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This dissertation presents the numerical solution and investigation of

spin-1
2
fields coupled to gravity (Einstein-Dirac system). The primary focus is

on the behavior at the threshold of black hole formation.

A spherically symmetric system of massive spin- 1
2
fields in a singlet

spinor state is studied and shown to exhibit both unstable and stable solutions.

The unstable solutions correspond to the threshold between black hole collapse

and dispersal. There are a continuum of stable solutions that are solitonic in

nature. These tended to oscillate and approach the stable, static solutions

that we found through independent techniques.

A spherically symmetric system is constructed from massless spin- 1
2

fields by using spinor harmonics for their angular part and taking an incoherent

sum of their individual stress tensors. The result is a spherically symmetric

system with no net spin-angular momentum. Instead the system feels the

effect of a “spin-angular momentum barrier.”
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The strength of the barrier is controlled by the spin-angular momentum

quantum number, l. The lowest value of l = 1
2
corresponds to two counter-

rotating shells. In this case, black hole formation occurs at infinitesimal mass

(Type II). This new, continuously self-similar solution is found by solving the

Einstein-massless-Dirac system of nonlinear partial differential equations. A

self-similar ansatz is then taken which reduces the partial differential equations

to a set of ordinary differential equations. These new equations are solved and

the solution of the PDEs are shown to agree with the solution of the ODEs.

The Einstein-massless-Dirac system of PDEs is then solved for other

values of l. As l is increased, the scaling exponent, λ of the Type II solutions

is shown to decrease.

The final chapter describes a new two-dimensional, axisymmetric code

which uses a combination of harmonic coordinates and Chebyshev pseudospec-

tral collocation methods to solve Einstein’s equations. This evolution code is a

hybrid of finite-difference and spectral techniques— the temporal derivatives

are approximated by finite-difference operators while the spatial derivatives

are found using spectral methods. The constraint equations are solved using

a purely spectral nonlinear elliptic solver which uses the Newton-Kantorovich

method.
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Chapter 1

Introduction

The classical theory of general relativity was formulated by Albert Ein-

stein in 1915. Up to this time, gravity was believed to be a force that acted

at a distance. It was believed to have an infinite speed of propagation. One of

the most striking features of the general theory of relativity is that it combines

the two seemingly separate concepts of space and time into one: spacetime.

Gravity is a result of the curvature of spacetime. This makes gravity a local

phenomenon which is described by the geometry of the spacetime manifold.

Einstein’s equations (2.1) relate the curvature of spacetime to mass-energy.

For a dynamical solution, each of these affects the other: the manifold curves

in response to mass-enegry while the evolution of the mass-energy changes in

response to the new geometry through which it moves. Dynamical solutions

are of particular interest since they are especially challenging to find. They

involve complicated systems of nonlinear partial differential equations which,

in general, must be solved numerically.

One of the most interesting conjectures in the theory of general relativ-

ity is that mass-energy can gravitationally collapse to form a black hole. The

black hole is a region of such an incredibly strong spacetime curvature that not

even light can escape. It is said to be causally disconnected from the rest of

the universe. These objects are interesting but perhaps even more fascinating

is the dynamic study of their formation, a particular aspect of which is the
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investigation of the very threshold of black hole formation. The interesting

behavior at this threshold was first discovered by Choptuik [8]. The question

being investigated was: “Does a black hole form at finite mass (Type I behav-

ior) or can the smallest black hole formed be of arbitrarily small mass (Type II

behavior)?” The original model used to investigate this question was a spheri-

cally symmetric, massless scalar field minimally coupled to gravity. Initial data

consisting of a pulse of scalar field was parameterized by a single quantity, p.

This parameter could represent the amplitude of the pulse, its width, or even

its distance to the origin (this pulse was typically a gaussian function of the

radius, r, which in spherical symmetry represents an entire spherical shell of

scalar field). The parameter p controlled the initial amount of mass-energy

in the spacetime. For simplicity, we will define p so that increasing it means

increasing the initial amount of mass-energy. When p is sufficiently increased

the evolution results in the formation of a black hole. The control parameter

can also be given a lower value that causes the scalar field to evolve to some

other end state which is not a black hole. This other scenario could be a static

solution, an oscillating solution, or in the case of the massless scalar field, the

pulse could simply disperse to spatial infinity leaving behind flat spacetime.

When a value of the parameter is found which results in black hole formation

we say that it is supercritical. When a value is found which does not produce

a black hole (but produces the other end state) it is called subcritical. The

parameter p is then tuned until its critical value p∗ is found. This critical value

is such that a small positive perturbation will result in gravitational collapse

while a small negative perturbation will result in the other end state. In prob-

ing the threshold of black hole formation Choptuik found that there is a power

law scaling for masses of the black holes formed. Tuning arbitrarily close to

p∗ means that black holes of arbitrarily small mass could be created. Another
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feature of these threshold solutions is that the scaling exponent for this power

law was universal. The same exponent was found regardless of the family of

initial data or which parameter was used. This surprising result can be ex-

plained through perturbation analysis in which the critical solution is shown

to have a single unstable mode. The two competing end states (black hole

formation or not) are the end points resulting from the evolution of this one

unstable mode [16]. Therefore by “tuning away” this mode one is left with the

critical solution. When p is tuned arbitrarily close to the critical parameter,

p∗, the critical solution will persist for an arbitrarily long time. All of this

interesting behavior falls under the classification of critical phenomena.

1.1 Layout

The primary focus of this thesis will be the study of critical phenomena

at the threshold of black hole formation for spin- 1
2
fields coupled to gravity in

spherical symmetry. We diverge from this topic in Chapter 7 when we discuss

preliminary work on a two-dimensional, axisymmetric code to solve Einstein’s

equations in harmonic coordinates.

The layout of this thesis is as follows: There will be a brief introduction

to general relativity in Chapter 2 as well as a discussion of the 3+1 ADM for-

mulation of Einstein’s equations. Chapter 3 is a brief discussion of numerical

techniques including the finite-difference method of solving differential equa-

tions. The stability of evolution equations, the use of dissipation operators,

and truncation error will also be discussed. A section is included on Cheby-

shev pseudospectral collocation methods since they are in the two-dimensional,

axisymmetric code in Chapter 7.

The massive Einstein-Dirac system is investigated in Chapter 4. Here
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the formalism for the curved space Dirac equation is not discussed in much

detail, but is merely presented following previous work by Finster, et al [12]. A

much more detailed (and canonical) treatment is given in Chapter 5 when the

massless case is derived from first principles. There are a number of solutions

in the massive case but these are not presented in full detail. The solution of

interest is the Type II critical solution. This solution provides motivation for

the massless investigation in subsequent chapters.

In Chapter 5 we give a detailed study of the Einstein-massless-Dirac

system. A technique for solving the system of partial differential equations is

presented and a Type II critical solution is constructed. A self-similar ansatz

is then taken which reduces the nonlinear partial differential equations to a

set of ordinary differential equations. These new equations are solved and

the self-similar ansatz is shown to agree with the solution generated from the

PDEs.

The method used to derive the Einstein-massless-Dirac system in Chap-

ter 5 leads to an investigation of a model in which the strength of the “spin-

angular momentum barrier” can be increased. This is discussed in Chapter 6.

In Chapter 7, an introduction to harmonic coordinates is given and the

reduced Einstein’s equations in such coordinates are derived. A description is

given of a new two-dimensional, axisymmetric code which uses a combination

of harmonic coordinates and Chebyshev pseudospectral collocation methods

to solve Einstein’s equations with a scalar field as the matter source. The

evolution code is a hybrid of finite-difference and spectral techniques— the

temporal derivatives are approximated by finite-difference operators while the

spatial derivatives are found using spectral methods. The constraint equa-

tions are solved using a purely spectral nonlinear elliptic solver which uses the
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Newton-Kantorovich method. This work is very preliminary and the current

state is discussed as well as the future plans.

1.2 Notation and Conventions

The following notation and conventions are used in this work:

• Although spin- 1
2
fields are studied in this work, the MTW [7] convention

is, for the most part, used for the signature of the spacetime metric:

(−,+,+,+). A different signature is used in Chapter 4.

• Units are such that G = c = ~ = 1.

• Greek letters are used for spacetime indices and run from 0 to 3.

• The Latin alphabet is used for spatial indices and run from 1 to 3.

• The Einstein summation convention is used for repeated indices in both

cases. AµBµ = A0B0 + A1B1 + A2B2 + A3B3.

• The totally symmetric parts of tensors are written as T(µν) =
1
2
(Tµν + Tνµ).

• The totally antiymmetric parts tensors are written as T[µν] =
1
2
(Tµν − Tνµ).

• Partial derivatives are denoted,

∂µ ≡
∂

∂xµ
.

• The covariant derivative is denoted, ∇µ, and is compatible with the

spacetime metric. It is sometimes written as a semi-colon on an index:

∇µTν ≡ Tν;µ.
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• The spinor covariant derivative is also represented by ∇µ but it will be

clear which derivative operator is being used by whether or not it is

operating on a quantity with spin.

• Spinor affine connections are written as Γµ.

• γµ are the curved space gamma matrices while γ̃µ are the flatspace Carte-

sian gamma matrices.

• The order of accuracy will be shown with: O(h2).

• GR: General Relativity.

• PDE: Partial Differential Equation.

• ODE: Ordinary Differential Equation.

• FD: Finite Difference.

• CN: Crank-Nicholson.

• CFL: Courant-Friedrichs-Lewy.

• PSC: PseudoSpectral Collocation.

• FFT: Fast Fourier Transform.
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Chapter 2

Theoretical Background

2.1 Gravity as Curvature

In our everyday lives we seem to perceive space and time as separate

entities. However in the general theory of relativity, (GR), they are actually

part of the same thing: spacetime. This can be thought of as a 4-dimensional

Lorentzian manifold, and its curvature produces what we call gravitational

effects. This is very different from the Newtonian theory which treats gravity

as a force emanating from massive objects at infinite speed. In that theory,

gravity is a force which acts instantaneously and at a distance from a center

of attraction. This idea of curvature is one of the defining characteristics of

GR. It is significant because it means that gravity is a local phenomenon. In

other words, the Earth orbits the Sun because the mass-energy of the Sun

has produced a curvature in the geometry of spacetime and the path which

the Earth follows is the result of it travelling through the curved manifold.

Thus the path of the Earth is determined by the region of the curved manifold

through which it is currently passing. It is essentially in free fall and its path

is a “straight line” in this geometry.

Thus, in order to study gravity, we need a way to describe the space-

time manifold’s geometry and calculate its curvature. This is the realm of

differential geometry and it leads us to define a metric tensor on our manifold.

In a coordinate system, the components of the metric, gµν , can be viewed as a
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4× 4 symmetric matrix. Although we are now unifying the concepts of space

and time, we still treat time as somewhat different from space. Therefore our

metric will have a Lorentzian signature, (−,+,+,+).

The heart of GR is Einstein’s equations,

Gµν = 8πTµν , (2.1)

which relate the curvature of the spacetime geometry (represented here as

the Einstein tensor, Gµν) to the distribution of mass-energy (stress-energy

tensor, Tµν). Note that the plural equation(s) is used since (2.1) is a set of 10

equations. Both tensors are taken to be symmetric.

At this point, the necessity for Einstein’s equations hasn’t been shown.

Neither has a need for a geometric interpretation of gravity. Such motivations

can be found in any book on GR [26], [7]. We will assume all of this and merely

show: how to find curvature, how this relates to the metric, and how this is

related to mass-energy through Einstein’s equations. So far, all we have is a

basic summary of the theory: a Lorentzian metric and Einstein’s equations.

Now let us see how it all fits together.

2.1.1 Curvature

The local description of gravity discussed above requires a curved man-

ifold to describe spacetime. The difficulty with a curved geometry is that most

of our intuition is based on flat, Euclidean geometry. When things are flat,

a vector at any point in spacetime can be compared to a vector at any other

point. When the geometry is curved, we no longer have this luxury. If we

compare two vectors by parallel transporting (see [26]) the first one to the

position of the second we find that the result is completely dependent on the
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path which was taken. This can be easily verified by using the equation of

parallel transport,

tµ∇µv
ν = 0, (2.2)

where tµ is the tangent vector to the path and vν is the vector being trans-

ported. The derivative operator in (2.2) is defined as:

∇µv
ν = ∂µv

ν + Γνµσv
σ (2.3)

with Γνµσ the connection coefficients. As frustrating as this path dependent

change in vectors is, it is something that must be accepted. We can, however,

ensure that the length of the vector remains unchanged under parallel trans-

port. To do this, we need to define a derivative operator which is compatible

with the metric

∇λgµν = 0. (2.4)

This yields the Christoffel connection, defined to be

Γνµσ =
1

2
gνλ (∂µgσλ + ∂σgλµ − ∂λgµσ) (2.5)

for a coordinate basis. Note that this does not obey the tensor transformation

law for a change in coordinates:

T σ
µν =

∂xσ

∂x̃α
∂x̃β

∂xµ
∂x̃λ

∂xν
T̃ α

βλ. (2.6)

Indices of tensors and even non-tensors are lowered and raised with the metric

and the inverse metric, gλσ, respectively.

Tσµν = gσλT
λ
µν

T λ
µν = gσλTσµν

9



Where

gσλgσν = δσν

and δσν is the Kronecker delta.

Now that we have defined a covariant derivative, we are ready to define

what we mean by curvature. Let us parallel transport a vector according

to equation (2.2) along a closed path back to its original position P . If the

manifold is curved, then the vector will undergo a rotation (see Fig. 2.1).

The amount that the vector has changed will be a measure of the cur-

vature at point P . This leads to the definition of the Riemann curvature

tensor:

Rµνσ
λωλ = (∇µ∇ν −∇ν∇µ)ωσ. (2.7)

In terms of the Christoffel symbols we have:

Rµνσ
λ = ∂νΓ

λ
µσ − ∂µΓ

λ
νσ + ΓαµσΓ

λ
αν − ΓανσΓ

λ
αµ. (2.8)

This tensor obeys the following relationships:

Rµνσ
λ = −Rνµσ

λ, (2.9)

R[µνσ]
λ = 0, (2.10)

Rµνσλ = −Rµνλσ, (2.11)

and the Bianchi identity,

∇[µRνσ]λ
γ = 0. (2.12)

The importance of this last identity will become clear shortly.

We now have the means to measure curvature through the Riemann

tensor, which can be computed from the metric that we have defined on our

10



P

P

Figure 2.1: (Top) A vector is parallel transported around a circle and back
to the original point, P , in flat, Euclidean geometry. It remains unchanged.
(Bottom) a vector is parallel transported on the surface of a curved manifold
(a 2-sphere) along a closed path back to the original point, P . It undergoes a
rotation.
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spacetime manifold. Let us now relate what we have to Einstein’s equations.

To do this, we must define a new tensor by contracting the second and fourth

indices of the Riemann tensor

Rµσ = Rµνσ
ν . (2.13)

This is the Ricci tensor and it can be contracted with the inverse metric to

yield the Ricci scalar

R = gµσRµσ = Rµ
µ. (2.14)

The Einstein tensor can now be defined,

Gµν ≡ Rµν −
1

2
gµνR. (2.15)

But why relate the Einstein tensor to the stress-energy tensor? Well,

the stress-energy tensor obeys local energy conservation:

∇µT
µν = 0. (2.16)

So what is needed is a tensor which not only contains the information for

the curvature of the spacetime manifold but also has zero divergence. The

importance of the Bianchi identity (2.12) is now clear because it leads to the

necessary property,

∇µG
µν = 0. (2.17)

2.2 Solving Einstein’s Equations

Solving Einstein’s equations (2.1) means finding the metric of the space-

time manifold. A closer look at the Einstein tensor shows that there are equa-

tions involving second order time derivatives of the metric (Gµν contains first

12



order derivatives of the Christoffel connections which themselves contain first

order derivatives of the metric). The system can be thought of (very loosely)

as wave equations. A second order wave equation for the metric would require

initial data consisting of the metric at the initial time as well as its first time

derivative. Can this initial data be freely specified? Let us take a closer look

at the divergence of the Einstein tensor to see. We have:

∂0G
0ν = −∂iGiν − ΓααβG

βν − ΓναβG
αβ. (2.18)

The right hand side of the equation cannot contain third order time derivatives

of the metric. The Christoffel connections contain single time derivatives while

the Einstein tensor will have single time derivatives of the connections (so there

will be at most second order time derivatives of the metric). For this to hold

for the left hand side, the G0ν components must involve at most first order

time derivatives of the metric. This means that the 4 equations given by

G0ν = 8πT0ν (2.19)

relate the metric components and their first time derivatives to each other.

