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This dissertation is primarily concerned with the numerical solution of Einstein-
fluid systems, focusing on extremely relativistic fluids at the threshold of black hole
formation in critical gravitational collapse.

A new computer code is presented for studying critical phenomena in spherical
symmetry. The perfect fluid obeys the ultrarelativistic state equation P = (I'—1)p,
where I' is a constant, 1 < I" < 2. The code, using Roe’s linearized Riemann solver,
is capable of simulating the extremely relativistic flows—Lorentz factors greater than
one thousand—encountered in critical collapse. The high performance is achieved
through a novel definition of the fluid variables, and care in calculating the fluid
variables.

The study of perfect fluid critical collapse is restricted to the ultrarelativistic
(“kinetic-energy-dominated”, “scale-free”) limit where black hole formation is an-
ticipated to turn on at infinitesimal black hole mass (Type II behavior). The critical
solutions are found by solving the system of ODEs which result from a self-similar

ansatz, and by solving the full Einstein-fluid PDEs in spherical symmetry. These
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latter PDE solutions extend the pioneering work of Evans and Coleman (I' = 4/3)
and verify that the continuously self-similar solutions previously found by Maison
and Hara et al. for 1.05 < T' < 1.89 are (locally) unique critical solutions. In ad-
dition, strong evidence is given that globally regular critical solutions do exist for
1.89 < T < 2, that the sonic point for T'y, ~ 1.8896244 is a degenerate node, and
that the sonic points for I' > I'q, are nodal points, rather than focal points as previ-
ously reported. Mass-scaling exponents for all of the critical solutions are calculated
by evolving near-critical initial data, with results which confirm and extend previous
calculations based on linear perturbation theory.

The final chapters describe a new two-dimensional perfect fluid code which uses
higher order Godunov methods. The fluid is coupled to a simplified—if unphysical—
scalar gravitational model. The code is tested by evolving a spherically symmetric,
static solution. The code’s capabilities for solving dynamic axisymmetric systems is

demonstrated by colliding two objects centered on the symmetry axis.
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Chapter 1

Introduction

One of the most surprising discoveries in general relativity, Albert Einstein’s theory
of gravitation, is the possibility of inexorable gravitational collapse. This type of
collapse can begin when a massive star—much heavier than our sun—exhausts its
fuel supply, and the nuclear reactions at the star’s center, which have hitherto
supported the star’s weight, come to a halt. The collapsed star leaves behind a
region of space called a black hole, where the gravitational force—or spacetime
curvature, in the language of general relativity—is so strong, that not even light can
escape. The collapse of a dying star is just one possible way to form a black hole;
a variety of circumstances can lead to black hole formation. Black holes can also
form in the collision of two stars, which individually are stable, but their combined
mass triggers the onset of collapse. This scenario is currently of interest because
this system will generate gravitational waves, which may soon be detectable here on
Earth.

Black holes are fascinating objects in and of themselves, and considerable re-
search has been devoted towards understanding their peculiar properties. Physics
near a black-hole can be counter-intuitive, and historically, some early, insight-
ful questions have proven crucial in guiding productive lines of inquiry. Recently,

intriguing behavior was discovered in gravitational collapse near the threshold for



black hole formation, and this discovery was prompted by such a question. Demetrios
Christodoulou [38, 39, 40, 41] studied a massless, spherically symmetric, scalar field
in general relativity. Beginning with an arbitrary configuration of a scalar field at
an initial time, Christodoulou was able to prove that at late times, the scalar field
either dispersed to infinity, or was trapped in a black hole. However, his work could
not address specific questions about the black hole’s formation, and particularly, it
could not answer whether a black hole needed some minimum mass before it could
form, or rather a black hole could be as small as desired. Christodoulou posed the
question to Matthew Choptuik: Does a black hole have a minimum, finite mass, or
can it have an infinitesimal mass? In answering this question, Choptuik discovered
rich, generic behavior in gravitational collapse, and initiated an exciting subfield in
numerical relativity. (This critical phenomena is not unique to general relativity,
but appears in a variety of physical models, independent of gravitation.)

To answer Christodoulou’s question, Choptuik studied the Einstein/scalar-field
system using the full set of partial differential equations. Using careful numerical
analysis, he created families of initial data characterized by a single parameter, p,
and then solved the Einstein/scalar-field equations to determine the future state of
the scalar field. By varying the p in a bisection search, Choptuik found a solution
that exists precisely on the verge of black-hole formation. This solution, called the
critical solution, is inherently unstable—the smallest deviation in p leads either to
the formation of a black hole, or the dispersal of the field to infinity. While these
solutions most likely play no role in our universe—the chances of encountering a
critical solution in nature are akin to the odds of finding a pencil perfectly balanced
on its point—these solutions display unique behavior, including scale-invariance,
scaling, and universality, which make them especially interesting. Here we briefly
discuss these properties of critical solutions; a more complete discussion is given in

Chapter 5.



The critical solution is universal, meaning that it is independent of the ini-
tial scalar field configuration. The careful tuning of any initial data family always
produces the same critical solution. This characteristic of critical solutions is now
understood in light of the critical solution’s stability properties, as shown by studies
using perturbation theory. The critical solutions have a single unstable mode, which
can be suppressed by carefully tuning the initial data, making them the most stable
members of naturally unstable solutions.

During the collapse, as one examines smaller and smaller scales in both time
and space, the spacetime and matter fields do not appear to change. Thus, critical
solutions display an additional symmetry, scale-invariance, that is not observed in
generical collapse. As the solution becomes smaller and smaller, relative to a fiducial
scale, the curvature of spacetime increases until a singularity appears when the
solution reaches the origin. As an event horizon, the signature of a black hole, has not
formed, this uncovered singularity is “naked.” At a naked singularity the predictive
power of general relativity breaks down, a consequence counter to some of our
most fundamental-—and cherished—notions regarding predictability and causality
in physics. The Cosmic Censorship Conjecture posits that a naked singularity can
not generically be created, and thus far, this conjecture continues to hold.

When black holes form as the end result of near-critical initial data, their masses
are well described by a simple scaling law. This law is also a direct consequence of
the critical solutions single unstable mode, and the scaling behavior can be predicted
by doing a perturbation analysis of the critical solutions.

The majority of this dissertation examines the critical behavior of a general
relativistic perfect fluid. The perfect fluid is one of the most studied models for
matter in general relativity, with wide application to astrophysical systems. The
study of perfect fluid critical phenomena began with the pioneering work of Evans

and Coleman [52], who found the critical solution for the radiation fluid with the



equation of state P = % p. Additional insights came from subsequent work by Maison
and Koike, Hara, and Adachi with the more general equation of state, P = (I'—1)p,
where I' is a constant. Maison and Koike et al. used the scale-invariance property to
construct solutions for I' < 1.89, and used perturbation theory to verify that they
had a single unstable mode (in spherical symmetry), and thus predicted the scaling
behavior of the black hole masses. The work here traces the approach of Evans
and Coleman in a study of critical phenomena in spherical symmetry. I develop a
new, robust computer code to solve the full Einstein-fluid equations and directly
study the dynamically constructed critical solutions, verifying that the solutions for
I’ < 1.89 discovered by Maison and Koike et al. are the critical solutions, i.e., they
exist at the threshold of black hole formation, as well as finding the critical solutions
for 1.89 ST < 2. The scale-invariance property is then used to generate all of these
solutions analytically.

The second part of the dissertation moves beyond spherical symmetry, and
begins the first steps towards multi-dimensional problems. Although most studies
of critical phenomena focus on the spherically symmetric problem, studies of ax-
isymmetric critical solutions from a perturbation stand point have begun. Here a
new computer code for relativistic fluids in two-dimensions is presented. This code
is designed to solve the fluid equations for an arbitrary spacetime, although cur-
rently only static spacetimes are possible. The code is demonstrated using a simple
gravitational model called scalar gravity, where the gravitational force is given by
the four-gradient of a scalar field, which obeys a nonlinear wave equation. While
this theory is not physical, failing the classical tests of general relativity, it provides
a simple means to incorporate gravitation into our fluid code. While this work is
really in its infancy, this dissertation concludes with a proof-of-principle, showing
the evolution of a two-body collision in cylindrical coordinates.

The journey begins in Chapter 2, where the Einstein equations and perfect



fluid equations of motion are written in a form compatible with numerical work.
The presentation here is general, allowing for easy extension to the two-dimensional
work that comprises the second part of this dissertation. This chapter also presents
the equations of state used herein, and discusses the link between irrotational fluids
and scalar fields.

Relativistic fluids are notoriously difficult to simulate numerically. While strong
shocks and relativistic velocities often cause numerical methods to fail, methods
based on Godunov’s original work have proven especially reliable. Chapter 3 in-
troduces these numerical methods, and further discusses techniques adapted for
ultrarelativistic velocities. Some of the more mundane details, such as boundary
conditions, are also discussed here.

After two chapters of generalities, we finally get down to cases, and discuss
a robust code for spherically symmetric, fully relativistic fluids. This code was
designed to study perfect fluid critical solutions, especially as I' — 2, and these
physical results are presented in the following chapter. A change of computational
variables is advantageous in spherical symmetry, and this chapter provides all rele-
vant information for implementing this code. Extensive tests of this code are also
presented, including a demonstration of convergence in the strong-field regime.

Chapter five presents our extensive study of perfect fluid critical solutions.
The chapter begins with an introduction to perfect fluid critical phenomena, more
complete and technical than given above. The scale-invariant symmetry is used to
reduce the Einstein-fluid equations to a set of ordinary differential equations, which
are then solved numerically for the critical solution. The solutions for I' > 1.89
are of primary interest, and can be found using very careful numerical analysis.
Exploiting the arbitrary-precision capabilities of Maple V, a computer program for
symbolic manipulation, we thoroughly investigate the solutions near I ~ 1.89, and

find that the sonic point is a degenerate node for I'q, ~ 1.8896244, rather than a



focal point as previously reported. Using the code described in the previous chapter,
we examine the perfect fluid critical solutions for the full range of I', 1.05 < T' < 2. In
addition to confirming the expected picture for 1.05 < TI' < 1.889, we present further
evidence that one-mode unstable CSS solutions exist in the regime I' 2 1.89, up to
and including, the limiting case I' = 2, and use the code to compute mass scaling
exponents in the regime 1.89 <T' < 2.

Chapter 6 briefly introduces the two-dimensional fluid code. While this code is
still being developed, preliminary results indicate that this code can accurately solve
the relativistic fluid equations for dynamic systems. Some shock tube tests are given,
followed by some comments on axisymmetric systems in cylindrical coordinates.

The scalar gravity model is the topic of Chapter 7. Scalar gravity was originally
a gravitational model for dust, and here the extension to perfect fluids is presented.
The coupling of the scalar field to the perfect fluid presents immediate physical
problems for I' > 4/3, and therefore attention is restricted to I' = 4/3. We then test
our axisymmetric fluid code coupled to scalar gravity by evolving a static, spherically
symmetric “star.” The chapter closes with a demonstration of the axisymmetric
code by colliding two spherically symmetric objects centered on the R = 0 axis.

Concluding remarks, and directions for future research are briefly discussed in

Chapter 8.

1.1 Conventions and notation
Here we summarize the conventions and notation used in this dissertation:
e The metric has the signature (— + ++).
e The sign conventions of Misner, Thorne, and Wheeler [95] are used throughout.

e Geometric units are used throughout: G =1 and ¢ = 1. However, G is shown

explicitly in some of the scalar gravity equations.



Boldface sans serif letters are tensors (including four-vectors), e.g., T, g, u.
Spatial three-vectors are written in bold italic with an arrow, e.g., B, ¥.
Boldface Latin letters represent state vectors, e.g., q, f.

The Einstein summation convention is implied by repeated upper and lower
indices. Summations in non-tensor equations, e.g., numerical methods, are

sometimes shown explicitly for clarity.

Greek indices (a,3,7, etc.) take the values 0, 1, 2, 3.

Latin indices (a, b, c, etc.) take the values 1, 2, 3.

The canonical spherical coordinate labels (¢, r, 8, ¢) do not sum as indices.
The canonical cylindrical coordinate labels (¢, R, z, #) do not sum as indices.
Partial differentiation is indicated by 9, i.e. 9, f = df /0.

A colon (:) symbolizes a double contraction, e.g., A: B = A* By,

V is the covariant derivative operator compatible with the metric, V,gs, = 0.

Square brackets in indices denote the anti-symmetrization operation

1

5 (Taﬂ - Tﬂa) .

Tiap) =



Chapter 2

Theoretical Foundation

Einstein’s theory of relativity is a geometric theory of gravitation, wherein the famil-
iar gravitational forces of Newtonian mechanics are explained as the local curvature
of spacetime. Since geometry is at the heart of relativity, it comes as no surprise
that the theory is most elegantly expressed covariantly in terms of geometric ob-
jects, in this case tensors, which are generalizations of the familiar vectors. To study
a particular system, however, the covariant formulation must be abandoned for a
coordinate-dependent form. The Cauchy problem for general relativity is of partic-
ular concern to the numericist. Here initial data are given on a hypersurface, and
one solves for the subsequent evolution of the system. The Einstein equations do
not naturally lend themselves to solving the Cauchy problem, which inherently re-
quires a separation of “space” and “time.” Arnowitt, Deser, and Misner [4] (ADM)
introduced a formulation of general relativity for solving the Cauchy problem, which
is used in the numerical work presented here. This chapter introduces the perfect
fluid, and writes the equations of motion for the general ADM metric. Four state
equations are briefly presented, followed by a discussion of two exact solutions im-
portant for testing numerical codes. A discussion of a link between perfect fluids

and massless scalar fields closes the chapter.



2.1 Geometry

Einstein’s theory of general relativity unfolds on a manifold, M, which is endowed
with a metric, g. The Einstein equations couple the spacetime geometry, encoded
in the Finstein tensor, G, to the stress-energy tensor, T, associated with the energy

(matter and fields) content of the spacetime:

G =238rT. (2.1)
In addition, the Einstein tensor also satisfies the contracted Bianchi identities

V-G=0, (2.2)
which further require that

V.-T=0. (2.3)

This latter equation gives the equations of motion for the matter, and also represents
the local conservation of energy and momentum.

The Einstein equations (2.1) are ten coupled, second order partial differen-
tial equations for the metric components g,,,. However, these equations are not all
independent because their solution must also satisfy the contracted Bianchi identi-

ties (2.2), which in explicit index notation are
G = —;G™ —TH\,G™ —T",,G". (2.4)

The Einstein tensor, G, contains second order derivatives of g. The right-hand
side of (2.4), therefore, contains only time derivatives of highest order 2, and G

therefore can contain only first order time derivatives. The equations
Gou = 81Ty, (2.5)
therefore comprise four constraint equations. The remaining equations,

G;j = 8nT5j, (2.6)



are six dynamical equations. This mixture of constraint and evolution equations
arises from the covariant formulation of general relativity, which contains four co-
ordinate degrees of freedom.

The Cauchy problem in general relativity consists of setting initial data on a
hypersurface at an initial time, and then evolving the data forward in time with the
Einstein equations. The initial value problem of interest here is where the initial
data are specified on a space-like hypersurface. The ADM formulation of Einstein’s
equations is suited for solving this problem.

Arnowitt, Deser and Misner [4] introduced their 341 decomposition of space-
time in 1962. Several good introductions to this formulation of general relativity
exist—see especially York [137], Choptuik [31], and Evans [50]—and here only a
heuristic description is given. The ADM formalism slices the spacetime M into a
sequence of space-like hypersurfaces, 3;, parameterized by a global time function ¢.
n is the future-directed time-like vector field normal to ¥, providing a “connection”
from one hypersurface to another. The metric g induces a spatial metric, 4, on 3

with components v;; given by

Yij = Gij + i ng. (2.7)
The mixed form of « defines a projection tensor

1H, =6, 4+ ntn,, (2.8)

which projects tensors onto ¥;. In particular, a covariant derivative on the hyper-

surface is
D;=1;"V,. (2.9)

This covariant derivative operator, D;, is compatible with the submetric «, in the

sense that
Divjr = 0. (2.10)
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t + dt

t

Figure 2.1: A schematic diagram of two hypersurfaces in the ADM formulation of general
relativity showing the lapse and shift.

The spacetime description is completed by uniquely specifying how the slices are
connected together. The connection is enabled by defining a lapse function, «, and
a shift vector field, 3 (see Figure 2.1). The lapse gives the proper time between slices
3; and X, 4; for observers moving normal to the slices. The shift describes how the
coordinates 2’ change from hypersurface to hypersurface. The general metric can

then be written
ds® = —a?dt? + Vij (dxi + dt) (dfl?j + B dt) . (2.11)

The first term is the proper time between ¥; and 3, 4;, and the second term gives the
proper distance for a displacement within . For future reference, the determinants

of g, and ;; are
g=detg (2.12)
v = det ;5. (2.13)
The determinants are related by

V=4 = a7 (2.14)
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The curvature of each individual hypersurface can be specified by calculating
the Riemann or Ricci tensors of the intrinsic metric v;;. The spacetime curvature
which describes the embedding of each 3; in the spacetime M is given by the eztrinsic

curvature tensor,
Kz'j = Kji = —ani. (215)

It can be shown that Kj; is the time derivative of the spatial metric components

1
Kij = —§£"%’j. (2.16)

The geometric equations in the 341 formalism are found by projecting the
Einstein equations along n and onto the hypersurface ;. As a full description is

not given here, we simply define the following projections of T

papm = nyun, THY, (2.17)
GH = —1H T, (2.18)
SHY = L\ 1V TV, (2.19)

The first geometric equation is the Hamiltonian constraint

SR~ K';K’; + K? = 16mpapm, (2.20)
where 3R is the trace of the three-dimensional Ricci tensor, 3Rz~j, calculated from ~

3R =;;*RY, (2.21)
and K is the trace of the extrinsic curvature tensor

K =g;; KY. (2.22)
The momentum constraint is

DK — D;K = 87j; (2.23)
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The evolution equations are

amj = —QOzKij + £,Bgij’ (2.24)

BtKij = —DiDjOz + « [Rz] + KKZ] — QKZ‘mej] + £ﬁKz]

—a |Sij — %gz‘j(S — pADM) | » (2.25)
where
£g9i; = Difj+ D;p (2.26)
= B 0kgij + grj0iB* + gin0;8", (2.27)
£aKij = " 0nKij + KmjOif™ + Kim0;3%. (2.28)

The metric (2.11) is often written
ds? = — (@® — B;8") dt* + 2; dt da’ + ;5 da’ da?. (2.29)
The overdetermined nature of the the Einstein equations allows some freedom
in solving the system. One may choose to update (or evolve) one or more of the
geometric variables v;;, K;; using some of the constraints (2.20)-(2.23), instead
of the evolution equations, (2.24)—(2.25). This is called a constrained evolution.
However, numerical methods for solving hyperbolic equations are generally simpler
and faster than those for elliptic equations, and often only the evolution equations
are used to solve the system. In this free evolution, the initial data is chosen to
satisfy the constraints, then the contracted Bianchi identities guarantee that the

constraints are satisfied throughout an evolution

Vo (G% —T%) = —v, (G —T"). (2.30)
Historically, some authors (e.g., [104], [125]) claimed that numerical solutions ob-
tained from a free evolution were incompatible with the constraints. However, Chop-
tuik [28] later demonstrated the consistency of the solutions using convergence prop-

erty of numerical solutions. (See Section 3.1.2 for a brief discussion of convergence

of numerical solutions.)
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2.2 The perfect fluid

A fluid is a continuum model for a large number of particles that uses the macro-
scopic properties of a thermodynamic system, such as internal energy and pressure,
as fundamental dynamical variables. For introductions to relativistic fluids, see the
treatments by Landau [77], Landau and Lifshitz [78], Lichnerowicz [82], Taub [128],
Chorin and Marsden [37], and Anile [3]. A perfect fluid has no shear stresses or

dissipative forces, and has a stress-energy tensor
T=(p+Plu®u+ Pg, (2.31)

where p is the energy density, P is the pressure, u is the fluid’s four-velocity, and
g is the spacetime metric. (All scalar quantities are evaluated in the fluid’s rest

frame.) The four-velocity satisfies

u-u=-—1. (2.32)
The energy density p contains all contributions to the total energy, which for a
perfect fluid include the rest mass energy density, p,, and the internal energy density,
giving

P = Po+ poe, (2.33)
where € is the specific internal energy. The fluid’s enthalpy is

w=p+ P, (2.34)
and the specific enthalpy is

h=14e+Z. (2.35)

Po

We characterize the constituent particles of the fluid by the the number density, 7,
and consider only simple, one-component fluids with particles of equal rest mass,

m. The rest energy density is then simply

Po = mn, (2.36)
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and the fluid’s four-current vector is defined by
J = pou. (2.37)

The fluid equations of motion are derived from the conservation of the stress-

energy
V-T=0. (2.38)

The standard derivation of the fluid equations projects V - T = 0 along the fluid’s
four velocity, u, and onto the plane perpendicular to u. The former yields the

“energy equation”

u-(V-T)=0, (2.39)
or

utVup+ (p+ P)V,ut = 0. (2.40)
Defining a tensor to project onto the hypersurface perpendicular to u

h=g+u®u, (2.41)
the Fuler equations are

h-(V-T)=0. (2.42)
After simplifications using (2.40), these become

(p+ P)utV, u” + W'V, ,P = 0. (2.43)

If the fluid is subject to a particle-number conservation law, e.g., conservation of

baryon number, then the fluid is also subject to the continuity equation

V- (nu) =0. (2.44)
For our fluid systems then, the continuity equation is just

vV-J=0. (2.45)
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The perfect fluid must also satisfy the first law of thermodynamics,
1
Tds =de+ Pd (—) , (2.46)
Po
where s is the specific entropy, and here T is the temperature. Combining the first

law of thermodynamics with the fluid equations of motion gives
u-Vs=0, (2.47)

and thus the perfect fluid is adiabatic. To these fluid equations (2.40), (2.43), and
(2.45), one must adjoin an equation of state, P = P(p,,s), which, must also be
consistent with the first law of thermodynamics.

Finally, as presented here, the fluid equations are derived as a set of partial
differential equations. The more fundamental derivation, however, follows from con-
servation laws expressed with integral equations. A simple example of using integral
equations to express a conservation law is given in Section 3.2. The transformation
to the differential form carries the added assumption of differentiability. This ad-
ditional assumption is not always satisfied, as shocks, which are discontinuities in
the fluid variables, form generically in fluid systems. While shocks are legitimate
solutions of the fundamental (integral) fluid equations, they are manifestly not so-
lutions of the differential equations. Thus the concept of a weak solution has been
developed, for the formal study of discontinuous solutions. A complete discussion
of weak solutions will not be given here, and we note simply that the inclusion of
weak solutions can add some ambiguity in determining which weak solutions of the
differential equations are physical. The unique physical solution can be found, how-
ever, by identifying the solution with the largest entropy. This point will become
important in the discussion of approximate methods for solving some fluid problems
(see Section 3.5), which can produce unphysical results. When using approximate
methods to calculate a numerical solution, unphysical solutions can be prevented by

adding a small amount of numerical dissipation, effectively adding “entropy,” Such
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techniques for adding dissipation are therefore known as “entropy fixes.” Further
information on weak solutions in fluid dynamics can be found in [37, 79], among

other places.

2.3 The classical (Newtonian) perfect fluid equations

After introducing the relativistic fluid in Section 2.2, it is instructive to review the
corresponding equations for the classical perfect (inviscid) fluid. The classical fluid
is completely described by standard Newtonian mechanics. The fluid equations are
derived from the conservation of particle number, energy, and momentum, and just
as the relativistic equations, they rightfully are integral equations. With the addi-
tional assumption of differentiability, the equations can be written in the customary
differential form. The full derivation of the equations lies outside the focus of this
dissertation, thus the equations are simply presented here.

Let p, be the fluid rest-energy density as before, and let 4 be the fluid’s (classi-
cal) three velocity. The conservation of momentum gives the Euler equation, which
is

P+V-(B8)=—VP+pofn, (classical) (2.48)

|

where P is the classical momentum density
B = po, (2.49)

and fy is the force per unit mass exerted on the fluid by an external object. When
(Newtonian) gravity is the only external force, then fy = §, where g is the acceler-

ation of gravity. The term V. (p ¥) is expanded as
V- (B8)=p-Vi+3V-p. (2.50)
Energy conservation gives the energy equation

0 Enx+V - [(Ex +P)%] = po (fN -’TJ’) ; (classical) (2.51)
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where E is the classical energy density
1 . .
En = poe+ Epov . 9. (2.52)
The continuity is
O po+ V - (po®) = 0. (classical) (2.53)

These Euler and energy equations are often simplified by combining them with

the continuity equation. The Euler equation then becomes
Po0s T+ pot - Vi =—VP+ Pofns (classical) (2.54)
and the energy equation is now

podie+3-Ve=—PV-%. (classical) (2.55)

2.4 Equations of state

The equation of state closes the fluid equations by providing a relationship between
the pressure and (in our case) the rest energy density and internal energy. The
nature of this relationship provides much of the physics for a given system. This
section presents four equations of state, of which the first two—the relativistic ideal
gas and ultrarelativistic equations of state—are the most important for the work

presented in this dissertation.

