set of standard headers and are a subset of the C and
math library included in the beta release. This subset is self-consistent and is free of name space pollution,
when compiling in the pure ANSI mode. Names that are normally elements of the user's name space but
are specifically reserved by ANSI are described in the corresponding standard header. Refer to these
headers for information on both reserved names and ANSI library function prototypes. The set of standard
headers is listed in Table 3-4

Table 3-4 ANSI C Standard Header Files

Header Files

<assert.h> <ctype.h> <errno.h> <sys/errno.h> <float.h>
<limits.h> <locale.h> <math.h> <setjmp.h> <signal.h>
<sys/signal.h> <stdarg.h> <stddef.h> <stdio.h>

<stdlib.h> <string.h> <time.h>

Chapter 4
Lexical Conventions

This chapter covers the C lexical conventions including comments and tokens. A token is a series of
contiguous characters that the compiler treats as a unit. The classes of tokens described in the sections
below include:

* "ldentifiers"

e "Keywords"

* "Constants"

e "String Literals"

e "Operators"

e "Punctuators"

Blanks, tabs, new-lines, and comments (described in the next section) are collectively known as "white

space." White space is ignored except as it serves to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include
the longest string of characters that could possibly constitute a token.

Comments

The character® introduce a comment; the charactéterminate a comment. They do not indicate a
comment when occurring within a string literal. Comments do not nest. Onéarntreducing a
comment is seen, all other characters are ignored until the eéndngncountered.

Identifiers

An identifier, or name, is a sequence of letters, digits, and underscprékd first character cannot be a
digit. Uppercase and lowercase letters are distinct. Name length is unlimited. Thieléetifisrand
nameare used interchangeably.

Keywords

The identifiers listed in Table 4-1are reserved for use as keywords and cannot be used for any other
purpose.

Table 4-1Reserved Keywords

Keywords

auto default float register struct volatile
break do for return switch while
case double goto short typedef

char else if signed union

C Language Reference Manual — Chapter 4, Lexical Conventions — 1

const enum int sizeof unsigned
continue extern long static void

Traditional C reserves and ignores the keyword fortran.

Constants

The four types of constants anéeger, character floating, andenumerationEach constant has a type,
determined by its form and value.

In the following discussion of the various types of constants, a unary operator preceding the constant is
not considered part of it. Rather, such a constructaatant—expressi¢see "Constant Expressions”).
Thus, the integer constabxffbecomes an integral constant expression by prefixing a minus si@xffas

The effect of the operaters not considered in the discussion of integer constants.

As an example, the integer constaxifffffffhas typant in traditional C, with value -1. It has type

unsignedin ANSI C, with value 232-1. This discrepancy is inconsequential if the constant is assigned to a
variable of integral type (for examplet orunsigned, as a conversion occurs. If it is assigned to a

double however, the value differs as indicated between traditional and ANSI C.

Integer Constants

An integer constant consisting of a sequence of digits is considered octal if it begi@sAnitbctal
constant consists of the dig@ghrough7 only. A sequence of digits precededdxor OX is considered a
hexadecimal integer. The hexadecimal digits incliadd through[fF] with values 10 through 15.

The suffixes [IL] traditionally indicate integer constants of type long. These suffixes are allowed, but are
superfluous, since int arldng are the same size 182 mode. The sufficel§, LL , IL, andLl indicate a

long long constant (a 64-bit integral type). Note thag longis not a strict ANSI C type, and a warning

is given forlong long constants iransiand-ansiposixmodes. Examples tdng longinclude:

123451 L
12345l

In ANSI C, an integer constant can be suffixed \uth], in which case its type isisigned (One or
both of[uU] and[IL] can appear.) An integer constant also has tys&gnedif its value cannot be
represented as am. Otherwise, the type of an integer constaimtisExamples of unsignddng long
include:

123456ULL
123456ull

Character Constants

A character constant is a character enclosed in single quotes$xadtme value of a character constant is
the numerical value of the character in the machine’s character set. An explicit new-line character is
illegal in a character constant. The type of a character constaint is

In ANSI C, a character constant can be prefixed, by which case it is a wide character constant. For

C Language Reference Manual — Chapter 4, Lexical Conventions — 2

example, a wide character constant'#oiis writtenL’z’ . The type of a wide character constant is
wchar_t, which is defined irstddef.h>
Special Characters

Some special and nongraphic characters are represented by the escape sequences shown inTable 4-2

Table 4-2 Escape Sequences for Nongraphic Characters

Character Name Escape Sequence
new-line \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
backslash \
single quote \V
double quote \"
guestion mark \?
bell (ANSI C only) \a

The escapi&lddconsists of the backslash followed by 1, 2, or 3 octal digits that are taken to specify the
value of the desired character. A special case of this constructibfmét followed by a digit), which
indicates the ASCII charactsitUL .

In ANSI C,\x indicates the beginning of a hexadecimal escape sequence. The sequence is assumed to
continue until a character is encountered that is not a member of the hexadecimal character Set 0,1,
[@A], [bB], ... [fF]. The resulting unsigned number cannot be larger than a character can accommodate
(decimal 255).

If the character following a backslash is not one of those specified in this discussion, the behavior is
undefined.

Trigraph Sequences (ANSI C Only)

The character sets of some older machines lack certain members that have come into common usage. To
allow the machines to specify these characters, ANSI C defined an alternate method for their

specification, using sequences of characters that are commonly available. These sequences are termed
trigraph sequencedine sequences are defined, each consists of three characters beginning with two
question marks. Each instance of one of these sequences is translated to the corresponding single
character. Other sequences of characters, perhaps including multiple question marks, are unchanged. Each
trigraph sequence with the single character it represents is listed in Table 4-3

Table 4-3 Trigraph Sequences

Trigraph Sequence Single Character
?7= #
?2?([

C Language Reference Manual — Chapter 4, Lexical Conventions — 3

22! \

27)

P

?7?
?7<

272!

—— — A

??7>

??- ~

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an [eE], and an optionally
signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the
integer part or the fraction part (but not both) can be missing. Either the decimal point or the [eE] and the
exponent (not both) can be missing.

In traditional C, every floating constant has type double.

In ANSI C, floating constants can be suffixed by either [fF] or [IL]. Floating constants suffixed with [fF]
have type float. Those suffixed with [IL] have type long double, which has greater precision than double
in -64 mode and a precision equalimublein-32 mode.

Enumeration Constants

Names declared as enumerators haveityp&or a discussion of enumerators, see "Enumeration
Declarations". For information on the use of enumerators in expressions, see "Integer and Floating Point
Types".

String Literals

A string literal is a sequence of characters surrounded by double quotés,.asAnstring literal has

type array of char and is initialized with the given characters. The compiler places a n\fl) bytad

end of each string literal so that programs that scan the string literal can find its end. A double—quote
character"() in a string literal must be preceded by a backskasim @ddition, the same escapes as
described for character constants can be used. (See "Character Constants"for a list of escapes.) A
backslash\f and the immediately following new line are ignored. Adjacent string literals are
concatenated.

In traditional C, all string literals, even when written identically, are distinct.

In ANSI C, identical string literals are not necessarily distinct. Prefixing a string literdl witkcifies a
wide string literal. Adjacent wide string literals are concatenated.

As an example, consider the sentelHeesaid, "Hi there.This sentence could be written with three
adjacent string literals as

"He said, " "\"Hi " "there.\""

Operators

C Language Reference Manual — Chapter 4, Lexical Conventions — 4

An operatorspecifies an operation to be performed. The operators [], (), and ? : must occur in pairs,
possibly separated by expressions. The oper#tansi## can occur only in preprocessing directives.

operator: one of

[10).->

++ -- & * + - ~ | sizeof
/%<<>><><==>=:!:’\|&&||
?

= *= [= %= += -= <<= >>=&= = |=
, H# H#it

Individual operations are discussed in Chapter 7, "Expressions and Operators."

Punctuators

A punctuatoris a symbol that has semantic significance but does not specify an operation to be
performed. The punctuators [], (), and { } must occur in pairs, possibly separated by expressions,
declarations or statements. The punctuttman occur only in preprocessing directives.

punctuator: one of

[TO) (Y =5 #
Some operators, determined by context, are also punctuators. For example, the array index indicator [] is
a punctuator in a declaration (see Chapter 8, "Declarations"), but an operator in an expression (see Chapter
7, "Expressions and Operators").

Chapter 5
Meaning of Identifiers

Traditional C formally based the interpretation of an identifier on two of its attributes: storage class and
type. Thestorage classletermined the location and lifetime of the storage associated with an identifier;
thetypedetermined the meaning of the values found in the identifier's storage. Informally, name space,
scope, and linkage were also considered.

ANSI C formalizes the practices of traditional C. An ANSI C identifier is disambiguated by four
characteristics: itscope, name space, linkagadstorage durationThe ANSI C definitions of these
terms differ somewhat from their interpretations in traditional C.

Storage—class specifiers and their meanings are described inChapter 8, "Declarations.” Storage—class
specifiers are discussed in this chapter only in terms of their effect on an object’s storage duration and
linkage.

This chapter contains the following sections:

« "Disambiguating Names" discusses scope, hame spaces, linkage, and storage duration as means of
distinguishing identifiers.
* "Types" describes the three fundamental object types.

e "Objects and Ivalues" briefly defines those two terms.

You can find a discussion of some of this material, focusing on changes to the language, in"Changes in
Disambiguating Identifiers" and "Types and Type Compatibility".

Disambiguating Names

This section discusses the ways C disambiguates names: scope, name space, linkage, and storage class.

Scope

The region of a program in which a given instance of an identifier is visible is called its scope. The scope
of an identifier usually begins when its declaration is seen, or, in the case of labels and functions, when it
is implied by use. Although it is impossible to have two declarations of the same identifier active in the
same scope, ho conflict occurs if the instances are in different scopes. Of the four kinds of ddope, two
file and blockl are traditional C scopes. Two "newer" kinds of s€bfction and function prototype

are implied in traditional C and formalized in ANSI C.

Block Scope

Blockscope is the scope of automatic variablésat is, variables declared within a function. Each block

has its own scope. No conflict occurs if the same identifier is declared in two blocks. If one block
encloses the other, the declaration in the enclosed block hides that in the enclosing block until the end of
the enclosed block is reached. The definition of a block is the same in ANSI C and traditional C, with one
exception, illustrated by the example below:

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 1

int f(x)
int x;
{
int x;
Xx=1;

}

In ANSI C, the function arguments are in the function body block. Thus, ANSI C complains of a
"redeclaration of x."

In traditional C, the function arguments are in a separate block that encloses the function body block.
Thus, traditional C would quietly hide taegumentwith thelocal variable xas they are in distinct
blocks.

ANSI C and traditional C differ in the assignmenblafckandfile scope in a few instances. See the
following discussion of file scope.

Function Scope

Only labels hav&unctionscope. Function scope continues until the end of the current function.

Function Prototype Scope

If an identifier appears within the list of parameter declarations in a function prototype that is not part of a
function definition (see "Function Declarators and Prototypes"), ifumasion prototypecope, which

terminates at the end of the prototype. This termination allows any dummy parameter names appearing in
a function prototype to disappear at the end of the prototype.

File Scope

Identifiers appearing outside of any block, function, or function prototype fitmgeope. This scope
continues to the end of the compilation unit. Unlike other scopes, multiple declarations of the same
identifier with file scope can exist in a compilation unit, so long as the declarations are compatible.

Whereas ANSI C assigbtockscope to all declarations occurring inside a function, traditional C assigns
file scope to such declarations if they have the storage class extern. This storage class is implied in all
function declarations, whether the declaration is explicit (&% ifoo();) or implicit (if there is no active
declaration fofoo()when an invocation is encountered, as=rfoo();). For a further discussion of this
discrepancy, with examples, see "Scoping Differences".

Name Spaces

In certain cases, the purpose for which an identifier is used may disambiguate it from other uses of the
same identifier appearing in the same scope. This is true, for example, for tags, and is used in traditional C
to avoid conflicts between identifiers used as tags and those used in object or function declarations. ANSI
C formalizes this mechanism by defining certeame spaceJhese name spaces are completely

independent. A member of one name space cannot conflict with a member of another. ANSI C recognizes
four distinct name spaces:

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 2

Tags struct, union, andenumtags have a single name space.
Labels Labels are in their own name space.
Members Eachstruct orunion has its own name space for its members.

Ordinary identifiers
Ordinary identifiers, including function and object names as well as user—defined type
names, are placed in the last name space.

Name Space Discrepancies Between Traditional and ANSI C
The definition of name spaces causes discrepancies between traditional and ANSI C in a few situations:

« Structure membein traditional C were nothing more than offsets, allowing the use of a member
with a structure to which it does not belong. This is illegal under ANSI C.

« Enumeration constantgere special identifiers in traditional C prior to IRIX Release 3.3. In later
releases of traditional C, as in ANSI C, these constants are simply integer constants that can be used
anywhere they are appropriate.

« Labels reside in the same name space as ordinary identifiers in traditional C. Thus the following
example is legal in ANSI C but not in traditional C.

func() {

int lab;
if (lab) goto lab;
funcl() ;

lab:
return;

Linkage of Identifiers

Two instances of the same identifier appearing in different scopes may, in fact, refer to the same entity.
For example, the references to a variable counter declared with file scope as shown below:

extern int counter;

In this example, two separate files refer to the sat@bject. The association between the references to
an identifier occurring in distinct scopes and the underlying objects are determined by the identifier's
linkage

The three kinds of linkage are:

Internal linkage Within a file, all declarations of the same identifier with internal linkage denote the
same object.

External linkage Within an entire program, all declarations of an identifier with external linkage
denote the same object.

No linkage A unique entity, accessible only in its own scope, has no linkage.

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 3

An identifier's linkage is determined by whether it appears inside or outside a function, whether it
appears in a declaration of a function (as opposed to an object), its storage—class specifier, and the linkage
of any previous declarations of the same identifier that have file scope. It is determined as follows:

1. If anidentifier is declared with file scope and the storage—class specifier static, it has internal linkage.

2. If the identifier is declared with the storage—class specifier extern, or is an explicit or implicit function
declaration with block scope, the identifier has the same linkage as any previous declaration of the
same identifier with file scope. If no previous declaration exists, the identifier has external linkage.

3. If an identifier for an object is declared with file scope and no storage—class specifier, it has external
linkage. (See "Changes in the Linkage of Identifiers".)

4. All other identifiers have no linkage. This includes all identifiers that do not denote an object or
function, all objects with block scope declared without the storage—class specifier extern, and all
identifiers that are not members of the ordinary variables name space.

Two declarations of the same identifier in a single file that have the same linkage, either internal or
external, refer to the same object. The same identifier cannot appear in a file with both internal and
external linkage.

This code gives an example where the linkage of each declaration is the same in both traditional and
ANSI C:

static int pete;

extern int bert;

int mom;

int funcO() {
extern int mom;
extern int pete;
static int dad;
int bert;

}
int funcl() {

static int mom;
extern int dad;
extern int bert;

}

The declaration gfetewith file scope has internal linkage by rule 1 above. This means that the
declaration opetein funcO()also has internal linkage by rule 2 and refers to the same object.

By rule 2, the declaration bertwith file scope has external linkage, since there is no previous
declaration obertwith file scope. Thus, the declaratiorbeft in funcl()also has external linkage (again
by rule 2) and refers to the same (external) object. By rule 4, however, the declafagiemdtincO()

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 4

has no linkage, and refers to a unique object.

The declaration ahomwith file scope has external linkage by rule 3, and, by rule 2, so does the
declaration omomin funcO() (Again, two declarations of the same identifier in a single file that both have
either internal or external linkage refer to the same object.) The declaratamii funcl() however,

has no linkage by rule 4 and thus refers to a unique object.

Last, the declarations dadin funcO()andfuncl1()refer to different objects, as the former has no linkage
and the latter, by rule 2, has external linkage.

Linkage Discrepancies Between Traditional and ANSI C
Traditional and ANSI C differ on the concept of linkage in the following important ways:

< Intraditional C, a function can be declared with block scope and the storage—class&pécifier
The declaration is given internal linkage. Only the storage eldsen can be specified in function
declarations with block scope in ANSI C.

« Intraditional C, if an object is declared with block scope and the storage—class spaaifiand a
declaration for the object with file scope and internal linkage exists, the block scope declaration has
internal linkage. In ANSI C, an object declared with block scope and the storage—classstpécifier
has no linkage.

Traditional and ANSI C handle the conceptsaférenceanddefinitiondifferently. For example:

extern int mytime;
static int yourtime;

In the example above, bothytimeandyourtimehave file scope. As discussed previousityfimehas
external linkage, whilgourtimehas internal linkage.

However, there is an implicit differeridavhich exists in both ANSI and traditionall®etween the
declarations ofnytimeandyourtimein the above example. The declaratioyairtimeallocates storage
for the object, whereas the declaratiomgtimemerely references it. thytimehad been initialized, as in
the following example, it would also have allocated storage.

int mytime=0;
A declaration that allocates storage is referred todaginition
In traditional C, neither of the two declarations below is a definition.

extern int bert;
int bert;

In effect, the second declaration includes an implicit extern specification. ANSI C does not include such
an implicit specification.

Note: In ANSI C, objects with external linkage that are not specifiegktern at the end of the
compilation unit are considered definitions, and, in effect, initialized to zero. (If multiple declarations of
the object occur in the compilation unit, only one need havextieen specification.)

If two modules contain definitions of the same identifier, the linker complains of "multiple definitions,"

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 5

even though neither is explicitly initialized.

