PHYS 410/555: Computational Physics Fall 2000 Homework 5
DUE: Tuesday, November 21, 10:30 AM Report bugs to choptuik@physics.ubc.ca

The following assignment involves writing and testing three Fortran 77 programs which use finite-difference
techniques to solve various problems. Do all development and execution on sgil. As usual, all files required
by the assignment must reside in the correct places on your sgil account for the homework to be considered
complete. Contact me immediately if you are having undue difficulties with any part of the homework.

Problem 1: In directory ~/hw5/al on your sgil account, create a source file dpint.f which defines a
realx8 function dpint having the following header:

real*8 function dpint(xto,x,f,n,rc)
integer n, rc
real*8 xto, x(n), f(n)

dpint is to return the value p(xto), where p(z) is the polynomial of degree n — 1 which interpolates the input
(z, f) pairs (x(i),£(i)), 1 = 1 ... n. dpint should use Neville’s algorithm to evaluate p(xto) (see class
notes and Numerical Recipes, Sec. 3.1). The routine should also provide error checking (all error messages
should be directed to standard error), and set the return code, rc, as follows:

e If n > 20, print an error message stating that the requested degree of polynomial interpolation is too
large, set rc = 2 and return. Such a restriction is needed since the routine will require internal storage
to implement Neville’s algorithm.

e If the x(i) are not distinct, print a suitable error message, set rc = 3, and return.

e If xto < min; x(i) or xto > max; x(i), then set rc = 1 to indicate that extrapolation is occuring and
compute the value of p(xto) (don’t print an error message in this case).

e Normal interpolation, set rc = 0.

Working in the same directory, write a driver program called tdpint (source file tdpint.f, executable
tdpint) which has the following usage:

tdpint: <xto> [<xto> ...]

tdpint must accept up to 10 xto values on the command-line, then read up to 20 (x(i),£(i)) pairs from
standard input. It is to then evaluate the interpolating polynomial (which passes through the (x(i), (1))
pairs) for each of the xto and output (xto,p(xto)) (two real*8 numbers per line) on standard output. If
a return code other than 0 or 1 is encountered, the main program should write an appropriate message to
standard error, then exit. Note that you may wish to make use of the routines dvvto, dvvfrom you wrote
for Homework 3. Test your implementations of tdpint and dpint thoroughly, both for valid and invalid
input: I will test your work using my own input.

Problem 2: Consider the equation of motion for the displacement, ¢(¢), of a simple harmonic oscillator
with frequency w:

j=—wq (2.1)
where an overdot denotes differentiation with respect to time, ¢. Given initial conditions
q(0) = qo q(0) = qo

the subsequent motion of the oscillator is completely determined via (2.1). In directory ~/hw5/a2 on
your sgil account, create a source file sho.f and corresponding executable sho, which solves this or-
dinary differential equation using a finite-difference technique. In particular, discretize time uniformly
(t" = 0,/At,2At,3At,---) and use the usual second-order (O(At?)) approximation of the second deriva-
tive, ¢ to derive a discrete equation of motion. This equation of motion should be of the form:

anrl = ¢ qn +c qnfl

for some coefficients ¢, ¢1, where ¢" = q(nAt). Your program must accept command-line arguments (most
of which will have defaults) as illustrated by the following usage message:

usage: sho <q0> [<qdot0> <omsg> <tmax> <level> <olevel>]

defaults 0.0 1.0 8.0 8 8

The command line arguments have the following interpretation (data types shown in parentheses):
e g0, qdot0: Initial oscillator position, ¢(0) and velocity, ¢(0), respectively (real*8).
e omsq: Square of oscillator frequency (i.e. w?) (realx*8s).
e tmax: Maximum (final) integration time (realx*8).

e level: Discretization level (integer). The integration interval (0 ... tmax) will be divided into
nt = 2!l + 1 time steps; thus At = tmax /27!

olevel: Output level (integer). Must not be greater than level. This parameter controls the
frequency of output (time and position, as stipulated below) as follows:

ofreq — 21eve1 — olevel

Let it label the time step, with it = 0, 1, ... nt - 1. Then output is generated whenever
mod(it,ofreq) .eq. O

A key motivation for having this additional argument is to provide a mechanism to keep the specfic
output times fixed (by keeping olevel fixed) as the resolution is increased (i.e. as level increases).
Note that if olevel .eq. level, then output occurs every timestep; if olevel .eq. level - 1,
output occurs every two timesteps, etc.

sho must periodically write the integration time, ¢, and computed oscillator position, ¢", to standard output
(two numbers per line) as described above. It must also initialize ¢° and ¢! from the command-line values
q0, qdot0 to O(At?) (i.e. up to and including terms of O(At?)) using the same Taylor series technique
discussed in the handout Notes on the 1D Wave Equation.