2.4.1 Relativistic ideal gas

Perhaps the best known, and most widely used equation of state is the ideal gas law
kg

P="B,T (2.56)
m

where kp is the Boltzmann constant. Chandrasekhar [27] and Synge [126] studied

the relativistic extension of this equation of state for a non-degenerate, monatomic
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gas. The relativistic equation of state can be written in the same form as its classical

counterpart
P = (T —1)poe, (2.57)

however, here I' is not the ratio of specific heats, but is a function of the fluid
variables,

=1+ i (2.58)
A detailed analysis shows that the physically acceptable range of I'is 4/3 <T < 5/3,
with T" = 5/3 corresponding to non-relativistic flow and I" = 4/3 corresponding to
ultrarelativistic flow (see also [117]). However, in the remainder of this work, we

treat I' simply as a constant satisfying 1 < T' < 2.

The speed of sound in the relativistic ideal gas is

, _ dP

= — 2.
S dp S? ( 59)

C

where s is the entropy per particle. In terms of p, and ¢, the sound speed is [3]

1

2
I - 2.
g hx+ pghK (2.60)
where
oP
= 2.61
X= 5000 (2.61)
and
Oe oo

An important subclass of fluid solutions are those with constant entropy, or

isentropic flows. The first law of thermodynamics for isentropic flow,

1
Tds = de+ Pd (,0_) =0, (2.63)
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combined with the state equation gives
1 P
—dP =T—dp,. (2.64)
Po Po

This can be integrated to obtain the familiar relation
P = k(s)pl,. (2.65)

Note that k appears here as an integration constant owing to the isentropic assump-
tion. In general, however, k is a function of the entropy, as is explicitly indicated
by the notation k(s) in (2.65). It is well known that shocks compressively heat the
fluid entering the shock front, causing an entropy jump across shocks. Thus the the
isentropic formulation (2.65) should never be used in place of (2.57) in numerical

work, unless one can self-consistently require the fluid to be isentropic.

2.4.2 Ultrarelativistic equation of state

A barotropic equation of state has the form
P = P(p), (2.66)

i.e., P is a function only of p. The evolution of a barotropic fluid is completely
determined by V - T = 0, because knowledge of p,, normally evolved using the
continuity equation, is not required. A simple example of a barotropic equation of

state is
P=(T—1)p, (2.67)

where I' is a constant. Weinberg [135] lists some examples of physical systems in
thermodynamic equilibrium where this state equation (with I" = 4/3) is applicable.
These include: a photon gas, massless neutrinos, and ultrarelativistic e —e™ pairs.
Heuristically, one can motivate this equation of state as the ultrarelativistic limit of

the ideal gas equation of state as follows. In the ultrarelativistic limit, the kinetic
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energy of the constituent particles of the fluid (or internal energy of the fluid in

a thermodynamic context) is much larger than the mass energy, poe > p,, giving

p = poe. Thus, we expect (2.67) to arise naturally in the ultrarelativistic limit.
The sound speed for this state equation is a constant

o dP

=—=T-1 2.
S dp ? ( 68)

C

independent of density, a fact that makes this equation of state important for the
consideration of perfect fluid critical solutions [51]. This point is discussed further
in Chapter 5. Causality requires that I' < 2, and I' = 1 gives a pressureless fluid

(dust). As in the relativistic ideal-gas case, we require 1 < I" < 2 in the work below.

2.4.3 Cold nuclear matter equation of state

In white dwarfs, the atomic nuclei and electrons can be modeled as separate gases
in thermodynamic equilibrium [117, 116]. The nuclei provide essentially all of the
star’s gravitational mass, while the degeneracy pressure of the electrons provides
the pressure against collapse. The relation between the pressure and density for the

entire star can be written
P=kp. (2.69)

Again, a complete analysis shows that the physically meaningful range of I' is
4/3 < T < 5/3, with ' = 5/3, 4/3 corresponding to the non-relativistic limit,

ultrarelativistic limit, respectively [117].

2.4.4 A simple nuclear equation of state

Gravitational collapse is a natural phenomenon to study in general relativity, and
astrophysically relevant work requires a realistic nuclear equation of state. Such
state equations are very complicated, and are frequently given in tabular form. (For

a brief description of several realistic nuclear equations of state, see Nozawa et al. [99]
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and references therein.) As a simple example of an approximate equation of state
for nuclear matter, consider the state equation introduced by Van Ripper [133, 134].

This equation of state is written in Gamma-law form
P = (T —1)poe, (2.70)
where I', to a first approximation, varies only as a function of p,

[ = Twin + n(log po — log pp)- (2.71)

Here n = 0 if p < pp, and n > 0 otherwise. p, is the density at which the core
of a collapsing star begins to rebound. I'min < 4/3, and I’ has an upper bound
of T'max > 4/3. This equation of state has not been used in the numerical work
presented here, however our future plans include the incorporation of this equation

of state, in order to generate more realistic models.

2.5 Derivation of equations

The fluid equations were written in their “standard” form in (2.40) and (2.43). As
with the Einstein equations, the fluid equations must be cast into a form which
allows a numerical solution. As discussed in chapter 3, we use numerical methods
designed for conservation laws. The fluid equations are naturally in conservative
form, V- T = 0, and the quantities 7% are the natural computational variables,
rather than the more familiar p and u. This section derives the fluid equations of

motion for the ADM line element,

ds? = — (a2 - Biﬁi) dt? + 26; dt d=* + Yij dz' da?, (2.72)
following closely the derivation of Banyuls et al. [7]. From the definition of o and
e

O = an + 3°0;. (2.73)
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Eulerian observers [138] are the observers at rest in ¥;, having a n as their four-

velocity. These observers measure the fluid velocity to be

1

u
i = 2.74
b=t (274
with contravariant components, v/ = y"v;, given by
i_ Ll 2.75
YT ol + a (2.75)
The Lorentz factor is the contraction —u - n appearing in (2.74),
W = au®, (2.76)
which satisfies
2 ].
W= = . (2.77)
1 — 0t
The coordinate basis,
e(u) = {n, 8j}, (2.78)

is adapted to the Eulerian observers. Here (i) is an index which labels the individual

basis vectors, not the components of a single vector. The basis vector components
are

ey = —®op, (2.79)
G = Gip = (Bj>Vjk)- (2.80)
We now define conservation variables as follows:
D =-J(n) =—n,J", (2.81)
Sj = —T(n,e;)) = —nue), T, (2.82)
E=T(n,n) =n,n,T". (2.83)
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In relativistic fluid dynamics the rest-mass density is often subtracted from the total
energy, E, so that the relativistic energy equation reduces in the non-relativistic
limit to the Newtonian expression (2.52). It is therefore convenient to define the

conservation variable 7 to be the difference
T=FE—-D. (2.84)

These variables—D, S;, E, and 7—are the locally conserved quantities, and as
such, allow the fluid equations of motion to be written in conservative form, a pre-
requisite for the high-resolution shock-capturing numerical methods we employ (see
chapter 3). In contrast to the conservative variables, the more familiar quantities
Pos P, P, and the four-velocity, u, are called the primitive variables.

The definitions of the conservation variables, given above in equations (2.81)-

(2.84), are used to express them in terms of the primitive variables

D = p,W, (2.85)
S; = (p+ P)W?v;, (2.86)
E=(p+P)W?-P, (2.87)
7= (p+P)W? - P—D, (2.88)

and the components of T required in deriving the fluid equations are

1 1
7% = = [(p+P)W?—P] = —B (2.89)
1 . i .
T = ~(p+ P)W? (v’ - %) + g% P, (2.90)
1 1
TOZ' = a(p—l— P)WZ’UZ' = ESi’ (2.91)

T'; = (p+ P)W? (v" - E) vj = 58; (vi - E) . (2.92)



Consider now the divergence of the vector T(e(,),)
V-T(en),")=(V-T) e, +T:Vey, (2.93)
or in index notation
Vi (T"ery) = (VT ) ey + TH'V ye ) (2.94)

The first term on the right-hand side is zero by virtue of conservation of T, V-T = 0,

and (2.93) becomes
V- T(e(v), ) =T: Ve(v). (2.95)

From this equation we can express the fluid equations of motion in a form suitable
for computational work. The source term on the right-hand side of (2.95) can be
explicitly rewritten in terms of ordinary derivatives and Christoffel symbols as

Oty 1o
Vel = a—;# — T €5 (2.96)

The energy equation is derived by choosing e(,y in (2.95) to be the time-like

basis vector e(q)

V(T e(0y) = T (Bueroy, — T ueqoys ) - (2.97)
Using
e(0)y = —adoy, (2.98)
\/__g — a\/_, (2.99)
and
1
T, = ——8,u/—9, 2.100
Iz =5 ( )
the energy equation can then be written
1 ;B
— E+0; |v/—g(E+P)|v'——
A aviesaleEsn (- 5)l)
=a (T"9,Ina —T°,,T"). (2.101)
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Similarly, the Euler equations are derived by letting e, in (2.95) be one of the three

space-like basis vectors, e
VT egy) = T4 (uey = Tupeqys) - (2.102)

From (2.80), this becomes

1 14 v
\/T—gau [V=9T"g;,] = (f’ugju - Févugjé) ™, (2.103)
and after some simplification, we have
1 % v
N (007 Sj + /=g T";] = (augjv - T'suugjé) . (2.104)
The fluid four-current, J, has the components
o 1 1
J' = —p,W = =D, (2.105)
e Q@
J = p,W (vi — 5—) =D (zﬂ' - %) , (2.106)
Q@
so the continuity equation becomes
1
\/T_gaﬂ (V=g J") =0. (2.107)
Using (2.105) and (2.106) this becomes
1 — i P

In summary, the fluid equations of motion in the context of the ADM 3+1
formalism are: the energy equation (2.101), the Euler equations (2.104), and the
continuity equation (2.108). To simplify the presentation we now introduce a “state-

vector” notation. Let q be the state vector of conservative variables

a=1|s; |. (2.109)
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The fluid equations of motion can then be written in the compact notation
1
v—4g

where the flux vectors are

i D(vi—g) ]
«@

S; <vi — —) + P&y |, (2.111)
(6]

T (Ui - ﬁ—) + Pv
L e

and the source vector is

[0/ a + 0v/=g '] = %(a), (2.110)

f’i

0
s=| 7™ (aﬂguj - Péyﬂg(;j) . (2.112)
o (T“Oﬁu Ina — T’“’I‘O,,u)

Finally, we define a state vector of primitive variables

Po
w=| i |. (2.113)

2.6 Solving for the primitive variables

The conservative form of the fluid equations (2.110) are evolution equations for the
conservative variables, e.g., D, S}, and 7. However, the flux and source terms in the
equations often must be formulated in terms of the primitive variables, p,, vj, and P.
As the fluid equations contain both sets of variables, we must be able to find one set
of variables from the other. The conservation variables are easily found from their
definitions, such as equations (2.85)-(2.88). Computing the primitive variables from
the conservative variables is more problematic; generally requiring the solution of a
transcendental equation. This section presents straight-forward methods for finding

the primitive variables for both the ultrarelativistic and ideal-gas equations of state.
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In Section 3.9 we discuss improved algorithms optimized for extremely relativistic

fluids.

2.6.1 Ultrarelativistic equation of state

The transformation to primitive variables for the ultrarelativistic equation of state is
simpler than might be expected, and one can solve for P algebraically. The Lorentz
factor squared is

1
| p—— 2.114
1 — o0t ( )

and the velocity is given by

= (2.115)
Vi =g TP .
Inserting this into the definition of F (2.87),
E=(p+PW?*-P, (2.116)
one can derive
(E4+P)?—(p+P)E+P)—S8;5=0. (2.117)
p is a simple function of P for this barotropic equation of state
P=(T-1)p. (2.118)
This leaves a quadratic equation for P, with the solution
P=—28E + [462E> + (T — 1)(E2 — S;5")]"/*, (2.119)
where 3 is a positive constant given by
1
=lo-m). (2120)

The specific root of the quadratic equation is chosen by requiring a physical pressure,

P > 0. This demand (P > 0) further requires that E > S;S*. A second physical
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requirement is that the fluid velocity be bounded by the speed of light, |v| < 1, where
[v] = (vivi)l/ ? and from (2.115) this will clearly be automatically satisfied when
E > S'S;. These physical restrictions on the primitive variables can sometimes be
violated in numerical solutions of the fluid equations. Some numerical techniques

aimed at ameliorating such difficulties are discussed in Section 3.9.

2.6.2 Ideal gas equation of state

Finding the primitive variables for the ideal-gas equation of state is significantly
more complicated than the ultrarelativistic case just discussed, as here we must

solve a transcendental equation. The important relations are the equation of state,
P = (T —1)poe, (2.121)

the definitions of the conservation variables

D = p,W, (2.122)
S; = (p + P)W?y;, (2.123)
7= (p+P)W?—-P—D, (2.124)

and the definition of the total energy

P = Potpot (2125)

— o+ (2.126)

1
where we have used the equation of state to arrive at the last expression. There is
some freedom in obtaining the primitive variables from the conservation variables,
q. A common approach is to express p, and v; as functions of q and P, and then
solve the remaining transcendental equation for the pressure [93, 89]. This approach

is sketched below.
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Assume a solution for P, then the velocity can be found from

Si
P = 5 2.127
YT IYP+D (2127)
and the Lorentz factor is
+ D + P)?
w2p) = T N 2.128
() (T+D+P)2_SZ.S'L ( )
Po is then
D
i 2.129
Po= 3y (2.129)
Finally, the pressure itself is to be computed from the definition of 7
P 2
P = po‘f‘m W¢—7—-D (2130)
PW?

The fluid must also the obey physical restrictions, P > 0, and |[v] < 1. From
(2.127), a lower bound on the pressure, Pyin, necessary for a subluminal velocity

can be found

1/2

Poin = (8:8") 7" =7 - D. (2.132)

Again, for highly relativistic flows this algorithm should be modified, as discussed
in Section 3.9.3. These equations must be solved at every grid point for each step
in the algorithm, and for our two-step integration scheme (see Section 3.7), they
must be solved twice per time step. This transformation therefore requires a signif-
icant proportion of a code’s total running time, an additional expense required in
the solution of the relativistic fluid equations which the classical (Newtonian) fluid

equations do not require.
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2.7 Spectral decomposition

By introducing the variables q = (D, S;,7)?, the relativistic fluid equations were
written in conservation form (2.110)
1
V=9

The flux and source vectors, f/ and ¥, respectively, were defined previously by

[0/ a + 9/ 5t] = 2(a). (2.133)

equations (2.111) and (2.112). The numerical method used to integrate (2.133)
employs Roe’s approximate Riemann solver (see chapter 3). Roe’s method solves a
linearized set of equations, and requires the spectral decomposition of the Jacobian
matrix flux vector,

B’ = g—z, (2.134)
which we present here. We denote the eigenvalues of B by A, and the eigenvectors by
r. These eigenvalues and eigenvectors for the relativistic ideal gas were first derived
by Banyuls et al. [7], and later corrected by Miller [55, 72].

Let the three spatial directions be labeled by the indices z, y, and z. Previously

we defined (2.62)

oP
= 2.135
K=o (2.135)
Po
and here we additionally define
K
kE=—, 2.136
- (2.136)
and
i 1 i
Ay =— (A+5). (2.137)

Three of the eigenvalues of B* are degenerate, and following the notation of [7],

these are
Ao = av” — (7, (2.138)
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A= av” — f7,
Ao = av® — (°.

The remaining eigenvalues are

a xT
1—v2¢2 {U (1 B cg)
S

£V/E (=0 [ (1= 0?@) —veor (1= Q)] | - 67,

Ay =

where ¢ is the sound speed. The corresponding eigenvectors are

ry = hWu, )

rO = Uy 7

h
re= | by +2W P00y |
h

Wo, (2hW — 1)
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(2.140)

(2.141)

(2.142)

(2.143)

(2.144)



Wo,
h (Vaz + 2W050.)
ro = | h(y: +2W2u,) |- (2.145)
h (722 + 2W20,0;)
Wo, (2hW — 1)

The expressions for the other eigenvalues and eigenvectors can be found by
symmetry. The eigenvalues for BY are the same as above, with index y replacing
the index z. The eigenvectors of BY are found by interchanging the components of
r corresponding to the S, and S, components in q, and then interchanging the z
and y index labels. That is, we exchange the second and third components of the
eigenvectors, then interchange the r and y indices. The eigenvalues and eigenvectors

of B? follow the same prescription.

2.8 Simple exact solutions

Two exact solutions are discussed in this section, which are very useful in the initial
testing phases of fluid codes. The first solution, the Riemann initial value problem
for two discontinuous fluid states, is very useful in testing the code’s shock-handling
capabilities. This solution is also fundamental in designing numerical methods for
conservation laws (see Chapter 3 for a discussion of Godunov’s method and exten-
sions). While the Riemann problem assumes a flat space-time and slab symmetry,
the Tolman-Oppenheimer-Volkoff (TOV) solution is a general relativistic solution
for a static, spherically symmetric “star.” The TOV solution then can be used to

test the combined fluid and geometric equations.
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Figure 2.2: A schematic diagram of a fluid shock tube’s initial configuration. A divider
separates two independently prepared fluid states. The divider is removed at ¢t = 0, and the
Riemann initial value problem allows one to determine the subsequent evolution.

2.8.1 The Riemann initial value problem

The general Riemann initial value problem consists of a conservation law,
oq + 9,f(q) =0, (2.146)

with the initial data

if x <0,
q(z,0 = ¥ (2.147)
q- if x> 0.

q¢ and q, are arbitrary constant state vectors, i.e., the individual vectors are not
functions of the coordinates, and thus are generically separated by a discontinuity
at © = 0. The divider is removed at ¢t = 0, and Riemann’s solution describes the
subsequent interaction of the two states. The Riemann problem has a self-similar
solution, in the similarity variable x/t.

The solution of the Riemann problem for Newtonian fluids is well-known (see,
for example, Courant and Friedrichs [43], Chorin and Marsden [37], or Landau and
Lifshitz [78] for further information), and the problem can be experimentally realized
for gases in a shock tube, schematically shown in Figure 2.2. (Technically, a shock
tube problem is one in which both states have initial velocities of zero.) This solution
consists of (i) two waves, each of which may be either shock or rarefaction waves;
(ii) four fluid states, the two initial states and two states behind the waves; and
(iii) a contact discontinuity separating the states behind the waves. The solution

is shown schematically in Figure 2.3. The solution of the Riemann problem (for
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Figure 2.3: A space-time diagram of a shock tube problem showing the waves and principal
parts of the solution. The initial states are w, and w,. A rarefaction wave, indicated by the
dashed lines, moves to the left, and a shock wave (solid line) moves to the right. A contact
discontinuity (dotted line), across which P and v are constant and only the density varies,
separates the states behind the waves, w; and w;.

fluids) involves finding the locus of states that can be connected to an initial state
via shock and rarefaction waves, as shown in Figure 2.4. A graphical solution of
the Riemann problem for a relativistic fluid is shown in Figure 2.5 and Figure 2.6.
The Riemann problem for relativistic fluids was solved by Marti and Miiller [89] for
the ideal-gas equation of state. The corresponding problem for the ultrarelativistic

equation of state was solved by Smoller and Temple [123].

2.8.2 The Tolman-Oppenheimer-Volkoff solution

A second test problem is the spherically symmetric, static Tolman-Oppenheimer-

Volkoff (TOV) solution. The line element is
2 20 1,2 2m(r) - 2 2 102
ds" = —edt" + |1 - —— dr® 4+ r*dQ7, (2.148)
r
where m(r) is the mass-aspect function,

m(r) = 4n /OT p(rr'dr'. (2.149)
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Figure 2.4: A single state labeled ‘A’ is shown in this P — v diagram, and the lines indicate
all other states that can be connected to A by either rarefaction (R) or shock (S) waves. Left-
moving waves connect the states shown by the solid line, and right-moving waves connect
the states shown by the dotted line.
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Figure 2.5: The graphical solution of the Riemann problem in the non-relativistic regime
for a fluid with I" = 5/3. The left state is indicated by point A ((p,)¢ =1, v =0, P, = 1),
the right state is at point B ((p,)» = 0.125, v, = 0, P, = 0.1). The solution of the Riemann
problem is given by the intersection, C, of the two loci of states. Thus, a left-moving
rarefaction (R, ) connects states A and C, and a right-moving (S_,) shock connects state C
with B. These initial states and solution are not in the the regime where relativistic effects
are important. A relativistic example is shown in Figure 2.6.
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Figure 2.6: The graphical solution of the Riemann problem in the relativistic regime for
a fluid with T' = 5/3. The left state is (p,)e = 1, v = 0.5, P, = 103, the right state is
(po)r =1, v, =0, P. = 1. Note the shape of the curves for this relativistic configuration,
and compare this solution with the non-relativistic solution shown in Figure 2.5. As the
fluid becomes more relativistic, the gradients of the curves become larger, and finding a
numerical solution becomes more difficult.
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Figure 2.7: Plots of the total mass vs. the central density and radius, respectively, for
a Tolman-Oppenheimer-Volkoff (TOV) star. These plots can be used to determine the
stability properties of the star solutions. The isentropic equation of state, P = kp!, is used
with k£ = 0.1 and " = 5/3. The top frame shows the mass vs. the rest-energy density at the
origin, p,(0). The squares show three different configurations which were used as initial data
in an evolution code, as shown in Figures 2.8-2.10. The inflection points, dM/dp,(0) = 0—
here labeled a, b, and c—are points where the solution’s stability properties may change.
If only one inflection point exists, then it marks the transition between stable and unstable
solutions. When multiple inflection points exist, as shown here, the plot of mass vs. radius
shown in the bottom frame is also required to find the stability properties. An unstable
mode appears at an inflection point if the mass vs. radius curve turns counter-clockwise
with increasing p,(0). A clockwise turn indicates that the unstable mode changes to a stable
mode. A complete discussion is given in Shapiro and Teukolsky [117].

39



2x1074 —

| ]
“ ’ PMNJhM*

'W” ” v M H \\

I o
\‘ o 7
1

¥

"i

w“

|

(p(0t) — p,) / P,

—2x107% —

0 100 200 300

Figure 2.8: This plot shows the relative error in the central rest-energy density for a TOV
star vs. time in the evolution of a stable star. The TOV star with central density p,(0) is
specified as initial data for a relativistic fluid code, and the central density for the evolved
solution is p,(0,t). This plot shows the relative error, (p,(0,t)—p,(0))/po(0), as a function of
time during the evolution. A non-zero floor is added to the edge of the star, and the fluid and
geometric variables are fixed to their initial values at the outer boundary. The interaction
of the floor with the star and boundary conditions causes noise which reflects between the
origin and outer boundary, and is visible here as “spikes” in p,(0,t). Interestingly, these
spikes allow us to calculate the dynamical time, the time for a signal to propagate through
the star, and the evolution shown here continues for more than 30 dynamical times. The
initial data for the TOV star are p, = 0.1, k = 0.1, and T" = 5/3. This configuration is
point A in the plot of M vs. p, shown in Figure 2.7, and is well within the stable branch of
the M vs. p, curve.
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Figure 2.9: The relative error in the Central density of TOV star vs. time in the evolution
of a stable star near an inflection point. This solution was evolved for over 50 dynamical
times. The initial solution slowly relaxes to a configuration with a slightly smaller p,(0,t),
and then appears to oscillate about this solution. The initial data for the TOV star are
po =1,k =0.1, and " = 5/3. This configuration is point B in the plot of M vs. p, shown in
Figure 2.7. This star is stable, but is near the inflection point a where the solutions become
unstable.
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Figure 2.10: Central density of TOV star vs. time for an unstable configuration. Here the
instability becomes apparent approximately after two dynamical times. The initial data for
the TOV star are p, =3, k = 0.1, and I' = 5/3. This configuration is point C in the plot of
M vs. p, shown in Figure 2.7, and lies on the unstable branch of the mass curve, near the
inflection point a.
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This well-known solution is found by choosing the central pressure, P,, and then
integrating the coupled ordinary differential equations

de _ m(r)+ 4mr3 P

& = = 2] (2.150)

ar m(r) + 4nr3 P

dr (p+P) rr—2m(r)]’ (2.151)
and

(Z—T =4nr?p (2.152)

outwards from r = 0. At some radius, r,, we typically find P(r,) = 0, at which
point the outward integration ceases, and we deem 7, to be the radius of the star.

We calculate this solution with the isentropic equation of state,
P =kp., (2.153)

when testing perfect fluid codes.

The TOV solution is widely used in testing relativistic fluid codes, and as all of
the solutions are not stable, some care must be taken to avoid inadvertently using
an unstable solution. However, the stability properties can be easily determined by
generating plots of the star’s mass, as shown in Figure 2.7. A nice discussion of the
TOV solution’s stability properties is given by Shapiro and Teukolsky [117]. Sample
evolutions of two stable TOV solutions are shown in Figure 2.8 and Figure 2.9. The
evolution of an unstable TOV solution is shown in Figure 2.10. (These solutions were
obtained with a code similar to the one described in Chapter 4, with the ideal-gas
equation of state.)