The ANSI C linker issues a warning when it finds redundant definitions, indicating the modules that
produced the conflict. However, the linker cannot determine if the initialization of the object is explicit.
The result may be incorrectly initialized objects, if another module fails to tag the objestteith

Thus, consider the following example:
modul el. c:

int ernie;
modul e2. c:
int ernie=>5;

ANSI C implicitly initializes ernie in modulel.c to zero. To the linkenieis initialized in two different
modules. The linker warns you of this situation, and chooses the first such module it encountered as the
true definition of ernie. This module may or may not be the one containing the explicitly initialized copy.

Storage Duration
Storage durationienotes the lifetime of an object. Storage duration is of two tgf&andautomatic

Objects declared with external or internal linkage, or with the storage—class sgtatifidravestatic
storage durationlf these objects are initialized, the initialization occurs once, prior to any reference.

Other objects hava@utomatic storage duratiostorage is newly allocated for these objects each time the
block that contains their declaration is entered. If an object with automatic storage duration is initialized,
the initialization occurs each time the block is entered at the top. It is not guaranteed to occur if the block
is entered by a jump to a labeled statement.

Types

The C language supports three fundamental types of oljbetsicter, integerandfloating point

Character Types

Objects declared as charactetsaf) are large enough to store any member of the implementation’s
character set. If a genuine character from that character set is stothinvariable, its value is

equivalent to the integer code for that character. Other quantities may be stored into character variables,
but the implementation is machine dependent. In this implementelianis unsigned by default.

The ANSI C standard has added multibyte and wide character types. In the initial Silicon Graphics
release of ANSI C, wide characters are of typsigned char and multibyte characters are of length one.
(See the header filestddef.br and dimits.h> for more information.) Because of their initial limited
implementation in this release, this document includes little discussion of wide and multibyte character

types.

Integer and Floating Point Types

Up to five sizes aihtegraltypes (signed and unsigned) are availatiar, short, int, long, andong

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 6

long. Up to three sizes of floating point types are available. The sizes are shown in Table 5-1 (The values
in the table apply to both ANSI and traditional C, with the exceptions noted below.)

Table 5-1 Storage Class Sizes

Type Size in Bits (-32) Size in Bits (-64)
char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

float 32 32

double 64 64

long double 64 128

Although Silicon Graphics suppoiiting doubleas a type incckr mode, this is viewed as an extension
to traditional C and is ignored in subsequent discussions pertinent only to traditional C.

Differences exist in 32-bit mod&2) and 64-bit modeg4) compilations. Typekng andint have

different sizes (and ranges) in 64-bit mode; liypgalways has the same size as a pointer value. A

pointer (or address) has a 64-bit representation in 64—bit mode and a 32-bit representation in 32-bit mode.
Hence, aiint object has a smaller size than a pointer object in 64-bit mode.

Thelong longtype is not a valid ANSI C type, hence a warning is elicited for every occurrence of "long
long" in the source program text-ansiand-ansiposixmodes.

Thelong doubletype has equal range in 32-bit and 64-bit mode, but it has increased precision in 64—bit
mode.

Characteristics of integer and floating point types are defined in the standard headénfiel<and <
float.l>. The range of aignedintegral type of size is [(—@‘}... (T‘Ll)]. The range of amsigned
version of the type is [0... (2-1)].

Enumeration constants were special identifiers under various versions of traditional C, prior to IRIX
Release 3.3. In ANSI C, these constants are simply integer constants that may be used anywhere.
Similarly, ANSI C allows the assignment of other integer variables to variables of enumeration type, with
no error.

You can find additional information on integers, floating points, and structures in the following tables:
* Integer types and ranges, see Table A-1
« Floating point types and ranges, see Table A-2

« Structure alignment, see Table A-3

Derived Types

Because objects of the types mentioned in "Integer and Floating Point Types" can be interpreted usefully
as numbers, this manual refers to therardhmetictypes. The typeshar, enum andint of all sizes
(whetherunsignedor not) are collectively calleidtegraltypes. Thdloat anddoubletypes are

C Language Reference Manual — Chapter 5, Meaning of Identifiers — 7

collectively calledloating types. Arithmetic types and pointers are collectively callestalsrtypes.

The fundamental arithmetic types can be used to construct a conceptually infinite class of derived types,
such as:

« arraysof objects of most types

« functionsthat return objects of a given type

« pointersto objects of a given type

« structuresthat contain a sequence of objects of various types

« unions capable of containing any one of several objects of various types

In general, these constructed objects can be used as building blocks for other constructed objects.

The void Type

Thevoid type specifies an empty set of values. It is used as the type returned by functions that generate
no value. Thevoid type never refers to an object, and is therefore not included in any reference to object

types.

Objects and Ivalues

An objectis a manipulatable region of storage. alueis an expression referring to an object. An
obvious example of an Ivalue expression is an identifier. Some operators yield Ivalues. For example, if
is an expression of pointer type, thénis an lvalue expression referring to the object to whipbints.

The ternmvaluecomes from the term "left value." In the assignment expregsierE2 the left operand
E1must be an Ivalue expression.

Most Ivalues arenodifiable meaning that the Ivalue may be used to modify the object to which it refers.
Examples of lvalues that are not modifiable include array names, Ivalues with incomplete type, and
Ivalues that refer to an object, part or all of which is qualified wdtfist (see "Type Qualifiers").

Whether an Ivalue appearing in an expression must be modifiable is usually obvious. For example, in the
assignment expressi@i = E2 E1 must be modifiable. This document makes the distinction between
modifiable and unmodifiable Ivalues only when it is not obvious.

Chapter 6
Operator Conversions

A number of operators can, depending on the types of their operands, cause an implicit conversion of
some operands from one type to another. The following discussion explains the results you can expect
from these conversions. The conversions demanded by most operators are summarized in"Arithmetic
Conversions". As necessary, a discussion of the individual operators supplements the summary.

Conversions of Characters and Integers

You can use a character or a short integer wherever you can use an integer. Characters are unsigned by
default. In all cases, the value is converted to an integer. Conversion of a shorter integer to a longer
integer preserves the sign. Traditional C uses "unsigned preserving integer promotion” (shsigred
unsignednt), while ANSI C uses "value preserving integer promotion" (unsighed toint).

A longer integer is truncated on the left when converted to a shorter integerchatoExcess bits are
simply discarded.

Conversions of Float and Double

Historically in C, expressions containing floating point operands (dltsror double) were calculated
using double precision. This is also true of calculations in traditional C, unless you've specified the
compiler optionfloat. With the-float option, calculations involving floating point operands and no
doubleorlong doubleoperands take place in single precision. -Float option has no effect on
argument promotion rules at function calls or on function prototypes.

ANSI C performs calculations involving floating point in the same precision-figdf had been
specified in traditional C, except when floating point constants are involved.

In traditional C, specifying thdloat option coerces floating point constants into tifpat if all the other
subexpressions are of tyfi@at. This is not the case in ANSI C. ANSI C considers all floating point
constants to be implicitly double precision, and arithmetics involving such constants therefore take place
in double precision. To force single precision arithmetic in ANSI C, uskotttesuffix on floating point
constants. To force long double precision on constants, ukerthsuffix. For example3.14l is long

double precisior3.14 is double precision, argl14f is single precision in ANSI C.

For a complete discussion with examples, see "Type Promotion and Floating—Point Constants'"

Conversion of Floating and Integral Types

Conversions between floating and integral values are machine dependent. Silicon Graphics uses IEEE
floating point, in which the default rounding mode is to nearest, or in case of a tie, to even. Floating point
rounding modes can be controlled using the faciliti€fpaBc). Floating point exception conditions are
discussed in the introductory paragraph of Chapter 7, "Expressions and Operators."

When a floating value is converted to an integral value, the rounded value is preserved as long as it does
not overflow. When an integral value is converted to a floating value, the value is preserved unless a

C Language Reference Manual — Chapter 6, Operator Conversions — 1

value of more than six significant digits is being converted to single precision, or fifteen significant digits
is being converted to double precision.

Conversion of Pointers and Integers

An expression of integral type can be added to or subtracted from an object pointer. In such a case, the
integer expression is converted as specified in the discussion of the addition operator in"Additive
Operators". Two pointers to objects of the same type can be subtracted. In this case, the result is converted
to an integer as specified in the discussion of the subtraction operator, in "Additive Operators".

Conversion of Unsigned Integers

When arunsignedinteger is converted to a longarsignedor signed integer, the value of the result is
preserved. Thus, the conversion amounts to padding with zeros on the left.

When arunsignedinteger is converted to a shorsggnedor unsignedinteger, the value is truncated on
the left. This truncation may produce a negative value, if the residiried

Arithmetic Conversions

Many types of operations in C require two operands to be converted to a common type. Two sets of
conversion rules are applied to accomplish this conversion. The first, referred tintesgitad
promotionsdefines how integral types are promoted to one of several integral types that are at least as
large asnt. The second, called thsual arithmetic conversionderives a common type in which the
operation is performed.

ANSI C and traditional C follow different sets of these rules.

Integral Promotions

The difference between the ANSI C and traditional versions of the conversion rules is that the traditional
C rules emphasize preservation of tii@gignednessf a quantity, while ANSI C rules emphasize
preservation of itgalue

In traditional C, operands of typekar, unsigned charandunsigned shortare converted tansigned
int. Operands of typesigned charandshort are converted timt.

ANSI C converts althar andshort operands, whether signed or unsignedhtoOnly operands of type
unsigned int unsigned long andunsigned long longmay remain unsigned.

Usual Arithmetic Conversions

Besides differing in emphasis on signedness and value preservation, the usual arithmetic conversion rules
of ANSI C and traditional C also differ in the precision of the chosen floating point type.

Below are two sets of conversion rules, one for traditional C, and the other for ANSI C. Each set is
ordered in decreasing precedence. In any particular case, the rule that applies is the first whose conditions
are met.

C Language Reference Manual — Chapter 6, Operator Conversions — 2

Each rule specifies a type, referred to agdisalt typeOnce a rule has been chosen, each operand is
converted to the result type, the operation is performed in that type, and the result is of that type.

Traditional C Conversion Rules
The traditional C conversion rules are:
< If any operand is of typdouble the result type idouble

« If an operand is of typioat, the result type ifloat if you have specified théloat switch.
Otherwise, the result type is double.

« The integral promotions are performed on each operand:
— If one of the operands is of typasigned long longthe result is of typansigned long long
— If one of the operands is of tyfmng long, the result is of typkng long
— If one of the operands is of typasigned long the result is of typansigned long
— If one of the operands is of tyfmng, the result is of typkng
— If one of the operands is of typasigned int, the result type isnsigned int

— Otherwise, the result is of tyat

ANSI C Conversion Rules
The ANSI C rules are as follows:
« If any operand is of typleng double the result type ilbng double
< If any operand is of typdouble the result type idouble
« If an operand is of typ#oat, the result type ifloat.
e The integral promotions are performed on each operand:
- If one of the operands is of typasigned long longthe result is of typansigned long long
— If one of the operands is of tyfmng long, the result is of typkng long
- If one of the operands is of typasigned long the result is of typansigned long
— If one of the operands is of tyfmng the result is of typkng
- If one of the operands is of typasigned int, the result type ignsigned int

— Otherwise the result is of tyjmt

Conversion of Other Operands

The following three sections discuss conversiolvalfies, function designatorspid objects, and
pointers.

Conversion of Ivalues and Function Designators

C Language Reference Manual — Chapter 6, Operator Conversions — 3

Except as noted, if dualuethat has typarray of <type>appears as an operand, it is converted to an
expression of the typgointer to <type> The resultant pointer points to the initial element of the array. In
this case, the resultant pointer ceases to beahre (For a discussion dfalues see "Objects and

Ivalues".)

A function designatois an expression that has function type. Except as noted, a function designator
appearing as an operand is converted to an expression gfdiyyer to function.

Conversion of Void Objects

The (nonexistent) value ofv@id object cannot be used in any way, and neither explicit nor implicit
conversion can be applied. Becauseid expression denotes a nonexistent value, such an expression
can be used only as an expression statement (see "Expression Statement"), or as the left operand of a
comma expression (see "Comma Operator").

An expression can be converted to typél by use of a cast. For example, this makes explicit the
discarding of the value of a function call used as an expression statement.

Conversion of Pointers

A pointer tovoid can be converted to a pointer to any object type and back without change in the
underlying value.

The NULL pointer constant can be specified either as the integral value zero, or the value zero cast to a
pointer tovoid. If a NULL pointer constant is assigned or compared to a pointer to any type, it is
appropriately converted.

Chapter 7
Expressions and Operators

The precedence of expression operators is indicated by their syntax in this chapter; it usually follows the
order of the major subsections, with earlier subsections having higher precedence. For example, since the
multiplication operator * can haveuaary—expressiofvhich is a cast—-expression) as well as an operand,

the order of evaluation of the expression

~i*z

gives ~ higher precedence than * and can be written

(~i)*z

The text indicates this precedence by placingry—expressioris "Unary Operators”, and
multiplicative—expressioms "Multiplicative Operators". This syntax-subsection correlation is violated in
a few cases. For exampbast—expressiomsin be operands imary—expressions which case the

cast—expressidms higher precedence. See "Cast Operators" and "Unary Operators" for more
information.

Within each subsection, the operators have the same precedence. All operators group left to right, unless
otherwise indicated in their discussion. Table 7-1shows operators and indicates the priority ranking and
grouping of each.

Table 7-1 Operator Precedence and Associativity

Operator (from high to low priority) Grouping
00->. L-R
I~ 44 —— - (type)* & sizeof (all unary) R-L
*[% L-R
+ - L-R
<< >> L-R
<<=>>= L-R
=== L-R
& L-R
n L-R
| L-R
&& L-R
| L-R
?: L-R
4= —=*= 2 %h="=&=|= R-L
) L-R

The order of evaluation of expressions, as well as the order in which side—effects take place, is
unspecified, except as indicated by the syntax, or specified explicitly in this chapter. The compiler can
arbitrarily rearrange expressions involving a commutative and associative operatd, (,).

Integer divide—by-zero results in a trap. Other integer exception conditions are ignored. Silicon Graphics

C Language Reference Manual — Chapter 7, Expressions and Operators — 1

floating point conforms to the IEEE standard. Floating point exceptions are ignored by default, yielding
the default IEEE results of infinity for divide—by-zero and overflow, not—-a—number for invalid operations,
and zero for underflow. You can gain control over these exceptions and their results most easily by using
the Silicon Graphics IEEE floating point exception handler package (see handle_sigfpes(3c)). You can
also control these exceptions by implementing your own handler and appropriately initializing the

floating point unit (see fpc(3c)).

Primary Expressions

An identifier is gprimary—expressigmprovided it has been declared as referring to an object, in which
case it is atvalue or a function, in which case it is a function designateslues and function
designators are discussed in "Conversion of lvalues and Function Designators".

primary—expression:
identifier
constant
string literal
(expression)

A constanis aprimary—expressiotits type is determined by its form and value, as described in
"Constants".

A string literal is aprimary—expressiotits type isarray of char, subject to modification, as described in
"Conversions of Characters and Integers".

A parenthesizedxpressiorns aprimary—expressiowhose type and value are identical to those of the
unparenthesized expression. The presence of parentheses does not affect whether the expression is an
Ivalue rvalug or function designator. For information on expressions, see "Constant Expressions".

Postfix Expressions
Postfix expressions involving ., ->, subscripting, and function calls group left to right.

postfix—expression:
primary—expression
postfix—expression [expression]
postfix-expression (argument-expressiogpfst
postfix—expressiandentifier
postfix—expressick identifier
postfix—expressiotnt+
postfix—expression

argument-expression-list:
argument—expression
argument-expression-list, argument-expression

Subscripts

A postfix—expressidollowed by an expression in square brackets is a subscript. Usually, the

C Language Reference Manual — Chapter 7, Expressions and Operators — 2

A postfix—expressidollowed by an expression in square brackets is a subscript. Usually, the
postfix—expression has typeinter to <type> the expression within the square brackets hasrtt;pend
the type of the result #type>. However, it is equally valid if the types of thestfix—expressiand the
expressionin brackets are reversed. This is because the expression postfix

E1[E2]

is identical (by definition) to

*(E1)+(E2))

Since+ is commutativeiz1 andE2 can be interchanged.

You can find further information on this notation in the discussions on identifiers, and in the discussion of
the operators * (in "Unary Operators”) and + (in "Additive Operators").

Function Calls
The syntax opostfix—expressiotisat are function calls is

postfix-expression (argument-expressiorplst
argument—expression-list:
argument—expression
argument—expression-list, argument-expression

A postfix-expressiofollowed by parentheses containing a possibly empty, comma-separated list of
expressions (which constitute the actual arguments to the function) denotes a function call. The
postfix-expressiomust be of typéunction returning <typeand the result of the function call is of type
<type>, and is not atvalue If thepostfix-expressiodenoting the called function consists solely of a
previously unseen identifiéoqg the call produces an implicit declaration as if, in the innermost block
containing the call, the declaration had appeared:

extern int foo();

If a corresponding function prototype that specifies a type for the argument being evaluated is in force, an
attempt is made to convert the argument to that type. If the number of arguments does not agree with the
number of parameters specified in the prototype, the behavior is undefined. If the type returned by the
function as specified in the prototype does not agree with the type derived froostfire-expression

denoting the called function, the behavior is undefined. Such a scenario may occur for an external
function declared with conflicting prototypes in different files. If no corresponding prototype is in scope

or the argument is in the variable argument section of a prototype that ends in ellipgee @rgument

is converted according to the following default argument promotions:

« Type float is converted to double.
< Array and function names are converted to corresponding pointers.
¢ When using traditional C:
— typesunsigned shortandunsigned charare converted tonsigned int

— typessigned shortandsigned charare converted tsigned int

C Language Reference Manual — Chapter 7, Expressions and Operators — 3

e When using ANSI C:

— typesshort andchar, whethesignedor unsigned are converted tot.