Convergence-test your program by performing the following runs
sho 1.0 0.0 1.0 8.0 8 8 > out8
sho 1.0 0.0 1.0 8.0 9 8 > out9
sho 1.0 0.0 1.0 8.0 10 8 > outl10

Note that since the output level is fixed at 8, each of the output files out8, out9, out10 should contain
output at the same set of 257 times. Let ¢; denote the level | solution. Demonstrate that your solution
appears to be second order accurate by using gnuplot to graph ¢gs — qo and 4(go — q1p) on the same plot.
Save a postscript version of your plot in a file called ctest.ps.

Examine the output from
.0 0.0 1.0 512 8 8
.0 0.0 1.0 513 8 8
What happens to the estimated solution at level 8 when tmax > 5127 What is the value of wAt when
tmax = 5127 Can you come up with an explanation for the observed behaviour? (Answer these questions in

~/hw5/a2/README.)

Problem 3: In directory ~/hw5/a3 on your sgil account, create a source file wavelid.f, and corresponding
executable waveld, which uses second-order finite-difference techniques (as discussed in class) to solve the
following one-dimensional wave equation for u(z,t):

Upt = Uy 0<z<1 t>0 (3.1)

u(z,0) =1(z) + r(z) u(z,0) =1'(z) —r'(z) u(0,t) = u(1,¢) = 0. (3.2)

Here I(z) and r(z) are, respectively, the left-moving and right-moving components of the solution at ¢t = 0
and ' denotes differentiation.

waveld must accept 6 arguments as illustrated by the following usage message:
usage: waveld <level> <dt/dx> <ncross> <a left-mover> <a right-mover> <olevel>

The arguments have the following interpretation:
e level: Discretization level (integer). The spatial mesh will have nx = 2'"! + 1 points.
e dt/dx: “Courant number” (realx8). Ratio of temporal spacing At to spatial mesh-size Az.

e ncross: Final integration time in units of “crossing times” (integer). A crossing time is the amount
of time it takes for a signal to propagate across the solution domain. Since the wave speed in (3.1) is
1, and the spatial domain is 0 < z < 1, the crossing time in this case is also 1. Note that the number
of time steps in the integration, nt, is then implicitly defined by level, dt/dx and ncross.

e <a left-mover>: The amplitude (real*8) of the initially left-moving component of the wave (see
below).

e <a right-mover>: The amplitude (real*8) of the initially right-moving component of the wave (see
below).

e olevel: Output level (integer). Must not be greater than level. This parameter defines the
frequency of output as in the previous question:

ofreq — 21eve1 — olevel

In addition, in this case ofreq also specifies a “spatial” frequency of output, e.g. if ofreq = 2, then
at output times, every second value u}', u¥,- - is dumped (see below).

To aid in the development of your program, the following routines are provided in the file ~phys410/hw5/a3/util.f
The first routine is

subroutine dvgaussian(g,dg,ddg,x,n,amp,x0,del)

integer n
realx*8 g(n), dg(n), ddg(n), x(n)
real*8 amp, x0, del
which given x(j) , j =1 ... n, amp, x0 and del returns a Gaussian profile, g(j), and its first two

derivatives, dg(j) and ddg(j), evaluated on the finite-difference mesh:

g(3) = g(x()) = amp x exp (- (x(j) — x0)” /de1?)

adg(j) = 75 (x(3))

This routine should be used to set up the initially left- and right-moving components of the solution, I(z)
and r(x) as well as the first and second derivatives of these components, I'(z),r'(z),l" (z),r" (z). Each of

the two components should be a Gaussian with x0 = 0.5d0, del = 0.1d0 and an amplitude given by the
corresponding command-line argument. The difference values u9 and uj are to be initialized to O(At?) using
the Taylor series approach discussed in Notes on the 1d Wave Equation.

The second routine provided in util.f is

subroutine gnuout (u,x,nx,t,stride)

implicit none

integer nx, stride

real*8 u(nx), x(nx), t
integer J

do j =1, nx , stride
write(x,*) t, x(j), u(j)

end do

write(k,*)

return

end

which writes data to standard output in gnuplot splot-format (see example source code, gpwave.f, in the
on-line finite-difference notes). Assuming that the grid function u has been declared via

real*8 u(maxnx,2)

then the only output (to standard out) from your program should be generated every ofreq steps using a
call like

call gnuout(u(l,npl),x,nx,t,ofreq)

When you are satisfied that your program is working, generate some sample output using:
waveld 8 0.5 3 0.5 1.0 5 > out8

and then use splot in gnuplot to produce a surface plot of the results. Save a postscript version of your
plot in the file out8.ps. Now try

waveld 8 1.00025 3 0.5 1.0 5 > out8uns

and use gnplot to make a postscript file out8uns. ps containing a surface plot of the results. What appears
to be happening to the solution in this case? (Answer this question in ~/hw5/a3/README.)

