
Chapter 10

External Definitions

A C program consists of a sequence of external definitions. An external declaration becomes an external

definition when it reserves storage for the object or function indicated. Within the entire program, all

external declarations of the same identifier with external linkage refer to the same object or function.

Within a particular translation unit, all external declarations of the same identifier with internal linkage

refer to the same object or function. The syntax is shown below:

external declaration:

function−definition

declaration

The syntax for external definitions that are not functions is the same as the syntax for the corresponding

external declarations. The syntax for the corresponding external function definition differs somewhat

from that of the declaration, since the definition includes the code for the function itself.

External Function Definitions

Function definitions have the form:

function−definition:

declaration−specifiersopt declarator declaration−listopt
compound statement

The form of a declarator used for a function definition can be:

pointeropt direct−declarator (parameter−type−listopt)

pointeropt direct−declarator (identifier−listopt)

In this syntax, the simplest instance of a direct−declarator is an identifier. (For the exact syntax, see

"Declarators".)

The only storage−class specifiers allowed in a function definition are extern and static.

If the function declarator has a parameter−type−list (see "Declarators"), it is in function prototype form (as

discussed in "Function Declarators and Prototypes"), and the function definition cannot have a

declaration−list. Otherwise, the function declarator has a possibly empty identifier−list, and the

declaration−list declares the types of the formal parameters. register is the only storage−class specifier

permitted in declarations that are in the declaration−list. Any identifiers in the identifier−list of the

function declarator that do not have their types specified in the declaration−list are assumed to have type

int.

Each parameter has block scope and automatic storage duration. ANSI C and traditional C place

parameters in different blocks. See "Scope" for details. Each parameter is also an lvalue, but since

function calls in C are by value, the modification of a parameter of arithmetic type cannot affect the

corresponding argument. Pointer parameters, while unmodifiable for this reason, can be used to modify

the objects to which they point.

Argument promotion rules are discussed in "Function Calls".

 C Language Reference Manual − Chapter 10, External Definitions − 1

The type of a function must be either void or an object type that is not an array.

External Object Definitions

A declaration of an object with file scope that has either an initializer or static linkage is an external object

definition.

In ANSI C, a file−scope object declaration with external linkage that is declared without the storage−class

specifier extern, and also without an initializer, results in a definition of the object at the end of the

translation unit. See the discussion in "Preprocessor Changes" for more information.

 C Language Reference Manual − Chapter 10, External Definitions − 2