In preparing for the call to a function, a copy is made of each actual argument. Thus, all argument passing
in C is strictly by value. A function can change the values of its parameters, but these changes cannot
affect the values of the actual arguments. It is possible to pass a pointer on the understanding that the
function can change the value of the object to which the pointer points. (Arguments that are array names
can be changed as well, since these arguments are converted to pointer expressions.) Since the order of
evaluation of arguments is unspecified, side effects may be delayed until the next sequence point, which
occurs at the point of the actual Ealifter all arguments have been evaluated. (For example, the
incrementation ofog which is a side—effect of the evaluation of an argufoert+, may be delayed.)

Recursive calls to any function are permitted.

Silicon Graphics recommends consistent use of prototypes for function declarations and definitions, as it
is extremely dangerous to mix prototyped and nonprototyped function declarations/definitions. Never call
functions before you declare them (although the language allows this). It results in an implicit
nonprototyped declaration that may be incompatible with the function definition.

Structure and Union References
A postfix—expressidollowed by a dot followed by an identifier denotes a structure or union reference.
postfix—expression . identifier

The postfix—expressianust be a structure or a union, anditlemtifiermust name a member of the

structure or union. The value is the named member of the structure or union, antv#lise#rthe first
expression is alvalue The result has the type of the indicated member and the qualifiers of the structure
or union.

Indirect Structure and Union References

A postfix—expression followed by an arrow (built freamd>) followed by andentifieris an indirect
structure or union reference.

postfix—expressics identifier

The postfix—expressianust be a pointer to a structure or a union, andit@ifiermust name a member

of that structure or union. The result ishaaluereferring to the named member of the structure or union
to which thepostfix—expressigoints. The result has the type of the selected member, and the qualifiers
of the structure or union to which thestfix—expressigoints. Thus the expression

E1->MOS
is the same as
(*E1).MOS

Structures and unions are discussed in"Structure and Union Declarations".

Postfix ++ and - -

C Language Reference Manual — Chapter 7, Expressions and Operators — 4

The syntax opostfix ++ andpostfix —s:
postfix—expressiont+
postfix—expressicn

When postfix++is applied to a modifiablealue the result is the value of the object referred to by the
Ivalue After the result is noted, the object is incremented as if the constant 1 (one) were added to it. See
the discussions in "Additive Operators" and "Assignment Operators" for information on conversions. The
type of the result is the same as the type ofvilaeexpression. The result is notlaalue

When postfix - is applied to a modifiablealug the result is the value of the object referred to by the

Ivalue After the result is noted, the object is decremented as if the constant 1 (one) were subtracted from
it. See the discussions in "Additive Operators" and "Assignment Operators" for information on
conversions. The type of the result is the same as the typelwdlteexpression. The result is not an

Ivalue

For both postfixt+and- - operators, updating the stored value of the operand may be delayed until the
next sequence point.

Unary Operators
Expressions with unary operators group from right to left.

unary—expression:
postfix—expression
++ unary—expression
- - unary—expression
unary-operator cast-expression
sizeof unary—expression
sizeof (type—name)
unary-operator: one of

*&-1~+

Except as noted, the operand of a unary—operator must have arithmetic type.

Address—of and Indirection Operators

The unary* operator means "indirection”; thast—expressianust be a pointer, and the result is either an
Ivaluereferring to the object to which the expression points, or a function designator. If the type of the
expression is pointer to <type>, the type of the result is <type>.

The operand of the unary & operator can be either a function designatdvaluathat designates an
object. If it is arlvalue the object it designates cannot be a bitfield, and it cannot be declared with the
storage—class register. The result of the uaargerator is a pointer to the object or function referred to
by thelvalueor function designator. If the type of thalueis <type>, the type of the result is pointer to
<type>.

C Language Reference Manual — Chapter 7, Expressions and Operators — 5

Unary + and - Operators

The result of the unaroperator is the negative of its operand. The integral promotions are performed on
the operand, and the result has the promoted type and the value of the negative of the operand. Negation
of unsigned quantities is analogous to subtracting the value flfowh2ren is the number of bits in the
promoted type.

The unary+ operator exists only in ANSI C. The integral promotions are used to convert the operand. The
result has the promoted type and the value of the operand.

Unary ! and ~ Operators

The result of the logical negation operdti 1 if the value of its operand is zero, and 0 if the value of its
operand is nonzero. The type of the resuhtisThe logical negation operator is applicable to any
arithmetic type and to pointers.

The~ operator yields the one’s complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

Prefix ++ and - - Operators

The prefix operators+ and- - increment and decrement their operands.
++ unary—expression

- - unary—expression

The object referred to by the modifiabhl@lueoperand of prefix+ is incremented. The value is the new
value of the operand but is notlaalue The expressiofi+x is equivalent ta += 1 See the discussions
in "Additive Operators" and "Assignment Operators" for information on conversions.

The prefix- - decrements ittvalueoperand in the same manner as prefiincrements it.

The sizeof Unary Operator

Thesizeofoperator yields the size in bytes of its operand. The sizelwdrds 1 (one). Its major use is in
communication with routines like storage allocators and 1/O systems.

sizeof unary—expression
sizeof (type—name)

The operand dizeofcan not have function or incomplete type, or bévaluethat denotes a bitfield. It

can be an object or a parenthesized type name. In traditional C, the type of theuasighid In

ANSI C, the type of the result$ize_t which is defined irstddef.h>asunsigned int(in 32-bit mode)

or asunsigned long(in 64-bit mode). The result is a constant and can be used anywhere a constant is
required.

When applied to an arragizeofreturns the total number of bytes in the array. The size is determined
from the declaration of the object in theary—expressiohesizeofoperator can also be applied to a
parenthesized type—-name. In that case it yields the size in bytes of an object of the indicated type.

Whensizeofis applied to an aggregate, the result includes space used for padding, if any.

C Language Reference Manual — Chapter 7, Expressions and Operators — 6

Cast Operators

A cast—expression preceded by a parenthesized type—name causes of the value the expression to convert to
the indicated type. This construction is called a cast. Type names are discussed in "Type Names".

cast—expression:
unary—expression
(type—name) cast—expression

The type—name specifies scalar type or void, and the operand has scalar type. Since a cast does not yield an
Ivalug the effect of qualifiers attached to the type name is inconsequential.

When an arithmetic value is cast to a pointer, and vice versa, the appropriate number of bits are simply
copied unchanged from one type of value to the other. Be aware of the possible truncation of pointer
values in 64-bit mode compilation, when a pointer value is converted to an (unsigned)

Multiplicative Operators

The multiplicative operators /, and% group from left to right. The usual arithmetic conversions are
performed.

multiplicative expression:
cast—expression
multiplicative—expressidncast—expression
multiplicative—expressidrtast—expression
multiplicative—expression % cast—-expression

Operands of and/ must have arithmetic type. Operands of % must have integral type.
The binary* operator indicates multiplication, and its result is the product of the operands.

The binary/ operator indicates division of the first operator (dividend) by the second (divisor). If the
operands are integral and the value of the divisor is 0, SIGTRAP is signalled. Integral division results in
the integer quotient whose magnitude is less than or equal to that of the true quotient, and with the same
sign.

The binary % operator yields the remainder from the division of the first expression (dividend) by the
second (divisor). The operands must be integral. The remainder has the same sign as the dividend, so
that the equality is true when the divisor is nonzero:

(dividend / divisor) * divisor + dividend % divisor == dividend

If the value of the divisor is 0, SIGTRAP is signalled.

Additive Operators
The additive operatorsand- group from left to right. The usual arithmetic conversions are performed.

additive—expression:
multiplicative—expression

C Language Reference Manual — Chapter 7, Expressions and Operators — 7

additive—expressionmultiplicative—expression
additive—expressicmultiplicative—expression

In addition to arithmetic types, the following type combinations are acceptable for additive—expressions:
« For addition, one operand is a pointer to an object type and the other operand is an integral type.
* For subtraction:

— Both operands are pointers to qualified or unqualified versions of compatible object types.

— The left operand is a pointer to an object type, and the right operand has integral type.

The result of the operator is the sum of the operands. The result of the

- operator is the difference of the operands. When an operand of integral type is added to or subtracted
from a pointer to an object type, the integral operand is first converted to an address offset by multiplying
it by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer.

Suppose has typearray of <object> andp has typepointer to <object>and points to the initial element
ofa. Then the result gb n wherenis an integral operand, is the samé&ag\xb1 n].

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length
of the object) to an integral quantity representing the number of objects separating them. Unless the
pointers point to objects in the same array, the result is undefined. The actual type of thntésult is
traditional C, angbtrdiff t (defined incstddef.h>asint in 32-bit mode and bmg in 64-bit mode) in

ANSI C.

Shift Operators

The shift operators< and>>group from left to right. Each operand must be of an integral type. The
integral promotions are performed on each operand. The type of the result is that of the promoted left
operand. The result is undefined if the right operand is negative or greater than or equal to the length in
bits of the promoted left operand.

shift—expression:
additive—expression
shift-expression << additive—expression
shift-expression >> additive—expression

The value oE1<<E2is E1 (interpreted as a bit pattern) left—shif&bits. Vacated bits are filled with
Zeros.

The value oE1>>E2isE1 right-shiftedE2 bit positions. Vacated bits are filled with zeros if E1 is
unsigned, or if it's signed and its value is nonnegatie1Is signed and its value is negative, vacated
bits are filled with ones.

Relational Operators

The relational operators group from left to right.

C Language Reference Manual — Chapter 7, Expressions and Operators — 8

relational-expression:
shift-expression
relational-expressioR shift-expression
relational-expression shift-expression
relational-expressior= shift-expression
relational-expression= shift—expression

The operators (less than); (greater thank= (less than or equal to), ard (greater than or equal to) all
yield a result of typent with the value 0 if the specified relation is false and 1 if it is true.

The operands must be one of the following:

« both arithmetic, in which case the usual arithmetic conversions are performed on them

* both pointers to qualified or unqualified versions of compatible object types

< both pointers to qualified or unqualified versions of compatible incomplete types
When two pointers are compared, the result depends on the relative locations in the address space of the
pointed—-to objects. Pointer comparison is portable only when the pointers point to objects in the same

aggregate. In particular, no correlation is guaranteed between the order in which objects are declared and
their resulting addresses.

Equality Operators

The==(equal to) and th&= (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Tl == c<dis 1 whenevea<bandc<dhave the same truth
value.)

equality—expression:
relational-expression
equality—expression == relational-expression
equality—expression != relational-expression

The operands must be one of the following:

« both arithmetic, in which case the usual arithmetic conversions are performed on them

« both pointers to qualified or unqualified versions of compatible types

e apointer to an object or incomplete type, and a pointer to qualified or unqualified void type

e apointer and a null pointer constant
The semantics detailed in "Relational Operators" apply if the operands have types suitable for those
operators. Combinations of other operands have the behavior detailed below:

« Two null pointers to object or incomplete types are equal. If two pointers to such types are equal,
they either are null, point to the same object, or point to one object beyond the end of an array of such
objects.

C Language Reference Manual — Chapter 7, Expressions and Operators — 9

« Two pointers to the same function are equal, as are two null function pointers. Two function pointers
that are equal are either both null or both point to the same function.

Bitwise AND Operator

Each operand must have integral type. The usual arithmetic conversions are performed. The result is the
bitwise AND function of the operands, that is, each bit in the result is 0 unless the corresponding bit in
each of the two operands is 1.

AND-expression:
equality—expression
AND-expressiof equality—expression

Bitwise Exclusive OR Operator

Each operand must have integral type. The usual arithmetic conversions are performed. The result has
type int,long, orlong long, and the value is the bitwise exclusive OR function of the operands. That is,
each bit in the result is 0 unless the corresponding bit in one of the operands is 1, and the corresponding
bit in the other operand is 0.

exclusive-OR-expression:
AND-expression
exclusive—-OR-expression * AND-expression

Bitwise Inclusive OR Operator
Each operand must have integral type. The usual arithmetic conversions are performed.

inclusive—-OR—expression:
exclusive—-OR-expression
inclusive-OR-expression | exclusive—-OR-expression

The result has type ifgng, orlong long, and the value is the bitwise inclusive OR function of the
operands. That is, each bit in the result is 0 unless the corresponding bit in at least one of the operands is
1.

Logical AND Operator
The && operator groups left to right.

logical-AND-expression:
inclusive-OR—-expression
logical-AND-expression && inclusive-OR-expression

Each of the operands must have scalar type. The result has type int and value 1 if neither of its operands
evaluates to 0. Otherwise it has value O.

Unlike &, && guarantees left to right evaluation; moreover, the second operand is not evaluated if the

C Language Reference Manual — Chapter 7, Expressions and Operators — 10

first operand evaluates to zero. There is a sequence point after the evaluation of the first operand.

Logical OR Operator
The|| operator groups left to right.

logical-OR-expression:
logical-AND—-expression
logical-OR-expression || logical-AND-expression

Each of the operands must have scalar type. The result has type int and value 1 if either of its operands
evaluates to one. Otherwise it has value 0.

Unlike |, || guarantees left to right evaluation; moreover, the second operand is not evaluated unless the
first operand evaluates to zero. A sequence point occurs after the evaluation of the first operand.

Conditional Operator
Conditional expressions group from right to left.

conditional-expression:
logical-OR-expression
logical-OR-expressi@rexpression conditional-expression

The type of the first operand must be scalar. Only certain combinations of types are allowed for the
second and third operands. These combinations are listed below, along with the type of result the
combination yields.

« Both can be arithmetic types. In this case, the usual arithmetic conversions are performed on them to
derive a common type, which is the type of the result.

« Both are compatible structure or union objects. The result has that type.
« Both are void. The type of the result is void.

« One is a pointer, and the other a null pointer constant. The type of the result is the type of the
nonconstant pointer.

« One is a pointer to void, and the other is a pointer to an object or incomplete type. The second
operand is converted to a pointer to void, and this is the type of the result.

< Both are pointers to qualified or unqualified versions of compatible types. The result has a type
compatible with each, qualified with all the qualifiers of the types pointed to by both operands.

Evaluation of the conditional operator proceeds as follows. The first expression is evaluated, after which a
sequence point occurs. If the value of the first expression is nonzero, the result is the value of the second
operand; otherwise it is that of the third operand. Only one of the second and third operands is evaluated.

Assignment Operators

All assignment operators group from right to left.

C Language Reference Manual — Chapter 7, Expressions and Operators — 11

assignment—expression:
conditional-expression
unary—expression assignment—operator assignment-expression

assignment operator: one of
= *= [= Y= += —= <<= >>= &= = |:

Assignment operators require a modifidislueas their left operand. The type of an assignment
expression is that of its unqualified left operand. The result is fetlae Its value is the value stored in

the left operand after the assignment, but the actual update of the stored value may be delayed until the
next sequence point.

The order of evaluation of the operands is unspecified.

Assignment Using = (Simple Assignment)
The operands permissible in simple assignment must obey one of the following:
< Both have arithmetic type or are compatible structure or union types.

« Both are pointers, and the type pointed to by the left has all of the qualifiers of the type pointed to by
the right.

« One is a pointer to an object or incomplete type, and the other is a pointer to void. The type pointed
to by the left must have all of the qualifiers of the type pointed to by the right.

« The left operand is a pointer, and the right is a null pointer constant.
In simple assignment, the value of the right operand is converted to the type of the assignment expression
and replaces the value of the object referred to by the left operand. If the value being stored is accessed by

another object that overlaps it, the behavior is undefined unless the overlap is exact and the types of the
two objects are compatible.

Compound Assignment

For the operators= and-= either both have arithmetic types, or the left operand is a pointer and the right

is an operand integral. In the latter case, the right operand is converted as explained in"Additive
Operators". For all other operators, each operand must have arithmetic type consistent with those allowed
for the corresponding binary operator.

The expressiok1 op = E2is equivalent to the expressigid = E1 op E2except that in the formdglis
evaluated only once.

Comma Operator

A pair of expressions separated by a comma is evaluated left to right, and the value of the left expression
is discarded.

expression:
assignment-expression

C Language Reference Manual — Chapter 7, Expressions and Operators — 12

expression, assignment-expression

The type and value of the result are the type and value of the right operand. This operator groups left to
right. In contexts where comma is given a special meaning, the comma operator as described in this
section can appear only in parentheses. Two such contexts are lists of actual arguments to functions
(described in "Primary Expressions”) and lists of initializers (see "Initialization"). For example, the
following code has three arguments, the second of which has the value 5.

f(a, (t=3, t+2), c)

Constant Expressions
A constant expression can be used any place a constant can be used.

constant—expression:
conditional-expression

It cannot contain assignment, increment, decrement, function—call, or comma operators. It must evaluate to
a constant that is in the range of representable values for its type. Otherwise, the semantic rules for the
evaluation of nonconstant expressions apply.

Constant expressions are separated into three classes:

* An integral constant expression has integral type and is restricted to operands that are integral
constantssizeofexpressions, and floating constants that are the immediate operands of integral casts.

* An arithmetic constant expression has arithmetic type and is restricted to operands that are arithmetic
constants, anslizeofexpressions. Cast expressions in arithmetic constant expressions can convert
only between arithmetic types.