They are not evolution equations but rather equations of constraint. Initial

data cannot be completely freely specified, therefore, but must obey (2.19).

2.2.1 3 + 1 ADM Formulation

Given initial data which satisfy the constraints, we can use Einstein’s

equations to evolve the metric in time. As long as the initial data specified

at the initial time on a spacelike hypersurface is complete (all of the spatial

components of the metric and their first time derivatives must be given as

initial data), all future values of the metric can be determined. Such a de-

terministic spacetime is called globally hyperbolic. In such a case, the entire

13



spacetime manifold can be foliated with spacelike hypersurfaces. There are

several formulations that adopt this approach, but we will limit the current

discussion to the ADM (Arnowitt, Deser, and Misner) formulation [22] of Ein-

stein’s equations. There are many references on this subject, such as [27] and

[9]. In this 3 + 1 decomposition of the spacetime manifold, M, each of the

spacelike hypersurfaces is defined by t = constant where t, the time, can be

viewed as a scalar field. A future-directed vector field, nµ, which is orthogonal

to the spacelike hypersurfaces can be used to define a projection tensor

⊥µ
ν ≡ δµν + nµnν (2.20)

that is used to find the spatial parts of tensors by projecting them onto the

hypersurface. Applying this to the metric of the spacetime yields the spatial

metric of the hypersurface

γij = gij + ninj. (2.21)

(Recall that Latin indices range over the spatial values 1, 2, 3). The contravari-

ant form of the spatial metric is

γij = gij + ninj (2.22)

while the mixed form is simply the projection tensor. Now that we have a

spatial metric, we can define covariant differentiation on the hypersurface

Di ≡ ⊥µ
i∇µ (2.23)

where the spatial derivative operator is compatible with the spatial metric

Diγjk = 0. (2.24)
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The Riemann curvature tensor for the hypersurface can be found by using the

spatial metric, γij, in expressions analogous to those given previously for the

4-dimensional case. Besides the notion of intrinsic curvature, there is also the

notion of an extrinsic curvature, Kij, which is the description of how each of

the hypersurfaces is embedded in the spacetime manifold. It is defined as

Kij = −⊥µ
i⊥ν

j∇µnν . (2.25)

The extrinsic curvature can also be written in terms of the Lie derivative with

respect to the normal vector field, nµ:

Kij = −
1

2
Lnγij. (2.26)

The extrinsic curvature is a purely spatial, symmetric tensor and is effectively

a time derivative of the spatial metric. It will be used to cast Einstein’s

equations in first order form (in time).

Now that we have discussed the hypersurfaces and the embedding, let

us discuss how coordinates on the hypersurfaces are related. A lapse function,

α and a shift vector βi are needed to do this. The lapse is a measure of proper

time for an observer moving normal to the hypersurfaces. The covariant form

of the normal vector written explicitly in terms of the lapse is:

nµ = (−α, 0, 0, 0). (2.27)

The shift describes the change in xi, the spatial coordinates, from one hyper-

surface to the next (see Fig. 2.2). The spacetime metric can be written in

terms of these quantities as

ds2 = −α2dt2 + γij
(

dxi + βidt
) (

dxj + βjdt
)

. (2.28)
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Figure 2.2: Diagram of the 3+1 decomposition of the spacetime manifold into
spacelike hypersurfaces.

Now that the spacetime geometry has been split into spacelike hyper-

surfaces and we have described how coordinates on these hypersurfaces relate

to each other, we are ready to split Einstein’s equations. This is done in simi-

lar fashion by projecting tensors onto the hypersurfaces and along the normal

vector nµ. The requisite projections of the stress-energy tensor are:

ρ ≡ Tµνn
µnν (2.29)

jµ ≡ −⊥µ
νT

σνnσ (2.30)
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Sµν ≡ ⊥σ
µ⊥λ

νTσλ (2.31)

Here ρ is the local energy density, jµ is the momentum density, and Sµν is the

spatial stress tensor as measured by observers moving normally to the hyper-

surface. The energy and momentum densities are needed for the constraint

equations. The Hamiltonian constraint is given by:

R +K2 −K i
jK

j
i = 16πρ (2.32)

where R is the trace of the spatial Ricci tensor

R ≡ γijR
ij (2.33)

and K is the trace of the extrinsic curvature tensor:

K ≡ γijK
ij. (2.34)

The momentum constraint is:

DjKi
j −DiK = 8πji (2.35)

The evolution equations of the spatial metric and the extrinsic curvature take

the form:

∂tγij = −2αKij +Diβj +Djβi (2.36)

∂tKij = LβKij −DiDjα+ α

(

Rij +KKij − 2KimK
m
j

−8π
(

Sij − 1
2
γij(S − ρ)

)) (2.37)

where S is the trace of the spatial stress tensor

S ≡ γijS
ij. (2.38)
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Now that we have the ADM form of Einstein’s equations, we are ready to

solve them. Initial data that satisfies the constraints is specified on a spacelike

hypersurface at the initial time and the evolution equations can then be used to

evolve γij andKij. This is called a free evolution. The Bianchi identity ensures

that the constraints are preserved throughout the evolution. Another method

is to evolve some components of γij and Kij and then solve the constraints

at each time step for the remaining components. This is referred to as a

constrained evolution.
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Chapter 3

Numerical Methods

This chapter gives an introduction to the numerical implementation of

differential equations via finite-difference methods. Various derivative opera-

tors will be defined and their associated error will be explained. Difference

schemes for time dependent evolution equations will be discussed as will the

stability properties of the schemes. We will then show how the numerical solu-

tion is checked for convergence to the continuum solution that it approximates.

Finally, we show how to quantify the difference solution’s truncation error.

The geometric tensor language of general relativity is both beautiful

and powerful. One of its advantages is that some calculations can be performed

in a coordinate independent fashion. Unfortunately, if we are actually to solve

Einstein’s equations, we must define a coordinate system. When this is done,

we have a set of nonlinear partial differential equations (PDEs) whose solution

will require the use of numerical analysis. This is typical of many nonlinear

PDEs. Only in the rarest of cases can closed form solutions be found.

3.1 Finite-Diffence Methods

One method for numerically solving a differential equation is to use

finite-difference approximations. The idea is to define a numerical grid of

coordinate points. It is at these points that the values of the functions and
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the derivatives in the differential equation are defined. In this way, the entire

equation is discretized. Most importantly, the continuous derivative operators

can be replaced by algebraic ones.

In order to define examples of discrete derivative operators, first con-

sider the Taylor expansion of a function:

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 + . . . (3.1)

where the primes (′) denote the continuous derivative of the function with

respect to x and h is the grid spacing. Solving for the derivative gives:

f ′(x) =
f(x+ h)− f(x)

h
+O(h). (3.2)

This approximation is first order accurate in h. At leading order, the discrete

approximation differs from its continuous counterpart by this error term. This

is a very crucial point which will be discussed in depth later. For now, let us

derive a more accurate derivative. We Taylor expand our function in the other

direction:

f(x− h) = f(x) + f ′(x)(−h) + 1

2!
f ′′(x)(−h)2 + . . . (3.3)

Subtracting (3.3) from (3.1) causes the second derivative terms to cancel. Solv-

ing for the first derivative gives:

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2). (3.4)

Thus this difference expansion has O(h2) accuracy when it is centered at x.

This procedure can be continued to find finite-difference operators of different

orders of accuracy. It can also be used to find FD operators which approximate

higher derivatives. A brief summary of some of the possible FD operators are

given in Table 3.1.
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3.1.1 Stability

One of the most challenging tasks when solving a hyperbolic equation

numerically is achieving a stable evolution. Once the equation is discretized, it

often contains far richer solutions than the continuum equation. Some of these

are high frequency modes which can grow with time. They are of no interest

since they are not modes of the continuum solution. It is this solution, after

all, which we are trying to find.

The continuum evolution equation has a characteristic structure which

determines its past domain of dependence see Fig. 3.1. The discretized equa-

tion has its own domain of dependence. In order to have a stable evolution,

the time step, ∆t, must be chosen such that the FD domain of dependence

uncompasses that of the continuum system. If the time step, ∆t, is chosen to

be too large, a portion of the continuum domain of dependence is excluded

in the FD update. This exclusion results in an unstable evolution. This is

the Courant stability condition. This condition is perhaps the most straight-

forward for determining stability for explicit FD schemes. It is a necessary

condition in most instances, but it is often far from sufficient.
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Table 3.1: Some of the many finite-difference expressions are summarized be-
low.

Derivative Finite Difference Expressions

∂xfj = (fj+1 − fj)/h+O(h)

∂xfj = (fj − fj−1)/h+O(h)

∂2
xfj = (fj − 2fj+1 + fj+2)/h

2 +O(h)

∂2
xfj = (fj − 2fj−1 + fj−2)/h

2 +O(h)

∂xfj = (fj+1 − fj−1)/h+O(h2)

∂xfj = (−3fj + 4fj+1 − fj+2)/2h+O(h2)

∂xfj = (3fj − 4fj−1 + fj−2)/2h+O(h2)

∂2
xfj = (fj+1 − 2fj + fj−1)/h

2 +O(h2)

∂2
xfj = (−fj+3 + 4fj+2 − 5fj+1 + 2fj)/h

2 +O(h2)

∂2
xfj = (2fj − 5fj−1 + 4fj−2 − fj−3)/h

2 +O(h2)

∂xfj = (−fj+2 + 8fj+1 − 8fj−1 + fj−2)/12h+O(h4)

∂2
xfj = (−fj+2 + 16fj+1 − 30fj + 16fj−1 − fj−2)/12h

2 +O(h4)
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Figure 3.1: Diagram of Courant stabilty for an explicit finite-difference update
scheme. The continuum equation being approximated has a characteristic
structure represented by a shaded domain of dependence above. In the stable
case (left) the time step, ∆t, has been chosen such that the FD domain of
dependence uncompasses that of the continuum system. In the unstable case
(right) the time step, ∆t, has been chosen to be too large which means that a
portion of the continuum domain of dependence is excluded in the FD update.
This exclusion results in an unstable evolution.
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As a simple example of an evolution equation, let us take the advection

equation:

∂tu = ∂xu. (3.5)

We can approximate this using an implicit Crank-Nicholson update scheme:

un+1
j − unj
∆t

=
1

2

(

un+1
j+1 − un+1

j−1

2∆x
+
unj+1 − unj−1

2∆x

)

(3.6)

where we have adopted a standard finite difference notation unj ≡ u(n∆t, j∆x).

Notice that there are two second order accurate (in space) spatial derivatives

on the right hand side. They are being averaged over two different time levels

to produce a spatial derivative which is centered at the n + 1/2 time step. If

the right hand side is being centered at this time step, then so is the left hand

side. This makes the FD approximation of the time derivative second order

accurate in time.

Implicit schemes like this are in general very stable. However, insta-

bilities may still arise. One method to improve stability is to use dissipation

operators. The specific form of these usually depends on the equation being

solved and the type of discretization. One way of adding dissipation to the

CN update scheme above is to add the term:

ε

16

[

6unj + unj+2 + unj−2 − 4(unj+2 − unj−2)
]

to the right hand side. The parameter ε is adjusted to control the damping of

high frequency modes. Typical values for stability are 0 < ε < 1.

3.1.2 Truncation Error

This section closely follows lecture notes by Choptuik, [10].
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Now that we have a stable scheme, we need to determine how accurate

our solution is. In particular, we would like to know if our solution tends to

the continuum solution in the limit where the grid spacing goes to zero, h→ 0.

Let us write a continuum differential equation as:

Lu = f (3.7)

where L is the differential operator of the system, f is some function, and u

is the solution. The finite-differenced approximation (FDA) is:

L̂û = f̂ . (3.8)

where f̂ is the function evaluated on the grid, û is the discrete solution, and

L̂ is the finite-differenced approximation to L.

The solution error is defined to be

ê ≡ u− û. (3.9)

It is common to make the assumption of equal errors in which we take the

solution error to be of the same order as that of the truncation error, τ̂ which

is defined to be:

τ̂ ≡ L̂u− f̂ . (3.10)

Note that u is the solution to the continuum equation. As the name suggests,

the truncation error is the result of truncating the number of terms in the

approximation of the derivative operators like we did for equation (3.4). For

an O(h2) approximation:

τ̂ = h2τ2 + h4τ4 + . . . (3.11)
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where τ2 and τ4, etc. are error functions which are independent of the grid

spacing, h. The discrete solution, û, in terms of the continuum solution, u is:

û = u+ h2e2 + h4e4 + . . . (3.12)

This is the celebrated Richardson expansion and was known as early as 1910.

The terms e2 and e4 are the second order and fourth order error functions,

respectively. These functions are independent of the grid spacing, h. We are

now ready to determine our error.

Suppose we have discrete solutions which, by assumption, are second

order accurate. From (3.12) we have at mesh spacing, h:

ûh = u+ h2e2 + . . . (3.13)

while at mesh spacing 2h we have:

û2h = u+ (2h)2e2 + . . . (3.14)

We can estimate the leading order solution error by subtracting these two

solutions:

û2h − ûh ≈ 3h2e2. (3.15)

To leading order, this is 3 times the solution error for uh. But how do we know

that our approximation is O(h2) accurate? We can use an O(h2) discretization,

but operationally we want to verify that we do indeed have this order of

accuracy. Let us continue what we have started and subtract the discrete

solutions û4h and û2h to get:

û4h − û2h ≈ 12h2e2. (3.16)

This means that we will generally find:

Qh ≡ û4h − û2h

û2h − ûh
= 4. (3.17)
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So the order of accuracy of a FDA can always be checked through this type

of convergence check. An O(h2) accurate scheme should have a convergence

factor, Qh, that tends to 4 as h→ 0.

In summary, it is good to be able to find the truncation error of a

discrete solution as in (3.15), but this does not verify that the order of accuracy

is what it should be. A convergence check must always be performed to ensure

that the system is being solved in a manner consistent with the approximation.

3.2 Spectral Methods

Spectral methods are a very accurate and efficient means of finding

numerical solutions of differential equations [5]. The idea is to approximate

the solution function as a sum of basis functions. There are a variety of

different methods that fall under the classification of “spectral methods” (i.e.

Tau, Galerkin, pseudospectral collocation). We will restrict discussion to the

pseudospectral collocation (PSC) method. The pseudospectral methods use a

set of grid points associated with the basis functions and employ interpolation;

i.e. interpolation is used to convert the values of the function at the grid

(collocation) points to the coefficients of the expansions. The other spectral

methods use inner products (integration) to find the coefficients. One reason

why we have chosen to use PSC is that the method can be used to solve

nonlinear problems.

There are a variety of basis functions that one can use for the collo-

cation method: Chebyshev, Fourier, Legendre, rational Chebyshev, Laguerre,

Hermite, to name a few. We will only use the Chebyshev basis here. It has

the advantage of being very well suited for solving most differential equations,

and it allows one to use the FFT (Fast Fourier Transform) for interpolation
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which makes it both fast and easy to implement in parallel. The symmetries

of a problem or the domain on which it is to be solved often suggest which

choice of basis is best suited for the situation. Chebyshev polynomials work

for practically any symmetry.