One difficulty with using the TOV solution in an evolution code is that most
fluid codes require p, > 0 on the computational grid. This is usually accomplished
by adding a small fluid “atmosphere” to the star, extending from the edge of the star

to the outer boundary. This “atmosphere,” or background fluid, is not part of the
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TOV solution, and will interact with both the star and the outer boundary condition,
thereby producing noise in the solution (see e.g., the “noise” in Figure 2.8). The
evolution of a scalar gravity “star” is presented in Section 7.6.

Finally, all TOV solutions for the ultrarelativistic equation of state have density

profiles

1
pox g (2.154)

This can be understood by dimensional arguments [116], as this equation of state
contains no parameters with freely specifiable dimensions. The singularity at the
origin, r = 0, usually prevents these TOV solutions from serving as test solutions in

fluid codes using the ultrarelativistic state equation.

2.9 The P = p perfect fluid and a massless scalar field

There is a well-known relation between an irrotational, stiff (P = p) perfect fluid
and a massless Klein-Gordon scalar field, see e.g., Taub [127] and Lichnerowicz [82].
In this section we discuss the relationship between scalar fields and perfect fluids
for 0 < I' < 2. The perfect fluid equations of motion can be written in terms of p,

P, and u® as
utVup+ (p+ P)V,ut =0, (2.155)
(p+ P)utV, u” + W'V, ,P = 0. (2.156)

If we assume the ultrarelativistic equation of state, P = (I" — 1)p, then these equa-

tions become
v (o' u) =0, (2.157)

-1

(u-Viu+ h-Vinp=0, (2.158)
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provided that p # 0.
We seek a specific combination of p and u that allows the fluid equations to be

written in terms of a single variable, and therefore introduce the ansatz
w = pPu, (2.159)

where B is a constant that will be determined below. From elementary contractions
we can express both p and u in terms of w

1

p=(—(w-w))P, (2.160)
u=(—w- w)_% w. (2.161)
However, it remains to see if B can be chosen such that w will satisfy the fluid equa-
tions of motion. We substitute expressions (2.160) and (2.161) into the momentum

equation (2.156) to obtain

-1
w Vyw,, — ﬁw"vuw”
F —_ ]. by -1
+(1- BT (—w)\w ) whwyw, Vywy = 0. (2.162)
We choose
B ? (2.163)

w,) = 0. (2.164)
Equation (2.164) allows one to write w as the gradient of a scalar field

w = V. (2.165)
The equation of motion for ¢ is obtained from (2.155)

V. [(—W - V)© V(p] —0, (2.166)
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where

2-T
C= T=T (2.167)

The condition (2.164), V,w,] = 0, reduces to the requirement that the fluid

I

be irrotational,
V[Hu,,] =0. (2.168)

Thus, the fluid equations for an ultrarelativistic, irrotational fluid can be written in
terms of a nonlinear equation for a scalar field, ¢. For the stiff fluid (I' = 2), we

find that the equation of motion for ¢ becomes the massless Klein-Gordon equation
Op =0. (P =p) (2.169)

This identification allows for a great simplification of the fluid equations. Petrich,
Shapiro, and Teukolsky [102] were able to exploit this simplification to derive an
axisymimetric accretion solution for relativistic fluids.

One typically places physically motivated conditions on the fluid variables,
such as p > 0 and u-u = —1. General solutions of the Klein-Gordon equation,
however, have time-like, null, and space-like gradients (V). With the usual physical
constraints on the fluid, then, only a subset of possible Klein-Gordon solutions can
be interpreted as I' = 2 perfect fluids, namely those with Vi - Vi < 0 everywhere

in the space-time.
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Chapter 3

Numerical methods

Differential equations have been at the heart of physics since Newton formulated his
second law of motion, and, along with Leibnitz, initiated the study of differentials.
While differential equations may appear deceptively simple—although not the case
for the Einstein equations—their solution is notoriously difficult. The application
of Newton’s law to physical systems, especially in astronomy, drove the need for ap-
proximate solution techniques, wherein “brute force” could partially substitute for
ingenuity. These approximate methods replace differential operators by algebraic
operations, which are more easily manipulated. No doubt that the computer revolu-
tion of the past 50 years has greatly increased the importance of numerical solutions
in contemporary physics, however, the basic ideas are centuries old. As an example
of early numerical work—and certainly the fortitude required of its practitioners—
consider the work by Clairaut, Lalande, and Lapaute in 1748 to accurately predict
the return of Halley’s comet by including the effects of Jupiter and Saturn on the

comet’s orbit. Lalande wrote:

During six months we calculated from morning to night, sometimes
even at meals; the consequence of which was, that I contracted an illness
which changed my constitution for the rest of my life. The assistance

rendered by Madame Lapaute was such that without her we should never
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have dared to undertake this enormous labor; in which it was necessary
to calculate the distance of each of the two planets, Jupiter and Saturn,
from the comet, separately for every successive degree, for 150 years.

(Quoted by Grossman [62].)

Their prediction of the comet’s perihelion on 13 April 1749 was off by only 31 days.

This chapter begins with a brief summary of fundamental concepts for nu-
merical solutions of differential equations, and then focuses on the control volume
methods for conservation laws. The literature on these methods is vast, and the
reviews by LeVeque [79, 81] are excellent introductions to conservative methods.
Our presentation here is in the spirit of his work. Furthermore, the application of
these methods specifically to problems in relativistic astrophysics has been recently
reviewed by Ibédfiez and Marti [72]. There follows a brief summary of some impor-
tant approximate methods for solving the Riemann problem, and an introduction
to the Reconstruct-Solve-Average algorithm. This algorithm is a generalization of
Godunov’s method, and is used to create higher-order numerical methods for conser-
vation laws. Optimizations for extremely relativistic fluids, an original contribution

of this dissertation, are considered in the final section.

3.1 Finite differences

Perhaps the simplest way to approximate derivatives with algebraic expressions is

finite differencing. Recall the formal definition of the derivative of a real function,

f(@),

df _ . flet+h) = f(z)
im Y . (3.1)

@ - h—0
The finite difference approximation comes simply by removing the limit, and choos-

ing h to be a small, but finite value, which we write now as Az. A finite difference
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Derivative Finite-difference approximation
%fi = % +O(h)
ofi = f;hf’l +0(h)
ofe = Il o)
O fi = 3fi_4f;;L1+fi—2 +O(h?)
Ofi = _3fz'+4§,;1 — fit2 + o)
oif; = fi— zfi;lrzl + fito + oM
oifi = fi_zfi};;*‘fifz + o)
o = L ZMitla o
xRfi = fiva = 2fi+12‘;32fi71 — fi—2 L oM
o, = LU Shio b o)
g - SHtcshn 2 o
fi = 2fi = 5fin1 '}:24](1'—2 — fi—s o)
of; = —3fita+14fiy3 _22:3fi+2 +18fiy1 =5/ L om?)
Bf = 5fi —18fi—1+24 J;}:; —l4fia+53fis o)
g = et ties o
af = —fire +16fip _122? +16fi_1 — fi_s 4o

Table 3.1: Table of finite difference approximations from Anderson et al. [2].
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approximation to the derivative is then is

df _ flz+ Az) — f(=)
dr Az '

(3.2)

Finite difference approximations can be derived in numerous ways, such as the
Taylor expansion, which also allows us to determine the approximation’s accuracy.

For example, by expanding

T 2f(x
flx+ Ax) = f(z) + %;)(Ax) + %dd];g )(Aac)2 +0((az)®).  (3.3)
and then solving for df (z)/dz,
df _ fla+ Az) — f(z) +0(Az) (3.4)

dx Az
we find that the finite difference approximation (3.2) has the leading-order (trunca-
tion) error term O (Az). The finite difference approximation can be improved by
judiciously choosing the algebraic formulation, as guided by the Taylor expansion.

For example, by expanding f(x + Azx) and f(z — Ax), we find that

df flz+ Azx) — f(x — Ax)
dz 20z

+0 ((Ax)?) (3.5)

is a more accurate approximation to the derivative. One can derive other approx-
imations for a derivative, to any desired accuracy, and several finite difference ap-
proximations are shown in table 3.1.

A finite difference approximation used for solving differential equations must
also satisfy other properties, such as stability. However, a complete discussion is

beyond the scope of this dissertation.

3.1.1 Two example finite-difference schemes

This section presents two sample finite-difference schemes for hyperbolic equations,
the Lax-Friedrichs method and the Crank-Nicholson method. The Lax-Friedrichs

method is and ezxplicit method, meaning that the dependent variable at the advanced
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time, !

.7, is a function only of q" at the previous time. Crank-Nicholson, on the

other hand, is an ¢mplicit method, and q?“ is generally a function of neighboring

n+1

"*1 is a function of q7};!. Although any

points also at the advanced time, e.g., q;
of a number of methods could be chosen as examples, these common methods were
chosen simply because they are referenced in latter sections of this dissertation.

Consider the hyperbolic, partial differential equation

9iq + 0,(q) = 2(a), (3.6)
where q may be either a scalar or a ‘vector’ with multiple components. The source
term X(q) is a function only of q, and contains no derivatives of q. We discretize

the spatial domain, establishing grid points at

z; = (i —1)Ax, t=1,...,Ny (3.7)
and calculate the solution at discrete times given by

t" = nAt, n=0,...,Ny—1 (3.8)
The function q} is the discretized solution at x; and ¢t = t",

qi = q(zi,t"). (3.9)
The Lax-Friedrichs discretization is a very simple explicit scheme using a cen-
tered spatial difference, and calculates the time derivative with the average of q7',

and q;' ; at the retarded time, instead of qj for stability.

n+1
q - (@t +aiy)/2 £, -1,
At 2A\x

Using the Taylor expansion, we can show that the truncation error for this scheme

is O ((Ax)?/At, At).

=37 (3.10)

The Crank-Nicholson method is an implicit method with good stability prop-
erties, and is used to integrate the scalar gravity equations of motion, of chapter 7.

The Crank-Nicholson discretization of (3.6) is

n+1 n  __ f£n n+1 _ en+l
q/" —qp 1 (£, -1, -6

N 2 2AT 2Nz

(zrtlysm).  (3.11)

N —
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The derivatives are centered in space and time, and a more complete analysis shows
the accuracy of this method to be O ((Axz)?, (At)?). The Crank-Nicholson method
is an implicit scheme because q*t! appears in the flux terms as well as the time
derivative in (3.11). We can solve for q"*! in a variety of ways, and an iterative
method with successive over-relaxation (SOR) is used for the scalar gravity equations
of motion.

The Lax-Friedrichs and Crank-Nicholson methods discretize space and time
simultaneously. An alternative technique is the method of lines, wherein the dis-
cretization of space and time is performed independently. This method is used to

discretize the fluid equations, and is the subject of Section 3.7.

3.1.2 Error and numerical solutions

This section briefly summarizes some basic ideas and definitions used when working
with finite difference techniques. This section follows lecture notes by Choptuik [36].

A differential equation can be written

L(q) = f, (3.12)

where L represents a differential operator and f is a source term. Let L” be a

corresponding discretized differential operator, and write the difference equation as
L*"¢") = 1", (3.13)

where h represents the grid spacing and ¢” is the discretized solution obtained with
resolution h. (In the following we assume that there is a single discretization scale
in the discrete problem.) In general, the continuum solution, ¢, is not a solution of

L", which leads to the definition of the truncation error
T.E! = L"(¢) — f™ (3.14)

The truncation error can be found from Taylor expansions of the finite difference

operators and the differential equations.
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By solving the finite difference equations, we obtain the discretized solution,
¢", while in actuality we are interested in the continuum solution, g. Thus, we

require the difference equations to have the convergence property, which is
" —=q as h — 0. (3.15)
A finite difference approximation is consistent if
TE" 50 as h—0. (3.16)

The leading-order behavior of the truncation error as a function of the dis-
cretization scale gives the order of a difference approximation. A finite difference

scheme is p-th order when

lim T.E." = O (h?), (3.17)
h—0

where p is an integer.

h

The solution error, e, contains all error that arises from the replacement of

the continuum problem with a discrete problem
eh=q— ¢ (3.18)
The finite difference approximation (3.13) can be written
"¢ - " =o. (3.19)

Let ¢" be an approximation of the true discretized solution, then the residual, 7",

is defined as
rh = LhGh) — f (3.20)

Round-off error is the error resulting from using finite precision arithmetic,
and this error can be particularly important for relativistic fluid codes. The fluid

equations contain quantities, such as the W, v, and p,, which can vary over many
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orders of magnitude. Many of our optimizations for extremely relativistic flow come
from a consideration of round-off error, and are further discussed in Section 3.9.

A common assumption is that
T.E" = O (h?) — e = O (hP). (3.21)

While this assumption is often valid, it is not automatically true. The connection
comes from Richardson’s ansatz [107], that the discrete solution can be expanded

about the continuum solution in powers of h
h _ 2 3
q"=q+her +hes+h’es +--- (3.22)

where eq, eg, -+ are continuum error functions independent of h. When the differ-

ence scheme is completely centered, the ansatz is
qh =g+ h’ey + hies+ - (3.23)

A solution ¢" of a finite difference approximation can only used with confidence
if it has been studied at different resolutions (different values of h), and we can verify
that the solution converges. The Richardson ansatz enables one of the most crucial
tests of a discrete solution’s convergence properties. For example, consider a finite
difference scheme with centered derivatives, and calculate the discrete solution at
3 different resolutions, h, 2h, and 4h. Using the Richardson ansatz, the discrete

solutions can be expanded

&' = qh2es + hles + - (3.24)
¢*" = q(2h)%ey + (2h) ey + - - (3.25)
q4h' = q(4h>2€2 + (4h>464 + e (326)

Define the convergence factor to be

llg** — ¢*|
om="4_—7 1 3.27
== (8:27)
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Vector Matrix
N M
el = 5 3 e 4]l = < max 3" ay
one-norm = — X; = — Inax ;4
HaE N i i 1 M i ij
N 1/2
two-norm ||| |2 = E >l ||A]|2 = max Az]l,
N - z#0 H{I:H2
1/2
. 1 2
Frobenius norm | ||z||r = ||z||2 Allr = | 3737 ; |aij]
N
infinity-norm 2|00 = max |z [|Alloo = N maXZ ;]
7 7 .
J

Table 3.2: Definition of various norms for vectors and matrices normalized for ease
of working with discrete approximations of numerical solutions. The vector z has
N components, and A is an M X N matrix.

where || - || is a discrete norm. Table 3.2 contains the most common norms used
in numerical work. If the difference scheme has been correctly implemented, if the
scheme is consistent, and if the scheme converges, then from the Richardson ansatz

it is elementary to show that

lim Q(t) = 4. (3.28)

In practice this test should be done at different resolutions to ensure that the scheme
does in fact converge.

A second test of the discrete solution, ¢”, is the independent residual evaluation.
This tests that the discrete operator L" has been correctly implemented, and hence
that ¢ converges to the correct continuum solution, ¢. For this test we construct

an independently discretized differential operator, L', and evaluate the residual,
o= ER(gh) — 7, (3.29)

with ¢, the discrete solution of the original operator, L". If L" and L" both

correspond to the same continuum operator, L, then r" will converge as expected
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from the Richardson ansatz. We note that often L" can be a very simple difference
operator, as it is not used to produce the discretized solution, ¢". For example, the
fluid updates that we use for the relativistic fluid equations are quite complicated.
However, our independent residual evaluator uses the Leap-Frog scheme, which for
(3.6) is simply

gt —aqf! Al —afy

=", 3.30
2Nt + 2Ax ¢ ( )

3.2 Conservation laws

An important consideration for numerical solutions of compressible fluid flow is how
the numerical method will respond to the presence or formation of shocks, i.e.,
discontinuities in the fluid variables. A shock is, strictly speaking, not a solution
of the differential fluid equations, but rather a member of a larger class called weak
solutions. (A particular weak solution is chosen to maximize the entropy.) As finite
difference approximations are derived from the differential form of the equations,
it is not surprising that they typically fail dramatically when shocks appear. As
shocks form generically from smooth initial data, many special techniques have
been developed for the numerical solution of fluid equations. One approach is to
introduce an artificial viscosity that adds extra dissipation in the vicinity of a shock,
spreading the would-be-discontinuity over a few grid points. Artificial viscosity is

implemented by replacing
P>P+Q (3.31)

in the fluid equations, where the viscosity term, @, is activated where the flow is
compressive. (The artificial viscosity should only be applied to shocks, and not to
rarefaction waves. In one dimension, this can be done by adding artificial viscosity
only when v(dv/dz) < 0.) This technique has been widely used—including the
very first relativistic fluid code by May and White [92]—and has the advantages of
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simplicity of implementation and computational efficiency. However, Norman and
Winkler [98] investigated the use of artificial viscosity in relativistic fluid dynamics,
and showed that an explicit numerical scheme treats the artificial viscosity term
inconsistently in relativistic fluid dynamics. This leads to large numerical errors in
the ultrarelativistic limit, W > 1. The inconsistency arises because the relativistic
fluid conservation variables, e.g., S° and E, contain P in their definitions. (The
classical momentum and energy, on the other hand, are not functions of P.) A
second approach to solving the fluid equations with shocks comes from methods
developed specifically for conservation laws. These methods, usually variations or
extensions of Godunov’s original idea [58] to use piece-wise solution of the Riemann
problem, have proven to be very reliable and robust.

Conservation laws greatly simplify the mathematical description of physical
systems by focusing on quantities Q—where Q may be a state vector with multiple

components—that do not change with time

o, / do 0. (3.32)
1%

In this section we discuss the derivation of numerical schemes for this specific and
important case where [dQ is conserved on the computational domain. Our dis-
cussion will be general, and not specifically tailored for the fluid PDEs derived in
Section 2.5, but for simplicity we restrict the discussion to one dimensional (in space)
Systems.

While conservation laws are often written in differential form (e.g., V-T = 0) it
is useful to first consider an integral formulation, which is often the more fundamental
expression. Consider an arbitrary volume or cell, €;, with a domain [z;,z;+1]. The

quantity of Q within C; is denoted Q;, and we define a density function q such that

Tit1
Q, = / dz q. (3.33)
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The change of Q; with time can be calculated from the flux, f(q), of q through the

cell boundaries. This consideration thus expresses the conservation law:

% [Bji+1 dzq(z,t) = f(q(z;,t) — fla(xit,t))- (3.34)

The conservation law can be written in integral form by integrating (3.34) from an

initial time, ", to a final time, ¢"*1,

Ti+1
+ d tn+1 _
zq(z, ") =
T4
tn+1 tn+1

/fci+lqu(x,t”)+ /tn dtf(q(@i,t)) - /t dtf (q(@i11(3)35)

n

and the differential form follows from further manipulation if we assume that q is

differentiable:
dq + 9,f(q) = 0. (3.36)

It should be emphasized that the integral formulation should be viewed as the pri-
mary mathematical form for a conservation principle, because it is not dependent on
an assumption of differentiability. For example, at a shock front in a fluid system, q
is not differentiable, and the differential form of the conservation law fails, while the
integral formulation is still satisfied. Discretizations of conservation equations via
finite differences rely on the differential form, and artificial viscosity must be added
near shock fronts, forcing q to be differentiable. An alternate strategy is to develop
numerical algorithms based directly on the integral formulation of the conservation
laws. The Godunov method and its extensions are examples of this latter approach,

and are the topic of the next section.

3.3 Godunov’s method

Numerical algorithms for conservation laws are typically developed by discretiz-

ing the equations in their fundamental integral form. These methods are often
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derived using a control volume discretization, whereby the domain is divided into
computational cells, C;, now defined to span the interval [z — Az/2,x + Ax/2] =
[z x,. ., ], where Az is the (local) spatial discretization scale. Following the

i—1/27%it1/2

derivation of the integral conservation law (3.35) for the computation cell C;, we
introduce the averaged quantities, q;':
i+1/2
q" = / dz (2, 1), (3.37)
Az
Ti—1/2
The discrete form of the conservation law (3.35) is then

—n —n At
a;t =q} - Ar (Fiy12—Fi_1)2), (3.38)

where the “numerical flux” is defined by

1 tnt1
Fij10= A_t/t dtf(q(zit/2:1)- (3.39)

At first blush, a numerical method based on a discretization of the integral
conservation law does not appear promising: the flux integral (3.39) does not appear
readily solvable, and it generally is not. However, in his seminal work, Godunov [58]
devised a technique to approximately evaluate the flux integral by replacing the
function q(z,t,) with q(z,t,), where q(z,t,) is a piece-wise constant function. In
this approach, the individual cells (“control volumes”) are treated as a sequence of
“shock tubes”, and a separate Riemann initial value problem is solved at each cell
interface. Provided that the waves from neighboring cells do not interact—a proviso
which gives a Courant-type condition on the time-step—each Riemann problem can
be solved exactly to yield the local solution q(z,t) (for ¢t > ¢,) for each “shock tube.”
Furthermore, since the solution of each of the local Riemann problems is self-similar,
4(z,,,,,,t) is a constant in time, and the evaluation of the integral (3.39) becomes
trivial. This then allows one to find explicit expressions for the cell averages at the
advanced time, @"*!, via (3.38). In summary, the Godunov method proceeds as

follows: (i) From the average q, one “reconstructs” a piece-wise constant function
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q(z, t,) to approximate the solution in Cj; (ii) the Riemann problem is solved at the
interfaces between cells, giving the solution q(x,t) for ¢, < t < t,,41; (iii) the solution
q(x,tn+1) is averaged over the cell C; to obtain the average at the advanced time,
q?“. This is the Reconstruct-Solve-Average algorithm used to extend Godunov’s
method to higher-order methods. We note that methods for solving the Riemann
problem exactly for relativistic fluids have been given by Smoller and Temple [123]
for the ultrarelativistic equation of state, and by Marti and Miller [89] for the
ideal-gas state equation.

Godunov’s method has many nice properties: in particular, it is conservative
and allows for the stable evolution of strong shocks. However, the original scheme
does have some shortcomings: convergence is only first order, and the exact so-
lution of the Riemann problem may be computationally expensive, especially for
relativistic fluids. The convergence of the scheme can be improved by providing a
more sophisticated reconstruction q(z, t,,), giving what are known as high-resolution
shock-capturing methods. One such procedure is described in Section 3.4, and an
example of the scheme’s convergence given in Section 4.5. In order to address the
issue of computational efficiency, approximate Riemann solvers have been developed
that relate the problem-at-hand to a simpler system, for which the Riemann prob-
lem is easier to solve. Several approximate Riemann solvers have been developed
for classical fluid dynamics, and many of these approximate methods have been
extended to relativistic fluid systems. These include relativistic two-shock solvers
(Section 3.5.1), a relativistic HLLE solver (Section 3.5.2), and the linearized solvers

of Roe (Section 3.5.3), and Marquina (Section 3.5.5).

3.4 The Reconstruct-Solve-Average algorithm

Godunov-type numerical methods are based on solutions of the Riemann initial value

problem at the interfaces between cells. As discussed above, during an update step
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we introduce functions q(z, t)—defined piece-wise on the intervals [z;_1 /2, Tiy1/2]—
to approximate the solution in the control volumes C;. These functions are created
from the cell averages q', and hence are called reconstructions. Consider the cell

interface at z, /»° the state of the fluid immediately to the right (left) is (]:H /2

(@, ). The simplest reconstruction is to assume that § is piece-wise constant
i+1/2

~0 — ~ —
qi+1/2 = q'l? q:+1/2 = ql+17 (3.40)

as used in the original Godunov method and, as already discussed, this reconstruc-
tion results in a numerical scheme in which the spatial derivatives (and hence the
overall scheme) have first order accuracy. The convergence can be improved by using
a higher-order reconstruction for q, but, as discussed below, care must be exercised
so that the reconstruction does not induce spurious oscillations near discontinuities.

The work in this dissertation uses piece-wise linear reconstructions for q, which
formally results in a scheme with second order convergence. (The convergence prop-
erties are discussed in greater detail in Section 4.5, where convergence tests for a
spherically symmetric code are presented.) A first choice for the reconstruction algo-
rithm might be to compute the slope (derivative of the dynamical variable) centered

at the cell boundaries

Si+1/2 = 7(_::1 :?_:7 (3.41)
creating the reconstructed variables

(le+1/2 =q; +8i(riy1/2 — i) (naive) (3.42)
and

A, = Qit1 +Siy1(rip12 —rig1).  (naive) (3.43)

However, as shown in Figure 3.1, this reconstruction produces spurious oscillations

at shocks, making the scheme unstable. One therefore introduces a slope limiter,
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designed to damp any oscillations near discontinuities [132, 61]. Using the math-
ematical property known as total variation diminishing (TVD), a variety of slope
limiters have been published in the literature. (For an introduction to TVD limiters
see LeVeque [79].) Four of the most common limiters are presented in Section 3.4.1.

We let o; = o;(s represent the “limited” slopes, and define the recon-

i—1/27si+1/2)

struction to be

6lf+1/2 =q; +oi(riz12 — Ti)s (3.44)

~T

Q. = Qit1 T oir1 (i1 — Tig), (3.45)

where algorithms for calculating the “limited slopes,” o, are described in Sec-
tion 3.4.1. The limiter forces q to be monotonic near discontinuities, and this
reduces the (local) accuracy of the scheme to first order.

Finally, if we are unable to calculate physical values for W’ and W (a situation
which can and does occur owing to the finite-precision nature of our computations)

we revert to a piece-wise constant reconstruction for ¢ and q’.