< An address constant is a pointer tdwuedesignating an object of static storage duration, or a
pointer to a function designator. It can be created explicitly or implicitly, as long as no attempt is
made to access an object value.

Either address or arithmetic constant expressions can be used in initializers. In addition, initializers can
contain null pointer constants and address constants (for object types), and plus or minus integral constant
expressions.

Chapter 8
Declarations

A declaration specifies the interpretation given to a set of identifiers. Declarations have the form:

declaration:
declaration-specifiers init-declaratorplist

Theinit-declarator-lisgs a comma-—separated sequence of declarators, each of which can have an
initializer. In ANSI C, thanit—declarator-listan also contain additional type information:

init—declarator—list:
init—declarator
init—declarator-list , init—declarator

init—declarator:
declarator
declarator = initializer

The declarators in thait—declarator-listontain the identifiers being declared. Teelaration—-specifiers
consist of a sequence of specifiers that determine the linkage, storage duration, and part of the type of the
identifiers indicated by the declarator. Declaration—specifiers have the form:

declaration—specifiers:
storage-class—specifier declaration-spegifigrs
type-specifier declaration—specifigys
type—qualifier declaration-specifigyss

If an identifier that is not a tag has no linkage (see "Disambiguating Names"), at most one declaration of

the identifier can appear in the same scope and name space. The type of an object that has no linkage must
be complete by the end of its declarator or initializer. Multiple declarations of tags and ordinary

identifiers with external or internal linkage can appear in the same scope so long as they specify

compatible types.

In traditional C, at most one declaration of an identifier with internal linkage can appear in the same scope
and name space, unless it is a tag.

In ANSI C, a declaration must declare at least one of:
* adeclarator
+ atag
» the members of an enumeration
A declaration may reserve storage for the entities specified in the declarators. Such a declaration is called

adefinition (Function definitions have a different syntax and are discussed in "Function Declarators and
Prototypes” and Chapter 10, "External Definitions.")

Storage—class Specifiers

C Language Reference Manual — Chapter 8, Declarations — 1

Thestorage—class—specifiedicates linkage and storage duration. These attributes are discussed in
"Disambiguating NamesStorage—class specifidrave the form:

storage—class—specifier:
auto
static
extern
register
typedef

Thetypedefspecifier does not reserve storage and is called a storage class specifier only for syntactic
convenience. See "typedef" for more information.

At most onestorage—class specifiean appear in a declaration. If 8terage—class—specifismmissing
from a declaration, it is assumed todxéern unless the declaration is of an object and occurs inside a
function, in which case it is assumed toalio. (See "Changes in Disambiguating Identifiers" for further
details.)

Identifiers declared within a function with the storage otagsrn must have an external definition (see
Chapter 10, "External Definitions") somewhere outside the function in which they are declared.

Identifiers declared with the storage clatsic have static storage duration, and either internal linkage (if
declared outside a function) or no linkage (if declared inside a function). If the identifiers are initialized,
the initialization is performed once before the beginning of execution. If no explicit initialization is
performed, static objects are implicitly initialized to zero.

A register declaration is aauto declaration, with a hint to the compiler that the objects declared will be
heavily used. Whether the object is actually placed in fast storage is implementation—defined. You cannot
take the address of any part of an object declared witledfiter specifier.

Type Specifiers
Type specifiers are listed below. The syntax is:

type—specifier:
struct—-or-union-specifier
typedef-name
enum-specifier
char
short
int
long
signed
unsigned
float
double
void

C Language Reference Manual — Chapter 8, Declarations - 2

The following list enumerates all valid combinations of type specifiers. These combinations are organized
into a number of sets, each set made up of one line. The arrangement of the type specifiers appearing in
any combination below can be altered without effect. The type specifiers in each set are equivalent in all
implementations.

e void

* char

e signed char

e unsigned char

« short, signed short, short irdr signed short int

« unsigned shoripr unsigned short int

« int, signed, signed inbr no type specifiers

e unsignedpr unsigned int

* long, signed long, long intr signed long int

« unsigned longorunsigned long int

» long long, signed long long, long long,intsigned long long int
e unsigned long longprunsigned long long int

o float

* double

* long double

In traditional C, the type long float is allowed and equivalent to double; its use is not recommended. It

elicits a warning if you're not ircckr mode. Use of the type long double is not recommended in
traditional C.

Note: long longis not a valid ANSI C type, so a warning appears for every occurrence of it in the source
program text iransiand-ansiposixmodes.

Specifiers for structures, unions, and enumerations are discussed in "Structure and Union Declarations"
and "Enumeration Declarations". Declarations wythedefnames are discussed in "typedef".

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member can have any type. A
union is an object that can, at a given time, contain any one of several members. Structure and union
specifiers have the same form. The syntax is:

struct—or—union-specifier:
struct—or-union {struct—decl-list}

struct—or-union identifier {struct-decl-list}
struct—or—union identifier

C Language Reference Manual — Chapter 8, Declarations — 3

struct—or—union:
struct
union

Thestruct-decl-list a sequence of declarations for the members of the structure or union. The syntax is:

struct—decl-list:
struct—declaration
struct—decl-list struct—declaration

struct—declaration:
specifier—qualifier—list struct—declarator-list;

struct—declarator-list:
struct—declarator
struct—declarator-list , struct—declarator

In the usual case,struct—declaratais just a declarator for a member of a structure or union. A structure
member can also consist of a specified number of bits. Such a member is also called a bitfield. Its length, a
non—-negative constant expression, is separated from the field name by a colon."Bitfields" are discussed at
the end of this section.

The syntax fostruct—declaratois:

struct—declarator:
declarator
declarator : constant—expression
. constant—expression

A struct orunion cannot contain a member with incomplete or function type, or that is an instance of
itself. It can, however, contain a member that is a pointer to an instance of itself.

Within a structure, the objects declared have addresses that increase as the declarations are read left to
right. Each non-field member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure.

A union can be thought of as a structure whose members all begin at offset 0 and whose size is sufficient
to contain any of its members. At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form declares the identifier to be the structure tag (or union
tag) of the structure specified by the list. This type of specifier is one of

struct identifier {struct-decl-list}

union identifier {struct—decl-list}

A subsequent declaration can use the third form of specifier, one of
struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long part of the
declaration to be given once and used several times.

C Language Reference Manual — Chapter 8, Declarations — 4

The third form of a structure or union specifier can be used prior to a declaration that gives the complete
specification of the structure or union in situations in which the size of the structure or union is
unnecessary. The size is unnecessary in two situations: when a pointer to a structure or union is being
declared and whentgpedefname is declared to be a synonym for a structure or union. This, for

example, allows the declaration of a pair of structures that contain pointers to each other.

The names of members of eattuct or union have their own name space, and do not conflict with each

other or with ordinary variables. A particular member name cannot be used twice in the same structure,

but it can be used in several different structures in the same scope. Names that are used for tags reside in a
single name space. They do not conflict with other names or with names used for tags in an enclosing
scope. This tag name space, however, consists of tag names usestriactallnion, orenum

declarations. Thus the tag hame okanmmay conflict with the tag name ofauct in the same scope.

(See "Disambiguating Names".)

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode {

char tword[20];

int count;

struct tnode *left;

struct tnode *right;

h

This structure contains an array of 20 characters, an integer, and two pointers to instances of itself. Once
this declaration has been given, the declaration ded#wd®e a structure of the given sort aptb be a

pointer to a structure of the given sort. For example:

struct tnode s, *sp;

With these declarations, the expressipn>countefers to the count field of the structure to wkigch
points. The expressianleftrefers to the left subtree pointer of the structuighe expression
s.right—>tword[O]refers to the first character of ttiveord member of the right subtree ©f

Bitfields

A structure member can consist of a specified number of bits, called a bitfield. Bitfields should be of type
int, signed int orunsigned intin strict ANSI C mode. Silicon Graphics allows bitfields of any integral
type, but warn for nomt types in-ansiand-ansiposixmodes.

The default type of field membersiig, but whether it is signed or unsigriatiis defined by the
implementation. It is thus wise to specify the signedness of bitfields when they are declared. In this
implementation, the default type of a bitfield is signed.

Theconstant-expressitimat denotes the width of the bitfield must have a value no greater than the width,
in bits, of the type of the bitfield. An implementation can allocate any addressable storage unit (referred
to in this discussion as simply a "unit") large enough to hold a bitfield. If an adjacent bitfield will not fit in
the remainder of the unit, whether a unit is allocated for it or bitfields are allowed to span units is
implementation—defined. The ordering of the bits within a unit is also implementation—defined.

C Language Reference Manual — Chapter 8, Declarations — 5

A bitfield with no declarator, just a colon and a width, indicates an unnamed field useful for padding. As a
special case, a field with a width of zero, which cannot have a declarator, specifies alignment of the next
field at the next unit boundary.

These implementation—defined characteristics make the use of bitfields inherently nonportable,
particularly if they are used in situatiangn aunion, for examplé&l where the underlying object may be
accessed by another data type.

The first bitfield encountered inséruct is not necessarily allocated on a unit boundary and is packed into
the current unit, if possible. A bitfield cannot span a unit boundary. Bits for bitfields are allocated from
left (most significant) to right.

In the 64-bit implementation, bitfields are packed into as small a unit as possible, where the smallest unit
is 0 bytes in size and the largest unit is 8 bytes in size. The alignment requiremerdsudttaee

influenced only by the units used to pack bitfields, not by the type of the bitfields. This is quite different
from 32-bit mode, which is described next.

In the 32-bit implementation, the size of a unit for bitfields is equal to the size of the type of the bitfield
that started the unit. A new unit is allocated when the alignment of the type of the next bitfield differs
from the alignment of the current unit, even if the number of bits in the next bitfield would fit into the
current unit. For example, if the current unit baar alignment and the next bitfield has typg then a
newint-sized unit is allocated.

In this implementation, for example, the following structure is two units in size:

struct {

char c;

int k:9,

:12;

signed int j:5;
}s;
The first unit consists of thgharc in its eight bits. The alignment of &t differs from that of &har;
hence, the next 24 bits are padding, followed bipnaanit. The(signed)intbitfieldk is in the most
significant 9 bits of that unit, followed by 12 pad bits and the 5 bits of$lgmed inf. The size of this
struct is eight bytes.

There are no arrays of bitfields. Since the address—of operator, &, cannot be applied to bitfields, there are
no pointers to bitfields.

Enumeration Declarations
Enumeration variables and constants have integral type. The syntax is:

enum-specifier:
enum {enum-list}
enum identifier {fenum-list}
enum identifier

C Language Reference Manual — Chapter 8, Declarations - 6

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant—expression

The identifiers in an enum-list are declareihtasonstants and can appear wherever such constants are
allowed. If no enumerators withappear, then the values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. An enumerater gwths the associated

identifier the value indicated; subsequent identifiers continue the progression from the assigned value.
Note that the use efmay result in multiple enumeration constants having the same integral value, even
though they are declared in the same enumeration declaration.

Enumerators are in the ordinary identifiers name space (see "Name Spaces"). Thus, an identifier used as
an enumerator may conflict with identifiers used for objects, functions, and user-defined types in the same
scope.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct—specifier; it names a particular enumeration. For example:

enum color { chartreuse, burgundy, claret=20, winedark };
enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy) ...

This example makelor the enumeration—tag of a type describing various colors, and then dgrdares

a pointer to an object of that type amadlas an object of that type. The possible values are drawn from the

set {0,1,20,21}. The tags of enumeration declarations are members of the single tag name space, and thus
must be distinct from tags efruct andunion declarations.

Type Qualifiers
Type qualifiers have the syntax shown below:

type—qualifier:
const
volatile

The same type qualifier cannot appear more than once in the same specifier list either directly or
indirectly (through typedefs). The value of an object declared witbathgttype qualifier is constant. It
cannot be modified, although it can be initialized following the same rules as the initialization of any
other object. (See the discussion in "Initialization.") Implementations are free to atlonatebjects,
which are not also declargdlatile, in read—only storage.

C Language Reference Manual — Chapter 8, Declarations — 7

An object declared with the volatile type qualifier may be accessed in unknown ways or have unknown
side effects. For example, a volatile object may be a special hardware register. Expressions referring to
objects qualified agolatile must be evaluated strictly according to the semantics. Wéiatile objects

are involved, an implementation is not free to perform optimizations that would otherwise be valid. At
each sequence point, the value ofraltile objects must agree with that specified by the semantics.

If an array is specified with type qualifiers, the qualifiers are applied to the elements of the array. If a
struct orunion is qualified, the qualification applies to each member.

Two qualified types are compatible if they are identically qualified versions of compatible types. The
order of qualifiers in a list has no effect on their semantics.

The syntax of pointers allows the specification of qualifiers that affect either the pointer itself or the
underlying object. Qualified pointers are covered in "Pointer Declarators".

Declarators
Declarators have the syntax shown below:

declarator:
pointepptdirect-declarator

direct—declarator:
identifier
(declarator)
direct-declarator (parameter-typegjjt
direct-declarator (identifier—ligs)
direct-declarator [constant-expresgigh

Portions of the list above are reproduced in the sections following, along with expansions of their
constituent parts. The grouping is the same as in expressions.

Meaning of Declarators

Each declarator is an assertion that when a construction of the same form as the declarator appears in an
expression, it designates a function or object with the scope, storage duration, and type indicated by the
declaration.

Each declarator contains exactly one identifier; it is this identifier that is declared. If, in the declaration
TD1

D1is simply an identifier, then the type of the identifieFidf D1 has the fornfD) then the underlying
identifier has the type specified by the declaralidd. Thus, a declarator in parentheses is identical to
the unparenthesized declarator. The binding of complex declarators can, however, be altered by
parentheses.

Pointer Declarators

C Language Reference Manual — Chapter 8, Declarations - 8

Pointer declarators have the form

pointer:

* type—qualifier-ligpt

* type—qualifier-ligptpointer
The following is an example of a declaration:
TD1

In this declaration, the identifier has typ&@ , where the. is empty ifD1 is just a plain identifier (so
that the type ok in "int X" is justint). Then ifD1 has the formitype—qualifier-lighD, the type of the
contained identifier is (possibly—qualified) pointer o

Qualifiers and Pointers

It is important to be aware of the distinction betwegqnalified pointer to <typezand gpointer to
<qualified type> In the declarations belopwtr_to_consts a pointer to const long.

const long *ptr_to_const;
long * const const_ptr;
volatile int * const const_ptr_to_volatile;

Thus, the long pointed to cannot be modified by the pointer. The pointer itself, however, can be altered.
const_ptrcan be used to modify the long that it points to, but the pointer itself cannot be modified. In the
last examplegonst_ptr_to_volatilés a constant pointer to a volatile int and can be used to modify it. The
pointer itself, however, cannot be modified.

Array Declarators
If D1 has the form
D[constant—expressionopt]

then the contained identifier has typedrray of T" The expression enclosed in square brackets, if it

exists, must be an integral constant expression whose value is greater than zero. (See "Primary
Expressions".) When several "array of" specifications are adjacent, a multi-dimensional array is created;
the constant expressions that specify the bounds of the arrays can be missing only for the first member of
the sequence.

The absence of the first array dimension is allowed if the array is external and the actual definition (which
allocates storage) is given elsewhere, or if the declarator is followed by initialization. In the latter case, the
size is calculated from the number of elements supplied.

In order for two array types to be compatible, their element types must be compatible. In addition, if both
of their size specifications are present, they must have the same value.

An array can be constructed from one of the basic types, from a pointer, from a structure or union, or from
another array (to generate a multi—-dimensional array).

The example below declares an array of float numbers and an array of pointers to float numbers:

float fa[17], *afp[17];

C Language Reference Manual — Chapter 8, Declarations — 9

Finally, this example declares a static three—dimensional array of integers, with rank 3x5x7.
static int x3d[3][5][7];

In complete detailk3dis an array of three items; each item is an array of five items; each of the latter
items is an array of seven integers. Any of the express8ths3d][i], x3d[i][j] , x3d][i][jl[k] can
reasonably appear in an expression. The first three have type "array" and the lastifias type

Function Declarators and Prototypes

The syntax for function declarators is shown below:
direct-declarator (parameter-typegfigt
direct-declarator (identifier—ligsj

parameter—type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter—declaration
parameter-list , parameter—declaration

parameter—declaration:
declaration—specifiers declarator
declaration-specifiers abstract-declarggar

identifierlist:
identifier
identifier—list , identifier
Function declarators cannot specify a function or array type as the return type. In addition, the only
storage—class specifier that can be used in a parameter declaration is register. For example, the declaration
T D1, D1 has the form:
D(parameter-type-§p
Or it has the form:
D(identifier-lisspp
The contained identifier has the typéunction returning Tand is possibly a prototype, as discussed

below.

A parameter—type-lideclares the types of, and can declare identifiers for, the formal parameters of a
function. The absence ofparameter-type-listdicates that no typing information is given for the
function. Aparameter—type-lisbnsisting only of the keyworaid indicates that the function takes zero
parameters. If thearameter—type-lishds in ellipses (), the function can have one or more additional
arguments of variable or unknown type. (Setlarg.h».)

The semantics of a function declarator are determined by its form and context. The possible combinations
are:

C Language Reference Manual — Chapter 8, Declarations — 10

» The declarator is not part of the function definition. The function is defined elsewhere. In this case,
the declarator cannot haveidantifier—list

- If the parameter-type-listabsent, the declarator is an old—style function declaration. Only the
return type is significant.

- If theparameter—type-list present, the declarator isuaction prototype
* The declarator is part of the function definition:

— If the declarator has adentifier—listthe declarator is an old-style function definition. Only the
return type is significant.