3.2.1 Chebyshev Basis and Collocation Grid

Let us take a look at the method. The function is approximated as a

series:

uN(x) =
N
∑

j=0

ajTj(x) (3.18)

where Tj(x) are the Chebyshev polynomials and N is the order at which the

expansion is truncated. They are the solutions to:

(1− x2)
d2Tj
dx2

− x
dTj
dx

+ j2Tj = 0. (3.19)

This ODE is singular at x = ±1. The basis functions can be found from a

3-term recurrence relation.

Tj+1(x) = 2xTj(x)− Tj−1(x) , T0 = 1 (3.20)

The first few functions are listed in Table 3.2.1. The grid points (collocation

Table 3.2: The first few Chebyshev basis functions.

Chebyshev basis function polynomial in x
T0 = 1
T1(x) = 2x
T2(x) = 4x2 − 1
T3(x) = 8x3 − 4x
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points) defined on the range [−1, 1] are determined by:

xj = cos
(

j
π

N

)

; j = 0, ..., N. (3.21)

This is the Gauss-Lobatto or endpoints grid. The extrema of the Chebyshev

polynomials occur at these grid points. Another grid, which omits the end-

points, is the Gauss-Chebyshev grid:

xj = cos
[

(2j − 1)
π

2N

]

; j = 1, ..., N. (3.22)

The roots of the polynomials occur at these grid points. The choice of grid is

one of preference, and we typically use the Gauss-Lobatto grid.

3.2.2 Spatial Derivatives

3.2.2.1 Fast Fourier Transform

Before discussing spatial derivatives, let us first look at the Chebyshev

polynomials in a different coordinate system. Notice that under the coordinate

transformation

x = cos(θ) (3.23)

equation (3.19) becomes
d2Tj
dθ2

+ j2Tj = 0. (3.24)

The solutions to this ODE are simply

Tj(θ) = cos(jθ) (3.25)

and, of course, these are just the Chebyshev polynomials. In the θ coordinates

the grid points are now evenly spaced. Conditions are right for using a Fourier

transform —specifically a Fast Cosine Transform (FCT).
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3.2.2.2 Finding Derivatives

Since the Chebyshev basis functions are simply cosine functions when

expressed in the θ coordinate system, the coefficients of the spectral expansion,

(3.18), can be found by taking the cosine Fourier transform of the grid function.

One may wonder why the coefficients of the expansion are even needed. They

are necessary because they will be used to determine the spatial derivative of

the function. This can be done in one of two ways: either the derivative of

each of the basis functions in (3.18) can be evaluated, or the Chebyshev basis

functions can be used but with new coefficients for the derivative’s spectral

expansion. The coefficients of uN(x) can be used to find the coefficients of

u′N(x) through the following recurrence relation.

a′j−1 = 2jaj + a′j+1 , a′N = 0 ; j = N,N − 1, ..., 1 (3.26)

we then have:
duN
dx

=
N
∑

j=0

a′jTj(x) (3.27)

As with the aj’s, the coefficients for the derivative can now be Fourier trans-

formed into grid values.

3.2.3 Nonlinear Hyperbolic (or Parabolic) Equations

In order to solve a differential equation numerically using a grid, one

must be able to approximate the values of the functions as well as their deriva-

tives at each of the grid points. In the last section we discussed how to take

spatial derivatives. We are now ready to solve differential equations. We will

begin with evolution equations since they are often easier to solve. The dis-

cussion is of hyperbolic systems in particular, but the method we outline is

applicable to parabolic systems as well.
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To approximate temporal derivatives we do not use a spectral expan-

sion. Instead a finite-difference approximation is used:

un+1
j − unj
∆t

= F [xj, u
n+ 1

2

j , (u′j)
n+ 1

2 ] (3.28)

The right hand side, F [. . .], is some nonlinear functional. The time derivative is

2nd order accurate in the temporal discretization, ht, but 4th order in spatial

discretization, hx. The spatial discretization, hx, is taken to be the largest

spacing of points which occurs at the center of our nonuniform grid

hx ∝
1

N
. (3.29)

The points cluster towards the ends of our grid where the spacing is:

∆x ∝ 1

N2
. (3.30)

The temporal discretization is uniform and we have ht = ∆t. The temporal

discretization is related to the smallest spatial discretization through the CFL

condition:

∆t = λ∆x (3.31)

The constant λ is known as the Courant factor. This relationship between the

temporal and spatial grids is necessary whenever an explicit update scheme

is used. The value of ∆t needs to be small enough so that the evolution is

stable. There are many update schemes which can be used, but we have had

the most success with iterative Crank-Nicholson. The iterative implementation

is explicit and is therefore governed by the CFL condition. One feature of this

update scheme is that one can continue to iterate until the change in the future

value of the function is below some tolerance. This predictor-corrector method

allows one to obtain very accurate results although the truncation error will

always be limited by the temporal derivative.
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What one now needs in order to complete the solution algorithm are

boundary conditions and initial data. The initial data is just the function

defined on the grid points at the initial time. This grid function is then

Fourier transformed, to determine the coefficients of its spectral expansion.

These coefficients are used in 3.27 to get the coefficients of the derivative

expansion. The derivative coefficients are then inverse Fourier transformed to

yield grid values of the function’s derivative. This enables us to evaluate the

right hand side of our hyperbolic equation. Notice that this procedure applies

equally well to linear and nonlinear equations.

Since the finite-differenced temporal derivative has the largest trunca-

tion error, it fixes the order of the accuracy:

uN = u+ ε2
1

N4
(3.32)

where uN is the spectral solution, u is the true solution to the continuum

equation, and the last term in the equation is the truncation error. As N is

increased the spectral solution approaches the true solution. Notice that the

convergence is polynomial and not exponential.

3.2.4 2h Waves and Aliasing

Instabilities can occur due to 2h waves, where h is the grid spacing (in

θ coordinates). The waves with a wavelength of 2h are the highest frequency

waves that can be represented on a grid. They are usually nonphysical numer-

ical artifacts and should be eliminated for two reasons. First, because of their

poor resolution they cannot be accurately represented even if they did corre-

spond to some real physical phenomena. Second, they often lead to unstable

evolutions since these modes often grow the fastest. This, in general, depends
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on whether or not the implementation of the particular PDE has an amplifica-

tion factor that is greater than 1 for the these frequencies. If the amplification

factor does exceed unity, then upon each successive update of the solution,

the associated mode gets amplified and grows. It is also possible to have an

amplification factor that amplifies low frequencies but experience shows that

it is almost always growing high frequencies that are troublesome. Anyway,

one way of causing these 2h waves is by violating the CFL condition. So the

first thing to try when noticing 2h waves in a spectral evolution is to decrease

the time step. If this does not remove the 2h modes, then either a dissipation

operator must be introduced (or a hyperviscosity term) or the offending waves

must be eliminated directly by setting the last coefficient of the expansion to

zero. This latter method is very easy and should be done before attempting

to modify the equation with dissipation operators.

Aliasing can also be caused by exciting the higher frequency modes of

the expansion. In this case, the last third or half of the wave modes get excited,

instead of just the highest frequency mode alone. The cause for aliasing error

is different, however. In order to have an aliasing instability, one has to have a

differential equation that is nonlinear or one that has non-constant coefficients.

A term like: xu(x) has powers of x outside of the truncation. These higher

order terms will get represented by lower order terms. The effect is a cascade

of higher wave numbers to lower ones.

3.2.5 Elliptic Equations

One can solve nonlinear, elliptic PDEs using spectral methods via re-

laxation. The basic idea is to specify a guess for the solution u0, solve for a

correction to the function, δu0, which will determine the function at the next
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iteration via:

u1 = u0 + δu0. (3.33)

Iterations are continued until the function converges to the solution of the

nonlinear, elliptic PDE.

It might seem possible to use the Newton-Raphson method to linearize

the problem and solve an algebraic equation for the update as is done in

finite-difference methods. This will not work since spectral derivatives are

not local algebraic combinations of the grid values of the function. In FD

methods finding the variation of a derivative term with respect to the function

is easy (for a 1st derivative it would just yield a 1/∆x term). One can try

to form a similar term in a spectral method (perhaps by taking the ratio of

the second derivative of the function to its first derivative). This always fails

miserably. Even if the δu found in this way were correct, it is still being found

locally using the grid values as the unknowns. The problem with finding the

correction locally is that the next iteration would be the result of a point-by-

point adjustment to the previous iterate. It should not come as too much of

a surprise that this fails since correcting each grid point individually would

probably cause the next iteration to have high frequency noise (spiky). This

would get worse as global derivatives would be repeatedly taken of this sharp-

featured function at every iteration.

For spectral methods one must use the Newton-Kantorovich method

to linearize the PDE (which requires the use of Frechet derivatives). This

produces a linear differential equation which must be solved for the correction

term.

DfR(u, ux, ...) = −R(u, ux, ...) (3.34)
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DfR(u, ux, ...) is the Frechet derivative of the residual:

DfR(u, ux, ...) =
δR

δu
δu+

δR

δux
δux + ... (3.35)

In this last expression there are terms for the function, u, and each of its

spatial derivatives that appear in the residual. Posing the problem in this way

results in a linear system which is solved for the coefficients of the expansion

for the correction, δuc:

Ax = b (3.36)

where A is a matrix whose elements are composed of combinations of the

Chebyshev polynomials and their derivatives evaluated at the collocation points

(the particular combination determined by the Frechet derivative of the resid-

ual). The vector x is the vector of the coefficients of the correction. Rows of

A will be allocated for boundary conditions that need to be imposed for the

update. The vector b will contain the appropriate number of boundary values

and the negative residual of the full nonlinear PDE being solved.

The method for finding the spatial derivatives when posing the problem

in this way is a little different than the algorithm described above for hyper-

bolic problems. Instead of using Chebyshev basis functions for the function’s

expansion and the derivative’s expansion, and converting the function’s coef-

ficients into those for the derivative, one instead modifies the basis functions.

The basis functions used for the derivative expansion are just the derivative

of the Chebyshev polynomials.

duN
dx

=
N
∑

j=0

ajT
′
j(x) (3.37)

Taking the derivative in this way allows one to use the same coefficients for

the function’s expansion and the expansion for the derivative. Of course one
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can always choose to evaluate spatial derivatives in this way (and some people

prefer to) but we typically use the recurrence relations whenever possible.

Thus we use the recurrence relations for evolution problems but not for the

elliptic problems since working with the coefficients requires taking derivatives

of the polynomials themselves.

The final solution of an elliptic problem solved in this way will have

spectral accuracy. The number of basis functions, N , determines not only the

resolution of the grid, but also the order of the truncation error.

uN = u+ εN
1

NN
(3.38)

uN is the spectral solution, u is the continuum solution, and the last term in

the equation is the truncation error. As N is increased the spectral solution

approaches the true solution. This is what is meant by exponential convergence

of the spectral approximation.

This is the general idea behind solving nonlinear elliptic problems.

However, elliptic problems are often very expensive to solve. The solution

of the linear system requires O(N 3
p ) operations where Np is the total num-

ber of basis functions or grid points. It is easy to see how quickly a problem

like this can become intractable in higher dimensions. As a result, techniques

such as domain decomposition and finite-difference preconditioning are often

employed [5].

3.2.6 Spectral Methods in Higher Dimensions

Applying spectral methods in higher dimensions can be quite expensive

if one takes a naive approach. However if care is taken, spectral methods

remain a very accurate and efficient way to solve multi-dimensional PDEs.
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For example, one spectral approximation in two-dimensions is:

f(x, y) =
M−1
∑

m=0

N−1
∑

n=0

amnTm(x)Tn(y). (3.39)

The Chebyshev functions are used to form a tensor product basis. The col-

location grid in this case is also a nonuniform tensor product grid. A naive

evaluation of the above series would require O(M 2N2) operations. This can

be reduced to O(MN 2) + O(M 2N) by using the method of partial sums. In

order to do this, the basis and the collocation grid must be tensor products.

Since Chebyshev polynomials are being used the FFT will further increase

efficiency to: O(MN log2(N)) + O(MN log2(M)). Another benefit of using

the Chebyshev basis functions is that higher dimensional FFTs are naturally

suited to parallelization.
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Chapter 4

Einstein-Dirac System

4.1 Introduction

Much of this chapter is taken from a paper written with Douglas W. Schaefer,

Daniel A. Steck, and Matthew W. Choptuik which is currently in preparation.

This work was originally done as a project which was inspired by a paper writ-

ten by Finster, Smoller, and Yau [12] presenting solutions for a static, massive

Einstein-Dirac field. Our study is of the dynamic form of this system and it

is not exhaustive. Several solutions are presented but the most important of

these (for the purposes of this thesis) is the Type II critical solution which is

found at the threshold of black hole formation as the mass is decreased. It

is this solution which originally motivated the investigation of the massless

system presented in subsequent chapters. Note: Throughout this chapter, we

will use the metric signature (+,−,−,−).

We investigate the dynamics of the massive Einstein-Dirac equation

in spherical symmetry. Since a fermion’s spin has an orientation in space,

one fermion alone can not be treated as a spherically symmetric system. To

preserve the symmetry, we investigate two fermions in a singlet spinor state,

where the particles have opposite spin. This fermionic field is massive and can

be thought of as representing two idealized neutrons, since we do not consider

any coupling to the electromagnetic field. The system is a dynamic version of

the model considered by Finster, Smoller, and Yau [12]. The fermion field is
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treated as a classical field i.e. a non-quantum-mechanical object.

In this system, the dispersive nature of the massive field competes with

the self-attraction resulting from the coupling to gravity. In trying to achieve

a balance between these two forces, we observed both unstable and stable

solutions. The unstable solutions correspond to the threshold between black

hole collapse and dispersal. However, in accordance with the findings of [12],

we also found a continuum of stable solutions that were solitonic in nature.

These tended to oscillate and approach the stable, static solutions that we

found through independent techniques.

4.1.1 Equations of Motion

In this section we present the equations of motion for the Dirac field

and the spacetime geometry. We simply reproduce here what was done in [12],

except we allow for a dynamic spacetime. It should be noted that there are

many differences between the Finster, et al derivation and what is typically

done in the literature [3]. In particular, the authors do not define a spinor affine

connection and the components of the stress-energy tensor that they compute

are complex, though subsequently, only the real parts of these components

are used. We will follow a more canonical approach in subsequent chapters

where we investigate the massless Einstein-Dirac system. For that case, we

will derive the equations of motion from first principles.

The Einstein-Dirac equations are of the form

Gµν = 8πTµν (4.1)

(G−m)Ψ = 0, (4.2)
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where Tµν is the stress-energy tensor of the field, G is the Dirac operator, and

Ψ is the wavefunction of the fermion with mass m.

4.1.1.1 The Dirac Operator

The form of the Dirac equation (4.2) can be used in curved spacetime.

The Dirac operator is defined to be

G = iγµ(x)
∂

∂xµ
+B(x), (4.3)

where γµ(x) (µ = 0, 1, 2, 3) are the Dirac matrices in curved spacetime, and

B(x) is a matrix needed to make the Dirac operator covariant. It is essentially

the sum of the matrices formed by the product of the Dirac matrices and the

spinor affine connections (had they been defined). Both γµ(x) and B(x) are

4×4 matrices that depend on the spacetime coordinate x. The Dirac matrices

can be found from the relation

gµν � =
1

2
{γµ, γν} , (4.4)

where

{γµ, γν} = γµγν + γνγµ. (4.5)

We now restrict attention to spherical symmetry, and to treat the ge-

ometry, we adopt polar/areal (PA) coordinates. Specifically, the line element

is:

ds2 = α2(t, r)dt2 − a2(t, r)dr2 − r2dθ2 − r2 sin2 θdφ2, (4.6)

with
√−g = αar2 sin θ, (4.7)
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where α and a are positive functions. The γ-matrices from Minkowski space-

time γ̃µ can be used as a basis for the Dirac matrices γ/mu(x):

γ̃0 =

( � 0
0 − �

)

, γ̃i =

(

0 σi

−σi 0

)

, i = 1, 2, 3 (4.8)

In these expressions, � is the 2 × 2 identity matrix, and the σi are the Pauli

spin matrices. The curved spacetime Dirac matrices are thus

γt =
1

α
γ̃0 (4.9)

γr =
1

a

(

γ̃1 cos θ + γ̃2 sin θ cosφ+ γ̃3 sin θ sinφ
)

(4.10)

γθ =
1

r

(

−γ̃1 sin θ + γ̃2 cos θ cosφ+ γ̃3 cos θ sinφ
)

(4.11)

γφ =
1

r sin θ

(

−γ̃2 sinφ+ γ̃3 cosφ
)

. (4.12)

This representation is chosen so that the angular dependence of the spinor

agrees with the one predicted for the Dirac spinors in the hydrogen atom for

zero angular momentum [23]. We take the form of B(x) to be

B =
i

2
γµ;µ (4.13)

as shown in [12].