3.4.1 Slope Limiters

This section presents four total-variation-diminishing (TVD) limiters commonly
used in the literature. A comparison of the different limiters discussed here is shown

in Figure 3.2, for the advection equation,

The minmod and MC-limiters are compared for relativistic fluids in a shock tube

problem, with results shown in Figures 4.10 and 4.11.
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Figure 3.1: The three frames of this plot show different ways a discretized function can be
reconstructed in a control-volume numerical method. The solid line represents a continuum
(or “analytic”) function and the solid hexagons represent discrete, approximate values of the
function defined at grid points. Frame (a) represents the piece-wise constant reconstruction.
Frame (b) shows a naive piece-wise linear reconstruction of each cell using s; /5. This re-
construction oscillates near discontinuities in the function—such oscillations can easily lead
to instabilities. Frame (c) shows a piece-wise linear reconstruction performed with the min-
mod limiter as described in the text. This reconstruction produces a discrete representation
of the dynamical variable which remains well-behaved near discontinuities.
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Figure 3.2: The four slope limiters discussed in the text are demonstrated here by solv-
ing the advection equation, 0;q + 9,¢ = 0, using a high-resolution Godunov-type scheme.
Frame (a) shows the solution calculated using the minmod limiter after 800 iterations,
frame (b) the solution resulting from the monotonized central-difference limiter (MC),
frame (c) the solution obtained using the superbee limiter, and frame (d) the solution with
the van Leer limiter. In each frame the evolution solution is shown with triangles, and the
solid line shows the exact solution. These solutions calculated with a Courant factor of 1/2.

This figure is modeled after a similar figure by LeVeque [81].
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The minmod limiter

The most common slope limiter used in relativistic fluid dynamics is van Leer’s [132]
minmod limiter
o; = minmod (s,_, ,,8,,,,,); (3.47)
where the minmod function gives the minimum modulus of the two arguments
sgn (a) min([al,Jb]) i sgn (a) = sgn (b),

minmod (a,b) = (3.48)
0 otherwise.

The sign function, sgn (a), is

+1 a>0
sgn (a) = (3.49)
-1 a<0.
The slopes s, , , and s, , are calculated with (3.41). The minmod limiter is more

diffusive than the MC-limiter or the superbee limiter (see Figure 3.2). However, we
found this limiter to work best near the origin in spherical symmetry, and thus use

this limiter exclusively for all critical solution studies.

The monotonized central-difference limiter

The monotonized central-difference limiter (MC-limiter) was also introduced by van

Leer [131]. Here the limited slope is

o; = minmod (s;, 2s;_1/2, 25i+1/2) , (3.50)
where s, , , and s,_, , are calculated as shown in (3.41), and
Qi1 — Qi1 (3.51)
Yo —xin
The minmod function with three arguments is
sgn (a) min (|af, [b], |c|) if sgn (a) = sgn (b)
minmod ((l, b, C) = and sgn (b) =sgn (C) (352)

0, otherwise.
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The van Leer limiter

The last of van Leer’s limiters considered here is known simply as the van-Leer

limiter [130]

o = Susrjal ~ I8l (3.53)
Sipael T 18i21)0]
If the denominator is zero, then o; = 0.
The superbee limiter
Roe’s [111] superbee limiter is
o; = maxmod (crz(l), a'z(?)), (3.54)
where
0'1(-1) = minmod (s;11/2, 28;_1/2), (3.55)
crz(.Q) = minmod (2s;1/2, 8;—1/2), (3.56)
and
maxmod (a, b) = sgn (a) max(|al, |b]) if sgn (a) = sgn (b), (3.57)

0 otherwise.

3.4.2 Other reconstructions

For completeness, we note that other reconstructions have been used, which are
more complicated. The natural extension of the piece-wise linear reconstruction is
Colella and Woodward’s [42, 136] piece-wise parabolic method (PPM). Marti and
Miiller [89] first used the PPM method with an exact Riemann solver in a rela-
tivistic ideal-gas code. Marquina [87] developed the piece-wise hyperbolic recon-
struction (PHM). This reconstruction method has also been used in a relativistic

fluid code [46]. Finally, there are the well-known Essentially Non-Oscillatory (ENO)
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schemes, see for example the implementation by Shu and Osher [121, 122]. Shu and
Osher’s ENO scheme, and Marquina’s PHM both require an uniform grid. ENO

schemes have also been used in relativistic fluid dynamics [46, 56].

3.5 Approximate Riemann solvers

Finding the exact solution for the Riemann problem for fluids is generally compu-
tationally expensive, requiring the solution of nonlinear, transcendental equations.
The equations must be solved iteratively, and in Godunov’s method, a different
solution must be found for each point on the grid per update cycle. The compu-
tational effort in relativistic fluid dynamics is complicated by adiabats with steep
gradients (see Section 2.8.1, especially Figure 2.6), and difficulties with round-off
error. Godunov’s method, however, does not require the full structure of the Rie-
mann solution, but only uses the average quantities q. Given the computational
expense of the exact problem, several methods have been developed for approxi-
mately solving the Riemann problem. The deficiencies of the approximate solutions
are often compensated by the averaging process, such that the final result, q, differs
only slightly from the average solution obtained with an exact solver.

The approximate Riemann solvers presented here do not solve the relativistic
fluid initial value problem per se, but rather they solve a simplified, but related,
system. (The theory of approximate Riemann solvers is given by LeVeque [79].)
The first type of approximate solvers are (i) the nonlinear solvers, which replace
rarefactions with discontinuities, producing a more efficient solver that still retains
the nonlinear features of arbitrarily strong shocks. The second solver (ii) is the
Harten-Lax-vanLeer-Einfeldt (HLLE) solver, which simplifies the structure of the
Riemann problem by using only one intermediate state between two shock waves
which connect the initial left and right states. The third type of solvers (iii) are the

linearized solvers, such as the Roe and Marquina solvers, which solve a (related)
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linearized system whose solution is more easily found.

The most important approximate Riemann solvers for classical fluids have been
extended to special relativity. Furthermore, Pons et al. [105] give a general method
for extending any special relativistic Riemann solver to general relativity. Their

method is based on the local flatness of curved spacetimes.

3.5.1 Nonlinear solvers

The initial states of the Riemann problem are connected by two intermediate states
and two waves, which may be either shock or rarefaction waves, although only two
waves will connect the state in a physical way. One simplification of the Riemann
problem is to eliminate rarefaction waves and consider only shock waves. This
simplifies both the equations that must be solved, and the resulting numerical im-
plementation. Balsara [6] developed a multi-dimensional relativistic shock-shock
solver. Dai and Woodward [44] have an alternative solver, which achieves slightly

better performance by solving some of the equations in Lagrangian coordinates.

3.5.2 The Harten-Lax-van Leer-Einfeldt approximate Riemann solver

The Harten-Lax-vanLeer-Einfeldt (HLLE) algorithm is a very simple approximate
Riemann solver [47]. The algorithm assumes that the maximum signal velocities, b,
and b,, for left and right moving waves, respectively, are known. The three states
for this solver are the initial left (right) state, q; (q,), for the region beyond the

distance traveled by the fastest left (right)-moving signal, and a single intermediate

state, qg.:
Qe T <bgt
q(z,t;90,9r) = 4 qur bt < z < byt (3.58)
qr T > bt.
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Figure 3.3: A shock tube test with the HLLE approximate Riemann solver, for aI' =5/3
fluid. The initial left state is (po)e = 1, v, = 0, and P, = 100; the initial right state
is (po)r = 1, v, = 0, and P. = 1. The lines show the exact solution at ¢ = 0.4. The

PDE solution is indicated by triangles (p,), squares (v), and crosses (P)

. The solution is
calculated with 400 cells.
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Figure 3.4: A shock tube test with the HLLE approximate Riemann solver, for a I' = 5/3
fluid. The initial left state is (po)¢ = 1, v, = 0, and P, = 1000; the initial right state is
(po)r = 1, v, = 0, and P, = 0.01. The lines show the exact solution at ¢t = 0.4. The
PDE solution is indicated by triangles (p,), squares (v), and crosses (P). The solution is
calculated with 400 cells. The dissipation of the HLLE scheme is evident, especially when
compared to solution obtained using the Roe solver in the two-dimensional code, as shown
in Figure 6.3.
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The middle state qg. is determined by requiring energy conservation in the compu-

tational cell

_ brar —beqe — flar) + flae)
Qeor = by — by . (3.59)

The HLLE numerical flux is

— b;j—f(q” - be_f(q'r) + b;{—be_(qr - qZ)

F 3.60
o , (3.60
where

b, = min(0,b,), (3.61)

b = max(0,b,). (3.62)

Schneider et al. [114] first used the HLLE solver for relativistic fluids, and chose
the signal speeds to be the Roe eigenvalues—the eigenvalues of the Jacobian matrix
0f(q)/0q from Section 2.7—as the signal speeds. In one dimension these are simply
the sum and difference of the fluid bulk velocity, v, and the sound speed, c;, using

the relativistic addition of velocities:

v+ Cs
b, = 3.63
g (3.63)
and
V— Cs
by = . 3.64
¢ 1 — e ( )

We follow this choice in my implementation, but have found in critical solution

searches for T' 2 1.95 that the signal speeds must be set to their maximum values,
be=—1, b, = 1. (3.65)

The HLLE method is unfortunately very diffusive, with results similar to the
Lax-Friedrichs scheme (3.10), but it remains an important approximate Riemann

solver for at least three reasons. First, its simplicity makes it very easy to implement
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and computationally very efficient. This makes the HLLE solver ideal for an initial
approach to a problem, and as a sanity check for more complicated schemes. (See
Quirk [106] for a discussion of “subtle flaws” in the more popular linearized solvers.)
Secondly, Einfeldt et al. [48] demonstrated that the HLLE solver, when beginning
with physical initial data, always produces a physical intermediate state, a property
they call positively conservative. In addition, they show that linear solvers, such
as the Roe solver, do not have this property, and often produce solutions with
negative pressures (internal energies) in regions where the fluid density is low. (The
proofs are done in flat space (£ = 0), and are not strictly applicable for spherical
symmetric and /or general relativistic systems.) Finally, as discussed in Section 3.6,
approximate Riemann solvers sometimes produce unphysical results, especially in
multiple dimensions. Quirk [106] found the HLLE solver to be free of many of the
problems that plague the Roe solver.

3.5.3 Roe's approximate Riemann solver

Perhaps the most popular approximate Riemann solver is the linearized solver in-
troduced by Roe [110]. This solver (and subsequent variants) has been used in a
variety of applications involving general relativistic fluids [71, 49, 112, 7, 21, 55],
and has proven to be robust and efficient. (The efficiency comparison is relative
to solving either the exact Riemann problem for relativistic fluids, or a nonlinear
approximation, such as the two-shock solvers of Section 3.5.1.) As the name sug-
gests, the linearized solver approximates the full nonlinear problem by replacing the
nonlinear equations by linear systems defined at each cell interface. The associated
linear Riemann problems can then be solved exactly and cheaply, and the resulting
solutions can be pieced together to produce an approximation to the solution of the
original, nonlinear equations. Thus, in order to understand the Roe scheme, it is

instructive to first consider linear conservation laws.
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The linear, scalar advection equation
0:q + No,q =0, (3.66)

has the well-known solution ¢(z,t) = g(z — At,0), where X is a constant and ¢(z,0)
specifies the initial state. This scalar solution can be extended to linear systems of

conservation equations
0:q + Ad,q =0, (3.67)

where A, an M x M constant matrix, is, by assumption, diagonalizable, with real

eigenvalues, Ap. Let R be the matrix of right eigenvectors, rp, of A:

R =[r]...|rum], (3.68)
and let A be the diagonal matrix:

A = diag[A1, ..., Aum] (3.69)
We then have

A =RAR™!, (3.70)

and the solution of the system may be obtained by introducing “characteristic vari-

ables”, v:
v=R"q. (3.71)

Using characteristic variables, the equations (3.67) decouple into a set of scalar

advection equations
v+ A, v =0, (3.72)
which can be immediately solved via:

vp(z,t) = vp(x — Apt,0). (3.73)
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Given v(z,t), the transformation q = Rv then produces the solution of (3.67) in
terms of the original variables, q.
Turning now to the nonlinear case, the key idea is to first write the nonlinear

system in quasilinear form
oiq + A(q) 9,q =0. (3.74)

Here, A is an M x M matrix which is now a function of q. Roe [110] gives three

specific criteria for the construction of A:
1. AG,4q") (@ —a°) =f(@") — £(a");
2. A(q% q") is diagonalizable with real eigenvalues;
3. A%, q") — f'(q) smoothly as ¢,q" — q.

The latter two criteria can generally be satisfied by letting A be the Jacobian matrix

evaluated using the arithmetic average of the conservation variables at the interface:

of
A= —a(q) : (3.75)
d a9=9;,,,,
where
= — 1 ~{ ~T
qi+1/2 = 5 (qi+1/2 + qi+1/2) - (3.76)

While this construction does not generally satisfy the first criterion, (3.75) is often
used in relativistic fluid dynamics (see for example [71, 112, 55]) on the basis of
its relative simplicity, and we also adopt this approach. On the other hand, other
authors [49] have constructed a linearized Riemann solver for relativistic fluids with
true Roe averaging, and we therefore refer to our scheme as a “quasi-Roe” method.

Having defined a specific linearization, the scheme proceeds by evaluation of
A(

4,,,/,)—which is now viewed as a matrix with (piecewise) constant coefficients—

followed by the solution of the Riemann problem for the resulting linear system.
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Carrying through an analysis not given here (see e.g., [79]), the Roe flux can be
defined as
1 ~ ~(
Fiti2= 2 f(q:+1/2) + f(qi+1/2) - Z [AalAwara) . (3.77)
A
where, again, A4 and ry are the eigenvalues and (right) eigenvectors, respectively,

of A( ). The quantities Aw,4 are defined in terms of the the jumps in the fluid

qi+1/2

variables across the interface

q:+1/2 o qf+1/2 - Z Awara. (3.78)
A

3.5.4 An “entropy fix" for the Roe solver

The Roe solver uses only discontinuities to construct its approximate Riemann solu-
tion, and thus can produce weak solutions of the fluid equations which are unphysical
(see Section 2.2). This approximation as part of a numerical algorithm works very
well, however, as the dissipation inherent in the numerical scheme naturally increases
the solution’s “entropy,” smoothing out rarefaction fans. The Roe approximation
can lead to unphysical results in the case of sonic rarefaction waves, where A4 < 0 to
the left of the cell interface at x;1 /2, and Ag > 0 to the right of the same interface.

Harten and Hyman [69] introduced a popular “entropy fix” for sonic rarefaction
waves that modifies the wave speeds (the Roe eigenvalues A 4) to ensure conservation.
The fix is similar to the HLLE approach, whereby the wave speeds () are increased
near sonic rarefaction points, creating additional numerical diffusion at the point [5].
This extra diffusion is enough to ensure a physical solution. The Roe flux (3.77)

becomes

1

F=_|f(a)+ £(q°) — EA: valwary| . (3.79)

where for simplicity we have neglected the 7 + 1/2 spatial indices and reconstruct
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the midpoint state with the arithmetic average,

1,
q=§(q€+q), (3.80)

as before (3.76). The wave speeds are modified such that the maximum eigenvalue

is used at a sonic rarefaction point

va=A"Aa(@)] - Amax (1A4(@)] Ma@)l) (3.81)
where

Ay = sgn (AA(QK) : AA(Q’")) ; (3.82)

A =max (0,A4), (3.83)

A, = min (0,A). (3.84)

We implement this form of the Roe flux in our codes; however we have found the
extra diffusion to be unnecessary in critical solution studies, and thus use the original

Roe flux (3.77) for greater computational efficiency.

3.5.5 Marquina's method

A second linear Riemann solver is the Marquina solver [45, 46], which expands
earlier work by Shu and Osher [122] for scalar equations. This solver removes the

need for the reconstructed states, of (3.76), used by the Roe solver, and

qi+1/2
additionally expands the fluxes, f, in terms of the eigenvectors. The method uses

the left eigenvectors, 1, as well as the right eigenvectors, r, which are related by
lA'rB:(SAB- (385)
One first defines the coefficients

wit =1 (ar) - ar, (3.86)
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71‘4 = lA(qT> “qr,

w
¢7 =1(a) - f(qe),
¢ =1(a,) - f(ar).

The algorithm then is:

For A=1,...,M do

If A 4(q) does not change sign in [q¢, q,| then

If Aa(qs) > 0 then

¢r = op
¢t =0
else
¢4 =0
¢t = ot
end if
else
aa =max|Aa(q)], q€T(q,ar)
1
45 (97 +aawi)
A 1 A A
¢+§ (¢r — AW, )
end if
end do

(3.87)
(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

I'(qe,qr) is a curve connecting q; and q, in the state space q. For any hyperbolic

system, sign changes in A4(q) can be identified by testing Aa(q¢) - Aa(q,), and

aa = max (|Aa(qe)l, Aal(ar)])

7

(3.97)



The numerical flux function is

m

F(asqr) = Z [ ¢h 2P (qe) + ¢¥ rP(qe) ] - (3.98)

p=1
Marquina’s method uses more numerical dissipation than Roe’s method, using a
Lax-Friedrichs update (3.10) at sonic rarefaction points. This additional dissipation

eliminates some of the known problems with Roe’s solver [45, 106].

3.6 The failure of approximate Riemann solvers

Finally, it is important to remember that approzximate Riemann solvers produce ap-
prozimate solutions, which, under certain conditions, may diverge from the physical
solutions. For example, concentrating on the Roe solver, Quirk [106] has recently re-
viewed several “subtle flaws” in approximate solvers. Fortunately, the approximate
solvers often fail in different ways, and where one solver produces an unphysical so-
lution, another solver may give the physical solution. Thus, it may be necessary to
investigate a particular problem with multiple approximate Riemann solvers. Quirk
advocates the creation of a hybrid solver by combining the HLLE solver with the
Roe solver.

In our work with perfect fluid critical solutions, we use the quasi-Roe approx-
imate Riemann solver (with the entropy fix described in Section 3.5.4), and the
HLLE solver. We find that the quasi-Roe solver (without the entropy fix) gives
accurate solutions, and provides the best combination of resolution and efficiency
for the critical collapse problem. Consequently, the results presented in Chapter 5
are obtained with this solver. Such tests will be even more important as we pursue
two-dimensional calculations, as many of the errors catalogued by Quirk do not arise

in one-dimensional problems.
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3.7 Method of Lines

In Section 2.5 the fluid equations of motion were written in conservation form with
an additional source term, X. While this source term clearly breaks the strict conser-
vation form of the equations, it can be self-consistently incorporated into numerical
schemes for conservation laws by using the method of lines to discretize space and
time separately. (For more information on the method of lines see Thornburg [129]

and references therein.) Consider a PDE of the form
9rq + 0:f(q) = =(q). (3.99)

We first perform the spatial discretization, producing an ordinary differential equa-
tion in time

da;
dt

where q; is the cellular average of q, F;11/o are the numerical fluxes, and the source

=Fip12 —Fi_1)2 + 3(aQ), (3.100)

term is evaluated with q;. These equations can be integrated in time using standard
techniques for ODEs. In particular, Shu and Osher [121] have investigated differ-
ent ODE integration methods, and have found that the modified Euler method (or
Huen’s method) is the optimal second-order scheme consistent with the Courant
condition required for a stable evolution. Consider a general set of differential equa-

tions of the form

dq
= _ I(q), 3.101
J - 1) (3.101)
where L is a spatial differential operator. Let q™ be the discretized solution at time

t = nAt, and L be the discretized differential operator. The modified Euler method

is a predictor-corrector method, with predictor

q = q" + At L(q"), (3.102)
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At is limited by a Courant (CFL) condition, which can be deduced empirically or
possibly from a linearized stability analysis.
A third order integration scheme has also been used in conjunction with the

method of lines for relativistic fluid codes [7, 21]. This algorithm is

qV) = q" + At L(q"), (3.104)

a® = 2qn 4+ 2q0 4+ Latiq), (3.105)
4 4 4

gt = %q” + ;q@) + %At i(q(Z))_ (3.106)

While the method of lines is widely used in relativistic fluid dynamics, alternate
update schemes have been developed for general relativistic fluids. These schemes
are problem specific, depending on the method used to integrate the Einstein equa-
tions [55].

Looking ahead for a moment, in Chapters 6 and 7 we discuss a two-dimensional,
relativistic fluid code currently development. Many of the physical problems we wish
to examine with this code will require the ability to track features of the solutions
over many different scales. For multidimensional system, these calculations can only
be practical using adaptive mesh refinement, such as the Berger-Oliger [9] algorithm.
However, it is not yet clear if (or how) the method of lines can be consistently

combined with Berger-Oliger adaptive mesh refinement.

3.8 Boundary conditions

Two types of boundary conditions for the fluid equations of motion are of primary
interest: an out-flow boundary condition, and a reflecting “wall” boundary condi-

tion. The outflow boundary condition is generally given as

qN =qN-1; (3.107)
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where the computational cells (grid points) are numbered from 1,..., N. The cel-
lular reconstruction algorithm can complicate matters, as a linear piece-wise recon-
n+1

struction typically requires a five-point computational stencil, i.e., q’

;" depends on

qy, where k =i —2,...,i + 2. Other reconstructions (Section 3.4.2) may require
even larger stencils. A convenient way to incorporate boundary information for the
calculation of the numerical flux is to use ghost cells at the boundaries [81]. These
cells are not part of the “physical” grid, and are simply an artifice to simplify coding.
Let the cell at x be the edge of the physical grid, to which a boundary condition
is applied. The cell at x4 is added as a ghost cell, and the out-flow boundary

condition is
ay =dy_1 (3.108)
qrﬁz+1 =dqy_1- (3.109)

The “wall” boundary condition requires the velocity component perpendicular
the wall, v, to be zero at the wall. For concreteness, consider a wall at £ = Tya.
(We include only the = dependence explicitly in the equations below, e.g., a function

p(z,y, z,t) is written simply as p(x).) Then the boundary conditions are
VL (Twan) = 0 (3.110)
UJ_(xwau + A.Z‘) = —UJ_(.Twau — A.T) (3.111)

The wall reflects all other scalars and the velocity components parallel to the wall,

Yljs
U”(wwa]] + Ax) = UH(xwall — Ax) (3.112)
p(xwall + Aﬂ?) = p(xwall - Al‘) (3113)

In addition to boundary conditions, numerical work in curvilinear coordinates
may require regularity conditions, because these coordinate systems frequently con-

tain coordinate singularities. These singularities are not “physical,” but are simply
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points where the coordinate system fails. For example, the spherical coordinates 6
and ¢ are undefined at the origin. A regularity condition is usually a requirement
that the “physics” remains perfectly ordinary at coordinate singularities. In simple
cases, such as spherical symmetry, regularity conditions can be determined from
symmetry arguments alone. A general method for determining regularity condi-
tions is given by Bardeen and Piran [8]. At coordinate singularities they write all
tensors in Cartesian coordinates, and require all components to have a power series
expansion in non-negative powers of the Cartesian coordinates z, y, and z. For an
example of regularity conditions at the origin (r = 0) in spherical symmetry, see
Section 4.4.2. The regularity conditions for the axis (R = 0) in cylindrical symmetry

are discussed in Section 6.3.

3.9 Numerical tricks for ultrarelativistic flow

The numerical solution of ultrarelativistic fluids requires great care to minimize the
ill effects of round-off errors, as well as some ad hoc tricks to retain physical values
for P and v'. This section discusses the floor, a condition applied to the conservation
variables to ensure that they retain physical values, and methods for obtaining the

primitive variables from the evolved, conservation variables.

3.9.1 Floor

The fluid model is a continuum approximation, and, at least naively, the fluid equa-
tions become singular as p — 0. In these regions, which we term evacuation regions,
both the momentum and mass density are very small, and therefore the velocity—
which loosely speaking is the quotient of the two—is prone to fractionally large
numerical errors. These errors then often result in the computation of unphysical
values for the fluid variables, such as supraluminal velocities, negative pressures

or negative energies. At least from the point of view of Eulerian fluid dynamics, it
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seems fair to say that a completely satisfactory resolution of the evacuation problem
does not exist. In the absence of a mathematically rigorous and physically accept-
able procedure, we adopt the ad hoc approach of demanding that p > 0 everywhere
on the computational domain, i.e., we exclude the possibility that vacuum regions
can form on the grid. In terms of our conservation variables q, this requirement
becomes E > 0 and D > 0. In a wide variety of situations, our numerical solutions
of the fluid equations naturally satisfy these constraints. However, problems do
occur with extremely relativistic velocities (W > 10°) in regions where p is small.

Specifically, at each step in the integration we require
E>6 D>, (3.114)

where the floor § is chosen to be several orders of magnitude smaller than the density
associated with the physically relevant features of the solution. A typical value used
for this dissertation work is § = 1010,

Given the ad hoc nature of this regularization procedure, the crucial question is
whether the floor affects the computed solutions in a substantial way. This question
has been investigated for the spherically symmetric, perfect fluid critical solutions

(see Section 4.4.1, Figure 4.17, and Section 5.3.4).