— If the declarator has@arameter—type—lishe definition is irprototype formif no previous
declaration for this function has been encountered, a function prototype is created for it that has
file scope.

If two declarations (one of which can be a definition) of the same function in the same scope are
encountered, they must match, both in type of return value g@dameter—type-lidf one and only one
of the declarations hagparameter—type-lighe behavior varies between ANSI C and Traditional C, as
described below.

In traditional C, most combinations pass without any diagnostic messages. However, an error message is
emitted for cases where an incompatibility is likely to lead to a run—time failure fleat type in a
parameter—type-list a function prototype is totally incompatible with any old-style declaration for the
same function; therefore, Silicon Graphics considers such redeclarations erroneous).

In ANSI C, if the type of any parameter declared ingammeter—type-list other than that which would
be derived using the default argument promotions, an error is posted. Otherwise, a warning is posted and
the function prototype remains in scope.

In all cases, the type of the return value of duplicate declarations of the same function must match, as must
the use of ellipses.

When a function is invoked for which a function prototype is in scope, an attempt is made to convert each
actual parameter to the type of the corresponding formal parameter specified in the function prototype,
superseding théefault argument promotionB particular floats specified in the type list are not

converted taloublebefore the call. If the list terminates with an ellipsis (...), only the parameters

specified in the prototype have their types checked; additional parameters are converted according to the
default argument promotions (discussed in "Type Qualifiers”). Otherwise, the number of parameters
appearing in the parameter list at the point of call must agree in number with those in the function
prototype.

The following are two examples of function prototypes:

double foo(int *first, float second, ...);
int *fip(int a, long I, int (*ff)(float));

The first prototype declares a functimo(), returning adouble that has (at least) two parameters: a
pointer to arint and &loat. Further parameters can appear in a call of the function and are unspecified.
The default argument promotions are applied to any unspecified arguments. The second prototype

C Language Reference Manual — Chapter 8, Declarations — 11

declares a functiofip(), that returns a pointer to am. The functiorfip() has three parameters:iat) a
long, and a pointer to a function returningiainthat has a singldl¢at) argument.

Prototyped Functions Summarized

When a function call occurs, each argument is converted using the default argument promotions unless
that argument has a type specified in a corresponding in—scope prototype for the function being called. It
is easy to envision situations that may prove disastrous if some calls to a function were made with a
prototype in—scope and some were not. Unexpected results can also occur if a function was called with
different prototypes in—scope. Thus, if a function is prototyped, it is extremely important to make sure that
all invocations of the function use the prototype.

In addition to adding a new syntax for external declarations of functions, prototypes have added a new
syntax for external definitions of functions. This syntax is terfoadtion prototype formit is highly
important to define prototyped functions usingeaameter—type-lisither than a simpldentifier—listf

the parameters are to be received as intended.

In ANSI C, unless the function definition haparameter—type—list is assumed that arguments have
been promoted according to the default argument promotions. Specifically, an in—scope prototype for the
function at the point of its definition has no effect on the type of the arguments that the function expects.

In traditional C, if a function definition includes mlentifier—lis{that is, is not in function—prototype

form) and a prototype for the function is in scope at the point of its definition, then earlier versions of the
compilers merged the two so that the function prototype took precedence. Since this worked only for very
simple cases, Silicon Graphics chose not to do so in this version of the C compiler. Instead, the compilers
issue error diagnostics when argument-type mismatches are likely to result in faulty run—time behavior.

Restrictions on Declarators

Not all the possibilities allowed by the syntax of declarators are actually permitted. The restrictions are as
follows:

» functions cannot return arrays or functions although they can return pointers

« no arrays of functions exist although arrays of pointers to functions can exist

* astructure or union cannot contain a function, but it can contain a pointer to a function.
As an example, the following declaration declares an inieggrointeip to an integer, a functidn

returning an integer, a functidip returning a pointer to an integer, and a poipfeto a function, which
returns an integer.

inti, *ip, f0), *fip(), (*pfi)();

It is especially useful to compare the last two. The bindiri§jp) is*(pfi()). The declaration suggests,

and the same construction in an expression requires, the calling of a fiipctom then using

indirection through the (pointer) result to yield an integer. In the decl#tpf(), the extra parentheses

are necessary, as they are also in an expression, to indicate that indirection through a pointer to a function
yields a function, which is then called; it returns an integer.

C Language Reference Manual — Chapter 8, Declarations — 12

Type Names

In several contexts (for example, to specify type conversions explicitly by means of a cast, in a function
prototype, and as an argumensi@eoy, it is best to supply the name of a data type. This haming is
accomplished using a "type name," whose syntax is a declaration for an object of that type without the
identifier. The syntax for type names as shown:

type—name:
specifier-qualifier-list abstract-declargjgr

abstract—declarator:
pointer
pointepptdirect-abstract-declarator

direct—-abstract—declarator:
(abstract—declarator)
direct-abstract-declaraggyt[constant-expressigpf
direct-abstract-declaraggjt (parameter—type—lig

Thetype—namereated can be used as a synonym for the type that the omitted identifier would have. The
syntax indicates that a set of empty parentheses in a type name is interpiwtetdaswith no

parameter informationather than as redundant parentheses surrounding the (omitted) identifier.
Examples of type names are shown in Table 8-1

Table 8—1Examples of Type Names

Type Description

int integer

int * pointer to integer

int *[3] array of three pointers to integers

int (*)[3] pointer to an array of three integers

int *(void) function with zero arguments returning pointer to integer

int (*)(float, ...) pointer to function returning an integer, that has a variable number

of arguments the first of which is a float

int (*[3])(array of three pointers to functions returning an integer for which
no parameter type information is given

Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. The
storage class is supplied by the context in external definitions, and in declarations of formal parameters
and structure members. Missing storage class specifiers appearing in declarations outside of functions are
assumed to bextern (see "External Name Changes" for details). Missing type specifiers in this context

are assumed to lng. In a declaration inside a function, if a type but no storage class is indicated, the
identifier is assumed to lato. An exception to the latter rule is made for functions becauise

functions do not exist. If the type of an identifiefuaction returning <typepit is implicitly declared to

beextern.

C Language Reference Manual — Chapter 8, Declarations — 13

In an expression, an identifier followed by a left parenthesis (indicating a function call) that is not already
declared, is implicitly declared to be of tyfjp@ction returning int

typedef

Declarations with the storage class spectfipedefdo not define storage. pedefhas the syntax
shown below:

typedef-name:

identifier
Rather than becoming an object with the given type, an identifier appearitypédafdeclaration
becomes a synonym for the type. For example:

int intarray[10];

If, in the above example, tlt type specifier were preceded wiyipedef, the identifier declared as an
object would instead be declared as a synonym for the array type. This can appear as shown below:

typedef int intarray[10];

This example could be used as if it were a basic type. For example:
intarray ia;

After

typedef int MILES, *KLICKSP;
typedef struct {
double re, im;

}

complex;
the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations. The typedistance isint, that ofmetricp is pointer tant, and that of is
the specified structure. Thae is a pointer to such a structure.

Thetypedefdoes not introduce brand—-new types, only synonyms for types that could be specified in
another way. Thus, in the example abalistance is considered to have exactly the same type as any
otherint object.

Initialization

A declaration of an object or of an array of unknown size can specify an initial value for the identifier
being declared. The initializer is preceded-bgnd consists of an expression or a list of values enclosed
in nested braces.

C Language Reference Manual — Chapter 8, Declarations — 14

initializer:
assignment—expression
{initializer-list}
{initializer-list ,}

initializer—list:

initializer

initializer—list , initializer
There cannot be more initializers than there are objects to be initialized. All the expressions in an
initializer for an object of static storage duration must be constant expressions (see "Primary Expressions
.) Objects with automatic storage duration can be initialized by arbitrary expressions involving constants
and previously declared variables and functions, except for aggregate initialization, which can only
include constant expressions.

Identifiers declared with block scope and either external or internal linkage (that is, objects declared in a
function with the storage—class specifier extern) cannot be initialized.

Variables of static storage duration that are not explicitly initialized are implicitly initialized to zero. The
value of automatic and register variables that are not explicitly initialized is undefined.

When an initializer applies to a scalar (a pointer or an object of arithmetic type; see"Derived Types"), it
consists of a single expression, perhaps in braces. The initial value of the object is taken from the
expression. With the exception of type qualifiers associated with the scalar, which are ignored during the
initialization, the same conversions as for assignment are performed.

Initialization of Aggregates

In traditional C it is illegal to initialize anion. It is also illegal to initialize atruct of automatic storage
duration.

In ANSI C, objects that argruct or union types can be initialized, even if they have automatic storage
duration.unionsare initialized using the type of the first named element in their declaration. The
initializers used for atruct or union of automatic storage duration must be constant expressions if they
are in an initializer list. If thetruct orunion is initialized using arassignment-expressiornhe

expression need not be constant.

When the declared variable istauct or array, the initializer consists of a brace—enclosed,

comma-separated list of initializers for the members of the aggregate written in increasing subscript or
member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the
aggregate.

If the initializer of a subaggregate or union begins with a left brace, its initializers consist of all the
initializers found between the left brace and the matching right brace. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the members of
the subaggregate; any remaining members are left to initialize the next member of the aggregate of which
the current subaggregate is a part.

Within any brace—enclosed list, there should not be more initializers than members. If fewer initializers

C Language Reference Manual — Chapter 8, Declarations — 15

occur in the list than there are members of the aggregate, then the aggregate is padded with zeros.
Unnamedstruct or union members are ignored during initialization.

In ANSI C, if the variable is anion, the initializer consists of a brace—enclosed initializer for the first
member of the union. Initialization sfruct or union objects with automatic storage duration can be
abbreviated as a simple assignment of a compatillet or union object.

A final abbreviation allows ehar array to be initialized by a string literal. In this case successive
characters of the string literal initialize the members of the array.

In ANSI C, an array of wide characters (that is, whose element type is compatibhehath t) can be
initialized with a wide string literal (see "String Literals").

Examples of Initialization

For example,

intx[]={1,3,5}

declares and initializesas a one—dimensional array that has three members, since no size was specified
and there are three initializers.

float y[4][3] =

{

{1,3,5},

{2,4,6},

{3,5, 7},

¥

is a completely bracketed initialization: 1, 3, and 5 initialize the first row of theyd@aynamely
y[0][0] , y[O][1], andy[O][2] . Likewise, the next two lines initializag1] andy[2]. The initializer ends
early, and thereforg[3] is initialized with 0. The next example achieves precisely the same effect.

float y[4][3] =

{
1,3,5,2,4,6,3,57

h
The initializer fory begins with a left brace but that fg0] does not; therefore, three elements from the
list are used. Likewise, the next three are taken successivg[it fandy[2]. Also,

float y[4][3] = {

{1}h{2} {3} {4}
h

initializes the first column of (regarded as a two—dimensional array) and leaves the rest 0.
The following example demonstrates the ANSI C rulegni&n object

union dc_u {
double d;

C Language Reference Manual — Chapter 8, Declarations — 16

char *cptr;

h

is initialized by using the first element only, as in
union dc_u dcO0={4.0};

Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string literal. The length of the string (or
size of the array) includes the terminatdgLL characten.

Chapter 9
Statements

A statement is a complete instruction to the computer. Except as indicated, statements are executed in
sequence. Statements have the form:

statement:
expression—-statement
compound-statement
selection—statement
iteration-statement
jump-statement
labeled-statement

Expression Statement
Most statements are expression statements, which have the form:

expression—statement:
expressioppg

Usually expression statements are expressions evaluated for their side effects, such as assignments or
function calls. A special case is thall statementyvhich consists of only a semicolon.

Compound Statement or Block

A compound statement (or block) groups a set of statements into a syntactic unit. The set can have its own
declarations and initializers, and has the form:

compound-statement:
{declaration-lisjpt statement-ligipt

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

Declarations within compound statements Hawvek scopelf any of the identifiers in theeclaration-list
were previously declared, the outer declaration is hidden for the duration of the block, after which it
resumes its force. In traditional C, however, function declarations always$ilba@pewhenever they
appear.

Initialization of identifiers declared within the block is restricted to those that have no linkage. Thus, the
initialization of an identifier declared within the block usingéleern specifier is not allowed. These
initializations are performed only once, prior to the first entry into the block, for identifiers with static

C Language Reference Manual — Chapter 9, Statements — 1

storage duration. For identifiers with automatic storage duration, it is performed each time the block is
entered at the top. It is currently possible (but a bad practice) to transfer into a block; in that case, no
initializations are performed.

Selection Statements
Selection statements includeandswitch statements and have the form:

selection—statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

Selection statements choose one of a set of statements to execute, based on the evaluation of the
expression. The expression is referred to as the controlling expression.

The if Statement
The controlling expression of @nstatement must have scalar type.

For both forms of thé statement, the first statement is executed if the controlling expression evaluates to
nonzero. For the second form, the second statement is executed if the controlling expression evaluates to
zero. Arelseclause that follows multiple sequentitde-lessf statements is associated with the most

recenif statement in the same block (that is, not in an enclosed block).

The switch Statement

The controlling expression ofsavitch statement must have integral type. The statement is typically a
compound statement, some of whose constituent statements are dalseftgtements (see "Labeled
Statements"). In addition, at most one labdlef@ult statement can occur inswitch The expression on
eachcaseéabel must be an integral constant expression. No two expressiocasdabels in the same
switch can evaluate to the same constant.

A compound statement attached ®natch can include declarations. Due to the flow of control in a
switch, however, initialization of identifiers so declared are not performed if these initializers have
automatic storage duration.

The integral promotions are performed on the controlling expression, and the constant expression of each
casestatement is converted to the promoted type. Control is transferred to the ¢alseftdtement

whose expression value matches the value of the controlling expression. If no such match occurs, control
is transferred either past the end ofshatch or to the labeledefault statement, if one exists in the

switch. Execution continues sequentially once control has been transferred. In particular, the flow of
control is not altered upon encountering anotlaselabel. Theswitch statement is exited, however, upon
encountering break or continue statement (see "The break Statement"and "The continue Statement",
respectively).

A simple example of a complesgvitch statement is:

switch (c) {
case '0’:

C Language Reference Manual — Chapter 9, Statements — 2

case '0:
oflag = TRUE;
break;

case 'p
pflag = TRUE;
break;

case'r:
rflag = TRUE;
break;

default :
(void) fprintf(stderr,

"Unknown option\n");

exit(2);

}

Iteration Statements

Iteration statements execute the attached statement (callzatiheepeatedly until the controlling
expression evaluates to zero. In thestatement, the second expression is the controlling expression. The
format is:

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressioppt ; expressiogpt ; expressiogpy statement

The controlling expression must have scalar type.

The flow of control in an iteration statement can be altered by a jump-statement (se€"Jump Statements").

The while Statement

The controlling expression ofvghile statement is evaluated before each execution of the body.

The do Statement

The controlling expression ofdm statement is evaluated after each execution of the body.

The for Statement
Thefor statement has the form:

for (expressiogpt; expressioppt; expressiopp
statement

The first expression specifies initialization for the loop. The second expression is the controlling
expression, which is evaluated before each iteration. The third expression often specifies incrementation.
It is evaluatedftereach iteration.

This statement is equivalent to:

C Language Reference Manual — Chapter 9, Statements - 3

expression—-1;
while (expression—2)

{

statement
expression-3;

}

One exception exists, however. E@ntinue statement (see "The continue Statement”) is encountered,
expression—8f thefor statement is executed prior to the next iteration.

Any or all of the expressions can be omitted. A missing expression—2 makes thewinigiethuse
equivalent tavhile (1). Other missing expressions are simply dropped from the expansion above.

Jump Statements
Jump statements cause unconditional transfer of control. The syntax is:

jump-statement:
goto identifier;
continue;
break;
return expressiogpg

The goto Statement
Control can be transferred unconditionally by meansgotastatement:
goto identifier;

The identifier must name a label located in the enclosing function. If the label has not yet appeared, it is
implicitly declared. (See "Labeled Statements" for more information.)

The continue Statement

The continue statement can appear only in the body of an iteration statement. It causes control to pass to
the loop—continuation portion of the smallest enclosinite, do, orfor statemet that is, to the end of
the loop. More precisely, consider each of the following statements:

while (...)
{

contin: ;

}
do {

contin: ;
} while (...) ;

C Language Reference Manual — Chapter 9, Statements — 4

for (...) {

contin: ;
}

A continue is equivalent fgoto contin. Following thecontin: is a null statement.

The break Statement

The break statement can appear only in the body of an iteration statement or code attached to a switch
statement. It transfers control to the statement immediately following the smallest enclosing iteration or
switch statement, terminating its execution.

The return Statement

A function returns to its caller by means of the return statement. The value of the expression is returned to
the caller after conversion, as if by assignment, to the declared type of the function, as the value of the
function call expression. The return statement cannot have an expression if the type of the current function
is void.

If the end of a function is reached prior to the execution of an explicit return, an implicit return (with no
expression) is executed. If the value of the function call expression is used when none is returned, the
behavior is undefined.

Labeled Statements
Labeled statements have the following syntax:

labeled-statement:
identifier : statement
case constant—expression : statement
default : statement

A case or default label can appear only on statements that are pswiittha

Any statement can have a label attached as a simple identifier. The scope of such a label is the current
function. Thus, labels must be unique within a function. In traditional C, identifiers used as labels and in
object declarations share a name space. Thus, use of an identifier as a label hides any declaration of that
identifier in an enclosing scope. In ANSI C, identifiers used as labels are placed in a different name space
from all other identifiers, and do not conflict. Thus the following code fragment is legal in ANSI C, but

not in traditional C.