Using the results (4.9)-(4.13), the full time-dependent form of the Dirac

operator becomes

G = iγt
(

∂t −
1

2

ȧ

a

)

+ iγr
(

∂r +
(1− a)

r
+

1

2

α′

α

)

+ iγθ∂θ + iγφ∂φ. (4.14)

We use as our wave functions

Ψb =
1√
ar

(

z1(r, t)eb
iσrz2(r, t)eb

)

, (4.15)

where b = 1, 2, e1 = (1, 0), e2 = (0, 1), and the prefactor is chosen so that the

equations of motion do not contain time derivatives of a(t, r). We also note
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that z1 and z2 are in general complex. When either of these wave functions

Ψb defined in (4.15) is substituted into the Dirac equation (4.2), the angular

dependence can be removed leaving an equation of motion which is only de-

pendent on (t, r). Also, the effective number of wave function components is

reduced from four to two. Hence, we may take z1 and z2 to be the matter field

variables, in terms of which the Dirac equation becomes

∂tz1 + i

√

α

a
∂r

(
√

α

a
z2

)

+ i
α

r
z2 + imαz1 = 0

∂tz2 − i

√

α

a
∂r

(
√

α

a
z1

)

+ i
α

r
z1 − imαz2 = 0.

(4.16)

Alternatively, in terms of the real and imaginary parts of the matter variables,

we have

∂tRez1 −
√

α

a
∂r

(
√

α

a
Imz2

)

− α

r
Imz2 −mαImz1 = 0

∂tImz1 +

√

α

a
∂r

(
√

α

a
Rez2

)

+
α

r
Rez2 +mαRez1 = 0

∂tRez2 +

√

α

a
∂r

(
√

α

a
Imz1

)

− α

r
Imz1 +mαImz2 = 0

∂tImz2 −
√

α

a
∂r

(
√

α

a
Rez1

)

+
α

r
Rez1 −mαRez2 = 0.

(4.17)

The probability density, P (t, r), can be written in terms of the matter variables

as [12]

P (t, r) ∝ 4π
(

|z1| 2 + |z2| 2
)

, (4.18)

and is subject to the normalization condition

∫ ∞

0

P (t, r)dr = 1. (4.19)
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We take the stress-energy tensor for a spin- 1
2
field in curved spacetime

to be [12]

Tµν =
1

2

2
∑

a=1

Re

[

Ψ̄a

(

iγµ
∂

∂xν
+ iγν

∂

∂xµ

)

Ψa

]

, (4.20)

where Ψ̄ ≡ Ψ†γ̃0. In order to obtain equations for the geometric variables α

and a we need some of the 3 + 1 quantities defined in Chapter 2. Specifically

we have

ρ = nµnνTµν

Sij = γikSkj = γikTkj
(4.21)

It is straightforward to compute ρ:

ρ = nµnνTµν =
1

α2
Re[Ttt]

=
2

αar2
Re (iz∗1∂tz1 + iz∗2∂tz2) .

(4.22)

Substituting into the general Hamiltonian constraint in spherical symmetry

and PA coordinates,

∂ra

a
+
a2 − 1

2r
− 4πra2ρ = 0, (4.23)

we obtain
∂ra

a
+
a2 − 1

2r
=

8π

r

a

α
Re (iz∗1∂tz1 + iz∗2∂tz2) . (4.24)

Using the matter equations of motion (4.16), to eliminate the time derivatives,

we find

∂ra

a
+
a2 − 1

2r
=

8π

r
Re

[

z∗1∂rz2 − z∗2∂rz1 +
2a

r
z1z

∗
2 +ma

(

|z1| 2 − |z2| 2
)

]

.

(4.25)
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Finally, in terms of the real and imaginary components, the Hamilto-

nian constraint becomes

∂ra

a
+
a2 − 1

2r
=

8π

r

[

Rez1 (∂rRez2) + Imz1 (∂rImz2)

−Rez2 (∂rRez1)− Imz2 (∂rImz1)

+
2a

r
(Rez1Rez2 + Imz1Imz2)

+ma ((Rez1)
2 + (Imz1)

2 − (Rez2)
2 − (Imz2)

2)

]

.

(4.26)

Similarly, we must calculate the component Srr:

Srr = γrkRe[Tkr]

=
1

a2
Re[Trr]

=
1

a2r2
Re (z∗1∂rz2 − z∗2∂rz1) .

(4.27)

We can substitute this result into the general form for the slicing condition in

spherical symmetry and PA coordinates,

∂rα

α
− a2 − 1

2r
− 4πra2Srr = 0, (4.28)

which yields
∂rα

α
− a2 − 1

2r
=

8π

r
Re (z∗1∂rz2 − z∗2∂rz1) . (4.29)

In terms of the real and imaginary components of the matter variables, the

slicing condition is

∂rα

α
− a2 − 1

2r
=

8π

r

[

Rez1 (∂rRez2) + Imz1 (∂rImz2)

−Rez2 (∂rRez1)− Imz2 (∂rImz1)
]

.

(4.30)
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4.1.2 Initial conditions

4.1.2.1 Centered Gaussian

The initial data family we have used consists of a stationary Gaussian

multiplied by r and centered at the origin:

Rez1 = N r exp

(

−
( r

2δ

)2
)

Imz1 = 0

Rez2 = 0

Imz2 = 0.

(4.31)

This data family satisfies the regularity conditions (4.63) and has one free

parameter, δ, in addition to m. The normalization constant N is determined

by (4.19):

N =

(

1

4π

) 1
2
(

1

2πδ2

) 1
4

. (4.32)

4.1.2.2 Propagating Gaussian

In addition to the centered data family, we developed the means for

producing either ingoing or outgoing spherical shells with a Gaussian wave

packet cross-section. It should be noted, however, that all of the results pre-

sented in this chapter were generated using only the initially stationary data

given in (4.31).

The propagating initial data family consists of Gaussian wave packets
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z1 = NA1 exp

(

−
(

(r − r0)

2δ

)2
)

exp(−ikr)

z2 = NA2 exp

(

−
(

(r − r0)

2δ

)2
)

exp(−i(kr + φ)),

(4.33)

where the normalization N is given by equation (4.32). The phase difference

φ was chosen to be −π/2 based on the the observation from initial simulations

that the ingoing portion of the wave always exhibits this phase difference

between z1 and z2. The constants A1 and A2 depend on the initial momentum

of the wave packet and are set to maximize the fraction of the wave packet

that is ingoing. This is accomplished by assuming that the probability density

P is initially ingoing and (neglecting dispersion) is of the form

P = P (r + vt). (4.34)

Therefore, we need A1 and A2 to satisfy

v∂rP = ∂tP. (4.35)

By using (4.18) to eliminate P , differentiating, and dividing both sides by 8π,

we obtain

v (Rez1 ∂rRez1 + Imz1 ∂rImz1 +Rez2 ∂rRez2 + Imz2 ∂rImz2)

= Rez1 ∂tRez1 + Imz1 ∂tImz1 +Rez2 ∂tRez2 + Imz2 ∂tImz2.

(4.36)

We then use the evolution equations (4.17) to eliminate the time derivative

terms, while assuming flat spacetime (a = α = 1), resulting in the condition
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v (Rez1 ∂rRez1 + Imz1 ∂rImz1 +Rez2 ∂rRez2 + Imz2 ∂rImz2)

= Rez1 ∂rImz2 − Imz1 ∂rRez2 − Rez2 ∂rImz1 + Imz2 ∂rRez1.

(4.37)

For our initial data, the phase relation φ = −π/2 can be expressed as

Rez2 = −
(

A2

A1

)

Imz1

Imz2 =

(

A2

A1

)

Rez1.

(4.38)

Then substitution for Rez2 and Imz2 in (4.37) results in

v

(

1 +

(

A2

A1

)2
)

= 2

(

A2

A1

)

, (4.39)

in which all dependence on z1 has cancelled. This quadratic equation in A2/A1

can then be solved to give

A2

A1

= −1

v
±
√

1

v2
− 1. (4.40)

Taking the solution corresponding to the positive sign of the radical, this

relation can be combined with the normalization requirement

√

A2
1 + A2

2 = 1 (4.41)
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to solve for the coefficients A1 and A2:

A1 =
v

√

2(1−
√
1− v2)

A2 =

√
1− v2 − 1

√

2(1−
√
1− v2)

.

(4.42)

We tested these coefficients and found that they resulted in a wave that was

almost entirely ingoing for large v. However, when the dispersion was fast

relative to v (e.g. for small v) a significant portion of the initial wave packet

was outgoing. This situation is expected due to the fact that our derivation of

A1 and A2 for ingoing waves neglects the dispersion of the probability density.

Also, by choosing a negative v, the coefficients given by (4.42) were found to

be equally effective at producing outgoing waves.

4.1.3 Boundary conditions

We derive approximate radiation boundary conditions for the matter

variables at the finite outer boundaryR by first taking the limit of the evolution

equations (4.16) as r approaches infinity:

∂tz1 + i∂rz2 + imz1 = 0

∂tz2 − i∂rz1 − imz2 = 0.
(4.43)

Taking the partial derivative of each equation with respect to time gives

∂ttz1 + i∂trz2 + im∂tz1 = 0

∂ttz2 − i∂trz1 − im∂tz2 = 0.
(4.44)

The third term of each of these equations can be eliminated by substitution

of the corresponding time derivative from (4.43), and the second term of each
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can be eliminated by substitution of the partial derivative with respect to r

using the corresponding equation in (4.43). This procedure results in

∂ttz1 − ∂rrz1 +m2z1 = 0

∂ttz2 − ∂rrz2 +m2z2 = 0.
(4.45)

Therefore, at large r, the real and imaginary components of the matter vari-

ables each satisfy separate Klein-Gordon equations. If we neglect them2zb (b =

1, 2) term in each equation, we are left with

∂ttzb − ∂rrzb = 0. (4.46)

The outward-propagating solution of (4.46) is

zb(r, t) = g(r − t), (4.47)

in which g is an arbitrary function. This solution also satisfies the first-order

equations
∂tz1 + ∂rz1 = 0
∂tz2 + ∂rz2 = 0,

(4.48)

which serve as our approximate radiation boundary conditions. In practice,

we have found that if the value of R is set large enough to include the bulk of

the probability density, reflections from the outer boundary are negligible.

4.1.4 Static solutions

The static solutions of the Einstein-Dirac field were first studied in

detail recently by Finster, Smoller, and Yau (FSY) [12]. The static solutions

in this model result from a competition between gravitation and the dispersive

nature of the massive wavepacket. The procedure followed by FSY is closely

analagous to the procedure of Bartnik and McKinnon [1] for finding the static

solutions in a spherically symmetric Einstein-Yang-Mills model.
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For consistency with FSY, we use the metric variables T and A (instead

of α and a), where

ds2 =
1

T 2
dt2 − 1

A
dr2 − r2dΩ2. (4.49)

Also, we use rescaled field variables z ′b (b = 1, 2) defined in terms of the

previously defined field variables by

z′b ≡

√√
A

T
zb =

√

α

a
zb (4.50)

(we will drop the primes throughout the rest of this section). Then, in terms

of the rescaled variables, the probability density becomes

P = 4π
T√
A

(

|z1|2 + |z2|2
)

. (4.51)

We now adopt a static ansatz by factoring out a harmonic time dependence

from both field variables:

zb(r, t) = zb(r)e
−iωt. (4.52)

In this case, the dynamical equations (4.16-4.30) reduce to the static equations

given by FSY:

∂rz1 =
1

r
√
A
z1 −

ωT +m√
A

z2

∂rz2 =
ωT −m√

A
z1 −

1

r
√
A
z2

∂rA =
1− A

r
− 16πωT 2

r

(

z 2
1 + z 2

2

)

∂rT =
T

2rA

[

A− 1− 16πωT 2
(

z 2
1 + z 2

2

)

+
32πT

r
z1z2 + 16πmT

(

z 2
1 − z 2

2

)

]

.

(4.53)
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Notice that all variables are time independent in these equations. Also, since

all the coefficients in (4.53) are real, we may assume that z1 and z2 are real.

Because the static equations are singular at r = 0, we must begin

the integration at some r > 0. Thus, we need regularity conditions for the

variables at the origin, which we now derive. To begin, we assume that the

variables are Taylor-expandable about r = 0:

z1(r) = α0 + α1r + α2r
2 + . . .

z2(r) = β0 + β1r + β2r
2 + . . .

A(r) = A0 + A1r + A2r
2 + . . .

T (r) = T0 + T1r + T2r
2 + . . . .

(4.54)

The regularity conditions follow by substituting these expansions into the ra-

dial equations (4.53) and requiring that the equations be satisfied at every

order in r. The z1 radial equation, at order r−1 gives immediately that

α0 = 0, (4.55)

and the z2 radial equation at order r−1 gives

β0 = 0. (4.56)

The equation for A at order r0 gives

A0 = 1, (4.57)

so that at order r0, the z1 equation becomes trivial, and the z2 equation

becomes

β1 = 0. (4.58)

Then at order r1, the equations for the geometric variables give

A1 = 0
T1 = 0,

(4.59)
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and the z1 equation at order r1 gives

α2 = 0. (4.60)

The z2 equation at order r1, on the other hand, gives

β2 =
1

3
(ωT0 −m)α1. (4.61)

Finally, at order r2, the equations for the geometric variables yield

A2 = −16

3
πωT 2

0 α
2
1

T2 =
4

3
πT 2

0 α
2
1 (m− 2ωT0).

(4.62)

In summary, we have the regularity conditions,

z1(r) = α1r +O(r3)

z2(r) =
1

3
(ωT0 −m)α1r

2 +O(r3)

A(r) = 1− 16

3
πωT 2

0 α
2
1 r

2 +O(r3)

T (r) = T0 +
4

3
πT 2

0 α
2
1 (m− 2ωT0) +O(r3),

(4.63)

where α1 and T0 are effectively free parameters. We use these equations to ex-

tend the solution to some finite r > 0 in order to begin the radial integration of

eqs. (4.53). Notice that these equations are slightly different from those given

in [12], but we found that both sets of regularity conditions give essentially

identical solutions (with only slightly different parameter values).

In principle, to find static solutions, one must adjust the four parame-

tersm, ω, T0, and α1 until the integrated solution satisfies the three asymptotic
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Figure 4.1: Three sample static solutions of the Einstein-Dirac field.

regularity conditions,

lim
r→∞

∫ r

0

P (r′)dr′ = 1

lim
r→∞

A(r) = 1

lim
r→∞

T (r) = 1.