3.9.2 Calculation of primitive variables: ultrarelativistic equation of state

When searching for critical solutions we routinely calculate fluid lows with W > 103.
Thus, when calculating v from the quotient (2.115), small numerical errors can easily
conspire to give |v| > 1, rather than the correct |v| 2 0.999999. On the other hand,

the combination

w=Wh (3.115)
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is insensitive to small numerical errors, and provides a better avenue for calculating v

from the conservation variables. Using the equation of state, (3.115) can be written

_Ir-1s
=55 (3.116)

The velocity can then be calculated from w using

v= % (\/1 +4w2—1). (3.117)

To the limit of machine precision, v is then in the physical range —1 < v < 1. When
w K 1, we calculate v from a Taylor expansion of (3.117), although (2.115) could

also be safely used.

v w(l+ @ (2w —1)). (w < 1) (3.118)

3.9.3 Calculation of primitive variables: ideal-gas equation of state

In Section 2.6.2 we discussed solving for the primitive variables from the conservation
variables, and presented one method that involved solving a transcendental equation
for P. For ultrarelativistic flows this solution method can be improved by a more
careful calculation of the velocity, motivated by the method presented in the previous
section for the ultrarelativistic equation of state. In this approach we solve for the

fluid’s enthalpy,
w=p+ P, (3.119)

rather than the pressure. This allows the calculation of v from the quantity W?2v,
as in the ultrarelativistic equation of state case (Section 3.9.2). The algorithm we
use is given by the pseudo-code in Figure 3.5.

Additional care must also be taken in the calculation of the sound speed, re-
quired to evaluate the eigenvectors and eigenvalues (see Section 2.7). The sound

speed for the ideal-gas equation of state is

r(r—1)P
2 _
<= T 1, TP (3.120)
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Wnew = Pold + Pold ! an initial guess

do
W = Wpew
S
w = —
w

 fw)

Wnew =10 i)

while (|wnew —w| <€)

Figure 3.5: Pseudo-code for the primitive variable solver using Newton’s method for the
ideal-gas state equation, optimized for ultrarelativistic flow. A prime indicates differentia-
tion with respect to w. The update for p, is indicated in braces, {-}, and is not actually
calculated in the Newton solver loop.
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When P > p,, as is often the case for ultrarelativistic flow, a naive calculation of
the sound speed may give ¢2 ~ I' — 1, while a better approximation is found by

expanding (3.120) in powers of p,/P
—1
E=(-1) (1——&+---). (po < P) (3.121)

This expansion is especially important when calculating the eigenvectors, as the

quantity & — ¢2 is very sensitive to this error.
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Chapter 4

Spherical symmetry

This chapter describes a new computer code for simulating a self-gravitating, rel-
ativistic perfect fluid in spherical symmetry, with the ultrarelativistic equation of
state P = (I'—1)p (see Section 2.4.2). Here, as before, P and p are the fluid pressure,
and total energy density, respectively, and I' is a constant satisfying 1 < I' < 2. The
code has been optimized for wltrarelativistic fluid flows with Lorentz factors much
larger than unity. This optimization involves a novel definition of the fluid variables,
the use of a modern high-resolution shock-capturing scheme, and care in reconstruc-
tion of the primitive fluid variables—the pressure and velocity—from the conserved
quantities actually evolved by the code. A detailed specification of this code and
the tests presented here have been reported earlier by Neilsen and Choptuik [97].
This code was specifically developed to study the critical gravitational collapse
of perfect fluids, especially in the limit I' — 2. Critical collapse has become an
interesting subfield in general relativity since its initial discovery in the massless
Klein-Gordon system [29], and the perfect fluid model has played an important
role in advancing our understanding of the critical phenomena which arise at the
threshold of black hole formation. (Critical phenomena are discussed further in
Chapter 5.) While the critical solutions for perfect fluids in spherical symmetry
have been the subject of recent study [52, 73, 86, 68, 74, 16, 60, 24, 26], the precise
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nature of the critical solutions for I' 2 1.89 was not previously known, and thus one
of the chief goals of the current investigation was a thorough analysis of this regime.

The main results from the study are given in Chapter 5.

4.1 The ADM equations for spherical symmetric fluids

The ADM equations were introduced in Section 2.1 for an arbitrary spacetime. This
section specializes the ADM equations to spherically symmetric space-times with
perfect fluids. We choose polar-areal coordinates for simplicity of the equations
of motion and for singularity avoidance. Specifically, adopting a polar-spherical

coordinate system (¢,7,0,¢), we write the spacetime metric as
ds? = —a(r,t)?dt® + a(r,t)? dr? + 2 (dH2 + sin” 6 d¢>2) , (4.1)

wherein the radial coordinate, r, directly measures proper surface area. In analogy
with the usual Schwarzschild form of the static spherically symmetric metric, it is

also useful to define the mass aspect function
T 1
t)==-(1——]. 4.2
wirt) =5 (1- ) (42)
The fluid’s coordinate velocity, v, and the associated Lorentz gamma, function,
W, are defined for this spherical code by

au”

v(r,t) = e W(r,t) = au’. (4.3)

Note that this definition differs slightly from (2.74). (The difference comes simply

from a choice of convention made at the beginning of the project.) The identity

u-u = —1 gives the usual relation between W and v
I (4.4)
1—o2 '
The fluid’s conservation variables are
E(Tat) :(p+P)W2_Pa (45)
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S(r,t) = (p + P)W?v, (4.6)

and the non-zero components of the stress-energy tensor are given by

Ttt:—E TT»,-:S'U‘FP

Tt, =25 T05 =T%, = P.
(6

(4.7)

A sufficient set of Einstein equations for the geometric variables a and « are

given by (i) the non-trivial component of the momentum constraint
dra = —4mraa®s, (4.8)

and by (ii) the polar slicing condition, which follows from the demand that metric

have the form (5.3) for all ¢:

dr(lna) = a? [47”" (Sv+P)+ ﬂ] . (4.9)

r2

An additional equation for a(r,t),

ora = a® (47TTE — %) , (4.10)

follows from the Hamiltonian constraint (2.20).

4.2 The fluid equations

As mentioned previously in Section 2.4.2, the time evolution of a barotropic perfect
fluid is completely determined by V - T = 0. In addition, the derivation of the
spherically symmetric equations of motion—which can can naturally be written in
conservation form—is a straightforward piece of analysis, and will not be given in

detail here. The fluid state vectors are

Qs = , w = , (4.11)
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and the flux and source vectors are

S 0
f, = s, = . (4.12)
Sv+ P ()

These variables have been introduced with an asterisk (%) to distinguish them
from the new variables defined in Section 4.2.1, which are subsequently used in the
actual numerical solution algorithm. Further, to expedite the discretization of the

equations of motion, we decompose the source term, v, into two pieces, as follows:

2aP
b=+ 2 (4.13)
ar
where
m m
O = (Sv—FE) (87raarP + (mr_Q) + aaPT—Q. (4.14)

We note that in spherically symmetric Minkowski spacetime we have © = 0 and
¢ = 2P/r. With the above definitions, we can now write the fluid equations of

motion in the conservation form
1 2
dax + =0, (r’Xf,) =3, (4.15)
T
where

X

SRS

(4.16)

is a purely geometric quantity.
The primitive variables w can be expressed in terms of the conservation vari-
ables q, by inverting the definitions (4.5) of the conservation variables, as shown in

Section 2.6.1

P=—28E + [45?E% + (T — 1)(E? — §%)] (4.17)
s
v-s (1.18)
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The positive constant 3 (2.120) is

B=-(2-T). (4.19)

] =

The pressure equation (4.17) follows from the solution of a quadratic with a spe-
cific root chosen to yield a physical (non-negative) pressure. As mentioned in Sec-

tion 2.6.1, a physical pressure and velocity are obtained when E > |S|.

421 New conservative fluid variables

Using the conservation variables, q,, defined above, and the numerical method de-
scribed below in Section 4.4, we developed a preliminary code to solve the relativistic
fluid equations. We then tested this code in Minkowski spacetime using slab and
spherical symmetry. The tests in slab symmetry were completely satisfactory, mod-
ulo the convergence limitations of the numerical scheme (see Section 4.5). However,
in spherical symmetry, the method frequently failed for “stiffer” fluids (I" = 1.9),
most notably in “evacuation regions” where p — 0 and |v| — 1, a combination
difficult for numerical work. These problems in spherical symmetry led us to seek
a new set of conservation variables, and to motivate this change of variables, first
consider the evolutions shown in Figure 4.1. Here we begin with a time-symmetric,
spherical shell of fluid, which has a Gaussian energy density profile. Owing to
the time-symmetry, as the evolution unfolds, the shell naturally splits into two
sub-shells—one in-going and one out-going—and as the sub-shells separate, a new
evacuation region forms in the region where the fluid was originally concentrated.
Examination of the conservation variable profiles reveals that |S| =~ E, and this

observation suggests new variables [33]

d=F - S, MM=E+S, (4.20)
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which loosely represent the in-going (®) and out-going (II) parts of the solution.
Thus the new state vector of conservation variables is
II

q= : (4.21)
d

The q variables provide a significant improvement over the conventional variables,
d«, in spherical symmetry with T" 2> 1.9. Not surprisingly, this change of variables
does not solve all of the numerical problems encountered in the highly relativistic
evacuation regions. For example, the new variables do not eliminate the need for a
floor when searching for I' 2 1.9 critical solutions.

The equations of motion for the new variables q can be readily found by adding

and subtracting the two components of (4.15), giving
1
oq + =0, [r*Xf] =%, (4.22)
r
where the flux and source terms are now given by

(I—-®)(1+v)+P ()
(MI-®)(1—-v)—P —

(4.23)

[
11l
Nl— N
™M
11l

The transformation from conservative to primitive variables can be found by simply

changing variables in (4.17) and (4.18)

P = —B(Il+®)+ [ (Il + @) + (T - 1)1®)] : (4.24)
 m-o )
Rl Y 3 (4.25)

Given the physical requirement E > |S|, the new variables q are strictly positive:

II>0,&>0.

4.3 Characteristic structure

In this section we give the Jacobian matrix A for the relativistic fluid equations,

and then compute the associated eigenvalues and right eigenvectors. The flat-space
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Figure 4.1: These plots show various fluid quantities at four different instances (equally
spaced in time) in a flat spacetime, slab-symmetric evolution with T' = 1.9. The initial
configuration is a time-symmetric Gaussian pulse. The top frames show the evolution of
the original conservation variables, E and S. As the evolution proceeds, the pulse separates
into left and right-moving halves, and a vacuum region (E — 0) develops between the two
sub-pulses. The bottom frames show the evolution of the new conservation variables, IT and
®, which do not divide into two shells as does E. The correspondence of the new variables
to left and right moving “waves” is also evident. Note that the plots of E, IT and ® have
the same vertical scale, while the vertical scale for S is shown separately. The horizontal
scale is the same for all of the plots.
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components of A are

A = % (1+2v—2%) +(1 - UQ)g—g (4.26)
Ay = —% (v+1)%4+ (1 - 02)3—2 (4.27)
Ay = % (v—1)%+ (v — 1)2—11; (4.28)
Ay = % (=1+42v+v?) + (v* — 1)‘3—2 (4.29)

and the partial derivatives of P are easily found from (4.24). The eigenvalues Ay of

A are the two roots of the quadratic equation
A2 = (A1 + Az2)A + det A =0, (4.30)

and the right eigenvectors are

1
ry = , (4.31)
Yy
where
A+ — A1
Y., =—— —. 4.32
+ i, (4.32)

If the eigenvalues are numerically degenerate owing to the limitations of finite pre-
cision arithmetic, we set Ay = 0. When I' = 2, the eigenvalues and eigenvectors

become simply

A =41, r = . r_= : (T =2) (4.33)

4.4  Numerical algorithm

This section discusses the numerical algorithm used to solve the Einstein-fluid sys-
tem. The fluid equations are discretized using the method of lines (Section 3.7)

to consistently incorporate the source term, ¥. The modified Euler method (also
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Section 3.7) is used to integrate the equations in time. The numerical fluxes are
constructed using Roe’s linearized Riemann solver (Section 3.5.3), and the cells
are reconstructed with piece-wise linear functions (Section 3.4) using the minmod
limiter (Section 3.4.1).

Particularly in comparison to the treatment of the fluid equations, the nu-
merical solution of the equations governing the geometric quantities o and a is
straightforward. As discussed previously, the lapse, «, is fixed by the polar slicing
condition (4.9), while a can be found from either the Hamiltonian (4.10) or mo-
mentum (4.8) constraints. We have used second-order finite-difference equations for
both constraints and have obtained satisfactory results in both cases (the polar slic-
ing equation is likewise solved using a second-order scheme.) In general, however,
(and particularly on vector machines) solution via the momentum constraint yields
a far more efficient scheme, and we thus generally use the momentum equation to

update a.

4.4.1 The floor

A floor, or set minimum values for q, is used in this code as discussed in Section 3.9.1,
and is necessary for finding critical solutions with I' 2 1.8. The floor is applied by

requiring
MI>4 @>9, (4.34)

at each step in the update scheme, where a typical floor magnitude is § = 10710,
The floor is often applied in regions where II and & differ greatly in magnitude,
and discretization errors can easily lead to the calculation of a negative value for
either function. For example, the floor may be applied to the “in-going” function in
a region where the fluid is overwhelmingly “out-going.” In these cases, the effect of
the floor is dynamically unimportant. However, the floor may be invoked in other

cases, where its effect on the dynamics is less certain.
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A crucial question is whether the floor affects the computed solutions in a
substantial way. We investigated this question by comparing near-critical solutions
for I' = 2 (the most extreme case) which were calculated with three distinct floor
values: 6 = 1076, § = 107%, and the usual § = 107!°. The solutions appear
nearly identical, as judging from residual tests in the strong-field regime, as shown
in Figure 4.17. However, we note that the use of a floor makes estimates of the
maximum Lorentz factor attained in the critical solutions unreliable because the

largest velocities occur in regions where the floor is enforced.

4.4.2 Regularity and boundary conditions

In the polar-areal coordinate system, the lapse “collapses” exponentially near an
apparent horizon, preventing the ¢ = constant surfaces from intersecting the physical
singularity which must develop interior to a black hole. As the slices “avoid” the
singularity, elementary flatness holds at the origin for all times in the evolution,
giving

a(0,t) = 1. (4.35)

At each instant of time, the polar-slicing condition (4.9) determines the lapse only up
to an overall multiplicative constant, reflecting the reparameterization invariance,
t — #(t), of the polar slices. We chose to normalize the lapse function so that as r —
o0, coordinate time corresponds to proper time. On a finite computational domain,
and provided no matter out-fluxes from the domain, this condition is approximated
via

aa =1. (4.36)

Tmax
In spherical symmetry the fluid flows along radial lines, and given that there

are no sources or sinks at the origin, we have that v(0,¢) = S(0,¢) = 0. Thus
I1(0,t) = ®(0,t) = E(0,t). (4.37)
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Regularity at the origin further requires E, II and ® to have even expansions in r

as r — 0:
E(r,t) = Eo(t) + r*Ex(t) + O(r?) (4.38)
II(r,t) = Io(t) + r’Ia(t) + O(r?) = Eo(t) + r’Ilx(t) + O(r?) (4.39)
B(r,t) = Do (t) + r’*®y(t) + O(r*) = Ey(t) + r2®a(t) + O(r?) (4.40)

On our radial grid r;, ¢ = 1,2,--- N, we use these expansions to compute grid-
function values defined at » = r; = 0 in terms of values defined at r = 72 and
r = r3. Specifically, once the values ®s and @3 have been updated via the equations
of motion, we compute ®; using a “quadratic fit” based on the expansion (4.40):

(I>27‘32 - (I)3T22

Py = : (4.41)

3% — 1o
We then set II; = ®;.
At the outer boundary we apply out-flow boundary conditions, which in our

case are simply first-order extrapolations for II and &:
Oy =Dy Iy =IIn_;. (4.42)

The boundary conditions are applied with ghost cells (r = ryy1,7 = rny2) as

presented in Section 3.8).

443 Grid

The black-hole-threshold critical solutions—which are our primary focus—are gener-
ically self-similar, and as such, require essentially unbounded dynamical range for
accurate simulation. Thus, some sort of adaptivity in the construction of the com-
putational domain is crucial, and, indeed, the earliest studies of critical collapse [29]

used Berger-Oliger adaptive mesh refinement [9] to great advantage. However, in
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contrast to the early work, we know (at least schematically) the character of the crit-
ical solutions we seek, and thus we can, and have, use this information to construct
a simple, yet effective, adaptive grid method. (Our approach is similar in spirit to
that adopted by Garfinkle [57] in his study of scalar field collapse.) Specifically, at
any time during the integration our spatial grid has three distinct domains: the two
regions near r = 0 and r = ry,,x have uniform grid spacings (but the spacing near
r = 0 is typically much smaller than that near the outer edge of the computational
domain), and the intermediate region has grid points distributed uniformly in log(r).
As a near-critical solution propagates to smaller spatial scales, additional grid points
are added in order to maintain some given number of grid points between r = 0 and
some identifiable feature of the critical solution. For example, we typically require
that at least 300 or so grid points lie between the origin and the maximum of the
profile of the metric function a.

As described above, the radial grid is divided into three sections: the first
region, r < r., has uniform spacing between the grid points; the second region,
rq < 1 < 13, has logarithmic spacing; and the third region, r > 7, also has uniform
spacing. The easiest way to construct this grid is to consider an uniform grid in log
space, U, ancillary to the radial grid, . In the second region of the radial grid, the

two grids are related by
Inr ="U. (4.43)

The radial grid has a fixed minimum spacing, Arpyin, in the first region, r < r,, and
a fixed maximum spacing, Armax, in the third region, r > 5. The uniform spacing
on the log grid is fixed to be AU. (The minimum and maximum values of U are not
important, but for simplicity assume —oco < U < o0.) Figure 4.2 graphically shows
how the boundaries r, and 7, are chosen. Algebraically, we require in the second

region that
Tigl — Ti = AT min. (4.44)
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The point U, is chosen by letting Ar = Arpin (written now in terms of U)
6U1—|—AU _ eU1 — Armil’h (4.45)

and solving for U,

A min
Ua =In (eNi‘i—l) . (4.46)

Uy can be found by a similar calculation.

The primary advantage of this gridding scheme is that it is simple to implement,
and yet allows us to resolve detail over many length scales: the ratio of the grid
spacing at the outer edge to the spacing at the origin is typically 10'9-10'3 at the
end of an evolution. The primary disadvantage of this scheme is that it is specialized

for critical collapse, and cannot be used for more general physical problems.

4.4.4 Details of the integration procedure

The origin in spherical symmetry requires additional care because powers of 1/r
appear in the flux and source terms. One particular difficulty results from the
partial cancellation of the source term, 2aP/(ar), with the pressure term in the
flux. Numerically this cancellation is not exact, and this non-cancellation can induce
large errors near the origin. We therefore modify the difference equations in order
to eliminate the offending term. We first decompose the numerical flux into two

parts f1) and £3):

(IT — ®)(1 +v) (@ _ P

(IT — &)(1 — v) .y

£ =

, (4.47)

N[— N

so that £ = £f() 4+ £(2). We then rewrite the conservation equations (4.15) with these

new fluxes as

diq + %aT (Pxt®) +o, (x1)) =3, (4.48)

99



7\ 1T ‘ T T T T T T \\\\‘ \\\\‘\\\\ T T T T \\\\i
03 (a) _ [ (b> ]
L i 5| i
02 Smax . O .
- e 1 — bt ]
0.1 * - | . i
| Armin ... ] L ra o.. i
Y T N S
| .... U b I '.... U ! |
R R ettt BN
\\\\‘\\\\‘\\\\‘\\\\‘\\:\ \‘ \\\\‘\\\\‘\\\\‘\\\\‘\\:\ \‘
4 -3 -2 -1 0 1 -4 -3 -2 —-1 0 1
U U

Figure 4.2: The radial grid, r, is created with logarithmic spacing using a uniform grid, U,
in log-space. This figure graphically displays the connection between r and U. The uniform
spacing of the log grid, AU, and the minimum and maximum spacings on the radial grid,
Armin and Arpay, respectively, are fixed in advance. The radial grid has logarithmic spacing
when Arpin < r(Uir1) —r(U;) < Armax. Frame (a), shows Ar; = r(U;) — r(U;—1) vs. U.
The boundaries U, and U, are found from Arpi, and Arpax, respectively. Frame (b) plots
r vs. U, giving the boundaries on the radial grid, r, and r.
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Figure 4.3: Tllustration of the re-meshing algorithm used in investigations of critical col-
lapse. The grid spacing Ar is shown as a function of r on a log-log plot. The solid line
represents the initial grid, the dotted line shows the grid spacing after the first addition of
points near the origin, and the dashed line shows the grid spacing after the second regridding.
Note that the grid spacings near the origin, and near the outer edge of the computational
domain are uniform (horizontal lines). At each regridding cycle, the grid spacing near the
origin is halved, and the new points are matched smoothly onto the previous grid. A critical
evolution may involve more than 20 regriddings, although only a small number of points
(50-150) may be added at a time.
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Figure 4.4: The number of grid points as a function of time for a I' = 2 near critical
evolution. The mesh refinement terminates when a maximum resolution limit is reached,
which occurs here around In(t* — t) &~ —18.

where the new source term ¥ is

) )
3= . (4.49)
o)

The numerical flux function F is similarly decomposed: F = F(!) + F?) | with

1 1 ~ -
Fz('+)1/2 -5 [f(l)(qfﬂm) + f(l)(qz’ﬂ/z) - Z AulDdwpry | (4.50)
"
2 1 - oy
Fz('—|—)1/2 D) [f(z)(qfﬂ/z) +£3 (qi+1/2)] . (4.51)

The finite-differencing of the flux terms is adapted so that the derivatives have
the correct leading order behavior near the origin. From the regularity conditions

discussed in Section 4.4.2 we have

lim r2 X £ o 73, lim Xf(® « constant, (4.52)

r—0 r—0
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and we thus write the discretized equations of motion as

dg; _3 [(TzXF(l))Hl/z - (TQXF(1)>i—1/2]
dt T?+1/2 - 7"?71/2
2 2
B (XF( ))i+1/2 B (XF( ))i—1/2 -y (4.53)

Tit1/2 —Ti-1/2
The geometric equations are differenced using standard second-order finite-

difference techniques. The momentum constraint is

dai
dt

= 27r7“iaia? (I1; — ®;), (4.54)

and is integrated using the modified Euler method described in Section 3.7. The

discretized polar slicing condition (4.9) in discrete form is

(Ina)?; = (na)}

v Ar {a [m«((n _ @)+ P)+ % (1 - %)} }n+/ (4.55)

a

where all of the basic variables—a, I, ®,v and P—in the {} braces are evaluated at
T';11/, USINg an arithmetic average.

Finally, the overall flow of an integration step is as follows:
1. Begin with the data for time t = ¢": {II", ®" P" o™ o",a"}.

2. Reconstruct the conservation variables using (3.44)—(3.45)to obtain values at
the cell interfaces for {G%,q"}, and calculate the corresponding primitive val-
ues, {W’ W'}, using (4.24) and (3.117). Using the characteristic information

in 4.3, calculate the numerical fluxes F(g%, ") using (4.50) and (4.51).

3. Begin integrating the equations of motion, (4.53), and the momentum con-
straint, (4.54), by perform the predictor step of the modified Euler method
(3.102) , obtaining {TIM), &) M} then calculate {PM), oM} using (4.24)

and (3.117). Integrate the slicing condition (4.55) to determine a(!).
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4. Reconstruct cells for {dﬁl), q&l)}, and {v~v§1) , v~v7(~1) }, and calculate the numerical

fuxes F(q.", @").

5. The update is completed by performing the corrector step of the modified Eu-
ler method (3.103), giving {II"*1, ®"*1 "1} and {P™*!, v" 1}, The slicing

condition is then integrated to determine a"*t1.

6. Check the regridding criteria, and regrid if necessary.

45 Tests

When developing a code such as the one described here, a variety of tests can verify
that the code is producing reliable results. For example, independent residual tests
and comparisons with exact solutions can be used to ensure that the code is solv-
ing the correct differential equations, and producing “physical” solutions. Perhaps
most fundamental is the convergence test, which generally demonstrates that the
numerical method is consistent and has been correctly implemented, but which also
provides an intrinsic method for estimating the level of error in a given numerical
solution. This section discusses the convergence properties of our code, focusing es-
pecially on convergence in the critical regime of a collapsing fluid. Additional tests
are also presented.