{
int foo;
foo =1;

goto foo;

C Language Reference Manual — Chapter 9, Statements - 5

foo: ;

Chapter 10
External Definitions

A C program consists of a sequence of external definitions. An external declaration becomes an external
definition when it reserves storage for the object or function indicated. Within the entire program, all
external declarations of the same identifier with external linkage refer to the same object or function.
Within a particular translation unit, all external declarations of the same identifier with internal linkage
refer to the same object or function. The syntax is shown below:

external declaration:
function—definition
declaration

The syntax for external definitions that are not functions is the same as the syntax for the corresponding
external declarations. The syntax for the corresponding external function definition differs somewhat
from that of the declaration, since the definition includes the code for the function itself.

External Function Definitions
Function definitions have the form:

function—definition:
declaration-specifiegptdeclarator declaration-ligpt
compound statement

The form of a declarator used for a function definition can be:
pointepptdirect-declarator (parameter—typegfist
pointepptdirect-declarator (identifier—t)

In this syntax, the simplest instance of a direct-declarator is an identifier. (For the exact syntax, see
"Declarators".)

The only storage—class specifiers allowed in a function definiticextmen andstatic.

If the function declarator hagparameter—type-ligee "Declarators"), it is in function prototype form (as
discussed in "Function Declarators and Prototypes"), and the function definition cannot have a
declaration-listOtherwise, the function declarator has a possibly emptytifier-listand the
declaration—listleclares the types of the formal parametegisteris the only storage-class specifier
permitted in declarations that are in thexlaration—listAny identifiers in thedentifier-listof the

function declarator that do not have their types specified idebkaration—-lisare assumed to have type
int.

Each parameter has block scope and automatic storage duration. ANSI C and traditional C place
parameters in different blocks. See "Scope" for details. Each parameter islaaabut since

function calls in C are by value, the modification of a parameter of arithmetic type cannot affect the
corresponding argument. Pointer parameters, while unmodifiable for this reason, can be used to modify
the objects to which they point.

Argument promotion rules are discussed in"Function Calls".

C Language Reference Manual — Chapter 10, External Definitions — 1

The type of a function must be eithvaid or an object type that is not an array.

External Object Definitions
A declaration of an object with file scope that has either an initializer or static linkagexisraal object
definition

In ANSI C, a file—scope object declaration with external linkage that is declared without the storage-class
specifierextern, and also without an initializer, results in a definition of the object at the end of the
translation unit. See the discussion in "Preprocessor Changes" for more information.

Appendix A

Implementation—Defined Behavior

The following sections describe implementation—defined behavior. Each section is keyed to the ANSI C
Standard (ANSI X3.159-1989), Appendix F, and each point is keyed to the section number of the ANSI C

Standard. The italicized lines, usually marked with bullets, are items from Appendix F of the ANSI C
Standard. Text following the italic lines describes the Silicon Graphics implementation.

Translation (F.3.1)

* Whether each nonempty sequence of white—space characters other than newline is retained or
replaced by one space character (2.1.1.2).

A nonempty sequence of white—space characters (other than newline) is retained.
» How a diagnostic is identified (2.1.1.3).

Successful compilations are silent. Diagnostics are, in general, emitted to standard error. Diagnostic
messages have the general pattefileefname,line—number:severity(number): mesisegé—bit

mode. Diagnostics have a slightly different pattern in 32-bit mode. Also, the range of numbers in
32-bit mode are disjointed from the range 64-bit mode.

For example, typical messages from the ANSI C compiler front end in 64-bit mode look like this:

"t4.c", line 4: error(1020):identifier "x" is undefined

"t4.c", line 5: warning(1551):variable "y" is used before its value
is set

Messages can also be issued by other internal compiler passes.
« Classes of diagnostic messages, their return codes and control over them

Three classes of messages exist: warning, error, and remark. Warning messages include the notation
"warning" (which can be capitalized), and allow the compilation to continue (return code 0). Error
messages cause the compilation to fail (return code 1).

Remark messages appear in 64—bit mode only. Typically, remarks are issued onfuliitbm
option appears on the command line. More control is available withdthg warning,
-diag_remark, and -diag_error options. (See thecreference page for more information.)

Warning messages from the compiler front end have a unique diagnostic number. You can suppress
these messages individually by putting the number in the numberlistnadftnumberlistswitch to
cq1).numberlisis a comma-separated list of warning numbers and ranges of warning numbers. For
example, to suppress the warning message in the previous example, type:

-woff 1551
To suppress warning messages numbered 1642, 1643, 1644, and 1759, type:

-woff 1642-1644,1759

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 1

Environment (F.3.2)
e Support of freestanding environments.

No support is provided for a freestanding environment.
« The semantics of the arguments to main (2.1.2.2.1).

main is defined to have the two required paramedegs andargv. A third parametegnvp is
provided as an extension. Thatrigin would have the equivalent of the prototypemain(int argc,
char *argv[], char *envp[]). The parameters have the following semantics:

argcis the number of arguments on the command line.

argv[0..argc-1] are pointers to the command-line arguments (strings).
— argv[0] is the program name, as it appeared on the command line.
— argv[argc] is a null pointer.

— envpis an array of pointers to strings of the fdkAME=value wheredNAME s the name of an
environment variable andlueis its value. The array is terminated by a null pointer.

¢ What constitutes an interactive device (2.1.2.3).

Asynchronous terminals, including windows, are interactive devices and are, by default, line
buffered. In addition, the standard error devitéerr, is unbuffered by default.

Identifiers (F.3.3)

* The number of significant initial characters (beyond 31) in an identifier without external linkage
(3.1.2).

All characters are significant.

« The number of significant initial characters (beyond 6) in an identifier with external linkage (3.1.2).
All characters are significant.

« Whether case distinctions are significant in an identifier with external linkage (3.1.2).

Case distinctions are always significant.

Characters (F.3.4)

« The members of the source and execution character sets, except as explicitly specified in the
standard (2.2.1).

Only the mandated characters are present. The source character set includes all printable ASCII
characters, hexadecimal 0x20 through 0x7e, and 0x7 through Oxc (the standard escape sequences).

« The values to which the standard escape sequences are translated (2.2.2).

The escape sequences are translated as specified for standard ASCII: \a = 0x7, \b = 0x8, \f = Oxc, \n =

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 2

Oxa, \r = 0xd, \t = 0x9, \v=0xb
« The shift states used for the encoding of multibyte characters (2.2.1.2)

The multibyte character set is identical to the source and execution character sets. There are no shift
states.

e The number of bits in a character in the execution character set (2.2.4.2.1).
There are eight bits per character.

» The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (3.1.3.4).

The mapping is the identity mapping.

« The value of an integer character constant that contains a character or escape sequence not
represented in the basic execution character set or in the extended character set for a wide character
constant (3.1.3.4).

With the exception of newline (Oxa), backslash ('\'), and Oxff (end-of-file), eight-bit values

appearing in an integer character constant are placed in the resultant integer in the same fashion as are
characters which are members of the execution character set (see below). A backslash, newline, or
Oxff can be placed in a character constant by preceding it with a backslash (that is, "escaping” it).

* The value of an integer character constant that contains more than one character or a wide
character constant that contains more than one multibyte character (3.1.3.4).

You can assign up to four characters tindmising a character constant. The encoding of multiple
characters in an integer consists of the assignment of the corresponding character valoes of the
characters in the constant to the least-significhytes of the integer, filling any unused bytes with
zeros. The most significant byte assigned contains the value of the lexically first character in the
constant. For example:

intt="a’; /* integer value Ox61 */

int t2 = "ab’; /* integer value 0x6162 */

int t4 = "abcd’; /* integer value 0x61626364 */

int t4 = 'abcde’; /* error: too many characters for */
[* character constant */

Since the multibyte character set is identical to the source and execution character sets, the above
discussion applies to the assignment of more than one multibyte character to a wide character
constant.

* The current locale used to convert multibyte characters into corresponding wide character (codes)
for a wide character constant (3.1.3.4).

The mapping is the identity mapping to the standard ASCII character set. The C locale is used.
« Whether a "plain" char has the same range of values as signed char or unsigned char.

Plain char is the same as unsigned char by default. Use the -signed optitmawitch the range to

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 3

be that okigned char.

Integers (F.3.5)

« The representations and sets of values of the various types of integers (3.1.2.5).

Integers are two’s complement binary. Table A-1lists the sizes and ranges of the various types of
integer. The use déng longresults in a warning kansiand-ansiposixmodes.
In the 32-bit implementation, to take full advantage of the support for 64 bits integral vadnss in
and-ansiposixmodes, you can define the mactdONGLONG on thecd1) command line when

using the types _uint64_t __ int64_t or library routines that are prototyped in terms of these types.

Table A-1 Integer Types and Ranges

type range: low high size (bits)
signed char -128 127
char, unsigned char 0 255
short, signed short -32768 32767
unsigned short int 0 65535
int, signed int -2147483648 2147483647
unsigned int 0 4294967295
long, signed long int -2147483648 2147483647
(-32mode) (-32mode)
-922337203685477580864 9223372036854775807
mode) (-64mode)
unsigned long int 0 4294967295
(-32mode)
1844674407370955161 5
(-64mode)
long long -9223372036854775808 9223372036854775807
signed long
long int
unsigned long long int 0 1844674407370955161 5

16
16
32
32
32

64

32

64

64

64

* The result of converting an integer to a shorter signed integer, or the result of converting an
unsigned integer to a signed integer of equal length, if the value cannot be represented (3.2.1.2).

The least significant n bits (n being the length of the result integer) of the source are copied to the

result.

* The results of bitwise operations on signed integers (3.3).

With the exception of right—shift of a negative signed integer (defined below), operations on signed
and unsigned integers produce the same bitwise results.

e The sign of the remainder on integer division (3.3.5)

The sign of the remainder is that of the numerator.

« The result of a right shift of a negative-valued signed integral type (3.3.7).

The sign bit is propagated, so the result value is still negative.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 4

Floating Point (F.3.6)
» The representations and sets of values of the various types of floating—point numbers (3.1.2.5).
The representation is IEEE:
- single (forfloat values)
— double (fordoublevalues and fdiong doublevalues in 32—bit mode)
— quad precision (fdongdoublevalues in 64-bit mode).

See ANSI/IEEE Standard 754-1985 and IEEE Standard for Binary Floating—Point ArithmeticTable
A-2lists ranges of floating—point types.

Table A-2 Ranges of Floating—Point Types

type range: min max size (bits)

float 1.1755e-38 3.4028e+38 32

double 2.225e-308 1.7977e+308 64

long double 2.225e-308 1.7977e+308 133 hode)

« The type of rounding or truncation used when representing a floating—point constant which is within
its range.

Per IEEE, the rounding is round-to—nearest (IEEE Standard 754, sections 4.1 and 5.5). If the two
values are equally near, then the one with the least significant bit zero is chosen.

« The direction of truncation when an integral number is converted to a floating—point number that
cannot exactly represent the original value(3.2.1.3).

Conversion of an integral type to a float type, if the integral value is too large to be exactly
represented, gives the next higher value.

« The direction of truncation or rounding when a floating—point number is converted to a narrower
floating—point number.

Per IEEE, the rounding is round-to—nearest (IEEE Standard 754, Section 4.1 and 5.5). If the two
values are equally near, then the one with the least significant bit zero is chosen.

Arrays and Pointers (F.3.7)

e The type of integer required to hold the maximum size of anlarthgt is, the type of the sizeof
operator, size_t(3.3.3.4,4.1.1).

Anunsigned longholds the maximum array size.
« The size of integer required for a pointer to be converted to an integer type (3.3.4).
long ints are large enough to hold pointers3@ mode. Both are 32 bits wide.

long ints are large enough to hold pointersGd mode. Both are 64 bits wide.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 5

« The result of casting a pointer to an integer or vice versa (3.3.4).
The result is bitwise exact provided the integer type is large enough to hold a pointer.

e The type of integer required to hold the difference between two pointers to elements of the same
array, ptrdiff_t(3.3.6, 4.1.1).

Anint is large enough to hold the difference between two pointers to elements of the same array in
-32mode.

A longint is large enough to hold the difference between two pointers to elements of the same array
in both-32 and-64 modes.

Registers (F.3.8)

« The extent to which objects can actually be placed in registers by use of the register storage—class
specifier (3.5.1).

The compilation system can use up to eight of the register storage—class specifiers for nonoptimized
code in-32mode, and it ignores register specifiers for formal parameters. Use of register specifiers is
not recommended.

Theregister storage—-class specifier is always ignored and the compilation system makes its own
decision about what should be in registers for optimized ¢@ifeand above).

Structures, Unions, Enumerations, and Bitfields (F.3.9)

« What is the result if a member of a union object is accessed using a member of a different type
(3.3.2.3).

The bits of the accessed member are interpreted according to the type used to access the member. For
integral types, the N bits of the type are simply accessed. For floating types, the access might cause a
trap if the bits are not a legal floating—point value. For pointer types, the 32 bits (64 46its if in

mode) of the pointer are picked up. The usability of the pointer depends on whether it points to a

valid object or function, and whether it is used appropriately. For example, a pointer whose
least-significant bit is set can point to a character, but not to an integer.

e The padding and alignment of members of structures (3.5.2.1).

This should present no problem unless binary data written by one implementation are read by
another.

Members of structures are on the same boundaries as the base data type alignments anywhere else. A
word is 32 bits and is aligned on an address, which is a multiple of 4. Unsigned and signed versions
of a basic type use identical alignment. Type alignments are given in Table A-3

Table A-3 Alignment of Structure Members

type alignment

long double double— word bounda32mode)
quad-word boundary6@ mode)

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 6

double double-word boundary

float word boundary

long long double-word boundary

long word boundary-82mode)

double-word boundary6@mode)

int word boundary

pointer word boundary

short half-word boundary

char byte boundary

* Whether a "plain” int bit-field is treated as asigned int bit—field or as anunsigned int bit—field
(3.5.2.1).

A "plain" int bit-field is treated assggned intbit-field.
e The order of allocation of bitfields within a unit (3.5.2.1).

Bits in a bitfield are allocated with the most-significant bit first within a unit.
« Whether a bitfield can straddle a storage—-unit boundary (3.5.2.1).

Bitfields cannot straddle storage unit boundaries (relative to the beginning of the struct or union),
where a storage unit can be of size 8, 16, 32, or 64 bits.

« The integer type chosen to represent the values of an enumeration type (3.5.2.2).

The int type is always used. Note thatg orlong long enumerations are not supported.

Quialifiers (F.3.10)
« What constitutes an access to an object that has volatile—qualified type (3.5.3).

Objects ofvolatile—qualified type are accessed only as specified by the abstract semantics, and as
would be expected on a RISC architecture. No complex instructions exist (for example,
read—-modify—writeyolatile objects appearing on the left side of an assignment expression are
accessed once for the write. If the assignment is not simple, an additional read access is performed.
volatile objects appearing in other contexts are accessed once per instance. Incrementation and
decrementation require both a read and a write access.

volatile objects that are memory—mapped are accessed only as specified: if such an object is of size
char, for example, adjacent bytes are not accessed. If the object is a bitfield, a read may access the
entire storage unit containing the field. A write of an unaligned field necessitates a read and write of
the storage unit that contains it.

Declarators (F.3.11)

« The maximum number of declarators that can modify an arithmetic, structure, or union type (3.5.4).

There is no limit.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 7

Statements (F.3.12)

e The maximum number of case values in a switch statement (3.6.4.2).

There is no limit.

Preprocessing Directives (F.3.13)

* Whether the value of a single—character character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the execution character
set. Whether such a character constant can have a negative value (3.8.1).

The preprocessing and execution phases use exactly the same meanings for character constants.
A single—character character constant is always positive.

e The method for locating includable source files (3.8.2).
For file names surrounded by <>, the includable source files are searched for in /usr/include.

The default search list includes /usr/include. You can change this list with various compiler options.
See cc(1), thd, and-nostdinc options.

e The support of quoted names for includable source files (3.8.2).

Quoted names are supported for includable source files. For file names surrounded by ", the
includable source files are searched for in the directory of the current include file,/tre@finnlude

The default search list includes /usr/include. You can change this list with various compiler options.
See cc(1), thd, and-nostdinc options.

« The mapping of source file character sequences (3.8.2).
The mapping is the identity mapping.

« The behavior on each recognized #pragma directive.
#pragma weakweak _symbat strong_symbol

Theweak symbab an alias that denotes the same function or data object denoted by the
strong_symbolnless a defining declaration for tiveak _symbaé encountered at static link time. If
encountered, the defining declaration preempts the weak denotation.

You must define thsetrong_symbalithin the same compilation unit in which the pragma occurs.

You should also declare thaak symbakith extern linkage in the same compilation unit. The

extern declaration of the weak symbol is not required, unless the symbol is referenced within the
compilation unit, but Silicon Graphics recommends it for type—checking purposes. The weak and
strong symbols must be declared with compatible types. When the strong symbol is a data object, its
declaration must be initialized.

Weakextern declarations are typically used to export non—ANSI C symbols from a library without

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 8

polluting the ANSI C name-space. As an exarfipemay export a weak symbaad() which

aliases a strong symbalead() where_read()is used in the implementation of the exported symbol
fread() You can either use the exported (weak) versiaead() or define your own version of
read()thereby preempting the weak denotation of this symbol. This will not alter the definition of
fread() since it only depends on the (strong) symbead() which is outside the ANSI C
name-space.

#pragma weakweak symbol

Thepragma weakweak _symbadeklls the link editor not to complain if it does not find a defining
declaration of theveak _symboReferences to the symbol use the appropnateeif the symbol is
defined; otherwise, it uses memory location zero (0).