(4.64)

The first condition is, of course, the normalization condition. The second fol-

lows from requiring that the solution have finite ADM mass (recall that the

mass aspect m(t, r) is given by 2m/r = 1− 1/a2). The third requirement is a

consequence of requiring that the spacetime be asymptotically flat. However,

it is in general quite difficult to perform a search in four parameters simulta-

neously, so FSY employed a rescaling approach to simplify the search. This
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Figure 4.2: Plot of the binding energy |m|−ω, showing spiral structures. This
figure is reprinted from [12].

procedure essentially amounts to replacing (4.64) by the weaker conditions,

lim
r→∞

∫ r

0

P (r′)dr′ < ∞

lim
r→∞

A(r) = 1

lim
r→∞

T (r) < ∞,

(4.65)

and assuming arbitrary (but fixed) values form and T0 of 1. Then the rescaling

parameters,

λ = lim
r→∞

∫ r

0

P (r′)dr′

τ = lim
r→∞

T (r)

(4.66)
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Figure 4.3: The two static solutions corresponding to m = 0.534. The solution
shown in bold is a stable solution with ω = 0.503, and is the same solution
shown in Fig. 4.1. The other solution is unstable, with ω = 0.398.

can be used to define rescaled functions

z̃1(r) ≡
√

τ

λ
z1(λr)

z̃2(r) ≡
√

τ

λ
z2(λr)

Ã(r) ≡ A(λr)

T̃ (r) ≡ τ−1T (λr).

(4.67)

It can then be shown that these rescaled variables satisfy the proper constraints
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(4.64), with the scaled parameters

m̃ ≡ λm
ω̃ ≡ λτω.

(4.68)

Hence, these rescaled solutions correspond to physically reasonable solutions.

This rescaling procedure is essential to finding these solutions, because it ef-

fectively reduces the problem of finding static solutions to a parameter search

in only one parameter.

In practice, the value of α1 is set to some value, and then the value of ω

is adjusted until the conditions (4.65) are satisfied. This can be conveniently

accomplished by monitoring one of the matter variables and adjusting ω until

it is forced to zero at large r (on either side of the critical parameter value,

the variable will tend to go to positive or negative infinity, so this technique

lends itself well to a bisection search). Because the matter content of the field

drops to zero at large r, the three (weak) conditions are automatically satisfied.

Generally speaking, at each value of α1, there is a discrete infinity of solutions

that can be indexed by the number of zero-crossings in the matter variables.

Notice that in this rescaling procedure, α1 appears as a free parameter, so it

can be used to generate a continuous infinity of solutions.

The probability densities of some sample static solutions are shown in

Fig. 4.1, corresponding to α1 = 0.02 (before rescaling). The “ground state” so-

lution (the one-peak distribution) corresponds to an unscaled ω of about 1.071

and scaled parameters m = 0.534 and ω = 0.503. The “first excited state” so-

lution (two-peaked distribution) corresponds to an unscaled ω of about 1.095

and scaled parameters m = 0.778 and ω = 0.741. Finally, the “second excited

state” solution (three-peaked distribution) corresponds to an unscaled ω of

about 1.107 and scaled parameters m = 0.962 and ω = 0.924. One side effect
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of using the rescaling procedure is that it is somewhat difficult to predict what

mass or frequency the solution will have, so if one desires a solution with a

particular mass (for example, to compare with a dynamical simulation), then

it is necessary to do a search in α1 until the desired rescaled mass is found.

Fig. 4.2 is a plot reprinted from [12] that shows the “binding energy”

|m| −ω for the solutions. In the plot, the curves corresponding to the ground,

first excited, and second excited states are labelled by G, F, and S, respectively,

whereas L and N label the corresponding negative mass states. FSY found

that the binding energy is always positive, so that the solutions correspond

to bound states. Additionally, they observe that any particular state exists

over only a bounded interval of mass, and that the binding energy curves

exhibit a self-similar spiral structure that appears to approach a limit point.

FSY also carried out a stability analysis of the solutions, and their results

can be summarized in Fig. 4.2 as follows: if the spiral curves are viewed as

parameterized by α1 beginning at the origin and initially travelling away from

the origin, then the solutions are stable when the curve is moving away from

the origin (along the m axis), and they are unstable otherwise (e.g. the small

mass solutions are stable).

Fig. 4.3 shows the two solutions corresponding to m = 0.534. From

Fig. 4.2, it is clear that one of these solutions is stable, whereas the other is

unstable. The stable solution is shown in bold, and is the same as the ground

state solution plotted in Fig. 4.1. The other solution is the unstable static

solution. Note that to find this unstable static solution, it was necessary to

have the automatic bisection-search code described below in order to quickly

find static solutions; to find the other solution corresponding to the specific

mass m = 0.534, it was necessary to adjust the parameter α1 until the rescaled
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mass of the resulting static solution had the correct value.

4.1.5 Code description

Our static-solution solver consists of three FORTRAN programs. The

first uses the LSODA ODE solver (which is one component of the Lawrence Liv-

ermore National Laboratory ODEPACK package) to integrate the radial differen-

tial equations (4.53), using the “starting” procedure described above. When

this program successfully integrates the equations to the user-specified final ra-

dius, it outputs the scaling parameters λ and τ . The rescaling of parameters is

then performed by the second program which takes these rescaling parameters

as input, integrates the equations again, and writes the rescaled solution to

standard output. The final program is effectively a combination of the above

two “manual” programs, which allows the user to specify two boundaries for

ω. This program then performs a bisection search by monitoring the sign of

z1 at the final integration time in order to force z1 to zero at large r. To

perform the bisection properly, the program takes an integer “polarity” input

of either 1 or −1 that can invert the decision strategy for the bisection. After

the bisection is completed, the program computes the rescaling parameters,

dumps the scaled solution to standard output, and prints the unscaled and

scaled parameters to standard error.

4.1.6 Code testing

Prior to making our “production runs,” we convergence tested the un-

igrid code by performing one run, using the nonpropagating “centered” initial

data (4.31), at each of three levels of discretization, ∆r = h, 2h, and 4h.

The value of δ was chosen to produce a subcritical evolution. We evaluated
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the convergence of the numerical solution by plotting dp̂/dr|4h− dp̂/dr|2h and

merging this plot with a plot of 4(dp̂/dr|2h − dp̂/dr|h). The variable P is the

probability density defined earlier (4.18). As expected, the two waveforms

coincided throughout the evolution as seen if Fig. 4.4. This shows that our

discrete solution converges to the continuum solution with O(h2) accuracy.
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Figure 4.4: This is a convergence test with the function, dp̂/dr, the spatial
derivative of the probability density. The system (with m = 0.534) is solved
on a uniform grid at three different levels of discretization: ∆r = h, 2h, and
4h. The solid line is 4(dp̂/dr|2h − dp̂/dr|h) and the triangles show dp̂/dr|4h −
dp̂/dr|2h. Our discrete solution converges to the continuum solution withO(h2)
accuracy. We display the convergence test here at a single time.
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4.2 Data and results

Although we described two types of initial data families above, we were

successful in obtaining meaningful results only while using the stationary cen-

tered data family. This is because all attempts to use propagating initial data

apparently violated the regularity conditions (4.63) severely enough to cause

significant unphysical oscillations of the geometric variables near the origin.

To avoid this problem it is necessary to make both the real and imaginary

components of z1 odd with respect to the origin, while making the real and

imaginary components of z2 even with respect to the origin. This must be

done while simultaneously preserving the phase relationship needed to pro-

duce propagating waves (4.33), which requires that Rez1 and Imz2 be in phase

while Imz1 leads both by π/2 and Rez2 lags both by π/2. We tried several ap-

proaches to solving this problem, including manipulation of the two inner-most

grid points, but without success. We also considered using Bessel functions

multiplied by powers of r, which meet all the requirements above, but which

do not asymptote to the same power of r at large r. Fortunately, the initially

stationary data family produced a wealth of critical points and stable solutions

for us to study. Such regularity and phase issues were not a problem for the

reformulated, massless case presented in Chapter 5.

4.2.1 Moderate mass regime (m = 0.534)

In the m = 0.534 case there are two static solutions, one stable and one

unstable, as shown in Fig. 4.3. Near the critical parameter value we observed

a logarithmic scaling for the time it took to form a black hole.

In the marginally supercritical case (where δ∗ − δ ≈ 10−15), the wave

packet is an unstable, oscillating solution that persists for some time and then
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suddenly collapses to form a black hole. The unstable, oscillating solution

appears to be similar to the unstable, static solution found by the static solver.

In the marginally subcritical case (where δ − δ∗ ≈ 10−15), the wave packet

again persists near the same oscillating, unstable solution for some time, but

then suddenly disperses.

In both of these cases, another characteristic of the Dirac field is ev-

ident: Zitterbewegung (literally, “quivering motion”), which is apparent as a

fast jittering motion that appears along with the slower motion of the wave

packet. This jittering motion is a result of the interference between the pos-

itive and negative energy components of the wave packet [4]. A plot of the

maximum value of 2M/r over time for the marginally subcritical evolution

displaying these oscillations is shown in Fig. 4.5. This exponent is presum-

ably the inverse Lyapunov exponent of the single unstable mode of the critical

solution.
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Figure 4.5: A plot of the maximum value of 2M/r vs. time for a marginally
subcritical evolution displaying Zitterbewegung.
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We also observed scaling behavior in the time to form a black hole. For

this observation we measured the proper time for an observer at infinity from

the initial state until the simulation halted just before black hole formation.

Our results are displayed in Fig. 4.6, showing logarithmic scaling of the forma-

tion time. The fitted slope in this case was −4.8 ± 0.0007 (where the quoted

uncertainty only represents uncertainty in the linear fit).
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Figure 4.6: Logarithmic scaling of the time to form a black hole near the
critical parameter for m = 0.534. The slope of the fitted line is −4.8± 0.0007
(the quoted uncertainty only represents uncertainty in the linear fit).
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4.2.2 Low mass regime (m = 0.250)

We first consider the initial family (4.31) in the small-mass regime, with

m = 0.25. As is evident from Fig. 4.2, there is only one stable, static solution

in this case. The absence of unstable static solutions suggests that the critical

behavior will be Type II, and indeed this is what we observe. There is a scaling

behavior of the black hole mass as a function of δ∗ − δ, shown in Fig. 4.7. We

observe power-law scaling, as expected for Type II behavior.

Mbh ∝ |δ? − δ|λ. (4.69)

Our measured exponent is 0.27. We measured the mass in the usual way by

measuring the radius RBH where the “black hole” function 2M/r crossed some

threshold near 1 (typically 0.99), and using 2M/r = 1.
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Figure 4.7: Scaling behavior of the black hole mass near the critical parameter
for m = 0.25. The slope of the fitted line is 0.27. This scaling of the mass is
characteristic of Type II critical behavior.
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Chapter 5

Einstein-Massless-Dirac System

5.1 Introduction

In Chapter 4 it was shown that there is interesting behavior at the

threshold of black hole formation for the massive Einstein-Dirac system as

the mass of the field is decreased. There is a scaling law (see Fig. 4.7) for the

black hole mass,Mbh, similar to the one first discovered by Choptuik [8]. In the

original investigation by Choptuik, the model used to investigate the behavior

at the threshold of black hole formation was a spherically symmetric, massless

scalar field minimally coupled to gravity. Initial data consisting of a pulse of

scalar field was parameterized by a single quantity, p. This parameter could

represent the amplitude of the pulse (this pulse could be a gaussian function of

the radius, r, which in spherical symmetry represents an entire spherical shell

of scalar field). The parameter p controls the initial amount of mass-energy

in the spacetime. For simplicity, we will define p so that increasing it means

increasing the initial amount of mass-energy. When it is sufficiently increased

the evolution results in the formation of a black hole. It can also be given

a lower value that causes the scalar field to evolve to some other end state

which is not a black hole. For the massless system, this other scenario is a

dispersal to spatial infinity leaving behind flat spacetime. When a value of

the parameter is found which results in black hole formation we say that it is

supercritical. When a value is found which doesn’t produce a black hole (but
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produces the other end state) it is called subcritical. The parameter p is then

tuned until its critical value p∗ is found. This critical value is such that a small

positive perturbation will result in gravitational collapse while a small negative

perturbation will result in the other end state. In probing the threshold ofblack

hole formation Choptuik found that there is a power law scaling for length

scales. Tuning arbitrarily close to p∗ means that black holes of arbitrarily

small mass could be created. Another feature of these threshold solutions is

that the scaling exponent for this power law is universal. The same exponent

will be found regardless of the family of initial data or which parameter is

used. This amazing result can be explained through perturbation analysis

in which the critical solution is shown to have a single unstable mode. The

two competing end states (black hole formation or not) are this one unstable

mode. Therefore by “tuning away” this mode one is left with the critical

solution. When p is tuned arbitrarily close to the critical parameter, p∗, the

critical solution will persist for an arbitrarily long time. All of this interesting

behavior falls under the classification of critical phenomena.

Since then, other systems have been studied for critical phenomena such

as collapsing gravitational waves, perfect fluids, Yang-Mills fields, massive and

complex scalar fields, scalar fields in anti-de Sitter spacetime (for a review

see [16]) and collisionless matter [20]. We will be investigating another field

model, namely massless spin- 1
2
fields coupled to gravity.

The chapter is organized as follows: a brief introduction to spinors

is given followed by the derivation of the equations of motion and the Ein-

stein equations for the metric components. The numerical method used for

solving the partial differential equations (PDEs) is discussed as well as the

results found. Next a self-similar ansatz is taken and a change of coordinates
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is performed on the system to reduce the PDEs to a set of ordinary differ-

ential equations (ODEs). The shooting method used to solve this new set of

equations is discussed and the results are compared to those found from the

PDEs.

5.2 Formalism

We consider a spherically symmetric system of spin- 1
2
fields. Since

the distribution of the field’s mass-energy is spherically symmetric, so is the

spacetime geometry it produces. We again using the ADM formalism and

express the metric in polar-areal coordinates.

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + r2dθ2 + r2 sin2 θdφ2. (5.1)

Before discussing how we will separate the radial and angular depen-

dences in our system and form a spin singlet, let us begin with a brief intro-

duction to spinors (see [6], [25], and [3]). The evolution of a massless, spin- 1
2

field coupled to gravity is governed by the curved space Dirac equation:

γµ∇µψ = 0. (5.2)

The curved space γ-matrices, γµ, are determined by:

gµν � =
1

2
{γµ, γν} (5.3)

where � is the 4 × 4 identity matrix and gµν is the inverse metric. In flat

spacetime, we have:

ηab � =
1

2

{

γ̃a, γ̃b
}

. (5.4)

A particular choice of γ̃a which satisfy (5.4) in our signature (−,+,+,+) is:

γ̃0 = i

( � 0
0 − �

)

, γ̃j = i

(

0 σj

−σj 0

)

. (5.5)
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The index j = 1, 2, 3 and the σj:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (5.6)

are the Pauli spin matrices. The general γ-matrices are related to their flat,

cartesian counterparts by

γµ = Va
µγ̃a (5.7)

where there is an implied summation over the “flat”, Latin index a. The Va
µ

are called vierbein.

The derivative operator in equation (5.2) is a spinor covariant derivative

with spinor affine connections, Γµ. It acts in the following way on spinors,

∇µψ =

(

∂

∂xµ
− Γµ

)

ψ, (5.8)

and γ-matrices,

∇µγ
ν =

∂

∂xµ
γν + Γνµλγ

λ − Γµγ
ν + γνΓµ. (5.9)

However, it reduces to the usual covariant derivative when acting on tensors.

We choose the spinor connections to obey

∇µγ
ν = 0. (5.10)

They take the form

Γµ = −1

8

[

γ̃a, γ̃b
]

Va
ν∇µVbν . (5.11)

When taking the covariant derivative of the vierbein above, only one Christoffel

connection appears since there is only one curved, tensor index.
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5.2.1 Representation

Now that we have chosen the form of our metric (5.1), we are ready

to find a set of γ-matrices that satisfy equation (5.3). We choose as our

representation:

γt =
γ̃0

α
, γr =

γ̃3

a
,

γθ =
γ̃2

r
, γφ =

γ̃1

r sin θ
. (5.12)

This yields the following spinor connections:

Γt =
1

2

α′

a
γ̃0γ̃3

Γr =
1

2

ȧ

α
γ̃0γ̃3

Γθ =
1

2

1

a
γ̃3γ̃2

Γφ =
1

2

sin θ

a
γ̃3γ̃1 +

1

2
cos θγ̃2γ̃1. (5.13)

Note that we have complete freedom to choose any set of γµ we wish provided

they satisfy equation (5.3). Our specific choice is made so that the Dirac

equation can be easily separated into radial and angular equations.