For our high-resolution shock-capturing scheme, a general rule-of-thumb is that
the convergence should be (apparently) second order where the flow is smooth, and
first order at discontinuities, where the effects of the slope limiter become important.
In addition, we can also expect first order convergence near extrema of q, since at
these points, the slope, s, changes sign, and the minmod limiter gives a piece-wise
constant reconstruction for q. A convergence test where these effects are apparent

is shown in Figure 4.5.
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Figure 4.5: Tllustration of some of the convergence properties of the solution algorithm
discussed in the text. This figure’s caption is continued on the next page.
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Caption for Figure 4.5 (continued): Here we evolved a time-symmetric shell of fluid (I' = 1.3)
using uniform grids with three different resolutions: Ar = h,2h and 4h. Convergence is
investigated by comparing the solutions obtained using the three distinct discretization
scales. In frame (c), the solid line is (E2p — E4p) and the dotted line is 4 (Ep — Eap,), where
the subscript on E indicates the grid spacing for a particular solution. When the convergence
is second order, the two lines should (roughly) coincide, while when the convergence is first
order, the amplitude of the dotted line should be twice that of the solid line. As expected,
we see that the convergence is not second order at the shock. (Of course the whole notion of
convergence at a discontinuity fails, as the notion of Richardson expansion requires smooth
functions.) However, we also can see that the convergence is only first order at the extrema
of g—at these points, the slope changes sign, and the minmod limiter produces a first-order
reconstruction. Frame (d) shows a more detailed view of a portion of the data displayed in
(¢). For context, we also show E in frame (a) and v in frame (b).
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Figure 4.6: The residual of the Hamiltonian constraint, Res(a), for a I' = 1.9 sub-critical
evolution near the threshold of black hole formation. The residual is calculated at three
different resolutions on the adaptive log grid, and this figure shows the residual just before
the fluid disperses from the origin. The top frame shows the residuals in the neighborhood
of the critical solution, and the lower frame shows the residuals for the entire grid. The
crosses show Res(a) for a low resolution run, the triangles show 4Res(a) for a medium
resolution run, and the circles show 16Res(a) for a high resolution run. The resolution
differs approximately by factors of 2 for each grid. The overlap of these functions indicates
that the fluid in the region of interest converges quadratically (see the top frame). A region
of first order convergence is apparent in the bottom frame. This appears to be a transition
region between a region of the grid where the floor is inactive, in this frame x < 2, and a
region where the floor is continuously applied, at this time z > 3.5. In this transition region,
the floor is active every second grid point. The z coordinate is a logarithmic coordinate
proportional to Inr, and is defined in Section 5.2.
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Our fluid code has been primarily optimized for studying perfect fluid critical
solutions. These solutions are continuously self-similar, smooth, very dynamic, and
exist in the strong field limit of general relativity. Thus the most important test is
a convergence test of a near critical solution at the verge of black hole formation.
We found the critical solutions for a I' = 1.9 fluid at three different resolutions,
and plotted the residual of the Hamiltonian constraint in Figure 4.6. While the
convergence of our scheme reverts to first order at the extrema of {II, ®}, which
occur at r = 0 for a collapsing perfect fluid, the region most interesting for studying
critical solutions is near the maximum of 72E. Thus the maximum of r2E occurs
away from the origin where the convergence is second order.

The Riemann problem is an exact solution for two discontinuous initial states

separated by a divider at ¢t = 0,

qr ifx <0,

q(z,0) = (4.56)

qr if x > 0.

This solution can be used to test the shock-capturing algorithm, checking that the
code calculates the shock jumps and velocities correctly. We show five shock tube
PDE solutions plotted together with the analytic solutions in Figures 4.7 and 4.11.
While the shock-tube provides a good test of the fluid solver, the test is done in
Minkowski space with slab symmetry, and can probe neither the implementation of
the geometric factors in the fluid equations, nor the discretized Einstein equations.
A few general relativistic fluid systems can be solved exactly, and have traditionally
been used to test new codes, including static, spherical stars (Tolman-Oppenheimer-
Volkoff), and spherical dust collapse (Oppenheimer-Synder). (The TOV solutions
for the ultrarelativistic equation of state have the form p oc 1/72 [116]; this code
requires regularity at the origin, precluding the TOV solution as a possible test.)
In the residual test, we discretize the PDEs using the leap-frog scheme, and

evaluate the discretized equations with the high-resolution shock-capturing solution.
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Figure 4.7: The shock compression of a diffuse relativistic gas is demonstrated in this
shock tube test of a I' = 4/3 fluid. The solid lines show the exact solution, and the points
correspond to the PDE solution. The top frame shows the pressure at ¢ = 0.6, and the
bottom frame shows the product of the Lorentz factor and the velocity. The initial left state
is P, = 1074, v, = 0.9999995, and the initial right state is P, = 1074, v, = —0.9999995.
The solution is calculated with 400 cells.
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Figure 4.8: The shock compression of a relativistic fluid is shown in this shock tube test
for I' = 4/3. The top frame shows the pressure, and the bottom frame shows the product of
the Lorentz factor and the velocity. The initial left state is P, = 103, v, = 0.9999995, and
the initial right state is P, = 103, v, = —0.9999995. The solution is calculated with 400
cells using the monotonized central-difference limiter.
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Figure 4.9: The lines show the exact solution for this shock tube test with a I' = 5/3 fluid
at t = 0.4. The triangles and squares show the pressure and velocity of the PDE solution,
respectively. The initial left state is P, = 10%, v, = 0, and the initial right state is P, = 1,
v, = 0. The solution is calculated with 400 cells.

111



L [T T i
104 = \T -
L | i
L | |
8000 — “ ‘ -
B | 1
6000 [~ ‘ 4
a, C J ]
4000 [ \)\“ 3
2000 — “ B 3
0 B | T [ \\L — 1
0.9 0.92 0.94 0.96 0.98 1
X

C T I 7
20 N ]
15 & j 3
£ f s 1
10 = | % .
C \ b
5 “ =
B \ ]

O Il Il ‘ Il Il ‘ Il | I ‘ ‘
0.9 0.92 0.94 0.96 0.98 1

X

Figure 4.10: A relativistic shock tube test of a I' = 1.6 fluid using the minmod limiter. The
same test using the MC-limiter is shown in Figure 4.11. The initial left state is P, = 5000,
ve = 0.999, and the initial right state is P, = 10, v,, = 0. The solution is plotted at ¢t = 0.45,
and the test was performed with 1000 computational cells and a Courant number of 0.5.
The limiters are defined in Section 3.4.1.
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Figure 4.11: A relativistic shock tube test of a I' = 1.6 fluid using the MC-limiter. The same
test using the minmod limiter is shown in Figure 4.10. The initial left state is P, = 5000,
ve = 0.999, and the initial right state is P, = 10, v,, = 0. The solution is plotted at ¢t = 0.45,
and the test was performed with 1000 computational cells and a Courant number of 0.5.
The limiters are defined in Section 3.4.1.
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Using an uniform grid and a I' = 2 fluid, we performed the residual test of the
fluid equations of motion using the variables {E, S} (4.15), and the Hamiltonian
constraint (4.10). Figure 4.12 shows the residuals at a given time, plotted along
with E and S for reference. The ¢ norms of the residuals for the E equation of
motion and Hamiltonian constraint as functions of time are plotted in Figures 4.14
and 4.15. These plots show that the largest errors occur when the fluid is at the
origin, and this error also contributes to the difficulty in experimentally measuring
the black hole mass-scaling parameter via supercritical evolutions. Finally, we find
a remnant at the floor level in E at the origin after the pulse rebounds from the
center, causing a large residual in the Hamiltonian constraint. Figure 4.16 shows
this effect at different resolutions.

A test for the effect of the floor on the I' = 2 critical solution is included
here. This test, shown in Figure 4.17, indicates that the magnitude of the floor
has very little effect on the near-critical solution. However, the mere presence of
a non-zero floor may affect the solution. A test for the floor’s effect on the mass
scaling exponents calculated for critical solutions is included in Section 5.3.4 of the

next chapter.
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Figure 4.12: This figure shows the independent residual test for a subcritical evolution of
a ' = 2 fluid at ¢ = 0.62. This caption is continued on the following page.
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Caption for Figure 4.12 (continued): The fluid equations of motion and the Hamiltonian con-
straint are discretized independently using centered differences (in time and space). These
equations are evaluated with the HRSC solution, and the residuals are shown here. The
top two frames show the fluid variables E and S in frames (a) and (b), respectively. The
next two frames show the residuals of the equations of motion, the E equation in frame (c),
and the S equation in frame (d). The residual of the Hamiltonian constraint is shown in
frame (e). The initial data are for a time-symmetric Gaussian pulse centered on the grid.
The grid is uniform, and the residuals are shown at three different resolutions: Ar = h
(solid line), Ar = 2h (dotted), and Ar = 4h (dashed). The residuals decrease quadratically
as the resolution is doubled, indicating a quadratic convergence to the correct solution. A
detail of this plot is in Figure 4.13. The behavior of the residuals as a function of time is
shown in Figures 4.14 and 4.15.
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Figure 4.13: Detail near the origin of the independent residual test for a subcritical evolu-
tion of a I' = 2 fluid at t = 0.62 shown in Figure 4.12. Frame (a) shows the residual of the
E equation, frame (b) the residual of the S equation, and frame (c) shows the residual of
the Hamiltonian constraint. See Figure 4.12 for further information and discussion.
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Figure 4.14: A plot of In ||Res(E)||2/In||E]|2 as afunction of time for a subcritical evolution
at three different resolutions, where Res(E) is the residual of the E equation of motion, and
[| - ||2 is the ¢ norm. The evolutions were performed on an uniform grid with spacings
Ar = h (solid line), Ar = 2h (dotted), and Ar = 4h (dashed), and the residual is evaluated
independently with centered finite difference operators. The initial data are for a time-
symmetric Gaussian pulse centered on the grid, and T' = 2. Initially, the lines differ by 2
on the vertical scale, indicating that the residual converges quadratically to zero. When the
bulk of the fluid reaches the origin, the convergence decreases, until the pulse reaches its
maximum compression ¢ & 1.82. The pulse then moves outward from the origin.
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Figure 4.15: A plot of In||Res(a)||2 as a function of time for a subcritical evolution at
three different resolutions, where Res(a) is the residual of the Hamiltonian constraint. We
solve the momentum constraint for the metric function a, thus the Hamiltonian constraint
provides an independent check that the Einstein equations are solved correctly. The residual
is evaluated with centered finite difference operators. See Figure 4.14 for further information
on the resolution and initial data.
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Figure 4.16: This figure shows a small “glitch” in E that develops at the floor level after
the fluid rebounds from the origin in the subcritical evolution of Figure 4.12. Frame (a)
shows E at the origin at t = 3, long after the bulk of the fluid has left the origin. Frame (b)
shows the metric function a, and frame (c) shows the residual of the Hamiltonian constraint.
Each frame shows the solution plotted at three resolutions, the hexagons at Ar = h, the
squares at Ar = 2h, and the triangles at Ar = 4h. The floor in this test is § = 1071, While
the error in F is at the floor level, the corresponding residual of the Hamiltonian constraint
is relatively large, thus explaining the apparent loss of convergence in the Hamiltonian
constraint after the fluid leaves the origin, as shown in Figure 4.15.
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Figure 4.17: The residual of the Hamiltonian constraint for a I' = 2 sub-critical solution
calculated with three different floors at the same resolution. The crosses show the residual
for 6 = 1078, the triangles for § = 1078, and the circles for 6 = 107!0. The residuals
provide an independent check of the truncation error, and are directly a function of the
resolution used to calculate the solution. As illustrated in this figure, the residuals are
not a function of the floor, indicating that the magnitude of the floor does not strongly
affect the solution. However, the mere presence of a non-zero floor may affect the solution.

For a further test of the floor’s effects on the mass-scaling exponents calculated for critical
solutions, see Figure 5.11.
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Chapter 5

Critical phenomena (Type Il)

The chapter is a study of spherically symmetric critical solutions for the Einstein-
fluid system, using the computer code described in Chapter 4. This work has been

previously reported in Neilsen and Choptuik [97].

5.1 Introduction to critical phenomena

The formation of black holes is an exciting topic in general relativity, and a class
of solutions which exists precisely at the threshold of black hole formation has re-
cently generated considerable interest. These solutions have surprising properties,
reminiscent of some thermodynamic systems near phase transitions, and, by anal-
ogy, have been called critical solutions. Critical phenomena in gravitational collapse
were first discovered empirically in simulations of the massless Klein-Gordon field
minimally coupled to gravity (EMKG) [29]. Subsequent studies have shown that
critical behavior is present in a variety of physical systems, and indicate that the
phenomena are generic features of gravitational collapse in general relativity. In this
section we focus on the critical solutions for a spherically symmetric perfect fluid
with equation of state P = (I' — 1)p, where p is the total energy density and T is

constant, and present new solutions for I' 2 1.89. While a brief introduction to crit-
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ical solutions is included here, the review by Gundlach is an excellent introduction
to critical phenomena [63], and additional information can be found in the review

by Choptuik [32].

5.1.1 Basic properties of critical solutions

Imagine an experiment to investigate the details of gravitational collapse and black
hole formation by imploding shells of fluid with a fixed equation of state. The initial
energy density in the shell might be

p=Avexp [~ (r—ro)? /A7, (5.1)
where Ag, 9, and A are parameters. In the course of the experiment we fix two of
the three parameters, and allow only one of them, which we label p, to vary. For
small p (assuming the fluid’s initial kinetic energy is sufficiently large—i.e., in what
one might call the ultrarelativistic limit), the fluid implodes through the origin and
completely disperses. However, for p sufficiently large, in particular for p larger
than some critical value p*, a black hole forms during the implosion, trapping some
of the matter/energy within a finite radius. In the exactly critical case, p = p*,
which represents the threshold of black hole formation, the evolution temporarily
asymptotes to a special critical solution, Z*, which has a number of interesting
properties, including scale invariance (self-similarity) and universality. The critical
solution is universal in the sense that if we now use different “interpolating families”
to probe the threshold of black hole formation, we will generically find the same
critical solution (provided we remain in the ultrarelativistic regime). Additionally,
in the super-critical regime p > p*, the black hole masses are well described by a

scaling law
Mgu(p) o< [p —p*|”. (5.2)

Here the mass-scaling exponent ~ is also universal in the sense that it is indepen-

dent of the particular choice of initial data family. (However, as first predicted by
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Maison [86], and Hara, Koike and Adachi [68, 74], and as discussed in detail below,
~ is a function of the adiabatic index I'.)

One of the most profound consequences of the self-similar nature of critical col-
lapse is that black hole formation in the ultrarelativistic limit turns on at infinites-
imal mass. In analogy with second-order phase transitions in statistical mechanics,
we refer to this behavior as Type II. As we will discuss shortly, Type I behavior,
wherein black hole formation turns on with finite mass in interpolating families, has
also been seen in various models of collapse and it is undoubtedly present in at least

some of the perfect fluid models considered here.

5.1.2 Ciritical solutions and one-mode instability

A crucial feature of the critical solutions sketched above is that they are, by con-
struction, unstable. If this is not obvious, one should observe that the critical
solution is not a long-time (¢ — oo) solution of the equations of motion. Indeed,
as sketched above, the only long-time stable “states” one finds from evolutions of
a generic ultrarelativistic family of initial data either have (i) all of the fluid dissi-
pated to arbitrarily large radii, with (essentially) flat spacetime in the interior, or
(ii) some fluid dissipated to arbitrarily large radii, with a black-hole in the interior.
The critical solution, Z*, on the other hand, exists just at the threshold of black
hole formation, and, in near-critical evolutions, the dynamics asymptotes to Z* only
during the strong-field dynamical epoch. For any given initial data, this strong-field
regime persists for a finite amount of time (as measured, for example, by an observer
at infinity). Eventually (and in fact, on a dynamical time scale) any non-critical
data will evolve into one of the two stable end states.

Although the unstable nature of critical solutions was clear from the earliest
phenomenological studies, considerable insight has been gained from the observation

by Koike, Hara and Adachi [73] that the “sharpness” of the critical behavior seen in
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Type II collapse suggests that the critical solutions have ezactly one unstable mode
in perturbation theory. This ansatz immediately explains the universality of the
critical solution: as p — p*, one is effectively directly tuning out the single unstable
mode from the initial data. Furthermore, using the self-similarity of the dynamics in
the near-critical regime and a little dimensional analysis, it is an easy matter to re-
late the mass-scaling exponent to the Lyapunov exponent associated with the single
mode. In fact, since the pioneering work by Koike et al., this picture of Type II crit-
ical solutions as one-mode unstable, self-similar “intermediate attractors” has been
validated for essentially every spherically-symmetric model where Type II behavior
has been observed in the solution of the full equations of motion.

Moreover, the perturbative analysis applies equally well to Type I critical so-
lutions which, arguably, have been well known to relativists and astrophysicists for
decades, although perhaps not in the context of interpolating families. In this case,
the critical solution is an unstable static or periodic configuration which, depending
on how it is perturbed, will either completely disperse, or collapse to a finite-mass
black hole. Once again, one generically finds that such solutions have a single un-
stable eigenmode, whose Lyapunov exponent is now a measure of the increase in
lifetime of the unstable configuration as one tunes p — p*. Type I behavior has
been observed in the collapse of Yang-Mills [30, 35] and massive scalar fields [15].
As discussed in Section 2.8.2 and illustrated in Figures 2.7-2.10, a family of static
solutions parameterized by the central energy density can be generated, which con-
tains both stable and unstable solutions. There is every reason to expect that these

unstables solutions are Type I critical solutions.

5.1.3 Ciritical solutions and self-similarity

Heuristically, systems exhibiting self-similarity appear identical over many different

spatial and/or temporal scales, and generally arise in physical situations in which
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Figure 5.1: A schematic diagram showing a continuously self-similar (CSS) pulse at five
different, times as it moves toward the origin r = 0. The dotted lines are lines of constant
¢ = r/t, the similarity variable. These lines converge at the space-time origin (r,t) = (0,0)
in the upper left-hand corner of the plot, and the inset shows the pulse as a function of (.
As the pulse moves toward the origin, it appears the same on smaller and smaller length

scales.
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there are no natural length scales. Here it is important to note that a scale-free
solution can be generated from a model which does have specific length scales,
provided that the scaling solution represents a “self-consistent” limit. The current
case of fluid collapse provides a perfect example. The rest mass of the fluid does set
a length-scale, but the Type II critical solutions describe an ultrarelativistic limit
wherein the rest-mass of the solution is irrelevant. To put this another way, we
can have solutions of the equations of motion which have greater symmetry (scale
symmetry in this case) than the equations of motion themselves.

Self-similarity can be either continuous (CSS) or discrete (DSS), and both
types have been observed in critical gravitational collapse. The perfect fluid critical
solutions have continuous self-similarity of the first kind, a particularly simple self-
similarity wherein the solutions can be written solely as functions of dimensionless
variables, such as ( = r/t, where r is the radial coordinate in spherical symmetry
and t is the coordinate time. An example of a CSS function of the first kind is shown
schematically on a spacetime diagram in Figure 5.1.

At this point we should also note that the self-similar nature of Type II critical
solutions provides a link between work on black-hole critical phenomena and the
large body of literature dealing with self-similarity in the context of Einstein gravity
(see Carr and Coley [23] for a recent, extensive review). The self-similar ansatz has
been widely employed, not only to produce more tractable problems, but also in
investigations of possible mechanisms to generate counter-examples to the cosmic
censorship conjecture. However, it is clear that not all self-similar solutions will be
relevant to critical collapse, particularly if we restrict the definition of critical to
“one-mode unstable”. Moreover, because most studies which are based on the self-
similar ansatz have only considered the solutions themselves, and not perturbations
thereof, it has proven non-trivial to identify which self-similar perfect-fluid solutions

previously discussed in the literature are relevant to critical collapse [23, 60, 25].
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5.1.4 Review of previous perfect-fluid studies

Shortly after the discovery of Type II behavior in scalar field collapse [29], Evans,
having been frustrated in attempts to “analytically” understand the massless-scalar
critical solutions, turned his attention to perfect-fluid collapse. Armed with the
intuition that the self-similarity of critical collapse was a defining characteristic,
and aware of the existence of continuously self-similar relativistic fluid flows, he and
Coleman [52] considered collapse in the context of the specific equation of state,
P = %p. Significantly, they were able to construct a single critical solution, both
from the self-similar ansatz (i.e., by solving ODEs), and by tuning the initial data
used in solution of the full partial differential equations of motion. Moreover, they
noted that a perturbation analysis about the inherently unstable critical solution
would provide an accurate description of the near-critical dynamics, including the
calculation of the mass-scaling exponent ~.

Such a perturbation analysis was quickly carried out (again for the case P = % )
by Koike et al. [73], who, as mentioned above, made the crucial additional observa-
tion that the “sharp” transition in the mass scaling suggested that there was only
one growing unstable mode associated with the critical solution, and that the Lya-
punov exponent of the mode was simply the reciprocal of the mass-scaling exponent
~. Their analysis fully validated this conjecture—in particular, they found strong
evidence for a single unstable mode with Lyapunov exponent 2.81055..., corre-
sponding to v = 0.3558019..., in excellent agreement with Coleman and Evans’
“measured” value, v ~ 0.36.

At about the same time, Maison [86]—assuming that the critical solutions
would be continuously self-similar for other values of '—adopted the CSS ansatz
for the more general equation of state P = (I' — 1)p. He was able to construct CSS
solutions for 1.01 < T" < 1.888, and additionally presented strong evidence that all

of the solutions were one-mode unstable. Furthermore, the Lyapunov exponents,
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and hence the mass-scaling exponents were found to be I'-dependent, with, ~, for
example, varying from v = 0.1143 for I' = 1.01 to v = 0.8157 for I" = 1.888. These
calculations were particularly notable for providing early evidence that v was not a
“truly” universal exponent, in the sense of having the same value across all possible
models of collapse.

One interesting outcome of Maison’s linearized analysis of the equations of
motion about the sonic point, was that at I' ~ 1.888, two of the eigenvalues of
the linearized problem degenerated, and the sonic point apparently changed from
a node to a focus. This led Maison to conclude that regular self-similar solutions
did not exist for I" 2> 1.89. A similar analysis by Hara, Koike and Adachi [68, 74]
(expanding on their previous work) again suggested a change in solution behavior
at I' = 1.89. Those authors computed the CSS solutions, unstable eigenmodes, and
eigenvalues for 1 < I'" < 1.889, with results essentially identical to Maison’s. Evans
and Perkins [101] also performed the linear stability analysis for I' < 1.888, finding
the same results reported by Maison. In addition, they performed the first critical
solution searches using the full set of PDEs for 1.05 < I'" < 1.5, confirming that the
CSS solutions are the unique critical solutions for I is this range. Goliath et al. [60]
discussed, in the wider context of time-like self-similar fluid solutions, the mode
structure of the P = (I' — 1)p CSS solutions, and reported that physical solutions
do not exist for I' 2> 1.89.

Furthermore, the conclusion of these linear perturbation analyses—that regular
critical solutions for I' 2 1.89 do not exist—has inspired various proposals regarding
the nature of I' 2 1.89 critical solutions [63, 23, 16]. (Recall that as long as we can
set up interpolating data, there will be a critical solution, virtually by definition).
One proposal is that a loss of analyticity at the sonic point for ' 2> 1.89 violates a
condition required to find the ODE solutions. Other proposals have suggested that

the solution might become Type I, discretely self-similar, or display a mixture of DSS
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and CSS behavior. Some of these conjectures were evidently based on the fact that,
under certain conditions, a stiff (P = p) perfect fluid can be formally identified with
the EMKG system [127, 84, 85]. For example, it has been conjectured [63, 23, 16]
that at some point as I' — 2, the critical solution might begin to display the discrete
self-similarity characteristic of the EMKG critical solution. Brady and Cai [16]
computed threshold solutions for I' < 1.98 using the full fluid equations of motion,
finding—in all cases examined—evidence that the critical solutions are both CSS
and Type II. Using a two-step Lax-Wendroff numerical scheme to integrate the fluid
equations, they calculated mass-scaling exponents by evolving supercritical initial
data. However their code has severe resolution limitations, being able to observe
scaling only over two orders of magnitude in |p — p*|.

Yet, lacking solutions for I' = 2, and high resolution solutions near I' ~ 1.89,
it was still expected that the perfect fluid critical solution changed its character
as ' — 2. As we will discuss below, this does not seem to be the case, and in
fact, ' ~ 1.89 seems problematic only in the context of the the precisely self-
similar ansatz. Specifically, we have strong evidence that the CSS ansatz generates
an increasingly ill-conditioned problem as I' — 1.8896244 ..., but that the PDEs
remain perfectly well-behaved there.

More recently, after the results presented in this chapter appeared in pre-print
form, the existence of (globally regular) CSS solutions for I" 2> 1.89 has been con-
firmed by Carr et al. [24], and Gundlach [67]. These solutions have been studied
using analytical techniques by Carr et al. [24, 25, 26], who claim that these so-
lutions “are associated with a new class of asymptotically Minkowski self-similar
spacetimes” [24]. Finally, motivated by this research, Brady and Gundlach [17] have
found a CSS massless scalar field solution that essentially matches the I' = 2 perfect
fluid critical solution found here. Preliminary results from a perturbation analysis

of this solution indicate that this solution’s mass-scaling exponent is v = 0.94, in
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agreement with our results with limited precision.

5.2 Fluid equations

Continuous self-similar solutions for spherically symmetric relativistic fluids have
been studied since the work of Bogoyavlenskii [14], however their stability—a defin-
ing property for criticality—properties were largely ignored. Evans and Coleman [52]
found that the critical solution (I' = 4/3) could be constructed with the CSS ansatz
by requiring the solutions to be globally regular. In this section we construct the
critical solutions following the conditions used by Evans and Coleman. First the fluid
equations are written in terms of the primitive variables, and then they are reduced
to ordinary differential equations by introducing a similarity variable. Methods for
solving these equations are given, along with sample solutions.

