PHYS 410/555 Computational Physics
Solution of Nonlinear Systems Using Newton’s Method: Summary Notes

We begin by recalling Newton’s method for the solution of a single nonlinear equation

flz)=0 (1)

in a single variable, x.
Starting from some initial guess, £(°), Newton’s method generates iterates, (™) via

L4 — (0 _ 52(n) @)

where 0z(") satisfies

Fl™y 2 = ¢ = f(z(M) (3)

Here, f'(z) = df /dz, and () is defined as the residual associated with (1), which, assuming that
the iteration converges, is driven to 0 as n — 00.
Equations (2) and (3) can be combined in the more compact form:

w_ JE") (4)

LD =
When Newton’s method converges, it tends to do so rapidly; we can expect the number of significant
digits (accurate digits) in z(™) to roughly double at each iteration (quadratic convergence).

We now proceed to the case of nonlinear systems. We now wish to solve

f(x)=0 (5)
where
($17$27"'7$d) (6)
f = (fi(x), fa(x),..., fa(x)) (7)
fi(x) = fi(z1,72,...,74) (8)
Expression (5) is a non-linear system of d equations, f;(z1,%2,...,24) = 0, in d unknowns,
L1324y (-

For illustrative purposes, we consider the following specific system, where d = 2:

sin(zy) = % (9)
y? = 6z +2 (10)

As in the scalar case (d = 1), Newton’s method for systems is again iterative; we start from some
initial guess, x(9), then generate iterates:

x(© s x(D) . x(m) g yntl) (11)

where x* is a specific solution of (5). Again, as with the scalar case, with any appoximate solution,

x(") | we associate the residual
r® = £(x™) (12)

In the d-dimensional case, the analogue of f'(x) is the Jacobian matriz, J, of the first derivatives
of f. J has elements J;; given by

_ Ofi
Jij = B—z] (13)
For the example defined above, we have x = (z1,z2) = (z,y), and
0f1/0x 0f1/0y | _ | ycos(zy) wcos(zy (14)
0f2/0z 0f2/0y —6 2y

We can derive the d-dimensional Newton iteration by considering a multi-dimensional Taylor
series expansion. Specifically, we expand f(x*) about the n-th interation, x(") | ag follows:

0 = £(x*) = £(x) + I(x) - (" = x) + O((x" —x(")?) (15)
We then drop the higher order terms, and replace the solution x* with the new iterate x(n+1)
yielding;:
0 = f(x™) + J(x™) . (x(*+1) — x(M) (16)
Defining 6x™ via
5x(™ = x() — x(+1) (17)

and rearranging (16), we have Newton’s method for systems:
x(MD) = x(M) _ 5x (™) (18)
where 6x(™ satisfies the linear system:

J(x™) . 6x(™ = £(x™) =) (19)

Observe that (19) is a d x d linear system for the unknowns dx™. Also recall that the Jacobian
matrix, J(x(™) has elements:

_ 0fi

a$] x:x(")

Jij (™) (20)
(19) can be solved using an appropriate linear solver (dgesv, dgtsv, dgbsv, ...).

Finally, the following pseudo-code describes the general structure of a typical implementation
of a multi-dimensional Newton solver:

x = x(0)
do while ||dx| > €
doi=1, d
res(i) = fi(x)
do j=1,d
J(i,3) = 0fi/0z;(x)
end do
end do
dx = solve(J - dx = res)
x =x - dx
end do