#pragmaonce

This pragma has no effect482 mode, but will ensure idempotédntludefiles in-64 mode (i.e. that
anincludefile is included at most once in one compilation unit). Silicon Graphics recommends
enclosing the contents of an include &fde.hwith an#ifdef directive similar to:

#ifndef afile_INCLUDED
#define afile_INCLUDED
<contents of afile.h>
#endif

#pragma packn)

This pragma controls the layout of structure offsets, such that the strictest alignment for any structure
member will ben bytes, whera is 0, 1, 2, 4, 8, or 16. Wheris 0, the compiler returns to default
alignment for any subsequesttuctdefinitions.

A structtype defined in the scope offpragma packn) has at most an alignmentrobytes, and the
packed characteristics of the type apply wherever the type is used, even outside the scope of the
pragma in which the type was declared. The scopéfpfagma packends with the nextpragma

pack, hence this pragma does not nest: There is no way to "return” from one instance of the pragma
to a lexically earlier instance of the pragma.

A structure declaration must be subjected to identical instancefpohgma packin all files, or
else misaligned memory accesses and erroneous struct member dereferencing may ensue.

Silicon Graphics strongly discourages the usgpohgma pack since it is a nonportable feature and
the semantics of this pragma may change in future compiler releases. Note that references to fields in
#packed structmay be less efficient than references to fields in unpacked structs.

#pragma intrinsic(a_function

This pragma allows certain preselected functions frmath.h stdio.h andstring.hto be inlined at a
call-site for execution efficiency. THpragma intrinsic has no effect on functions other than the
preselected ones. Exactly which functions may be inlined, how they are inlined, and under what
circumstances inlining occurs is implementation defined and may vary from one release of the
compilers to the next. The inlining of intrinsics may violate some aspect of the ANSI C standard

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 9

(e.g., theerrno setting formath.hfunctions). All intrinsics are activated through pragmas in the
respective standard header files and only when the preprocessor symbol __INLINE_INTRINSICS is
defined and the appropriate include files are included. __ INLINE_INTRINSICS is predefined by
default only in-cckr and-xansimode.

#pragmahdrstop

If -pchis on#pragma hdrstopindicates the point at which the precompiled header mechanism
shapshots the headers:pchis off, #pragma hdrstopis ignored. See tH@ompiling and
Performance Tuning Guider details on the precompiled header mechanism.

The MIPSpro compilers also silently recognize many commonly used pragmas; however, they have
no effect. Some of these include:

— #pragma no side effeci{@_function
Tells the compiler that a call to a function of the given name does not cause any modifications to
objects accessible outside the function body. Such information can be useful for optimization
and parallelization purposes.

— #pragmadent version
Adds acommensection in the object file and puts the revision string inside it.

— #pragmant_to_unsigned identifier
Identifiesidentifieras a function whose type wiasin a previous releases of the compilation
system, but whose typeusisigned intin the MIPSpro compiler release. The declaration of the
identifier must precede the pragma:

unsigned int strlen(const char*);
#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the changed type may
affect the evaluation of expressions.

Other#pragmasare used for C multiprocessing. They are described iRdiver C User’s Guide.

* The definitions for __DATE__and__TIME__ when, respectively, the date and time of translation are
not available.

The date and time of translation are always available in this implementation.
* What is the maximum nesting depth of include files (3.8.2).

The maximum nesting of include files is 200.

Library Functions (F.3.14)

e The null pointer constant to which the macro NULL expands (4.1.5)
The NULL pointer constant expands toiahwith value zero. That is,
#define NULL O

* The diagnostic printed by and the termination behavior of the assert function (4.2).

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 10

If an assertion given by assert(EX) fails, the following message is printed on stderr using a _write to
its underlying fileno.

Assertion failed: EX, file <filename>, line <linenumber>
This is followed by a call tabori{3c) (which exits with a SIGABRT).

« The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, andisupper
functions (4.3.1).

The following is true when operating in the C locale. The C locale is in effect at program startup for
programs compiled for pure ANSI C (that-ns), or by invokingsetlocale(LC_ALL,"C") . The C
locale can be overridden at startup for any program that does not explicitly settbcaleby

setting the value of the environment variaBleRCLASS. (See the man pagéyp&3C).)

— isalnumis nonzero for the 26 letters a-z and the 26 letters A-Z and the digits 0-9.
— isalphais nonzero for the 26 letters a-z and the 26 letters A-Z.
- isloweris nonzero for the 26 letters a-z.
— isupperis nonzero for the 26 letters A-Z.
— isprintis nonzero for the ASCII characters space through tilde (~) (0x20 through 0x7e).
— iscntrlis nonzero for the ASCII characters NUL through US (0x0 through 0x1f).
e The values returned by the mathematics functions on domain errors (4.5.1).

The value returned by the math functions on domain errors is the default IEEE Quiet NaN in all cases
except the following:

— The functiongpowandpowfreturn-HUGE_VAL when the first argument is zero and the second
argument is negative. When both arguments are gevoandpowfreturn 1.0.

— The functionsatan2andatan2freturn zero when both arguments are zero.

« Whether mathematics functions set the integer expression errno to the value of the macro ERANGE
on underflow range errors (4.5.1).

Yes, except intrinsic functions that have been inlined. Notdahgtfabd, sqrt sqrtf, hypotf fhypot
pow andpowfare intrinsic by default irxansiand-cckr modes and can be made intrinsieansi
mode by using the compiler option D__INLINE_INTRINSICS.

* Whether a domain error occurs or zero is returned when the fmod function has a second argument of
zero (4.5.6.4).

fmod(x,0) gives a domain error and returns the default IEEE Quiet NaN.

Signals
* The set of signals for the signal function (4.7.1.1).

Thesignal sets listed in Table A—4 which is from tisggnal2) man pagerhe set of signals

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 11

conforms to the SVR4 ABI. Note that some of the signals are not defiredsiposixmode.
References in square brackets beside the signal numbers are described under “'Signal Notes" in the
discussion of signal semantics.

Table A-4 Signals

Signal Number[Note] Meaning

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03[1] quit

SIGILL 04[1] illegal instruction (not reset when
caught)

SIGTRAP 05[1][5] race trap (not reset when caught)

SIGIOT 06 IOT instruction

SIGABRT 06[1] abort

SIGEMT 07[1][4] MT instruction

SIGFPE 08[1] floating point exception

SIGKILL 09 kill (cannot be caught or ignored)

SIGBUS 10[1] bus error

SIGSEGV 11]1] segmentation violation

SIGSYS 12[1] bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user—defined signal 1

SIGUSR2 17 user—defined signal 2

SIGCLD 18[2] termination of a child process

SIGGHLD 18 4.3 BSD/POSIX name

SIGPWR 19[2] power fail (not reset when caught)

SIGWINCH 20[2] window size changes

SIGURG 21[2] urgent condition on 1/0O channel

SIGIO 22[2] input/output possible

SIGPOLL 22[3] selectable event pending

SIGSTOP 23[6] stop (cannot be caught or ignored)

SIGTSTP 24([6] stop signal generated from keyboard

SIGCONT 25(6] continue after stop (cannot be ignored)

SIGTTIN 26[6] background read from control terminal

SIGTTOU 27[6] background write to control terminal

SIGVTALRM 28 virtual time alarm

SIGPROF 29 profiling alarm

SIGXCPU 30 cpu time limit exceeded [seetrlimit
(2]

SIGXFSZ 31 file size limit exceeded [see
setrlimit(2)]

SIG32 32 reserved for kernel usage

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 12

» The semantics for each signal recognized by the signal function (4.7.1.1).

In thesignalinvocationsignal(sig, func) , funccan be the address of a signal handilandler, or
one of the two constant values (definedsys/signal.h} SIG_DFL or SIG_IGN. The semantics of these
values are:

SIG_DFL terminate process upon receipt of sigsigl
(This is the default if no call teignalfor signal sigoccurs.) Upon receipt of the
signal sig the receiving process is to be terminated with all of the consequences
outlined in exit(2). See note 1 under "Signal Notes".

SIG_IGN ignore signal
The signalsigis to be ignored.

handler catch signal
funcis the address of functidrandler

Note: The signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

If funcis the address dfiandler, upon receipt of the signalig the receiving process is to invoke
handler as follows:

handler (int sig, int code, struct sigcontext *sc);

The remaining arguments are supplied as extensions and are optional. The value of the second argument
codeis meaningful only in the cases shown in Table A-5

Table A-5Valid Codes in a Signal-Catching Function

Condition Signal Code

User breakpoint SIGTRAP BRK_USERBP
User breakpoint SIGTRAP BRK_SSTEPBP
Integer overflow SIGTRAP BRK_OVERFLOW
Divide by zero SIGTRAP BRK_DIVZERO
Multiply overflow SIGTRAP BRK_MULOVF
Invalid virtual address SIGSEGV EFAULT
Read-only address SIGSEGV EACCESS

Read beyond mapped object SIGSEGV ENXIO

The third argumengg is a pointer to atruct sigcontext(defined in <sys/signal.h>) that contains the
processor context at the time of the signal. Upon returntieordler, the receiving process resumes
execution at the point that it was interrupted.

Before entering the signal—catching function, the valfiencffor the caught signal is set to SIG_DFL,
unless the signal is SIGILL, SIGTRAP, or SIGPWR. This means that before exiting the handler, a call to
signalis necessary to catch future signals.

Suppose a signal that is to be caught occurs during:
e aread?), awrite(2), anoperf2)

e anioctl(2) system call on a slow device (like a terminal; but not a file)

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 13

e apausé€2) system call

« await(2) system call that does not return immediately due to the existence of a previously stopped or
zombie process

The signal catching function is executed and then the interrupted system call returns a -1 to the calling

process witlerrno set to EINTR.

Note: The signals SIGKILL and SIGSTOP cannot be caught.

Signal Notes

1. If SIG_DFL is assigned for SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT, SIGFPE,
SIGBUS, SIGSEGYV, or SIGSYS, in addition to the process being terminated, a "core image" is
constructed in the current working directory of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal. An ordinary file named
coreexists and is writable or can be created. If the file must be created, it has the following
properties:

« amode of 0666 modified by the file creation mask [see umask(2)]
« afile owner ID that is the same as the effective user ID of the receiving process
« afile group ID that is the same as the effective group ID of the receiving process

Note: The core file can be truncated if the resultant file size would exceed either ulimit [see
ulimit(2)] or the process’s maximum core file size [see setrlimit(2)].

2. For the signals SIGCLD, SIGWINCH, SIGPWR, SIGURG, and SIGIO, the actions associated with
each of the three possible values fonc are:

SIG_DFL ignore signal
The signal is to be ignored.
SIG_IGN ignore signal

The signal is to be ignored. Also, $igis SIGCLD, the calling process’s child

processes do not create zombie processes when they terminate [see exit(2)].
handler catch signal

If the signal is SIGPWR, SIGURG, SIGIO, or SIGWINCH, the action to be

taken is the same as that described above when func is the address of a function.

The same is true if the signal is SIGCLD with one exception: while the process is

executing the signal—catching function, all terminating child processes are

gueued. Thevait system call removes the first entry of the queue. Bitreal

system call is used to catch SIGCLD, the signal handler must be reattached when

exiting the handler, and at that tiché the queue is not emgtySIGCLD is

raised again beforgnalreturns. See wait(2).

In addition, SIGCLD affects theait andexitsystem calls as follows:
wait If the handler parameter of SIGCLD is set to SIG_IGN awdiais executed,
thewait blocks until all of the calling process’s child processes terminate; it then

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 14

returns a value of —1 wiehirno set to ECHILD.
exit If in the exiting process’s parent process the handler parameter of SIGCLD is set
to SIG_IGN, the exiting process does not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
preceding processes. A process that can be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught.

3. SIGPOLL is issued when a file descriptor corresponding to a STREAMB{is€2)] file has a
"selectable" event pending. A process must specifically request that this signal be sent using the
|_SETSIG ioctl call. Otherwise, the process never receives SIGPOLL.

4. SIGEMT is never generated on an IRIS 4D system.

5. SIGTRAP is generated for breakpoint instructions, overflows, divide by zeros, range errors, and
multiply overflows. The second argument code gives specific details of the cause of the signal.
Possible values are described aysfsignal.h.

6. The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are used by command
interpreters like the C shell [sesi{1)] to provide job control. The first four signals listed stop the
receiving process unless the signal is caught or ignored. SIGCONT resumes a stopped process.
SIGTSTP is sent from the terminal driver in response to the SWTCH character being entered from
the keyboard [seermiq(7)]. SIGTTIN is sent from the terminal driver when a background process
attempts to read from its controlling terminal. If SIGTTIN is ignored by the process, then the read
returns EIO. SIGTTOU is sent from the terminal driver when a background process attempts to write
to its controlling terminal when the terminal is in TOSTOP mode. If SIGTTOU is ignored by the
process, then the write succeeds, regardless of the state of the controlling terminal.

Signaldoes not catch an invalid function argumefnc, and results are undefined when an attempt is
made to execute the function at the bad address.

SIGKILL immediately terminates a process, regardless of its state.

Processes stopped via job control (typicalBtri>-Z) do not act upon any delivered signals other than
SIGKILL until the job is restarted. Processes blocked wibekpro¢2) system call unblock if they

receive a signal that is fatal (that is, a non—job—control signal that they are not catching). These processes
remained stopped, however, if the job they are a part of is stopped. Only upon restart do they die. Any
non-fatal signals received by a blocked processtmuse the process to be unblocked. An

unblockproc(2) or unblockprocall(2) system call is necessary.

If an instance of signasigis pending whesignal(sig,funfis executed, the pending signal is cancelled
unless it is SIGKILL.

signal()fails if sigis an illegal signal number, including SIGKILL and SIGSTOP, or if an illegal
operation is requested (such as ignoring SIGCONT, which is ignored by default). In thessigasky,
returns SIG_ERR and setgno to EINVAL.

After a fork(2), the child inherits all handlers and signal masks. If any signals are pending for the parent,
they are not inherited by the child.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 15

The exec(2) routines reset all caught signals to the default action; ignored signals remain ignored; the
blocked signal mask is unchanged and pending signals remain pending.

These man pages contain other relevant information: intro(2), blockproc(2), kill(2), pause(2), ptrace(2),
sigaction(2), sigset(2), wait(2), setjimp(3C), sigvec(3B), and kill(1).

Diagnostics

Upon successful completiosignalreturns the previous value &inc for the specified signadig
Otherwise, a value of SIG_ERR is returned amdo is set to indicate the error. SIG_ERR is defined in
the header file <sys/signal.h>.

Caution: Signals raised by the instruction stréa®IGILL, SIGEMT, SIGBUS, SIGSEGN will cause
infinite loops if their handler returns, or the action is set to SIG_IGN. The POSIX signal routines
(sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2), sigsetjmp(3)), and the 4.3BSD signal
routines (sigvec(3B), signal(3B), sigblock(3B), sigpause(3B), sigsetmask(3B)hewesbe used with
signal(2) or sigset(2).

Before entering the signal—catching function, the valdarof for the caught signal is set to SIG_DFL,
unless the signal is SIGILL, SIGTRAP, or SIGPWR. This means that before exiting the hasigife, a
call is necessary to again set the disposition to catch the signal.

Note that handlers installed bignalexecute with no signals blocked, not even the one that invoked the
handler.

« The default handling and the handling at program startup for each signal recognized by thesignal
function (4.7.1.1).

Each signal is set to SIG_DFL at program startup.

< If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal handler, the
blocking of the signal that is performed(4.7.1.1).

The equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal handler unless the
signal is SIGILL, SIGTRAP, or SIGPWR. See 8igna(3B) man page for information on the
support for the BSD 4.3 signal facilities.

* Whether the default handling is reset if the SIGILL signal is received by a handler specified to the
signal function (4.7.1.1).

No.

Streams and Files
« Whether the last line of a text stream requires a terminating newline character (4.9.2).

There is no requirement that the last line of a text stream have a terminating newline: the output is
flushed when the program terminates, if not earlier (as a redtilis#f()call). However, subsequent
processes/programs reading the text stream or file might expect the newline to be present; it
customarily is in IRIX text files.

* Whether space characters that are written out to a text stream immediately before a newline

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 16

character appear when read in (4.9.2).

All text characters (including spaces before a newline character) written out to a text stream appear
exactly as written when read back in.

« The number of null characters that can be appended to data written to a binary stream (4.9.2).

The library never appends nulls to data written to a binary stream. Only the characters written by the
application are written to the output stream, whether binary or text. Text and binary streams are
identical: there is no distinction.

* Whether the file position indicator of an append mode stream is initially positioned at the beginning
or end of the file (4.9.2).

The file position indicator of an append stream is initially positioned at the end of the file.
« Whether a write on a text stream causes the associated file to be truncated beyond that point (4.9.3).
A write on a text stream does not cause the associated file to be truncated.
« The characteristics of file buffering (4.9.3).
Files are fully buffered, as described in paragraph 3, section 4.9.3, of ANSI X3.159-1989.
* Whether a zero-length file actually exists (4.9.3).
Zero—-length files exist, but have no data, so a read on such a file gets an immediate EOF.
* The rules for composing valid file names (4.9.3).

Filenames consist of 1 to FILENAME_MAX characters. These characters can be selected from the
set of all character values excluding \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or] as part of file names because of the special meaning
attached to these characters by the shellsfgé¢). Although permitted, the use of unprintable
characters should be avoided.

