
PHY/CAM 381C: Computational Physics Homework 4Due: Tuesday, April 22, 12:30pmImportant: This assignment requires you to write two f77 programs which involve the FD solution of PDEs.As always, please follow the instructions carefully, particularly with regards to command-line arguments andrequired input/output.Problem 1: Implement the Linear Correction Scheme (LCS) multi-grid algorithm described in class for the2d model problem:uxx + uyy = f(x; y) on 0 � x; y � 1 with u(x; 0) = u(x; 1) = u(0; y) = u(1; y) = 0 (1)Speci�cally, in �/hw4/a1, write an adequately commented f77 program mglcs2d with usage:usage: mglcs2d <level> [<nvcycle> <preswp> <pstswp>]where all arguments have the same interpretation and default values as for the FAS code, mgfas2d, whichwas discussed in class. You may borrow freely from the FAS code and its supporting routines, although youshould provide proper attribution should you choose to do so.Con�gure your code to solve (1) with f(x; y) = �5�2 sin(�x) sin(2�y)so that uexact = sin(�x) sin(2�y)and note that mgcls2d, like mgfas2d, is to implement a full-multilevel algorithm|i.e. for an invocation withlmax = <level>, mgcls2d must solve problems on levels, l = 1; 2; : : : ; lmax, where each level l+1 solution isinitialized via interpolation of the level l solution.mgcls2d should produce tracing output on standard error similar (or identical) in format to that produced bymgfas2d. The last output produced on standard error must be a suitable norm of the error in the computedsolution (i.e. in the l = <level> solution). There is no other required output, although you may �nd ituseful to trace other quantities as you develop your program. In this regard, you may �nd the bbhutilroutines|brie
y discussed in class and documented via the Course Software Web page|useful if you wishto use Explorer on einstein's console to visualize 2d grid-functions. Also note that gnuplot can makeparametric \surface plots", f(x; y). See help splot in gnuplot for more informationTest your code thoroughly, particularly for convergence. I will do the same.Problem 2: Consider the Korteweg and de Vries (KdV) equation for u � u (x; t):ut + ux + 12uux + uxxx = 0 on � xmax � x � xmax 0 � t � tmax (2:1)with initial and boundary conditionsu (x; 0) = u0 (x) u (�xmax; t) = u (xmax; t) = 0 (2:2)This equation admits \wave-like" solutions (solitons) which propagate in one direction (�xmax ! xmax;i.e. \to the right"). The \vacuum" (or quiescent) state is u = �, for an arbitrary real constant �, which,without loss of generality, we can choose to be � = 0. The boundary conditions (BCs) are thus compat-ible with quiescence, as should be the initial condition u0 (x) (i.e. u0 (x) should always satisfy|at leastapproximately|u0 (�xmax) = u0 (xmax) = 0). The right BC is not compatible with disturbances impingingon x = xmax; thus, once any signal has reached x = xmax, the \well-posedness" of the evolution is ques-tionable, and you can expect \strange things" to happen. This problem could be remedied by working ona periodic domain (i.e. by identifying �xmax and xmax), but this would also complicate the �nite-di�erencesolution of the equation. Furthermore, periodic boundary conditions are unnecessary, since by appropriate1



choice of u0(x) and xmax, all of the interesting dynamics in the model can be studied on a �nite spatial do-main. Simply bear in mind that for any speci�c choice of initial data and xmax, the amount of physical time,tphys for which the evolution can be meaningfully simulated will be �nite, and thus tmax should normally bechosen (possibly empirically) so that tmax < tphys.Use an O(h2) \Crank-Nicholson" �nite-di�erence scheme combined with a multi-dimensional Newton it-eration to approximately solve (2.1). Implement your solution as a well-documented f77 program kdv in�/hw4/a2/ (source code kdv.f). kdv must have the following usage:usage: kdv <xmax> <tmax> <level> <olevel> <dt/dx> <a> <x0> [<a> <x0> ...]where� <xmax> � xmax� <tmax> � tmax� <level> � discretization level. Number of spatial grid points, nx = 2<level> + 1� <olevel>� output level. Output produced every 2<level>�<olevel> time steps (see below).