We write the spherically symmetric line element in polar-areal coordinates as
ds? = —a(r, t,)2dt? + a(r,t,)? dr? + 2 (d92 + sin? 6 d¢2) , (5.3)

where the radial coordinate, r, directly measures the proper surface area. The
time coordinate is introduced with an asterisk (x) to differentiate it from the time
coordinate used in the evolution codes. The latter coordinates are chosen to be
the proper time for an observer at infinity (see Section 4.4.2). The coordinate ¢, is
determined by reference to the fluid’s sonic point, as discussed below. The Einstein
equations give three relations for the metric quantities o and a, equations (4.8)—

(4.10), and there are two fluid equations of motion (4.15). These equations are

1— 2
Oy In(a) = Lt drra? (pW? + PW?p?) (5.4)
r
a®—1 2 2,2 2
O In(a) = " + 4rra® (pWv? + PW?) (5.5)
O In(a) = —4rraa(p + P)W2v (5.6)
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1
O (apW') + POy (aW) + 2 [0, (r2apWv) + PO, (r*aWv)] =0 (5.7)
O (aPW) + O (aW ) + 0 (aPW) + pdy(aW') = 0. (5.8)

A continuously self-similar spacetime is generated by a homothetic Killing vec-

tor & [22],

£§gull = 29/11/- (5.9)

To simplify the fluid equations, we introduce new independent variables, s and z,

adapted to this symmetry

s = —1In(—t.), (5.10)

x= m(-i). (5.11)

The time coordinate t, is chosen such that a collapsing, self-similar solution reaches
the origin at t, = 0, and the sonic point is at x = 0. To simplify and reduce the
fluid equations (5.4)—(5.8) to ordinary differential equations, we define the following

dimensionless quantities

e
N=— 5.12
(512
A=a? (513)
w = 4rra®p. (5.14)
In terms of these new dimensionless variables, the fluid equations become
1 2w (14 (I — 1) v?)
-0, A=1—-A 5.15
A + 1 — 22 (5:15)
1
N&N =—24+A-2-Tw (5.16)
1 1 2I' Nvw
ZO A+ S0, A= """ 5.17
A8 + Aa 1—102 (5.17)
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1+ N (N
w w 1—122
2-T 24T

= %N’U - %ANU +(2-T)Now (5.18)

v r N +vwv I'(1+ Nv)

(F — 1);(93(4) + masv + (F - 1) 8:5(4) + ﬁazv
mT—6 2-3I

= (2-D)( ~)Nw+ ——N + =—AN. (5.19)

The self-similarity ansatz requires that all derivatives with respect to s van-

ish, thus reducing the system to autonomous, first order ordinary differential equa-

tions [68].
Al 2w (1+ (T —1)v?%)
J=1-4+ T (5.20)
NI
~ = 2t4-(2-Dow (5.21)
A 2I'Nvw
A" 12 (5.22)
W' T(N+wv)v
24T
- 2(2 ~T)Nv— %ANU +(2-T)Now (5.23)
W' T(1+ Nop'
T—1)(N o)== T 7
( JIN+v)—+———0
-6 _ 2-30
= (2-T)(T - 1)Nw+ N+ AN. (5.24)

2 2
This system is overdetermined, as there are five equations for four unknowns: A,
N, v, and w. (The equations are overdetermined because solutions of the Einstein
equations also must satisfy the contracted Bianchi identities, or equivalently, because

the solution must satisfy both evolution and constraint equations.) Both equations
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(5.20) and (5.22) contain only a single derivative, A’, and can be combined into the

algebraic equation
(1—A)(1—v*) +2w (14 (T —1)v*) + 2T Now = 0. (5.25)

This equation could be used to eliminate one of the unknowns. However, we solve
four equations, and use the algebraic constraint to monitor the error in our solutions.
The equations (5.21)—(5.24) are integrated to find the self-similar solutions. We write

these equations formally as

M(y)y' = f(y), (5.26)

where y is a “state vector” containing the four dependent variables A, N, v, and w,

ie.,

(5.27)

<
Il

5.2.1 The sonic point

The system of ODEs (5.26) can be solved provided that the inverse matrix M !
exists. When det M = 0—a condition occurring at a sonic Cauchy horizon or sonic
point—the ODEs cannot be integrated without further assumptions. In particular,
if det M = 0, the derivatives, ¢/, may either (i) not exist or (ii) be undefined. In the
former case, the functions may be continuous but not differentiable, or a shock may
form (discontinuous functions) at the sonic point; the latter case corresponds to the
physically-relevant regular solutions in which we are interested. By definition, the
sonic point is the position where the magnitude of the fluid velocity, as measured

by an observer at constant x = In(—r/t,), is equal to the fluid sound speed
cs = VT — 1. (5.28)
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All CSS perfect fluid solutions that are regular at the origin have at least one sonic
point [100].

The requirement that y be differentiable at the sonic point allows one to find
additional relations which hold only at the sonic point. At this point, it is convenient

to consider only the fluid equations. Let z be the state vector of fluid variables

v
z= , (5.29)

w

and write the fluid equations (5.23)—(5.24) as
JZ =b. (5.30)

where J is a 2 X 2 matrix containing no derivatives of z, and b is a two-component
state vector consisting of the right-hand sides of (5.23)—(5.24). To solve the ODE

system (5.30), we isolate z by writing (5.30) as
2 =J . (5.31)

The inverse of J is

1
1
= —K 5.32
det g’ ( )
where K is the matrix
J. —J
K _ 22 12 ’ (5.33)
—Jor  Ju
and
1+ Nv)2—(C—1)(N 2
det 7 o LFNV" = (L= DN +v)7 (5.34)

1— 02
If z is regular at the sonic point, then the rows of J must be linearly dependent

so that det J = 0. This can be seen by expanding J~! in (5.31) as
(det J) 2’ = Kb. (5.35)
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As det J = 0 at the sonic point, and if z is regular, then (5.35) requires that
Kb =0. (5.36)

This condition allows one to parameterize the CSS solutions with a single parameter,
vsp, which is the fluid velocity at the sonic point. Setting det J = 0 in (5.34) gives

N at the sonic point

1—vepv/T'—1
Ny = i ) e (5.37)
VI —1—wg

Requiring rows of K to be proportional (5.36), combined with (5.25) gives A and w

at the sonic point

1
Ao =Pz
X [1“2 + 4T — 4+ 8(T — 1)32p,, — (37 — 2)(2 — r)vfp] . (5.38)
ey = ﬁ V=T (VI =T —up) (14 VT~ Toy)] . (5:39)

Furthermore, this regularity condition fixes not only y at the sonic point in
terms of v, but also determines its derivative, yg,, in terms of vy, and v{,. Taking

the first derivative of (5.35) gives the condition on y_,
(det J)'2' = (Kb)' (5.40)

Substituting Af, and N, from equations (5.21) and (5.22) into (5.40), we combine

!/

both equations into one equation for vg,

yielding a quadratic condition on vg, which

we schematically write as
62vép2 + clvép +co =0. (5.41)

Here, the coefficients, cg, ¢1 and ¢y, are complicated functions of y,. This expression
is not given explicitly here because we actually only calculate this equation using the

symbolic manipulation program Maple V. In our implementation, (5.41) is actually
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expressed in terms of a cubic equation. The additional root is eliminated by requiring
vg, > 0.

The key point is that this constraint—that the critical solutions are regular
at the sonic point—Ilimits the number of solutions to discrete values of vg,, and
virtually eliminates the possibility that globally regular solutions with more than
one sonic point exist [100, 53]. Indeed, all of the I' < 2 critical solutions we have
found, either from a CSS ansatz, or by solving the full Einstein/fluid equations, have

only one sonic point.

5.2.2 Solving the ordinary differential equations

The system of ordinary differential equations (5.26) is solved by choosing a candidate
fluid velocity, vsp, at the sonic point, and integrating numerically from the sonic

point toward the origin. The inward integration is halted when either
A<1 or det J =0, (5.42)

and these generic stopping criteria allow one to determine the parameter vs, by a
standard “shooting” procedure. (If A < 1 signals that vep is too small, then det J = 0
indicates that vsp is too large, and vice versa). Once vs, has been determined
from the inward integration, the solution can be completed by integrating outwards
from the sonic point. The entire solution process is complicated by the fact that
the integration can not actually begin at the sonic point, since detJ = 0 there.
Therefore, we first expand the dependent variables y about the sonic point to first

order
Yo X Ysp + Y AT, (5.43)

where Az = z, — x5, and actually begin the integration from z,. Az is chosen so

that the O((Az)?) error terms in the expansion, are smaller than the error tolerance
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allowed in the solution. We obtain ., by solving (5.41) for v
ODEs for both roots.

p and integrate the
The ODEs are integrated using LSODE, a robust numerical routine for integrat-
ing ordinary differential equations [70, 103], and all of the critical solutions can be
found using double precision arithmetic, except those solutions for I' &~ 1.89. These
I' =~ 1.89 solutions require greater precision, and can be found using the arbitrary
precision implementation of LSODE in Maple V [34], which also proved invaluable
for convergence testing the solutions. In the convergence tests we vary Az, the
LSODE absolute error tolerance ¢ (the relative error tolerance is set to zero), and
the number of digits used in the calculation, while monitoring the residual of the
algebraic constraint (5.25) as an indication of the error in the solution. For example,
we calculated the critical solution for I' = 1.99 using 40 digits and error tolerances
e =1071% 1071%, 1072° and 10725, and then performed similar tests using 30 and
35 digits. In all cases the solutions converge, and the residual of (5.25) is O(e).
Sample solutions are plotted in Figures 5.2-5.5. These solutions were found
using the LSODE integrator in Maple with 30 precision digits, and an LSODE error
tolerance, ¢ = 1078, These continuously self-similar solutions are compared with
the dynamically calculated critical solutions in Section 5.3.3, demonstrating that

these CSS solutions are the spherically symmetric critical solutions.

5.2.3 Degenerate node

Although nonlinear systems of ODEs are often impossible to solve in closed-form,
qualitative features of their solutions can frequently be deduced by linearizing the
equations about “critical” points. Perfect fluid CSS solutions have often been stud-
ied using this type of analysis [86, 68, 60, 100, 14, 12, 13, 53], and here we discuss
some of these results in the context of our work. We emphasize, however, that we

have not performed perturbation analyses in our current work.
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Figure 5.2: The geometric variable a of the critical solution for several values of I'. The
sonic point is at x+ = 0. The ODEs were integrated using the Maple V implementation
of LSODE with 30 digits and an absolute error tolerance ¢ = 107!8. We are increasingly
unable to integrate these solutions outwards as I' — 2. This often occurs owing to a loss of
numerical precision as w — 0, and the Lorentz factor, W = 1/4/1 — v2, becomes large (see
Figure 5.5).
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Figure 5.3: The fluid variable w of the critical solution for several values of I'. The sonic
point is at x = 0.
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point is at x = 0.
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factor for larger values of I'. The sonic point is at z = 0.
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Figure 5.6: The degeneracy of the eigenvalues in the perfect fluid critical solution as
I' = T'4n- This figure’s caption is continued on the next page.
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Caption for Figure 5.6 (continued): The sonic point of the I'a, ~ 1.8896244 critical solution
is a degenerate node, and this figure shows the approach to degeneracy by plotting the
quadratic function in (5.41) as I' = I'g,. The roots of (5.41) are possible values for v’ at the
sonic point, and when I" = T'y,, these roots are equal, v);,,. Each frame shows a parabola for
three values of T'. The parabolas on the left are for T less than 'y, (T'<), and the parabolas
on the right are for ' greater than 'y, (I's). The center parabola has the same T in all
five frames, namely I'c ~ Ty, (['c = 1.88962441796875), and one must be careful not to
mistake it for a vertical axis in frames (a)—(c). For all T, the critical solution’s v, is the root
closest to the center (v),). We estimate I'yn ~ 1.8896244169921874 (vsp = —0.18696.. .,
v, = 1.7385..., and Y5, = 1.0000000002), and for clarity, we use vy, to translate the
horizontal axis such that the parabolas cluster around zero, and normalize the parabolas.
In frame (a), T« = 1.889 and I's = 1.890. In (b), [« = 1.889624 and T's = 1.889625. In (c),
T. = 1.88962425 and T'> = 1.8896245. In (d), [« = 1.889624375 and T's, = 1.8896244375.
In (e), I'c = 1.8896244140625 and I's = 1.889624421875. These calculations were done
with Maple V using 30 digits and € = 1078,
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The CSS perfect fluid equations (5.26) can be linearized about the sonic point,

resulting in a system we can write in the form
y =By, (5.44)

where B is a matrix which, generically, has two non-zero eigenvalues, which we
label 1 and k2 (or simply k when the distinction is irrelevant), with corresponding
eigenvectors Vi and V5. Near the sonic point, the solution of the linear equations

(5.44) can be written [12]
Y =ysp + E1V1 T + ko Vp ™7, 5.45
P

where k1 and ko are arbitrary constants. The eigenvalues x provide important
information about the solutions near the sonic point, and we classify the sonic point

according to the relative values of k, as given by the quantity ¢ [100]

_+vn
19—1“—\/77‘ (5.46)

Here,

n=4(3T — 2)U? — (31 — 12T + 8)(1 — 4U), (5.47)
and

U= A2; L (5.48)

The sonic point classification in terms of ¥ is shown in Table 5.1. Due to the facts
that (i) ¥ is only a function of yg,, and (ii) the eigenvalues x are related to vy, [53],
we can make a connection to the linearized theory without explicit calculation of
the eigenvalues.

Maison [86] and Goliath et al. [60] have previously concluded that the sonic

!

points for I' 2 1.89 are foci, with complex x and vg,,

and hence have suggested
that physical self-similar solutions do not exist for I' > 1.89. (Hara et al. did not

address the existence of solutions for I' 2> 1.89, but presumably also encountered
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¥ < 0 | saddle point

¥ > 0 | nodal point

¥ € C | focal point

¥ =1 | degenerate nodal point

Table 5.1: Classifications of the sonic point using 9.

problems with their numerical analysis in that regime.) However, we find that
¥ > 0 for all T 2 1.89 critical solutions, and thus conclude that the sonic-points
for those solutions are nodes rather than foci. It seems plausible that this apparent
contradiction stems from insufficient numerical precision in the earlier studies. To
provide some specific evidence to back this claim, we have used Maple with 30
digits to find a critical solution for I' ~ I'g,. Then, taking vs, from this solution,
we have calculated ¥ using both 30 digits in Maple and FORTRAN double precision.
The FORTRAN calculation gave a complex ¥—which would support the erroneous
(we claim) conclusion that the sonic point is a focus. The same calculation done
with greater precision using Maple shows that the sonic point is actually a node. In
addition, we find that for I' < Ty, (with I restricted to I' > 1.8 for simplicity, and

Tqn defined below), the critical solution’s v, is the maximum root of (5.41), while

P

for T' > Tgqp, the critical solution’s v, is the minimum root. As T' — Tgy, the two

P

roots v., come closer together until they are equal for T'y,, as shown in Figure 5.6.

sp

Here the sonic point is a degenerate node with Iy, ~ 1.8896244 (ng, = O(e), and
Yan = 1+ O(Ve)).

524 T'=2

A continuously self-similar solution can also be found for I' = 2 by following the
same prescription for the I' < 2 solutions. A solution by this method was unexpected
because the sound speed for the P = p fluid is equal to the speed of light, and the
definition of sonic point does not seem to apply. However, a point where detJ =0

exists, and the solution can be found by demanding regularity at this point. This
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solution, shown in Figure 5.9 is qualitatively different from the I' < 2 solutions, as
this solution, for & > 0, violates the physical fluid properties as p < 0 and |v| > 1.
However, this solution does match the dynamically calculated critical solution for
z < 0. Using these results, Brady and Gundlach [17] have identified a continuously
self-similar EMKG solution which matches the CSS prefect fluid solution. Further

discussion is included in Section 5.3.3.

5.3 The full PDE critical solutions

A crucial check that the CSS solutions of the reduced fluid equations are indeed
the unique critical solutions involves a comparison with the solutions of the full
Einstein-fluid equations. Using the relativistic fluid code described in Chapter 4, we
have found the critical solutions for 1.05 < I" < 2 by evolving parameterized families
of initial data. The greatest computational challenge in finding these solutions—
especially as I' — 2—is the accurate treatment of flows with very large Lorentz
factors. All of these solutions are continuously self-similar (CSS) and black hole
formation for near-critical initial data begins with infinitesimal mass (Type II).
This section compares the critical solutions calculated from the full Einstein-fluid
equations with the ODE solutions found using the continuously self-similar ansatz.
The calculation of the mass-scaling exponents is then discussed, followed by a brief

consideration of critical solutions for the ideal-gas equation of state.

5.3.1 Initial data

We expect that the critical solutions in fluid collapse will be universal, in the sense
that any family of initial data which generates families that “interpolate” between
complete dispersal and black hole formation, should exhibit the same solution at the
black hole threshold. We have thus focused attention on a specific form of initial

data, which generates initially imploding (or imploding/exploding) shells of fluid.
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Specifically, the energy density in the shells has a Gaussian profile,
T=rT,exp[—(r— ro)Q/AQ] + K, (5.49)

where the constant K—typically of magnitude 10~67,—represents a constant “back-
ground”. It should be note that this background is used only in setting the initial
data, and is not held fixed during the evolution—in particular K is not a floor as
discussed in Section 3.9.1. The shells are either time-symmetric, or have an initial
inward velocity which is proportional to r. Critical solutions were found by fixing

ro and A, and then tuning the pulse amplitude 7.

5.3.2 The transformation from r to x

The dynamic Einstein-fluid partial differential equations are solved with the code
described in Chapter 4, using the areal coordinate r, and the proper time for an
observer at infinity, ¢. To compare the dynamic critical solutions with the ODE
solutions, which define the time s in terms of the sonic point, it is necessary to
transform the solutions from one coordinate frame to another.

Let t* be the coordinate time at which a near-critical solution reaches the origin

in the evolution code. Then estimate the time
s=1In(t* —1). (5.50)

The sonic point is found by searching the solution for det J = 0, 7¢,. The transfor-

mation to the logrithmic coordinate x is then

r=In (i) . (5.51)

The time t* can be found after by evolving the solution until it reaches the origin, or
it can be estimated during the evolution by tracking a unique feature of the solution,

e.g., the maximum of a.

148



\
w
\
oY)
\
—
o
—
AY)

Figure 5.7: The I' = 1.9 critical solution. The solid lines are the solution obtained by
solving the ODEs, and the triangles indicate selected points from the solution of the PDEs.
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Figure 5.8: The I' = 1.99 critical solution. The solid lines are the solution obtained by
solving the ODEs, and the triangles are selected points from the PDE solution. The PDE
solution underestimates the fluid density in the pulse leading to a corresponding error in a.
This problem stems from a lack of resolution in the computational grid.
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Figure 5.9: The I' = 2 critical solution. The solid lines show the solution obtained from
the ODEs, and the dotted lines with triangles show the solution obtained by solving the
PDEs. Here some divergence between the PDE and ODE solutions can be seen. The PDE
solution for w lies above the ODE solution for z < 0, behavior opposite from that observed
in the I' = 1.99 solution. Beyond the sonic point, z = 0, the solutions become very different.
Here the ODE solution becomes unphysical—in the traditional understanding of a perfect
fluid—with w < 0 and v > 1. The PDE solution retains physical values for v and w—ov < 1
and w > 0—because these values are constrained to the physical regime in the evolution
code [97].
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5.3.3 Results

Figures 5.7-5.8 show the PDE critical solutions for I' = 1.9 and I' = 1.99 respec-
tively, and include the ODE solutions for comparison. The I' = 1.9 PDE and
ODE solutions compare well, while Figure 5.8 indicates that the I' = 1.99 PDE
solution underestimates ¢ and w. From our experience with other critical solution
searches, we feel that this discrepancy is the result of insufficient (spatial) resolu-
tion. As I' — 2, the fluid becomes increasingly dynamic, requiring greater precision
to resolve the solution’s relevant features, and it becomes increasingly expensive to
calculate the critical solutions. The mass-scaling exponents v shown in Table 5.2
provide a quick guide to the requisite dynamical range for a critical evolution as
' —» 2. As (p — p*) changes by n orders of magnitude, the relevant length scales
in the solution, such as the radius of a black hole Rpy, change by yn orders of
magnitude. The mass-scaling exponent for the stiff fluid, v ~ 1, is almost three
times larger than the scaling exponents for a radiation fluid (7 =~ 0.36) or massless
scalar field (ysp = 0.37), and simulations of the stiff fluid critical solutions require
correspondingly more resolution.

The critical solutions for I' < 2 all appear very similar; indeed one can imagine
that one could smoothly transform a solution for a given I' into a solution for
a different I'. At first glance, the I' = 2 solution seems to fit nicely into this
“family” of critical solutions parameterized by I'—it is CSS, Type 11, and differs only
slightly from the I' = 1.99 critical solution. However, the ODE solution (obtained
by solving ODEs with the CSS ansatz) indicates that important differences may
exist between the I' = 2 and T" < 2 critical solutions. As noted previously, we are
unable to integrate the ODEs for I near 2 to arbitrarily large x. In these cases,
we observe that the Lorentz factor, W, grows exponentially (see Figure 5.5), with a
corresponding exponential decrease in w, until LSODE is unable to satisfy the required

error tolerances. We emphasize that in these I' < 2 solutions, the fluid velocity and
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density retains its expected “physical” properties: w > 0, and |v| < 1. The I’ = 2
solution (see Figure 5.9), on the other hand, displays very different behavior. Instead
of the exponential approach of v — 1 and w — 0, we find that w and v pass through
their expected physical bounds, giving w < 0 and v > 1.

The I' = 2 PDE solution is also shown in Figure 5.9, and in contrast to the ODE
solution, this solution retains “physical” values for the fluid variables. However, this
property of the PDE solution is achieved by fiat: we impose a “floor” on the fluid
variables such that p > 0 and |v| < 1 [97]. While the floor is used generally for
I' > 1.8 without noticeable ill effect for I' < 2, it is clear that the floor affects
the T' = 2 solution (as compared to the ODE solution) even in the regime where
w > 0 and |v| < 1. The mathematical and physical significance of this observation
is clearly an issue which requires more study—for example, can a vacuum region
be matched to the I' = 2 fluid in such a way that the fluid remains equivalent to a
EMKG field [66]?

As is generally known, the stiff perfect fluid can be related to a scalar field.
Motivated by the current results, a CSS scalar field solution has been found by Brady
and Gundlach which matches the ODE I" = 2 fluid solution [17]. A perturbation
study of this EMKG solution gives that the mass-scaling exponent for this solution
should be v = 0.94, in good agreement with the “measured” value of v =~ 1 using
our evolution code. (See the discussion in Section 5.3.4 regarding the calculation
of mass-scaling exponents by evolving initial data, and the limited precision we
encounter as I' — 2.)

Finally, we note that the I' = 2 critical solution is not related to other familiar
EMKG solutions, such as the Roberts solution [108, 109], or the EMKG critical
solution [29]. Both of these solutions have space-like gradients of the scalar field.
Extracting data from a near-critical I' = 2 solution, we have set equivalent initial

data for an EMKG evolution and then have evolved the data with the Einstein/scalar
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equations of motion. However, the evolution of the scalar field does not seem to
match the I' = 2 perfect-fluid critical solution for any appreciable length of time,
and naive variations of the initial data apparently produce the usual DSS scalar field

critical solution at the black-hole threshold.

5.3.4 Mass scaling

Mass-scaling exponents y are found by evolving near-critical initial data sets which
lead to the formation of black holes. In our coordinate system, black hole formation

is signaled by

2m(r,t) 1, (5.52)

Ry

where Rpy is the (areal) radius of the black hole. The black hole mass is then simply
given by

As mentioned earlier, all of the critical solutions discussed here are Type II, meaning
that the associated black-hole transition begins with infinitesimal mass holes. As a
typical example of our results, the mass-scaling of near-critical solutions for I' = 2
is shown in Figure 5.10.

The simple adaptive grid that we use [97] did not allow us to calculate Mgy
with sufficient accuracy to justify searching for p* to the limit of machine precision
in a reasonable amount of time. We therefore estimated p* by searching for the best

linear fit to
In Mgy o« vyIn|p —p*|. (5.54)

The totality of mass-scaling exponents « calculated from our simulation data are
shown in Table 5.2, along with the values predicted from Maison’s perturbative
calculations [86]. (These exponents for I' < 1.98 are similar to those found indepen-

dently by Brady and Cai [16].) For a variety of reasons, estimation of the error (no
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doubt overwhelmingly “systematic”) in the mass-scaling exponents is not an easy
task, and we therefore have provided estimates of v which are conservative in their
use of “significant” digits. One notes that as I' — 2, the mass-scaling exponent
v — 1.

One possible source of error in the measurements of 7 is the floor (§) used
in the fluid code (see Section 3.9.1 and Section 4.4.1). The effect of the floor’s
magnitude was tested for I' = 2 by measuring - for different values of ¢, specifically,
§=10"% 6 =108 and 6 = 10710, In this test the magnitude of § did not strongly
affect -, as shown in Figure 5.11. Although « appears to be insensitive to ||d]], the
mere existence of an enforced floor could significantly modify a solution, but this is
something which needs further study. As a possible example, consider the critical
solutions for I' = 2 shown in Figure 5.9 above. These two solutions differ essentially

where the ODE solution becomes unphysical with v > 1 and p < 0.