« Whether the same file can be opened multiple times (4.9.3).
A file can be open any number of times.
» The effect of the remove function on an open file (4.9.4.1).

For local disk files, a remove removes a directory entry pointing to the file but has no effect on the
file or the program with the file open. For files remotely mounted via NFS software, the effect is
unpredictable (the file might be removed making further 1/0O impossible through open streams, or it
might behave like a local disk file) and might depend on the version(s) of NFS involved.

* The effect if a file with the new name exists prior to a call to the rename function (4.9.4.2).

If the new name exists, the file with that new name is removed (See rm(1)) before the rename is
done.

» The output for %p conversion in the fprintf function (4.9.6.1).

%p is treated the same #x.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 17

* The input for %p conversion in the fscanf function (4.9.6.2).
%p is treated the same #x.

» The interpretation of a - character that is neither the first nor the last character in the scanlist for %[
conversion in the fscanf function (4.9.6.2).

A - character that does not fit the pattern mentioned above is used as a shorthand for ranges of
characters. For example, [xabcdefgh] and [xa—h] mean that characters a through h and the character x
are in the range (called a scanset in 4.9.6.2).

Temporary Files
« Whether a temporary file is removed if a program terminates abnormally (4.9.4.3).

Temporary files are removed if a program terminates abnormally.

errno and perror

< The value to which the macro errno is set by the fgetpos or ftell function on failure (4.9.9.1, 4.9.9.4).
errno is set to EBADF (9) by thgetposor ftell function on failure.

e The messages generated by theperror function (4.9.10.4).

The message generated is simply a string. The content of the message given for each legal value of
errno is given in the list below, which is of the forngsitno_valuanessage

1: No permission match32 mode)
1: Not privileged {64 mode)

2: No such file or directory

3: No such process

4: Interrupted system call

5: /O error

6: No such device or address
7: Arg list too long

8: Exec format error

9: Bad file number

10: No child processes

11: Resource temporarily unavailable
12: Not enough space

13: Permission denied

14: Bad address

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 18

15: Block device required

16: Device or resource bus3? mode)
16: Device busy-64 mode)

17: File exists

18: Cross—device link
19: No such device
20: Not a directory
21: Is a directory

22: Invalid argument

23: Too many open files in systerfB{ mode)
23: File table overflow-64 mode)

24: Too many open files in a proces3?(mode)
24: Too many open files@4 mode)

25: Inappropriate IOCTL operatios82 mode)
25: Not a typewriter-64 mode)

26: Text file busy

27: File too large

28: No space left on device

29: lllegal seek

30: Read-only file system

31: Too many links

32: Broken pipe

33: Argument out of domain

34: Result too large

35: No message of desired type
36: Identifier removed

37: Channel number out of range
38: Level 2 not synchronized
39: Level 3 halted

40: Level 3 reset

41: Link number out of range

42: Protocol driver not attached

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 19

43: No CSl structure available
44: Level 2 halted

45: Deadlock situation detected/avoided
46: No record locks available

47: Error 47

48: Error 48

49: Error 49

50: Bad exchange descriptor

51: Bad request descriptor

52: Message tables full

53: Anode table overflow

54: Bad request code

55: Invalid slot

56: File locking deadlock

57: Bad font file format

58: Error 58

59: Error 59

60: Not a stream device

61: No data available

62: Timer expired

63: Out of stream resources

64: Machine is not on the network
65: Package not installed

66: Object is remote

67: Link has been severed

68: Advertise error

69: Srmount error

70: Communication error on send
71: Protocol error

72: Error 72

73: Error 73

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 20

74:
75:
76:
77:

78:
78:

79:
79:

80:
81:
82:
83:
84:
85:
86:
87:

88:
88:

89:
89:

90:
90:

91:
91:

92:
92:

93:
93:

94
94.

95:
95:

96:
96:

Multihop attempted
Error 75

Error 76

Not a data message

Error 78 {32 mode)
File name too longg4 mode)

Error 79{32mode)
Value too large for defined data typ@(mode)

Name not unique on network

File descriptor in bad state

Remote address changed

Cannot access a needed shared library

Accessing a corrupted shared library

lib section in a.out corrupted

Attempting to link in more shared libraries than system limit
Cannot exec a shared library directly

Invalid System Call82 mode)
lllegal byte sequences@d mode)

Error 89 {32 mode)
Operation not applicable

Error 90{32 mode)
Too many symbolic links in path name traversit fnode)

Error 91 {32 mode)
Restartable system cab4 mode)

Error 92 {32 mode)
If pipe/FIFO, don't sleep in stream hed¥(mode)

Error 93{32mode)
Directory not empty-§4 mode)

Error 94 {32 mode)
Too many usersg4 mode)

Error 95{32mode)
Socket operation on hon—sock@ét fhode)

Error 96 {32 mode)
Destination address require@i4mode)

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 21

97:
97:

98:
98:

99:
99:

100:

101:
101;

102:
102:

103:
103:

104:
104:

105:
105:

106:
106:

107:
107;

108:
108:

109:
109:

110:
110:

111:
111:

112:
112;

113:
113;

114:
114:

Error 97 {32 mode)
Message too long64 mode)

Error 98 {32 mode)
Protocol wrong type for sockef4 mode)

Error 99 {32 mode)
Option not supported by protoced4 mode)

Error 100

Operation would block32 mode)
Error 101-64 mode)

Operation now in progres82 mode)
Error 102-64 mode)

Operation already in progres3Zmode)
Error 103-64 mode)

Socket operation on hon—-sock&? fnode)
Error 104-64 mode)

Destination address require82(mode)
Error 105-64 mode)

Message too long3@ mode)
Error 106-64 mode)

Protocol wrong type for socke3Z mode)
Error 107-64 mode)

Option not supported by protocedZ mode)
Error 108-64 mode)

Protocol not supporteeB@ mode)
Error 109-64 mode)

Socket type not supporte@Z mode)
Error 110-64 mode)

Operation not supported on sock&? mode)
Error 111-64 mode)

Protocol family not supporteé82 mode)
Error 112-64 mode)

Address family not supported by protocol fami82Mmode)
Error 113-64 mode)

Address already in us&@2 mode)
Error 114-64 mode)

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 22

115:
115:

116:
116:

117:
117:

118:
118:

119:
119:

120:
120:

121:
121;

122:
122:

123:
123:

124
124:

125:
125:

126:
126:

127:
127:

128:
128:

129:
129:

130:
130:

131:
131;

132:
132:

Can't assign requested addre38 fnode)
Error 115-64 mode)

Network is down-82 mode)
Error 116-64 mode)

Network is unreachable3@ mode)
Error 117-64 mode)

Network dropped connection on resgg (node)
Error 118-64 mode)

Software caused connection abes2 (node)
Error 119-64 mode)

Connection reset by pee8dmode)
Protocol not supporteeb@ mode)

No buffer space availabk82 mode)
Socket type not supporte@4 mode)

Socket is already connecteB2(mode)
Operation not supported on transport endpegdtmiode)

Socket is not connecte8Z mode)
Protocol family not supportedb4 mode)

Can't send after socket shutdows2(mode)
Address family not supported by protocol famiéA{mode)

Too many references: can't splicg2(mode)
Address already in us€4 mode)

Connection timed ow3@2 mode)
Cannot assign requested addr&gbnjode)

Connection refusee3 mode)
Network is down-§4 mode)

Host is down-82 mode)
Network is unreachables@d mode)

Host is unreachablk82 mode)
Network dropped connection because of reédinfode)

Too many levels of symbolic link$$2 mode)
Software caused connection abdid ode)

File name too long32 mode)
Connection reset by pee€s4 mode)

Directory not empty-82 mode)
No buffer space availabl4 mode)

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 23

133: Disk quota exceede¢82 mode)
133: Transport endpoint is already connectédode)

134: Stale NFS file handle3g mode)
133: Transport endpoint is already connectédode)

134: Transport endpoint is not connectéd (node)
135: Structure needs cleaninG4mode)

136: Error 136-64 mode)

137: Not a name file§4 mode)

138: Not available-64 mode)

139: Is a name file§4 mode)

140: Remote I/O error§4 mode)

141: Reserved for future usé4 mode)

142: Error 142-64 mode)

143: Cannot send after socket shutdov@d fnode)
144: Too many references: cannot spliéd (hode)
145: Connection timed owt4 mode)

146: Connection refuseeb@é mode)

147: Host is down-64 mode)

148: No route to hostq4 mode)

149: Operation already in progres84mode)

150: Operation now in progresé4 mode)

151: Stale NFS file handlesd mode)

See the perror(3C) man page for further information.

Memory Allocation

The behavior of the calloc, malloc, or realloc function if the size requested is zero (4.10.3).
Themallocinlibc.areturns a pointer to a zero—-length space if a size of zero is requested. Successive calls
to mallocreturn different zero—length pointers. If the libdgnalloc.ais usedmallocreturns O (the

NULL pointer).

The abort Function

The behavior of the abort function with regard to open and temporary files (4.10.4.1).

Open files are not flushed, but are closed. Temporary files are removed.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 24

The exit Function

The status returned by the exit function if the value of the argument is other than zero, EXIT_SUCCESS or
EXIT_FAILURE (4.10.4.3).

The status returned to the environment is the least significant eight bits of the value pagsed to

The getenv Function

The set of environment names and the method for altering the environment list usegtanthe
function (4.10.4.4).

Any string can be used as the name of an environment variable, and any string can be used for its value.
The functiorputenvalters the environment list of the application. For example,

putenv("MYNAME=foo")

This sets the value of the environment variadh¥NAME to "foo." If the environment variable

MYNAME already existed, its value is changed. If it did not exist, it is added. The string pgmged\o
actually becomes part of the environment, and changing it later alters the environment. Further, the string
should not be space that was automatically allocated (for exampletcearray); rather, it should be

space that is either globalmalloed. For more information, see theteny3C) man page.

It is not wise to alter the value of well-known environment variables. For the current list, see the man
page forenviror(3c).

The system Function

The contents and mode of execution of the string passed to the system function (4.10.4.5).

The contents of the string should be a command string, as if typed to a normal IRIX shell, such as sh(1). A
shell 6K1)) is forked, and the string is passed to it. The current process waits until the shell has completed
and returns the exit status of the shell as the return value.

The strerror Function
The contents of the error message strings returned by the strerror function (4.11.6.2).

The string is exactly the same as the string outpyielosor, which is documented in "errno and perror".

Timezones and the clock Function.
* The local time zone and daylight saving time (4.12.1).

Local time and daylight saving time are determined by the value ®Ztle&vironment variabl&d.Z

is set byinit(1) to the default value indicated in the fildc/TIMEZONE and this value is inherited in
the environment of all processesTE isunset , the local time zone defaults to GMT (Greenwich
mean time, or coordinated universal time), and daylight saving time is not in effect. See the man
pages ctime(3C), time(2), timezone(4), environ(5), getenv(3), and other related man pages for the
format of TZ.

* The era for the clock function (4.12.2.1).

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 25

clockcounts seconds from 00:00:00: GMT, January 1, 1970. What was once known as Greenwich
mean time (GMT) is now known as coordinated universal time, though the man pages do not reflect
this change yet. See the ctime(3C) man page for further information.

Locale—Specific Behavior (F.4)

For information on locale—specific behavior, see the chapter titled "Internationalizing Your Application"
in Topics in IRIX Programmind hat chapter covers some locale—specific topics to consider when
internationalizing an application. Topics include:

« Overview of Locale-Specific Behavior

« Native Language Support and the NLS Database

» Using Regular Expressions

* Cultural Data
Also, that chapter describes setting a locale, location of locale-specific data, cultural items to consider,
and GUI concerns.

For additional information on locale—specific behavior, refer tXt@pen Portability Guidevolume 3
"XSI Supplementary Definitionspublished by Prentice Hall, Englewood Cliffs, New Jersey 07632,
ISBN 0-13-685-850-3.

Common Extensions (F.5)

The following extensions are widely used in many systems, but are not portable to all implementations.
The inclusion of any extension that can cause a strictly conforming program to become invalid renders an
implementation nonconforming. Examples of such extensions are new keywords, or library functions
declared in standard headers or predefined macros with names that do not begin with an underscore. The
Standard’s description of each extension is followed by a definition of any Silicon Graphics
support/nonsupport of each common extension.

Environment Arguments (F.5.1)

In a hosted environment, the main function receives a third argument, char *envp[], that points to a
null-terminated array of pointers tochar. Each of these pointers points to a string that provides
information about the environment for this execution of the process (2.1.2.1.1).

This extension is supported.

Specialized Identifiers

Characters other than the underscore _, letters, and digits, that are not defined in the required source
character set (such as dollar sign $, or characters in national character sets) can appear in an identifier

If the -dollar option is given tog then the dollar sign ($) is allowed in identifiers.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 26

Lengths and Cases of Identifiers

All characters in identifiers (with or without external linkage) are significant and case distinctions are
observed (3.1.2).

All characters are significant. Case distinctions are observed.

Scopes of Identifiers (F.5.4)

A function identifier, or the identifier of an object (the declaration of which contains the keywordextern)
has file scope.

This is true of the compiler when invoked with cc -cckr (that is, when requesting traditional C). When
compiling in ANSI mode (by default or with one of the ANSI options) function identifiers (and all other
identifiers) have block scope when declared at block level.

Writable String Literals (F.5.5)
String literals are modifiable. Identical string literals shall be distinct (3.1.4).

All string literals are distinct and writable when thee_readwrite_consbption is in effect. Otherwise,
string literals may not be writable.

Other Arithmetic Types (F.5.6)
Other arithmetic types, such as long long int and their appropriate conversions, are defined (3.2.2.1).

Yes.

Function Pointer Casts (F.5.7)

A pointer to an object or to void can be cast to a pointer to a function, allowing data to be invoked as a
function (3.3.4). A pointer to a function can be cast to a pointer to an object, or tovoid, allowing a
function to be inspected or modified (for example, by a debugger) (3.3.4).

Function pointers can be cast to a pointer to an object, or to void, and vice versa.
Data can be invoked as a function.

Casting a pointer to a function to a pointer to an object or void does allow a function to be inspected.
Normally, functions cannot be written to, since text space is read—only. Dynamically loaded functions are
loaded (by a user program) into data space and can be written to.

Non-int Bit—-Field Types (F.5.8)

Types other than int, unsigned int, and signed int can be declared as bitfields, with appropriate maximum
widths (3.5.2.1).

A bitfield can be any integral type irRansiand-cckr modes. However, bitfields of types other timn
signed int andunsigned intresult in a warning diagnostic 1ansimode.

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 27

The fortran Keyword (F.5.9)

The fortran declaration specifier can be used in a function declaration to indicate that calls suitable for
Fortran should be generated, or that different representations for external names are to be generated
(3.5.4.3).

The fortran keyword is not supported in this ANSI C. With cc -cckr, that keyword is accepted but
ignored.

The asm Keyword (F.5.10)

The asm keyword can be used to insert assembly language code directly into the translator output. The
most common implementation is via statement of the form asm (character—string-literalf3.6).

The asm keyword is not supported.

Multiple External Definitions (F.5.11)

There can be more than one external definition for the identifier of an object, with or without the explicit
use of the keyword extern. If the definitions disagree, or more than one is initialized, the behavior is
undefined (3.7.2).

With ANSI C, only one external definition of the object is permitted. If more than one is present, the
linker (Id(1) gives a warning message. The Strict Ref/Def model is followed (ANSI C Rationale, 3.1.2.2,
page 23).

With cc -cckr, the Relaxed Ref/Def model is followed (ANSI C Rationale, 3.1.2.2, page 23): multiple
definitions of the same identifier of an object in different files are accepted and all but one of the
definitions are treated (silently) as if they hadektern keyword.

If the definitions in different source units disagree, the mismatch is not currently detected by the linker
(Id), and the resulting program will probably not work correctly.

Empty Macro Arguments (F.5.12)
A macro argument can consist of no preprocessing tokens (3.8.3).
This extension is supported. For example, one could define a macro such as

#define notokargs() macrovalue

Predefined Macro Names (F.5.13)

Macro names that do not begin with an underscore, describing the translation and execution
environments, may be defined by the implementation before translation begins (3.8.8).

This isnottrue forcc —ansiwhich defines ANSI C. Only macro names beginning with two underscores or
a single underscore followed by a capital letter are predefined by the implementation before translation
begins. The name space is not polluted.

With cc -cckr (traditional C), a C preprocessor is used with a full set of the predefined symbols. For
examplesgiis predefined.

C Language Reference Manual — Appendix A, Implementation—-Defined Behavior — 28

With cc -xansi(which is the default for cc), an ANSI C preprocessor and compiler are used and a full set
of predefined symbols is defined (includisgj for example).

Extra Arguments for Signal Handlers (F.5.14)

Handlers for specific signals can be called with extra arguments in addition to the signal number.

Silicon Graphics supports System V, POSIX, and BSD signal handlers. Extra arguments to the handler are
available for your use. See the signal man page.

Additional Stream Types and File—-Opening Modes (F.5.15)

Additional mappings from files to streams may be supported (4.9.2), and additional file—opening modes
may be specified by characters appended to the mode argument of the fopen function (4.9.5.3).

There are no additional modes supported. There are no additional mappings. The UNIX approach is used,
as mentioned in the ANSI C Rationale, Section 4.9.2, page 90.
Defined File Position Indicator (F.5.16)

The file position indicator is decremented by each successful call to the ungetc function for a text stream,
except if its value was zero before a call (4.9.7.11).

Only the one character of pushback guaranteed by the standard is supported.

C Language Reference Manual — Appendix A, Implementation—Defined Behavior — 29