� <dt/dx> � \Courant number". Ratio of time step 4t to mesh spacing 4x = h. I recommend thatyou use <dt/dx> � 0:5, and you may �nd that even smaller values are required (for stability) forhigh-amplitude pulses.� <a> <x0> [<a> <x0> ...]. Initial data parameters: ai; x0i; i = 1; � � � np (interpretation describedbelow). Note that these parameters come in pairs (all but the �rst pair are optional), and that yourprogram may assume that at most 20 pairs will be speci�ed on the command line.Initial data: kdv must set initial data as follows:u0(x) = npXi=1 �(x; ai; x0i) where � (x; a; x0) = 14a2 cosh�2 �12a (x� x0)� (2:3)Note that � (x; a; x0) is a \pulse" pro�le whose maximum amplitude scales with a and which is centred atx = x0. Thus, (2.3) generically represents the superposition of np separate pulses.Finite di�erencing: Use an O(h2) two-level scheme|time-centred at t = tn+1=2 � tn + 4t=2|of theschematic form un+1j � unj4t + �t �Dxunj �+ 12 ��t unj � �t �Dxunj �+ �t �Dxxxunj � = 0 (2:4)where �t is the time averaging operator �t vnj � 12 �vnj + vn+1j � (2:4)and Dx and Dxxx are centred, O(h2) FD approximations of @x and @xxx respectively.Solving the algebraic equations: The discretization sketched above should yield a set of nonlinear equations:F j hun+1j0 i = 0 j = 3; 4; : : : ; nx� 2 ; j0 = 1; 2; : : : ; nx (2:5a)to which you should adjoin the following 4 equations:un+11 = un+12 = un+1nx�1 = un+1nx = 0 (2:5b)to yield a set of nx equations in the nx unknowns un+1j ; j = 1; 2; : : : ; nx. You should �nd that the Jacobianmatrix of (2.5) is 5-diagonal (pentadiagonal). At each time step then, solve for the un+1j using an nx-dimensional Newton method. Use the LAPACK banded-solver, dgbsv (discussed in class), to solve the linearsystems which arise in the Newton iteration and usek�uk2kuk2 � 1:0�102



as your convergence criterion for the Newton method.Output: The command-line parameter <olevel> controls the frequency of standard output. Speci�cally,every 2<level>�<olevel> time steps (including the 0th timestep t0 = 0), kdv must produce output as follows(your variable names may di�er, of course):write(*,*) t, nxdo i = 1 , nxwrite(*,*) x(i) , u(i)end dowhere t is the integration time, nx is the number of spatial grid points, x(1:nx) is the spatial coordinatevector, and u(1:nx) is the di�erence-solution vector (at time t). You may �nd it convenient to output otherquantities in other fashions as you develop kdv, but your �nal program should produce only the above onstandard output. If you are interested in using my SGI-speci�c visualization utility (ser aka vs) which wascustom-built for this type of application, please see me personally.Testing and results: Test your program thoroughly, particularly for convergence. Investigate the behaviour ofthe solution for single-pulse initial pro�les of varying amplitude. Attempt to determine how the propagationspeed of a pulse varies with amplitude. What typically happens to the di�erence solution if a disturbance isallowed to hit x = xmax? Report your �ndings and anything else you �nd interesting in �/h4/a2/README.Finally, using the output fromkdv 15.0 0.33 13 8 0.35 8.0 -11.0 6.0 -6.0 2.0 -1.0make a �gure consisting of nine plots arranged in a 3 x 3 con�guration, which shows u(x; t) at all nine outputtimes. Save a Postscript version of your plot in �/h4/a2/soliton3.ps. Let me know immediately if youhave (or perceive) undue di�culty making such a plot. Also note that the above level-13 run is likely to takea minimum of several minutes on einstein. Once you have �nished debugging your program (presumablybefore you make the level-13 run!), you should re-compile and re-link using the f77 
ags -O2 -n32 (insteadof -g -n32) in order to optimize your code, and thus minimize run-time.
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