Before separating the equation, let us first simplify matters by using

the fact that we are dealing with a massless spin- 1
2
field. Mathematically,

such fields have a particular chirality (circular polarization). We will adopt

left-handed chirality which is expressed as:

( � − iγ5
)

ψ = 0 (5.14)

where γ5 is defined by

γ5 ≡ γ̃0γ̃1γ̃2γ̃3. (5.15)
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Equation (5.14) can be satisfied by taking

ψ =









ψ1(t, r, θ, φ)
ψ2(t, r, θ, φ)
ψ1(t, r, θ, φ)
ψ2(t, r, θ, φ)









. (5.16)

Substituting this spinor into equation (5.2) yields two identical sets of equa-

tions each coupling the spinor components, ψ1 and ψ2. We, of course, only

need to solve one set of equations for these variables so we are left with two

equations instead of the original four.

We will now perform a separation of variables on the spinor compo-

nents:
(

ψ1(t, r, θ, φ)
ψ2(t, r, θ, φ)

)

=
1

r
√

a(t, r)

(

F (t, r)H1(θ, φ)
G(t, r)H2(θ, φ)

)

. (5.17)

These new variables and a convenient choice of representation (5.12) allow the

Dirac equation to be separated into a part that depends on (t, r) and a part

that depends on (θ, φ):

ir

α

(

Ḟ /G

Ġ/F

)

+
ir

2

a′

a2

(

−F/G
G/F

)

+
ir

a

(

F ′/G
G′/F

)

+
ir

2

α′

αa

(

F/G
−G/F

)

(5.18)

+
i

sin θ

(

H2,φ/H1

H1,φ/H2

)

+

(

H2,θ/H1

−H1,θ/H2

)

+
1

2
cot θ

(

H2/H1

−H1/H2

)

= 0.

Although the factor involving r and a(t, r) in (5.17) is not necessary for this

separation of variables, it has simplified things by removing some terms in

equation (5.18). Of particular importance is the elimination of a time deriva-

tive of a(t, r) which would make the solution of our system more complicated.

Let us look at our separated equation. Since any change in θ or φ cannot

change the value of the (t, r) part of (5.18), the (θ, φ) part must be a constant.
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At this point, if our goal was to simply remove the angular dependence from

the Dirac equation, we would be done. By replacing the angular part of (5.18)

by a constant we would be restricting ourselves to some spinor that is an

eigenfunction of the angular operators in the Dirac equation. In fact only one

of its eigenvalues, rather than the precise form of the angular eigenfunction,

would need to be known. However, our goal is not only to eliminate the angular

dependence of our equation of motion, but also to have a matter source which

generates a spherically symmetric spacetime. An individual spinor is not a

spherically symmetric object (it always has a spin-angular momentum which

breaks this symmetry) and therefore cannot by itself produce such a spacetime.

What we require are multiple spinors where all the individual spin-angular

momenta counterbalance each other so the system has no net spin. We will

use two spinors, for simplicity, but any even number of the appropriate spinors

will do. The spherically symmetric stress-energy tensor for the system, Tµν , is

found from the sum of the stress-energy tensors of the individual spinor fields

[24].

Tµν = T+
µν + T−

µν (5.19)

Evaluating the right hand side of equation (5.19) does require the angular

eigenfunctions which we will now compute.

5.2.2 Equations of Motion

Setting the angular part of equation (5.18) equal to a constant, n, gives:

[

− i

sin θ

∂

∂φ
− ∂

∂θ
− 1

2
cot θ

]

H2 = −nH1 (5.20)

[

i

sin θ

∂

∂φ
− ∂

∂θ
− 1

2
cot θ

]

H1 = nH2. (5.21)
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We have multiplied (5.20) by −H1 and (5.21) by H2 so that the terms in brack-

ets are the raising and lowering operators, ð (eth) and ð̄ (ethbar), respectively.

These operators act on spin weighted spherical harmonics (see [21] and [14])

in the following way:

ð(sYlm) =
√

(l − s)(l + s+ 1)(s+1Ylm) (5.22)

ð̄(sYlm) = −
√

(l + s)(l − s+ 1)(s−1Ylm). (5.23)

Our functions H1 and H2 have the spin weights s = ± 1
2
:

H1(θ, φ) = 1
2
Ylm(θ, φ) (5.24)

H2(θ, φ) = − 1
2
Ylm(θ, φ). (5.25)

We do not need to solve equations (5.20) and (5.21) in generality; i.e.

for any values of l or m. To form a spin singlet, all we require is one spinor

constructed from 1
2
Y 1

2
1
2
, 1

2
Y 1

2
− 1

2
and one spinor from − 1

2
Y 1

2
1
2
, − 1

2
Y 1

2
− 1

2
. We can

find these spinor harmonics by taking advantage of the fact that the right

hand sides of (5.22) and (5.23) vanish for l = s and l = −s, respectively. This
uncoupled set of first order differential equations has the solutions:

1
2
Y 1

2
1
2
=

1√
2π
eiφ/2 sin

θ

2

1
2
Y 1

2
− 1

2
=

1√
2π
e−iφ/2 cos

θ

2

− 1
2
Y 1

2
1
2
=

1√
2π
eiφ/2 cos

θ

2

− 1
2
Y 1

2
− 1

2
= − 1√

2π
e−iφ/2 sin

θ

2
(5.26)
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for our desired values of s, l, and m. We have for our two spinor fields:

ψ+ =
1

2
√
π

eiφ/2

r
√

a(t, r)









F (t, r) sin(θ/2)
G(t, r) cos(θ/2)
F (t, r) sin(θ/2)
G(t, r) cos(θ/2)









(5.27)

ψ− =
1

2
√
π

e−iφ/2

r
√

a(t, r)









F (t, r) cos(θ/2)
−G(t, r) sin(θ/2)
F (t, r) cos(θ/2)
−G(t, r) sin(θ/2)









. (5.28)

Our radial equations of motion now take the form:

Ḟ1 = −
√

α

a
∂r

(
√

α

a
F1

)

+
α

r
G2 (5.29)

Ġ1 =

√

α

a
∂r

(
√

α

a
G1

)

+
α

r
F2 (5.30)

Ḟ2 = −
√

α

a
∂r

(
√

α

a
F2

)

− α

r
G1 (5.31)

Ġ2 =

√

α

a
∂r

(
√

α

a
G2

)

− α

r
F1 (5.32)

where we have written the complex functions in terms of real functions, F =

F1+ iF2 and G = G1+ iG2. Notice that this is the same radial equation found

in Chapter 4 in the limit where m tends to 0 and the following identification

is made:
F1 +G2 = Rez1

G2 − F1 = Imz2

F2 −G1 = Imz1

F2 +G1 = Rez2

(5.33)

5.2.3 Geometry

Although the spinors (5.27) and (5.28) both yield the same radial equa-

tions of motion (5.29)-(5.32), they have different stress-energy tensors. We
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calculate the stress-tensor for each field individually using:

Tµν = −
1

2

[

ψ̄γ(µ∇ν)ψ −
(

∇(µψ̄
)

γν)ψ
]

(5.34)

where the Dirac adjoint of ψ is defined as:

ψ̄ = ψ†A

and A is the Hermitizing matrix. This matrix is needed so that real-valued

expressions (such as the current density or in this case the stress-energy tensor)

can be computed using the complex-valued spinors. It is chosen so that both

A and iAγµ are Hermitian. We will take A = −iγ̃0.

Computing Tµν for each spinor (5.27),(5.28) and summing them (5.19)

yields the spherically symmetric stress-energy tensor:

Ttt =
α

2πr2a

(

Ḟ1F2 − F1Ḟ2 + Ġ1G2 −G1Ġ2

)

Ttr =
1

4πr2

[

F1Ḟ2 − Ḟ1F2 + Ġ1G2 −G1Ġ2 +
α

a
(F ′

1F2 − F1F
′
2 +G′

1G2 −G1G
′
2)
]

Trr =
1

2πr2
(F1F

′
2 − F ′

1F2 +G′
1G2 −G1G

′
2)

Tθθ =
1

2πra
(F1G1 + F2G2)

Tφφ =
sin2 θ

2πra
(F1G1 + F2G2) . (5.35)

Contracting the stress-energy tensor gives:

Tµ
µ = 0 (5.36)

which is expected since the massless Dirac system is conformally invariant.

Now that we have a stress-energy tensor that will generate a spherically sym-

metric spacetime, we are ready to write down Einstein’s equations which will

be solved for α and a.
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Due to our choice of coordinates, a sufficient set of Einstein’s equations

to fix α and a are the Hamiltonian constraint and the slicing condition. The

Hamiltonian constraint is:

a′

a
+
a2 − 1

2r
=

2

r2
(2aF1G1 + 2aF2G2 + rF1F

′
2 − rF ′

1F2 + rG′
1G2 − rG1G

′
2)

(5.37)

and is treated as an equation for a. We note that the momentum constraint:

ȧ =
2α

r
(F ′

1F2 − F1F
′
2 +G′

1G2 −G1G
′
2) . (5.38)

also yields an equation for a (an evolution equation) that we will use as a

means to check the consistency of our equations. In both equations (5.37) and

(5.38), time derivatives of F ’s and G’s have been replaced using the equations

of motion (5.29)-(5.32).

The slicing condition, which fixes α, is derived from the evolution equa-

tion for Kθ
θ and the fact that for polar slicing

K = K i
i = Kr

r + 2Kθ
θ = Kr

r

since Kθ
θ = 0. To maintain Kθ

θ = 0 for all time, we impose K̇θ
θ = 0, this

then yields:

α′

α
− a2 − 1

2r
=

2

r
(F1F

′
2 − F ′

1F2 +G′
1G2 −G1G

′
2) . (5.39)

5.3 Numerics and Results

The above equations of motion were solved using a Crank-Nicholson

update scheme, standard O(h2) spatial derivatives, and Berger-Oliger style

adaptive mesh refinement (see [2]). To achieve stability, high frequency modes
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were damped using Kreiss-Oliger dissipation [19]. At r = 0, the following

regularity conditions were enforced:

F1(t, 0) = 0

F2(t, 0) = 0

G1(t, 0) = 0

G2(t, 0) = 0.

(5.40)

An outgoing wave condition was used as the outer boundary condition for

these fields.

∂tF1 = −∂rF1

∂tF2 = −∂rF2

∂tG1 = −∂rG1

∂tG2 = −∂rG2.

(5.41)

We also have

a(t, 0) = 1. (5.42)

which follows from the demand of regularity (local flatness) at r = 0. At each

time step, the Hamiltonian constraint is integrated outwards using Newton’s

method. Before solving the slicing condition (5.39), we notice that our equa-

tions are invariant under rescalings of α. We will therefore use the fact that

α = 1/a (this can be seen by comparing (5.1) to the Schwarzschild metric)

to find α at the outer boundary and then integrate inwards. We could have

simply chosen α(t, 0) = 1 and integrated outwards, however, but (5.39) indi-

cates that α is a monotonically increasing function. If we took α(t, 0) = 1,

then it could become quite large at the outer boundary. This would affect the

characteristics of our hyperbolic equation of motion in this region and would

79



require a very small Courant factor in order to maintain stability. By first

solving for a, then using it to find α at the outer boundary, we can integrate

inwards to get a smaller α on the grid.

Two families of initial data were used: gaussians and kinks. In both

cases, the initial data was such that the pulses were initially ingoing and had

positive energy by construction.

F1 = 0

F2 = 0

G1 = p ∗ e−(r−r0)2/4∗δ2

G2 = p ∗ e−(r−r0+δ)2/4∗δ2

Each family was characterized by a single parameter, p, which con-

trolled whether the mass-energy of the system would collapse and form a

black hole or if it would implode through the center (r = 0) and disperse to

spatial infinity. As p is tuned to the threshold between collapse and disper-

sal, the unstable mode is “tuned away” to reveal a self-similar solution. The

scale invariant quantity, a, displayed continuous self-similarity (CSS) which

can be seen in Fig. 5.3. The Dirac fields were discretely self-similar (DSS)

except for a reduction in amplitude which was due to a scale dependence of
√
r (see Fig. 5.4). The nature of this scale dependence will be shown explicitly

in section 5.4.

This system exhibits a Type II critical solution which is characterized

by the following universal scaling behavior for the black hole mass near criti-

cality:

Mbh ∝ |p− p?|λ. (5.43)
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The critical parameter, p?, is the value of p at the threshold of black hole

formation. As the tuning parameter, p, is tuned arbitrarily close to p?, a black

hole of arbitrarily small mass is formed. This can be seen from the data in

Fig. 5.1. The scaling exponent, λ, is universal in that it is independent of the

family of initial data. The system has a λ = 0.257 for the gaussian family

and λ = 0.258 for the kink data. There is uncertainty in the third significant

figure.
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Figure 5.1: Plot of the ln of black hole mass vs. the ln of (p − p?). The
scaling exponent is λ = 0.257 (the third significant figure is uncertain) for the
gaussian family. As one tunes arbitrarily close to the critical parameter, p?, a
black hole of arbitrarily small mass is formed indicative of a Type II critical
solution. Note the absence of oscillations about the fit line which would be
present if a(t, r) were discretely self-similar.
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X

F(x)
τ = | ln t |

F(x)

= | ln r |ρ

Figure 5.2: Scale invariant quantities (functions of x = −r/t) reproducing
themselves at smaller and smaller temporal and spatial scales (logarithmically)
in accordance with continuous self-similarity.

5.4 Self-Similar Ansatz

As we have seen from the solution of our PDEs, near criticality scale

invariant quantities reproduce themselves at smaller and smaller scales in ac-

cordance with self-similarity (an illustration of this is given in Fig. 5.2).

Since these solutions have been shown to exist, it should be possible

to apply a self-similar ansatz to our system ab initio, as was done for the

collapse of a complex scalar field by Hirschmann and Eardley [17]. A self-
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similar spacetime has a homothetic Killing vector, ξ, which obeys:

Lξgµν = 2gµν . (5.44)

Here the factor 2 is simply a matter of convention. We want to define coordi-

nates, (τ, x) that are adapted to this self-similar symmetry. Defining τ to be

adapted to the vector field ξµ means that in these coordinates, (5.44) can be

written as:
∂

∂τ
gµν(τ, x) = 2gµν(τ, x). (5.45)

Performing a separation of variables on the metric tensor and then solving

(5.45) for the τ -dependent part yields:

gµν(τ, x) = e2τ g̃µν(x) (5.46)

where g̃µν(x) is the part of the metric that depends only on x. The equations

defining the coordinate transformation from the original (t, r) to the adapted

(τ, x) can be found by first solving (5.44) for the vector components ξµ in the

original coordinates then seeing what relationship is consistent with the vector

transformation law. The result is:

τ = ln

∣

∣

∣

∣

t? − t

L

∣

∣

∣

∣

, x =
r

t? − t
. (5.47)

The equations will take the same form for any value of the constant factor,

L, which we set to 1. The time, t?, is called the accumulation point. This is

the time when the self-similar solution reaches the origin. It is convenient to

take t to be the central proper time and rescale it so that t? = 0. Writing our

metric (5.1) in these coordinates, gives:

ds2 = e2τ
[

(−α(x)2 + x2a(x)2)dτ 2 + 2xa(x)2dτdx+ a(x)2dx2 + x2dθ2 + x2 sin2 θdφ2
]

.

(5.48)
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The τ coordinate is timelike. The functions, α and a are functions of the

spacelike coordinate x alone. This can be verified by comparing the right

hand sides of (5.46) and (5.48).

