PHYS 410/555: Computational Physics Fall 2000 Homework 6
DUE: Thursday, November 30, 10:30 AM Report bugs to choptuik@physics.ubc.ca

The following assignment involves writing and testing two Fortran 77 programs which solve non-linear
equations. Do all development and execution on sgil. As usual, all files required by the assignment must
reside in the correct places on your sgil account for the homework to be considered complete. Contact me
immediately if you are having undue difficulties with any part of the homework.

Problem 1: In directory ~/hw6/al, write a Fortran program newt3 (source code in newt3.f), which finds
a root of the following system using Newton’s method in 3-dimensions:

it =1 (1)
sin(zyz) = x4+y+z (2)
r = yz (3)

newt3 should accept 3 or 4 arguments:
usage: newt3 <x0> <y0> <z0> [<tol>]

where x0, yO and z0 are the initial guesses for z, y, and z respectively, and tol is an optional convergence
criteria which should default to 1.0d-8. Implement the test for convergence following the newt2 example
covered in class. Like newt2, your program should use the LAPACK routine, dgesv, to solve the linear system
arising in the Newton iteration. Your program should trace the Newton iteration to standard error (again,
as newt2 does), mostly to aid you in determining when you have implemented the algorithm correctly. The
only output to standard output should be the final estimate of the root (three numbers, x,y,z, on one
line). Test your program by finding a root near « = 3.0, y = —2.0, z = —1.0 and record what you find in
~/hw6/al/README.

Important note: Although you could use equation (3) (for example) to eliminate x from equations (1) and
(2), hence reducing the system to two non-linear equations in two unknowns, you are not to do so—i.e. you
are to implement a three-dimensional Newton iteration.

Problem 2: In directory ~/hw6/a2, write a Fortran program nlbvpld (source code in nlbvpid.f), which
solves the following non-linear boundary value problem discussed in class:

Uge + (utg)? + sin(u) = f(z) 0<z<1 with u(0) = u(1) = 0.

where u = u(z), and f(x) is a specified function. Your program should use finite-difference techniques, New-
ton’s method for non-linear systems and the LAPACK tridiagonal solver dgtsv.f. Use the finite-difference
approximation which was discussed in class. (Also note that the discretization technique and O(h?) approx-
imations of the first and second derivatives are to be the same as those used in Problem 2 of Homework 4
(H4.2)). nlbvpld must have the following usage:

usage: nlbvpld <level> <guess_factor> [<option> <tol>]

Specify option .ne. 0 for output
of error instead of solution

The required integer argument, level, and optional integer argument, option, have the same interpre-
tation and default value (for option) as in H4.2. The required real*8 argument, guess_factor, is used
to initialize the Newton iteration as described below, and tol, which should default to 1.0d-8, specifies a
convergence criteria for the Newton iteration. Iteration should continue until

[[5ut™]],

< tol
[a™ly =

where || - - - ||2 denotes the ¢5 norm of a vector as defined in class. Test your program by taking
U(T) = Uexact = sin(4nz),

computing what f(x) must be so that the differential equation is satisfied, and supplying the appropriate
values of f(x) to your program. Initialize the Newton iteration by setting

u(i) = guess_factor * uexact(i)

Important note: There are at least three distinct solutions of the differential equation given the right hand
side f(x) implicitly defined by the above choice of texact- In order for the Newton method to converge to
Uexact, YOU Will have to specify a value of guess_factor close to 1.0: in fact, I recommend that you use
guess_factor = 1.0 until you are sure that you have convergence, both of the Newton’s method, and of
the difference solution to texact-

Once you are confident that your difference solution is converging to Uexact, make postscript plots showing
(A) the level 6 numerical solution and the exact solution as function of z (soln6.ps) and (B) the error for
level 5, 6, and 7 solutions, also as a function of = (err567.ps). Using different values of guess_factor,
try to find at least two other solutions of the boundary value problem (keeping f(x) fixed). Make a single
postscript plot (allsolns.ps) showing all the solutions which you are able to find (computed at level 6).