In these coordinates, we take as our spinors (5.27),(5.28) the following:

ψ+ =
e−τ

2
√
π

eiφ/2

x
√

a(x)









F (τ, x) sin(θ/2)
G(τ, x) cos(θ/2)
F (τ, x) sin(θ/2)
G(τ, x) cos(θ/2)









(5.49)

ψ− =
e−τ

2
√
π

e−iφ/2

x
√

a(x)









F (τ, x) cos(θ/2)
−G(τ, x) sin(θ/2)
F (τ, x) cos(θ/2)
−G(τ, x) sin(θ/2)









. (5.50)

These were found by transforming the (t, r) parts of (5.27) and (5.28) as scalars.

In order to find spinor components that are only functions of x, we

require knowledge of the τ dependence of our field quantities. This is found by

performing the coordinate transformations on the equations of motion (5.29)-

(5.32) and the geometric equations (5.37) and (5.39), and then ascertaining

what τ dependence F and G have to produce a set of τ independent ODEs.

We have for the exponential τ dependence:

F (τ, x) = eτ/2eiωτx(P1(x) + iP2(x))

G(τ, x) = eτ/2eiωτx(Q1(x) + iQ2(x)). (5.51)

It is possible to have standing waves in the field variables that will produce a

static spacetime so, we account for this freedom by introducing the periodic τ

dependence above. The extra factor of x is introduced to cast our equations

in a more convenient form. With these definitions we find:

P ′
1 =

1

x+ α/a

[

−1

2
P1 − ωP2 −

1

2

α

a

(

a2 + 1

x

)

P1 + 2αP1(P1Q1 + P2Q2) +
α

x
Q2

]

(5.52)
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P ′
2 =

1

x+ α/a

[

−1

2
P2 + ωP1 −

1

2

α

a

(

a2 + 1

x

)

P2 + 2αP2(P1Q1 + P2Q2)−
α

x
Q1

]

(5.53)

Q′
1 =

1

x− α/a

[

−1

2
Q1 − ωQ2 +

1

2

α

a

(

a2 + 1

x

)

Q1 − 2αQ1(P1Q1 + P2Q2) +
α

x
P2

]

(5.54)

Q′
2 =

1

x− α/a

[

−1

2
Q2 + ωQ1 +

1

2

α

a

(

a2 + 1

x

)

Q2 − 2αQ2(P1Q1 + P2Q2)−
α

x
P1

]

(5.55)
a′

a
=

1− a2

2x
+ 2x (P1P

′
2 − P ′

1P2 +Q′
1Q2 −Q1Q

′
2) + 4a (P1Q1 + P2Q2) (5.56)

α′

α
=
a2 − 1

2x
+ 2x (P1P

′
2 − P ′

1P2 +Q′
1Q2 −Q1Q

′
2) . (5.57)

Before integration of this system, the Dirac equation (5.52)-(5.55) is used to

replace the derivatives of P and Q on the right hand side of the equations for

a (5.56) and α (5.57).

5.5 Shooting Method and Results

Now that we have rewritten our equations in a coordinate system

adapted to the symmetry of self-similarity, we are ready to solve our ODEs.

Following Hirschmann and Eardley in [17], we use a shooting method to inte-

grate the equations.

Notice that our system has singularities at x = 0 and at x = x2 = α/a

(the similarity horizon). Of the many solutions to our ODEs, the one which

is analytic at both of these points is the one which corresponds to the self-

similar solution found in the PDEs. We do not know the values of all of

the fields at the origin and we do not know the value of x2 (the position of

the similarity horizon). We therefore adopt a shooting method. We shoot

outwards from x = 0 and inwards from x2 = α/a, then compare the solutions
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at some intermediate point x1. This process is automated by using Newton’s

method to determine the shooting parameters for the subsequent iterations.

The function we use to determine the goodness of fit is the square of the

differences of the values of the functions and their derivatives at this midpoint.

At x = 0 we have the following conditions:

P1(0) = 0

P2(0) = −Q0

Q1(0) = Q0

Q2(0) = 0

α(0) = 1

a(0) = 1.

Regularity at the origin gives P1 = Q2 and P2 = −Q1. We use the global

U(1) invariance of our system (5.52)-(5.57) to set P1 = 0. This leaves Q0 as a

shooting parameter.

As noted previously, the location of the similarity horizon (outer bound-

ary of the integration domain) x2 is itself a shooting parameter. The outer

boundary is itself a shooting parameter and is defined to be x = x2 where

x2 = α/a. In the limit x→ x2 we have the following:

P1(x2) =
1

2a2

(

−4αQ3
2ω − 4αQ2

1Q2ω + 2aωQ1 +Q2a
3
)

P2(x2) =
1

2a2

(

4αQ1Q
2
2ω + 4αQ3

1ω + 2aωQ2 −Q1a
3
)

Q1(x2) = Q1

Q2(x2) = Q2
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α(x2) = x2a

a(x2) = a.

The shooting parameters at the outer boundary are: x2, Q1(x2), Q2(x2), and

a(x2). The final shooting parameter is the frequency, ω, which gives us a total

of six.

The final results are:

x2 = 5.6740230± 0.0000004

ω = 4.698839± 0.000001

Q1(0) = 0.747912623± 0.000000006

Q1(x2) = 0.00151341532± 0.00000000007

Q2(x2) = 0.01103266083± 0.00000000005

a(x2) = 1.1183631604± 0.0000000009

where the quoted uncertainty was estimated by solving the system for different

values of x1 many times and noting the changes in the above quantities.

5.6 Comparisons of Solutions

We compare the solutions of the ODEs to the solutions of the PDEs in

the (t, r) coordinate system. For the case of a(t, r), we use the ODE solution as

a fitting function for the PDE data, where t? is the fitting parameter. This is

done by making a 2-dimensional solution surface in t and r and using Newton’s

method to adjust the fitting parameter. The goodness of fit is defined to be

the least squares of the two solutions. Once t? is found, the l2-norm of the

difference of the two solutions is 0.00159. We express the solutions as an

evolution in Fig. 5.3.
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Figure 5.3: The metric variable, a(t, r), for a slightly supercritical evolution
overlayed with the solution to the ODEs vs. ln(r). The frames are output
logarithmically in central proper time. The function’s peak reaches a value
of approximately 1.6 and remains there as the solution continuously repeats
itself on smaller and smaller scales.
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Comparing the Dirac fields is a little more involved since there are a

number of unspecified parameters and phases that must be determined. The

Dirac fields are:

F1(t, r) =
rA1

(t? − t)
1
2

[P1(t, r) cos(ω ln(t? − t) + φ1)− P2(t, r) sin(ω ln(t? − t) + φ1)]

F2(t, r) =
rA2

(t? − t)
1
2

[P1(t, r) sin(ω ln(t? − t) + φ2) + P2(t, r) cos(ω ln(t? − t) + φ2)]

G1(t, r) =
rA2

(t? − t)
1
2

[Q1(t, r) cos(ω ln(t? − t) + φ2)−Q2(t, r) sin(ω ln(t? − t) + φ2)]

G2(t, r) =
rA1

(t? − t)
1
2

[Q1(t, r) sin(ω ln(t? − t) + φ1) +Q2(t, r) cos(ω ln(t? − t) + φ1)] .

(5.58)

Notice that F1 and G2 have the same phase, φ1. The pair F2 and G1 have

the same phase φ2. This is expected from the coupling of (5.29)-(5.32). The

equations of motion may be invariant under changes of these phases, but (5.37)

and (5.39) are not. In order to have the entire system be invariant under

changes in the phases, we must have:

A1A2 =
1

cos(φ1 − φ2)

We see that the amplitudes of the fields must change only if the relative phase,

φ1 − φ2, changes. The comparison of the fields as found from the PDEs and

ODEs is carried out in much the same way as it is done for the metric variable,

a(t, r). The goodness of fit is again defined to be the least squares of the

two solutions but this time, the parameter t? is kept fixed and the phase φj

and amplitude Aj are used as fitting parameters (j = 1, 2). The l2-norm

of the difference of the solutions for F1 is 0.000195 with A1 = 1.0450 and

φ1 = 0.6846. The l2-norm of the difference of the solutions for G1 is 0.00024

with A2 = 1.5780 and φ2 = 6.0427. We express the ODE and PDE solutions

of F1 as evolutions in Fig. 5.4.
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Figure 5.4: The quantity F1(t, r) for a slightly supercritical evolution and the
solution found from the ODEs vs. ln(r). The frames are output logarithmically
in central proper time. The function oscillates and discretely repeats itself on
smaller and smaller scales. A factor of 1/

√
r has been introduced to remove

the scale dependence.
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5.7 Conclusions

We have investigated the spherically symmetric Einstein-massless-Dirac

system at the threshold of black hole formation. We find that there is a mass

scaling law with a universal exponent indicative of a Type II critical solution.

The solution exhibits continuous self-similarity in the geometric variables and

discrete self-similarity in the components of the Dirac fields. Using a self-

similar ansatz, we reduced our system to a set of ODEs whose solution was

in very good agreement with the critical solution obtained from the original

PDEs.
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Chapter 6

Einstein-Massless-Dirac System for any l

6.1 Introduction

In Chapter 5 we rederived our system for the massless case from first

principles using the idea of an incoherent sum of the stress-tensors of the

individual spinors (5.19). The spin- 1
2
fields’ individual spin-angular momenta

combined to form a spherically symmetric system with no net spin. That

system is constructed from spinors with spin-angular momentum quantum

number of l = 1
2
. One benefit of this rederivation is that we can now extend

this procedure to include other values of l.

In this chapter, we construct the massless, spherically symmetric sys-

tem so that it has an explicit dependence on l that can be adjusted as a

parameter of the model. As l is increased, the number of shells of counter spin

is increased. This has the effect of increasing the strength of the “spin-angular

momentum barrier”.

6.1.1 Equations of Motion for any l

The new, l-dependent equations of motion take the form

Ḟ1 = −
√

α

a
∂r

(
√

α

a
F1

)

+
α

r

(

l +
1

2

)

G2 (6.1)

Ġ1 =

√

α

a
∂r

(
√

α

a
G1

)

+
α

r

(

l +
1

2

)

F2 (6.2)
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Ḟ2 = −
√

α

a
∂r

(
√

α

a
F2

)

− α

r

(

l +
1

2

)

G1 (6.3)

Ġ2 =

√

α

a
∂r

(
√

α

a
G2

)

− α

r

(

l +
1

2

)

F1. (6.4)

These were found by acting the angular raising and lowering operators ð (eth)

and ð̄ (ethbar) on the spin weighted spherical harmonics of general l (5.22-

5.23).

6.1.2 Geometry for any l

The spherically symmetric stress-energy tensor for general l was found

by induction. The same procedure that was used for the l = 1
2
case in Chapter 5

was used for l = 3
2
and 5

2
. The resulting stress-energy tensors were compared

to determine what the l-dependent terms were. We find that the spherically

symmetric stress-energy tensor for general l takes the form:

Ttt =
α
(

l + 1
2

)

2πr2a

(

Ḟ1F2 − F1Ḟ2 + Ġ1G2 −G1Ġ2

)

Ttr =

(

l + 1
2

)

4πr2

[

F1Ḟ2 − Ḟ1F2 + Ġ1G2 −G1Ġ2 +
α

a
(F ′

1F2 − F1F
′
2 +G′

1G2 −G1G
′
2)
]

Trr =

(

l + 1
2

)

2πr2
(F1F

′
2 − F ′

1F2 +G′
1G2 −G1G

′
2)

Tθθ =

(

l + 1
2

)2

2πra
(F1G1 + F2G2)

Tφφ = sin2 θ

(

l + 1
2

)2

2πra
(F1G1 + F2G2) . (6.5)

However the l dependent prefactors which appear explicitly above can

be disregarded for this problem (i.e. the same expressions for the stress-energy

tensor which where used in Chapter 5 — without l could be used here). This is

because the only components of the stress-energy tensor used in this spherically
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symmetric system are Ttt, Ttr, and Trr which all have the same prefactors. The

components of the spinors can always be rescaled so that these factors become

unity. There is, however, an implicit dependence on l which can’t be scaled

away. It is the dependence which comes from the equations of motion (6.1)-

(6.4) when they are substituted into the expression for Ttt to replace the time

derivatives of the F ’s andG’s. Thus the only geometric equation which changes

is the Hamiltonian constraint:

a′

a
+
a2 − 1

2r
=

2

r2

[

2

(

l +
1

2

)

aF1G1 + 2

(

l +
1

2

)

aF2G2 (6.6)

+rF1F
′
2 − rF ′

1F2 + rG′
1G2 − rG1G

′
2

]

. (6.7)

The other equations for our geometric variables remain unchanged, but we

restate them here for completeness. They are the momentum constraint:

ȧ =
2α

r
(F ′

1F2 − F1F
′
2 +G′

1G2 −G1G
′
2) . (6.8)

and the slicing equation for α, the lapse

α′

α
− a2 − 1

2r
=

2

r
(F1F

′
2 − F ′

1F2 +G′
1G2 −G1G

′
2) . (6.9)

6.2 Numerics and Results

We again solve the above equations of motion using an iterative Crank-

Nicholson update scheme, standard O(h2) spatial derivatives, and Kreiss-

Oliger style dissipation [19]. This time, however, adaptive mesh refinement

was not always required. In particular, we only used AMR for l = 3
2
, l = 5

2
,

l = 7
2
, and l = 9

2
. The reason for this will be explained shortly. At r = 0, the
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following regularity conditions were enforced:

F1(t, 0) = 0

F2(t, 0) = 0

G1(t, 0) = 0

G2(t, 0) = 0.

(6.10)

We again set a(t, 0) = 1 and choose α(t,∞) = 1.

Investigation of the threshold of black hole formation is carried out

as as was done previously. The end state of the evolution is controlled by

a single tuning parameter, p, (we used the amplitude of the initial gaussian

pulse). Either the value of p would be super-critical and 2M/r would become

arbitrarily close to 1 (we usually used 0.99) at some value of r signalling

the formation of a black hole, or the tuning parameter would be sub-critical

and 2M/r would reach some maximum value before decreasing as the field

dissipated to spatial infinity. In this way we tuned p to some critical value

representing the threshold of black hole formation. We found Type II, CSS

solutions for l = 3
2
and l = 5

2
which required the use of AMR as the solutions

continuously repeated themselves on smaller and smaller spatial and temporal

scales. As Type II solutions, they have a mass scaling law (5.43) which can

be seen in Fig. 6.1 along side the black hole mass scaling plot for l = 1
2
. The

y-intercepts of the plots were adjusted so the data could be displayed more

easily.
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Figure 6.1: Plot of the ln of black hole mass vs. the ln of (p− p?) for l = 1/2,
l = 3/2, and l = 5/2. The scaling exponents are λ = 0.257, 0.081, and 0.03 ,
respectively. As one tunes arbitrarily close to the critical parameter, p?, a black
hole of arbitrarily small mass is formed indicative of a Type II critical solution.
All of these solutions display continuous self-similarity. The y-intercepts have
been adjusted so that all three lines can be plotted together.
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Although the spinor harmonics that are used for the angular parts of

the spinors are only defined for half-odd integer values of l, there is no reason

why the field equations can’t be solved for arbitrary values (i.e. integer values).

We find Type II behavior for l = 1 and 2. As we increase l we have difficulty

finding Type II behavior until we reach l = 11
2
. The reason for this is not

clear and will require further study. These values of l between 5
2
and 11

2
do not

display self-similarity nor do they spend a long time in a slightly oscillating

configuration as does l = 11
2
and 13

2
(discussed below). The natural log of the

scaling exponents, λ, for the cases that do display Type II behavior can be

plotted against the spin-angular momentum quantum number, l, as seen in

Fig. 6.2. These results are very preliminary and the fit line used in the plot is

not meant to suggest a linear relationship. A linear fit of the data yields a slope

of −0.9 (the uncertainty represents uncertainty in the linear fit). However, the

results at this stage are too preliminary to draw any conclusions. The value of

the scaling exponent does decrease as l is increased, but the precise functional

relationship has yet to be determined. Most importantly if this trend exists

then there should be Type II solutions for l = 7
2
, and 9

2
. This has not yet been

seen.
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Figure 6.2: Plot of the ln of black hole mass scaling exponent, λ, vs. the spin-
angular momentum quantum number l. We have used the half-odd integer
values l = 1/2, 3/2, 5/2, and 11/2. In addition to these, we have also used the
integer values l = 1 and 2. Although the spinor harmonics which are used for
the angular parts of the spinors are only defined for half-odd integer values
of l, there is no reason why the field equations cannot be solved for arbitrary
values. A linear fit of the data yields a slope of −0.9± 0.008 (the uncertainty
represents uncertainty in the linear fit). However, the results at this stage are
too preliminary to draw any conclusions. The value of the scaling exponent
does decrease as l is increased, but the precise functional relationship has yet
to be determined.
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As l is increased to 7
2
, the spin-angular momentum barrier appears to

have sufficient strength to prevent the fields from progressing very far towards

the origin. Self-similarity was not evident as the pulse imploded to a value

of r where it remained for a short time before either forming a black hole or

dispersing. The slightly super-critical evolution of 2M/r for l = 7
2
, 9

2
, and 11

2

can be seen in Fig. 6.3. The time of delay for l = 7
2
, 9

2
is slight but the delay

time for 11
2
is much more pronounced. As l is increased to 13

2
, the threshhold

solution has a value of 2M/r which persists at approximately 0.79 for t = 33

to t = 220 before ultimately collapsing towards black hole formation (see

Fig. 6.4). For l = 11
2
and 13

2
we see a logarithmic scaling of the time to form a

black hole as p is tuned closer to criticality as seen in Fig. 6.5.

Table 6.1: Results for various values of l.

Value of l Method of solution Behavior λ
1/2 AMR CSS/Type II 0.257
1 AMR CSS/Type II 0.136
3/2 AMR CSS/Type II 0.081
2 AMR CSS/Type II 0.049
5/2 AMR CSS/Type II 0.03
7/2 AMR ? ?
9/2 AMR ? ?
11/2 Unigrid Type II 0.002
13/2 Unigrid ? ?
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Figure 6.3: A comparison of 2M/r for three slightly supercritical evolutions.
From left to right the solutions correspond to l = 7/2, 9/2, and 11/2. In each
case, the solution begins an inward implosion which is delayed for a time by
the spin-angular momentum barrier. Systems with higher l have a stronger
barrier which increases the time of delay before collapse.
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Figure 6.4: Plot of 2M/r for a slightly super-critical evolution with l = 13/2.
The value of 2M/r persists at approximately 0.79 from t = 33 to t = 220
before ultimately collapsing towards black hole formation. The amplitude is
not constant but oscillates about 0.79 at the order of 10−3.
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Figure 6.5: Plot of the time to form a black hole vs. the ln of (p − p?) for
l = 13/2. The slope is −7.63. As one tunes arbitrarily close to the critical
parameter, p?, it takes longer and longer to form a black hole.
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6.3 Conclusions

As the spin-angular momentum quantum number, l, increases, so does

the strength of the “ spin-angular momentum barrier”. We find that as this

happens, the scaling exponents for the cases which display Type II behavior

decrease. Preliminary evidence implies that there may be a linear relationship

between the natural log of the scaling exponent and l. However further study

will be necessary to determine if this is indeed the case. In particular, Type

II behavior would have to be seen for l = 7
2
and 9

2
and the scaling exponents

for these cases would have to support the linear relationship mentioned above.

It is possible that finding Type II behavior for very high values of l will not

be possible since the value of the scaling exponent may be too small to be

measured accurately but no such impediment should exist to prevent finding

it for l = 7
2
and 9

2
. In those cases the difficulty may be in the numerics.
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Chapter 7

Harmonic Coordinates and the Axisymmetric

Einstein Equations

In this chapter we will discuss work on a 2 dimensional, axisymmetric

code to solve Einstein’s equations. Instead of using the ADM 3+1 formulation,

harmonic coordinates are employed. The resulting system of nonlinear PDEs is

solved numerically using Chebyshev pseudospectral collocation. Currently the

code which solves the evolution equations for the components of the spatial

metric is unstable. The elliptic solver is working, however, and is used for

finding initial data.

7.1 Harmonic Coordinates

Harmonic coordinates have often been employed by mathematical rel-

ativists but have not been widely used in numerical relativity. Some recent

work has been done by Garfinkle [13] in this area. Harmonic coordinates are

coordinates that obey the wave equation (this is sometimes called de Donder

gauge). This general wave equation is

gλσ∇λ∇σx
µ = 0. (7.1)

The index, µ, is not a tensor index, but is merely a label for the different

coordinates. A source can be added to the right hand side of the equation to
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yield

gλσ∇λ∇σx
µ = Hµ. (7.2)

Evaluating (7.2) gives a condition for the metric components:

gλσΓµλσ = −Hµ. (7.3)

The reason for using such a coordinate system may not yet seem clear. Since

our ultimate goal is to solve Einstein’s equations, let us apply the harmonic

coordinate conditon (7.3) to the Ricci tensor. The result is:

Rµν = −1
2
gλσ∂λ∂σgµν − ΓλαµΓ

α
λν + ΓλµνHλ − ∂(µHν)

+1
2
gαλgβσ(∂µgαβ)(∂λgνσ) +

1
2
gαλgβσ(∂νgαβ)(∂λgµσ)

(7.4)

This yields the so called reduced Einstein’s equations which look more like a

set of wave equations than the general Einstein’s equations (particularly the

first term on the right hand side of (7.4)). We note that Einstein’s equations

Gµν = Rµν −
1

2
Rgµν = 8πTµν (7.5)

can be rewritten in terms of the Ricci tensor as

Rµν = 8π

(

Tµν −
1

2
Tgµν

)

(7.6)

where

T = gµνTµν (7.7)

and this is the form we will use below.
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7.2 Solving the System

We will restrict ourselves to axisymmetry and will work in cylindrical

coordinates (t, ρ, z, φ). The flat spacetime metric in these coordinates is:

gµν =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ρ2









(7.8)

We put Einstein’s equations into first order form (in time) by defining:

Pµν ≡ ∂tgµν . (7.9)

Unlike the previous systems studied in this thesis which used constrained evo-

lution, the approach we take here is a free evolution. This means that we solve

our constraints only at the initial time to determine our initial data. This data

is then evolved in time using the evolution equations given by (7.4).

We find initial data by first choosing gij = hij, gi0 = g0i = 0, g00 = −1,
and Pij = −2Kij at the initial time. The P0ν components are found from (7.3).

The spatial part of the metric at the initial time will be:

hij =





gρρ 0 0
0 1 0
0 0 ρ2



 (7.10)

We also take the spatial components Pij = 0.

The Hamiltonian constraint for this initial data is:

R = 16πρm (7.11)

where ρm is the local energy density for the matter. Evaluating the Ricci scalar

for the initial, spacelike hypersurface gives the final form of the Hamiltonian

constraint:
∂ρgρρ
ρ

− (∂2
zgρρ)gρρ +

1

2
(∂zgρρ)

2 = 16πρmg
2
ρρ. (7.12)
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As a matter model we have used a massive scalar field whose stress-energy

tensor is given by:

Tµν = ∇µΦ∇νΦ−
1

2
gµν(g

αβ∇αΦ∇βΦ−m2Φ). (7.13)

We solve (7.12) for gρρ using the Newton-Kantorovich linearization procedure

and pseudospectral relaxation described in [5]. An initial guess is specified for

gρρ then the linearized equation is solved for the update to the guess. This

iteration procedure is continued, and converges to the solution efficiently. A

plot of the natural log of the l2-norm of the difference of the pre-iterate and

post-iterate values versus the iteration number is shown in Fig. 7.1. We find

the solution efficiently but this can certainly be improved. Perhaps the best

way to improve the efficiency is to use domain decomposition to split the

domain of our problem into several smaller subdomains [5].
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Figure 7.1: A plot of the natural log of the l2-norm of the difference of the pre-
iterate and post-iterate values vs. the iteration number for the pseudospectral
constraint solver.
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At the current time, only the constraint can be solved. We have an

“operational” evolution code to solve Einstein’s equations for this system, but

it is currently unstable. This is almost certainly a result of our choice of Hµ.

We are trying to resolve this problem and hope to have results shortly.
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Chapter 8

Conclusions

The primary focus of this thesis is the study of spin- 1
2
fields coupled to

gravity in spherical symmetry (Einstein-Dirac system). These systems have a

rich phenomenology especially at the threshold of black hole formation.

The massive Einstein-Dirac system is investigated in Chapter 4. The

spherically symmetric system of massive spin- 1
2
fields is in a singlet spinor

state and is shown to exhibit both unstable and stable solutions. The un-

stable solutions correspond to the threshold between black hole collapse and

dispersal. There is a continuum of stable solutions that are solitonic in nature.

These tended to oscillate and approach the stable, static solutions that we find

through independent techniques.

In Chapter 5 we give a detailed study of the Einstein-massless-Dirac

system. A spherically symmetric system is constructed from massless spin- 1
2

fields (which are inherently nonspherically symmetric) by using spinor har-

monics for their angular part and taking an incoherent sum of their individual

stress tensors. The result is a spherically symmetric system with no net spin-

angular momentum. Instead the system feels the effect of a “spin-angular

momentum barrier.” In this case, black hole formation occurs at infinitesimal

mass (Type II). This new, continuously self-similar solution is found by solving

the Einstein-massless-Dirac system of nonlinear partial differential equations.

A self-similar ansatz is then taken which reduces the partial differential equa-
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tions to a set of ordinary differential equations. These new equations are solved

and the two solutions are shown to be in very good agreement.

The strength of this barrier is controlled by the spin-angular momentum

quantum number, l. The lowest value of l = 1
2
corresponds to two counter-

rotating shells, l = 3
2
corresponds to four counter-rotating shells, etc. The

Einstein-massless-Dirac system of PDEs is then solved for many values of l.

As l is increased, the scaling exponent, λ for the Type II solutions is shown

to decrease. The results suggest that there may in fact be a power-law scaling

relationship for the individual scaling exponents as a function of l, but further

study is required to ascertain this.

The final chapter describes a new two-dimensional, axisymmetric code

which uses a combination of harmonic coordinates and Chebyshev pseudospec-

tral collocation methods to solve Einstein’s equations. This evolution code is a

hybrid of finite-difference and spectral techniques— the temporal derivatives

are approximated by finite-difference operators while the spatial derivatives

are found using spectral methods. The constraint equations are solved using

a purely spectral nonlinear elliptic solver which uses the Newton-Kantorovich

method. Our constraint solver is successful in solving the Hamiltonian con-

straint at the initial time for our free evolution, but the evolution code is still

unstable. We are continuing work on this and hope to have positive results

shortly.
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Appendix A

Numerical Implementation

A.1 Computer implementation

We implemented the equations of motion discussed above in an RNPL

(Rapid Numerical Prototyping Language) program, which generated FOR-

TRAN 77 code to solve these equations. We also created FORTRAN “include”

files to manually update and initialize the geometric variables.

The presentation of the numerical implementation given here is for the

system described in Chapter 4. The other spherically symmetric systems con-

tained in this thesis use different equations of motion but the general frame-

work outlined below is the same.

A.1.1 Finite differences

To evolve the matter-field equations, we used iterative Crank-Nicholson

(CN) differencing. This is an explicit update scheme which is second-order

in both space and time. In this differencing scheme, the second-order time

difference is centered about a virtual grid point, tn+1/2, and the second-order

spatial difference is also centered about tn+1/2 via an averaging procedure.
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Hence, our discrete form for the matter field evolution equations is

ˆ(Rez1)
n+1

j − ˆ(Rez1)
n

j

∆t
=

ên+1
j + ênj

2

ˆ(Imz1)
n+1

j − ˆ(Imz1)
n

j

∆t
=

f̂n+1
j + f̂nj

2

ˆ(Rez2)
n+1

j − ˆ(Rez2)
n

j

∆t
=

ĝn+1
j + ĝnj

2

ˆ(Imz2)
n+1

j − ˆ(Imz2)
n

j

∆t
=

ĥn+1
j + ĥnj

2
,

(A.1)
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where

ênj ≡
√

α̂nj
ânj

(

1

2∆r

(√

α̂nj+1

ânj+1

ˆ(Imz2)
n

j+1 −
√

α̂nj−1

ânj−1

ˆ(Imz2)
n

j−1

))

+
α̂nj
rj

ˆ(Imz2)
n

j +mα̂nj
ˆ(Imz1)

n

j

f̂nj ≡ −
√

α̂nj
ânj

(

1

2∆r

(√

α̂nj+1

ânj+1

ˆ(Rez2)
n

j+1 −
√

α̂nj−1

ânj−1

ˆ(Rez2)
n

j−1

))

− α̂
n
j
rj

ˆ(Rez2)
n

j −mα̂nj
ˆ(Rez1)

n

j

ĝnj ≡ −
√

α̂nj
ânj

(

1

2∆r

(√

α̂nj+1

ânj+1

ˆ(Imz1)
n

j+1 −
√

α̂nj−1

ânj−1

ˆ(Imz1)
n

j−1

))

+
α̂nj
rj

ˆ(Imz1)
n

j −mα̂nj
ˆ(Imz2)

n

j

ĥnj ≡
√

α̂nj
ânj

(

1

2∆r

(√

α̂nj+1

ânj+1

ˆ(Rez1)
n

j+1 −
√

α̂nj−1

ânj−1

ˆ(Rez1)
n

j−1

))

− α̂
n
j
rj

ˆ(Rez1)
n

j +mα̂nj
ˆ(Rez2)

n

j

(A.2)
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(Here, ˆ(Rez1)
n

j is the finite-difference approximation for Rez1(rj, t
n).) The

boundary conditions applied to the matter variables zb (b = 1, 2) are given by

ˆ(zb)
n+1

1 = 0

ˆ(zb)
n+1

NR
− ˆ(zb)

n

NR

∆t
+

1

2

(

3 ˆ(zb)
n+1

NR
− 4 ˆ(zb)

n+1

NR−1
+ ˆ(zb)

n+1

NR−2

2∆r

+
3 ˆ(zb)

n

NR
− 4 ˆ(zb)

n

NR−1
+ ˆ(zb)

n

NR−2

2∆r

)

= 0,

(A.3)

where r1 = 0, and rNR = R is the maximum radius used in the simulation.

Forcing the matter variables to zero at the inner boundary is a consequence of

the regularity conditions (4.63). At the outer boundary, we have used second-

order backward differences in space and a second-order time difference centered

about tn+1/2, again by averaging the spatial differences at the two time levels

tn+1 and tn.

The Hamiltonian constraint was applied by requiring that ân+1
1 = 1, and

repeatedly applying the constraint equation (4.26) and solving for ân+1
j+1 using

Newton’s method. The derivative in r is implemented at each step using a

second-order forward difference in r, centered at rj+1/2. At the outer boundary,

we apply the flat-space condition α̂n+1
NR

= 1/ân+1
NR

. Then the slicing condition

(4.30) is applied using a second-order backward difference in r, centered at

rj−1/2, and solved explicitly for α̂n+1
j−1 . Also, when solving these equations, we

used the variable A ≡ ln a instead of a itself, to improve the accuracy of the

simulation.

We also implemented Kreiss-Oliger dissipation in the code, where the
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matter variables are subjected to the additional update

ˆ(zb)
n+1

j ≡ ˆ(zb)
n+1

j − ε

16

(

ˆ(zb)
n−1

j+2 − 4 ˆ(zb)
n−1

j+1 + 6 ˆ(zb)
n−1

j − 4 ˆ(zb)
n−1

j−1 + ˆ(zb)
n−1

j−2

)

.

(A.4)

This update is applied only for 3 < j < NR − 2, and no dissipation is applied

at or next to the boundaries. The parameter ε is set > 0 for dissipation and

< 1 for stability. For the data that we present here, we typically used ε = 0.5.
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