5.3.5 lIdeal gas equation of state

The equation of state P = (I' — 1)p can be interpreted as the ultrarelativistic limit

of the ideal-gas state equation
P = (T —1)poe, (5.55)

where p, is the rest energy density and e is the specific internal energy density.
Following Ori and Piran [100], Evans [51] (and others), we have argued [97] that
self-similar perfect fluid solutions require the ultrarelativistic equation of state. Let
us now consider searching for critical solutions with the ideal-gas equation of state.
Heuristically, one can describe critical behavior in terms of competition between the
fluid’s kinetic energy and gravitational potential energy. One might expect that in
the critical solution, which stands just on the verge of black-hole formation, P > p,,
and that the critical solutions for the ideal-gas state equation would correspond

to the ultrarelativistic equation of state solutions. Using an evolution code, we
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Figure 5.10: Illustration of black-hole mass scaling for the case I' = 2. In this instance—as
for all values of I' considered here—the critical behavior is Type II, allowing one to create
arbitrarily small black holes through sufficient fine-tuning of initial data.
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Figure 5.11: The black hole mass as a function of critical parameter for I' = 2 super-
critical evolutions with three different floors with the same resolution. The crosses show
the black hole masses calculated when § = 1076, the triangles when § = 1078, and the
circles when § = 1071%. The black-hole mass is a simple function of the critical parameter
(Section 5.1.1), and this figure shows that floor does not strongly affect measurements of the
mass-scaling parameter from super-critical evolutions. In the lower right corner, we show
the mass-scaling coefficients obtained from a least-squares fit of the data, the subscript on
v indicating the floor. Note that these coefficients are indicative only of the insensitivity to
the floor. In particular, they do not constitute our best measurement of v for I' = 2, which
is obtained from a higher-resolution solution. The inset in the upper left corner shows the
deviation of the data points from the least squares fit. The solid line when 6 = 10710, the
dotted line when § = 1078, and the dashed line when § = 107¢. Again this deviation shows
no dependence on the floor magnitude.
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r measured y calculated ~
1.05 0.15 0.1478
1.1 0.19 0.1875
1.2 0.26 0.2614
1.3 0.33 0.3322
4/3 0.36 0.3558
1.4 0.40 0.4035
1.5 0.48 0.4774
1.6 0.56 0.5556
1.7 0.64 0.6392
1.8 0.73 0.7294
1.888 0.82 0.8157
1.89 0.82 —

1.9 0.83 —
1.92 0.86 —
1.95 0.9 —
1.99 1 —

2 1 —

Table 5.2: The mass-scaling exponent v as a function of the adiabatic constant
I'. The second column shows the mass-scaling exponents estimated from Mgy (p)
by evolving near-critical (p — p*) initial data. For comparison, “calculated”
exponents—computed from perturbative calculations—are also listed.
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have found critical solutions for the ideal-gas state equation, and these solutions
do match the corresponding solutions with the ultrarelativistic equation of state.
As an example, the critical solution for a I' = 1.4 ideal gas is compared with the
precisely CSS ultrarelativistic I' = 1.4 solution in Figure 5.12. Additional evidence

that near-critical ideal gas solutions are ultrarelativistic is shown in Figure 5.13.

159



H
4V,
“H\‘HH‘HH‘HH‘H

[N
[}

<
N
H\‘H\‘H\‘\H

s
=)
4N
N

Figure 5.12: A comparison of the critical solutions for the ideal-gas and ultrarelativistic
equations of state for I' = 1.4. The solid lines are solutions obtained by solving the ODEs
with the ultrarelativistic equation of state, and the triangles are selected points from the
PDE solution which uses the ideal-gas equation of state. The ideal gas is in the ultrarela-
tivistic limit near the infalling matter (see Figure 5.13), and the two solutions correspond
in this region. At large r the ultrarelativistic approximation breaks down, and the solutions
differ. The ideal-gas equation of state solution was computed using a code similar to the
one described in [97].
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Figure 5.13: P and p, are shown at the moment of maximum compression in this log-log
plot of a marginally subcritical evolution of a I' = 1.4 ideal gas. Note that near the origin,
the ideal gas is clearly in the ultrarelativistic limit where P > p,. At large r (X), the
ultrarelativistic limit no longer holds, and the solution does not match one computed using
the ultrarelativistic equation of state.

161



Chapter 6

A two-dimensional fluid code

The previous chapter described the critical solutions for a scale-free perfect fluid
in spherical symmetry. While this work essentially completes our understanding of
perfect fluid critical phenomena in spherical symmetry, research on critical collapse
in axial symmetry, including angular momentum, is just beginning. Gundlach [67,
64] has examined the stability properties of the spherically symmetric, continuously
self-similar solutions to axisymmetric perturbations. He found that the spherically
symmetric solutions constructed with the CSS ansatz have a single unstable mode,
which is spherically symmetric, for 1.123 < T' < 1.446. Therefore, these solutions
are presumably the critical solutions for parameterized families of axisymmetric
initial data. However, the spherically symmetric CSS solutions for I' < 1.123 and
I' > 1.446 apparently have additional, non-spherical growing modes, and thus are
not expected to be critical solutions for general, axisymmetric initial data. By
definition, a critical solution—that solutions separates dispersing solutions from
those with a black hole—exists as long as interpolating families of initial data can be
generated. However, the characteristics of these solutions for generic, axisymmetric
initial data are unknown at this time.

The sure way to learn about the critical solutions for axisymmetric systems

is to study the full dynamical equations. The computational demands of such a
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project are very high, requiring adaptive mesh refinement on parallel computational
platforms. Choptuik and collaborators are beginning to develop the computational
framework for this ambitious project. (Marsa [88] developed a high-level numerical
language, RNPL, for efficiently describing finite difference equations. The RNPL
compiler generates either FORTRAN 77 or C computer code to solve the difference
equations. Liebling [83] reported on preliminary efforts to solve the general rela-
tivistic constraint equations for axisymmetric systems using multi-grid methods.)
The study of dynamic critical phenomena will involve various models, such as the
massless Klein-Gordon field that was pivotal in the discovery of critical phenomena
in gravitational collapse [29]. As a step towards including the perfect fluid model in
these studies, I have written a new two-dimensional perfect fluid code. This code
builds on the same techniques used for the spherically symmetric codes, and pre-
liminary tests, included here, indicate that it will accurately solve highly relativistic
fluid systems, and maintain regularity along the symmetry axis of cylindrical coor-
dinates. The code uses the full ADM metric, thus allowing an arbitrary geometry
whose equations of motion are two-dimensional. Godunov-type numerical methods
are incorporated with dimensional splitting, where the equations are solved alter-
nately along one dimension then the other. This chapter reports the current status
of the two-dimensional code, and presents some preliminary shock tube tests.
While a study of axisymmetric critical phenomena provides one motivation for
pursuing this research, many other outstanding problems involving general relativis-
tic, axisymmetric fluids remain. For example, open questions remain in estimating
the gravitational waves emitted in the head-on collision of neutron stars [94, 120].
A similar effort to develop an axisymmetric perfect fluid code using Godunov-
type numerical methods was begun by Brandt et al. [21]. The geometric equations
were solved using an earlier code of Brandt and Seidel, which treated the vacuum

Einstein equations in scenarios involving a central black hole [18, 19, 20]. Recently,
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Alcubierre et al. [1] developed a new regularization technique for the axis in cylindri-

cal coordinates, where region near the axis is differenced in Cartesian coordinates.

6.1 The fluid equations for the two-dimensional code

The perfect fluid equations of motion were written in conservative form compatible

with the ADM Einstein equations in Section 2.5. These equations are

= (07 a + 8ivV=g '] = 3(a), (6.1)

V=9
where
D
a=|5; |- (6.2)
.

Before beginning developing a numerical algorithm to solve these equations, the lead-
ing (— g)_l/ 2 factor, one the left hand side of the equations, must give us pause. This
term may become singular in some coordinate systems, such as spherical symmetry,
where (—g)~'/? o« 1/r2. In such cases, errors in a naive finite difference scheme
are amplified near the singularity of the coordinate system, causing the scheme to
become unstable. For the spherically symmetric code described in Chapter 4, the
difference equations were rewritten to alleviate this problem (see Section 4.4.4).
Ideally, the two-dimensional code would be somewhat generic, allowing different
coordinate systems to be used with a minimum of effort. This requires coordinate-
specific fixes of the discretized equations to be kept to a minimum. An alternate
strategy [55], is to incorporate the leading (—g) /2 term into the source, ¥, and to

adopt “densitized” conservative variables

a=./4q (6.3)

and similar definitions of the flux and source
fi= A1, (6.4)

164



=g (6.5)

e
7 (vz - —) + /7 P’
L (&% _
and
0
$=| T (aug,,j _ P‘S,Hg,;j) . (6.8)

vV—g (T”Oaﬂ Ina — T’“’FO,,M)
With this change to densitized variables, the fluid equations can generally be written
o+ (of!) +0 (af?) = 5(a). (6.9)

These are the equations solved by the two-dimensional code. As with the spherical

code, we also remove the pressure term from f , and add it to the source term.

6.2 Numerical methods

The fluid equations are solved using a second-order Gudonov method for conser-
vation laws, as described in Chapter 3. The development of multi-dimensional
numerical schemes for conservation laws is still an area of active research. How-
ever, for simplicity we employ a relatively simple method known as dimensional

splitting, wherein we calculate the numerical fluxes along each coordinate direction
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independently. A more elaborate method would also include dimensional coupling
terms, which we ignore in dimensional splitting. Our scheme is improved by using
a two-step, predictor-corrector method to integrate the equations in time. Thus
information from both coordinate directions is included in the final corrector step.
As before with the spherically symmetric codes, a linearized Riemann solver is used
to calculate the numerical flux functions, and we discretize the equations using the
method of lines. The equations are then time-integrated using the second-order
modified Euler method.

While the code is currently implemented in Minkowski space, the future cou-
pling with general relativistic code guides many of the design decisions. The code
is being developed using the RNPL numerical programming language [88]. RNPL
handles all memory management, I/0O, and generates the driver routines. The fluid
updates and associated utilities are written by hand.

The fluid equations are evolved on a static background, and when solving a
dynamic system, the fluid equations and geometric equations will be successively
solved. Although the code is written for a general metric, currently only diagonal
submetrics are supported: 7;; = 0 for ¢ # j. This is primarily to conserve memory
during the initial testing stages, allowing the code to be run more efficiently on
workstations. The boundary and regularity conditions are implemented via ghost
cells along all four boundaries. Currently outflow, fixed, and reflection boundary

conditions are available.

6.2.1 Calculating the primitive variables

The specializations for ultrarelativistic flow discussed for spherical codes (see Sec-
tion 3.9), where the transformation from conservation to primitive variables is care-
fully constructed to minimize round-off error, have not been completed in the two-

dimensional code. Here, the primitive variables w are found by solving a transcen-
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dental equation for P, using an iterative Newton root finder. The algorithm is shown

in Figure 6.1.

6.2.2 Riemann initial value problem tests

The first real tests of a fluid code are generally Riemann shock tube tests in flat

space. The metric in Cartesian coordinates is

ds? = —dt* 4+ da? + dy? + d2? (6.10)
The fluid source terms are zero

¥ =0. (6.11)

Shock tube tests are shown in Figures 6.2-6.4. In the tests, the initial discontinuity
is placed along a diagonal of a square grid, and the solution is examined along the

opposite diagonal.

6.3 Axial symmetry

In this section the fluid equations are written for the axisymmetric systems in canon-

ical cylindrical coordinates, with the line element
ds? = —dt* + dR? 4 d2? + R%d¢’. (6.12)

All variables are assumed to be functions of ¢, R, and z: f = f(R,z,t). A test of
the fluid code using cylindrical coordinates is given in Chapter 7 for a fluid coupled
to scalar gravity.

The only non-zero Christoffel symbols for this metric are

TR = (6.13)

1
R?

', =-R. (6.14)
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A~

Prew = /7 P" (the initial guess)

do

while (|Paew — P| < €)

Pn+1 — (7)71/2Pnew
Figure 6.1: Pseudo-code for the primitive variable solver using Newton’s method in the
two-dimensional code for the ideal-gas equation of state. A prime indicates differentiation

with respect to P. The updates for v; and p, are indicated by the quantities in braces, {-},
and are not actually calculated in the Newton solver loop.
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Figure 6.2: A Riemann shock tube test performed with the 2D code with a I' = 4/3 fluid.
The initial left state is p, = 1, v; = 0, P, = 100; the initial right state is p, = 1, vi = 0,
P, = 1. The initial discontinuity is placed along one diagonal, and the 1-dimensional
solution is viewed along the opposite diagonal. The solid lines show the exact solution,
and the evolution solution is indicated by triangles (p), squares (v = 1/(v®)2 + (v¥)?), and
crosses (P). The evolution solution is calculated with 200 x 200 zones on z € [0,+/2/2] and
y € [0,4/2/2], with a Courant number of 1/2.
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Figure 6.3: A Riemann shock tube test performed with the 2D code with a I' = 4/3
fluid. The initial left state is p, = 1, v; = 0, P, = 1000; the initial right state is p, = 1,
vt = 0, P, = 0.01. The initial discontinuity is placed along one diagonal, and the 1-
dimensional solution is viewed along the opposite diagonal. The solid lines show the exact
solution at t = 0.353553391, and the evolution solution is indicated by triangles (p), squares
(v =+4/(v*)%2 + (v¥)?), and crosses (P). The evolution solution is calculated with 200 x 200

zones on = € [0,/2/2] and y € [0,/2/2], with a Courant number of 1/2.
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Figure 6.4: Shock heating of a T' = 5/3 fluid calculated with the 2D code. The initial left
state is pp = 1, v = 0.7, v] = 0.7, v = 0, and P, = 1000; the initial right state is p, = 1,
v = —-0.7,v¢ =—-0.7, v =0, and P, = 1000. The initial discontinuity is placed along one
diagonal, and the 1-dimensional solution is viewed along the opposite diagonal. The solid
lines show the exact solution at ¢ = 0.353553391, and the evolution solution is indicated
by triangles (p), squares (v = /(v*)? + (v¥)?), and crosses (P). The evolution solution is
calculated with 200 x 200 zones on x € [0,v/2/2] and y € [0,+/2/2], with a Courant number
of 1/2. My exact Riemann solver for the ideal gas equation of state was unable to find the
solution for this initial data, so the exact solution shown here is for the ultrarelativistic state
equation.
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The densitized conservation variables are

RD
RSR
RS, |- (6.15)
RS,
Rt

£
I

The numerical fluxes are

S
SRUR + RP
£ = SR , (6.16)
Sgvft
(# + RP)v®

and

Dv?

S’sz

=1 S0+ RP |, (6.17)
,§’¢vz

(7 + RP)v*

and the source term is

] . ]
Lot p
. —Suv
$—| R”? (6.18)
0
—RS’RU¢
0:q + OptR + 0.f* = % (6.19)

The regularity conditions for the conservation variables can be derived by us-

ing the method of Bardeen and Piran [8]. Regularity is ensured by requiring that
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all Cartesian tensor components can be expanded in non-negative powers of the
Cartesian coordinates x, y, and z. In cylindrical coordinates, we label the N grid
points along R with R;, where ¢ = 1,..., Ngp. The symmetry axis coincides with
the second cell, R» = 0. The : =1 and ¢ = 2 cells are treated as ghost cells in the

update routines (see Section 3.8). The regularity conditions in discrete form are

f)l = D3 ) 2 =10

(Sr)1 = —(Sk)s (Sr)2 =0

(S2)1 = (5:)s (S.)2 =0 (6.20)
(Ss)1 = (S4)s (Sg)a =0

71 =13 T2 =0

The outflow boundary conditions described in Section 3.8 are used on the other grid

boundaries, and are also implemented with ghost cells.

6.4 Conclusion

The two-dimensional fluid code of this chapter was tested in slab symmetry (Carte-
sian coordinates) with the Riemann initial value problem. While the code can also
use cylindrical coordinates, there are no exact solutions for an axially symmetric per-
fect fluid in flat space for direct comparison. In the following chapter, we introduce
scalar gravity, a simplified model for gravity using a single scalar field. This model is
simple to implement, and allows us to test the performance of the two-dimensional

code in cylindrical coordinates for problems with significant “self-gravitation.”
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Chapter 7

Scalar gravity

Eventually, the two-dimensional fluid code described in Chapter 6 will be used to
study the fully general relativistic problems mentioned in the introduction, such
as the critical behavior of axisymmetric fluids, and neutron star systems. However,
solvers for the Einstein equations are just now being written, and will not be finished
for some time. To sample the physics we wish to address, we turn now to a simple
gravitation model known as scalar gravity. However, it must be stressed at the outset
that the results presented here are preliminary, and additional study is required for
a complete understanding.

Before choosing a new gravitational model, we might first consider Newtonian
gravity. Newtonian gravity is completely described by a scalar field, ¢, which satis-

fies
V2p = 41Gp,. (7.1)

The gravitational force is proportional to ﬁcp, and the acceleration of a test-body
due to the field ¢ is

A’z -

— = —Vo. 7.2
Equation (7.1) for ¢ is an elliptic equation, and thus any change in the matter

distribution is communicated instantaneously throughout space, a result directly
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at odds with the fundamental assumptions of special relativity. Thus, Newtonian
gravity can not be self-consistently combined with a relativistic fluid. Perhaps the

obvious way to modify (7.1) such that it is consistent with special relativity is
Oy = 471G Tiotal,s (73)

where the elliptic Laplacian operator is replaced by the hyperbolic D’Alembertian

operator
O0=V,V" (7.4)

and Ty is the trace of the stress-energy tensor. To be consistent with the equiv-
alence of mass and energy in special relativity, ¢ now couples to the total stress-
energy—including the contribution of ¢)—in the space-time [75]. While this ap-
proach is not adopted here, the scalar gravity model is very similar in spirit.

Scalar gravity is introduced in Exercise 7.1 of Misner, Thorne and Wheeler [95],
as the first of a series of three exercises illustrating the incompatibility of special
relativity and gravitation (as either a scalar, vector, or tensor field). Like Newtonian
gravity, scalar gravity is a flat spacetime theory, i.e., the geometry of space-time is
fixed a priori, and the gravitational force is given as the gradient of a scalar potential,
W. Whereas the Newtonian potential satisfies the Poisson equation, scalar gravity
obeys a nonlinear wave equation. An immediate consequence of the scalar gravity
equation of motion is that scalar gravity contains “gravitational waves,” even in
spherical symmetry.

Scalar gravity was first investigated as a laboratory for numerical relativity
by Shapiro, Teukolsky, and Scheel [118, 119, 113]. They examined spherical and
axisymmetric systems for a collection of massive point particles, or dust, and were

especially interested in extracting the gravitational waves from these distributions.
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7.1 The scalar gravity model

Scalar gravity and its coupling with other matter is described by a Lagrangian.
Although the perfect fluid equations can be derived using a variational principle,
the method requires considerable effort (using four pseudo-potentials) [115]. For
simplicity, we will first derive the scalar gravity equations for a point particle, and
then simply extend the results to the known perfect fluid stress-energy tensor.

Let z%(t,) be the world line of a particle parameterized by the proper time, ¢,,.

The particle has mass m and interacts with a field, ¥, according to the action

I= /d4x\/—gﬁa, (7.5)
where the Lagrangian density, L, is

~2.g9" VeIV, — eVp, (7.6)

and G is the Newtonian gravitation constant, which we explicitly re-introduce. The

comoving density is
p=m / dtyr/=g 6% [z — 2(2)]. (7.7)
The field equation for ¥ can be found by varying the action with respect to W,
OU = 47GeYp, (7.8)

and the stress-energy of the particle-field system can be found by varying the action

with respect to g,

T =
total (_9)1/2 59;11/

We find that the total stress-energy can be written

TH =M 4 TR (7.10)

total dust?

where 8#¥ is the stress-energy of the scalar gravity field
1

1
= —— |V, IV, ¥ — ~¢, VIV T, .
S anG | 9 9u (7.11)
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and T4 is the stress-energy of the particles
TR =¥ (putu”). (7.12)

dust —

We define the trace of T+,

T=T,, (7.13)
and note that (7.8) can be written

OF = —47GT gust- (7.14)

This final equation gives the scalar gravity field equation in terms of an invariant,
tensor quantity, and provides one method for extending this model to systems other
than dust. Shapiro and Teukolsky [118] use (7.14) to couple the perfect fluid to
scalar gravity without employing a variational principle, and we follow suit here.

In analogy with (7.12), we write the perfect fluid stress-energy as
T = e [(p + Pl + g P, (7.15)

using the previous definition for p as the total fluid energy density. The scalar

gravity field equation when coupled to a perfect fluid becomes

OF = 47e? (p — 3P), (7.16)
since we have from (7.15) that

T=—eY(p—3P). (7.17)

The fluid equations of motion can be found in the standard way by considering
projections of V - J = 0 which are parallel and perpendicular to the four-velocity.

As usual, the parallel projection yields the energy equation The energy equation is

u,V, T =0, (7.18)
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which can be written as an evolution equation for p

dp _

5 = o+ P)Vau! —3PutV, 0 (7.19)

The perpendicular projection yields the Euler equation

haVATH = 0, (7.20)
which can be written as

(p+ P)u'Vyu, =h",[V,P+V,T(p—2P)]. (7.21)
Finally, the continuity equation retains its Minkowski form:

Vu(pout) = 0. (7.22)

Before continuing, we note one immediate difficulty with this coupling of scalar
gravity to a perfect fluid. While the trace Tqyug; is negative definite, the trace Tgyiq is
not, and may be either positive or negative, depending on the relative magnitudes of
p and P. When T > 0, U essentially couples to “negative matter.” This possibility

is considered more fully in the next section.

7.2 Potentially “negative” matter?

The perfect fluid was coupled to scalar gravity in the previous section by first con-
sidering dust, where the scalar field ¥ couples to the trace of the dust stress-energy

tensor
O = 4ne¥p = — 47T gust- (7.23)
The fluid coupling proceeds simply by analogy,

Ov = —47T‘Tﬂuid. (724)
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Taust 1 @ negative definite quantity, and O thus couples to a positive definite source

term. For the perfect fluid,
Thuia = —€” (p — 3P), (7.25)

and the difference in sign between p and P opens the possibility that T may become
positive, effectively coupling ¥ to negative matter.

Consider now the ideal-gas equation of state
P = (T — 1)pye, (7.26)
and use the state equation to rewrite (7.25) as

4 —3I'
1\
= — . .2
J e (po+ T 1P) (7.27)

The sign of T is a function of p,, P, and most importantly, I'. T is negative definite,
as for dust, only for I' < 4/3. For ' > 4/3, the sign of T depends on the relative
magnitude of p, and P. In particular, the negative energy problem occurs more
readily when the fluid is “hot” (P > p,), and may not appear at all for “cold”
fluids (P < po). I' = 4/3 is a special case because the second term of (7.27) is
identically zero, and ¥ couples only to the rest mass p,.

The consequences of the indeterminate sign for T are dramatic, as the gravita-
tional force changes from an attractive force to a repulsive force. We have investi-
gated this change in behavior for static, spherically symmetric “star” solutions for
I' = 1.35—a I slightly greater than the I' = 4/3 limit for a negative-definite T—
with the isentropic equation of state and a varying k (see Section 7.5). The effect
produces increasingly strange solutions as k increases, and similar effects are seen
in dynamic fluid solutions, as the relativistic shocks easily impart large amounts of
kinetic energy (heat) to the diffuse outer medium. To avoid this problem we fix

I' = 4/3 in the following,.
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7.3 Conserved quantities: the tale of three masses

Scalar gravity unfolds in Minkowski space, and thus allows the definition of globally
exact conservation laws [118]. The first two conserved quantities come from applying
Gauss’ law to V:-J =0 and V- T = 0. The first of these defines a conserved rest

mass

M, = / A3z g0 = / d3z(p, W) (7.28)
The second defines the total energy

M= [ a1, (7.29)
which, using (7.15), becomes

M= /d% [# [(voxp)Q + vi\wi\p] +e¥ ((p+P)W2—P)|. (7.30)

M is conserved outside of the matter source and gravitational waves. The third

conserved quantity is
Mg = — / Pz 7. (7.31)

Shapiro and Teukolsky [118] call this the “Coulomb” mass because, in the limits

U — 0 as r — oo, this mass becomes

1
Mc = —= lim . (7.32)

r—00

7.4 Gravitational radiation

One of the most exciting aspects of the scalar gravity model is the existence of
gravitational waves—even in spherical symmetry. Shapiro and Teukolsky [118, 113]
analyzed the gravitational radiation in the weak-field, slow-motion limit, finding
that the (spherically symmetric) monopole radiation and the quadrupole contribu-

tion both fall off like 1/r. In spherical symmetry, where only monopole radiation
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exists, the wave extraction is very simple. In axisymmetric systems, the analysis is
slightly more complicated. As time constraints prevented a detailed examination of

gravitational radiation in this work, a more complete discussion is not given here.

7.5 The spherically symmetric static solution

This section presents the static, spherically symmetric solutions in scalar gravity
which are analogous to the TOV solutions of general relativity. The Minkowski

spherically symmetric line element is
d%s = —dt? 4+ dr? + r2d#? + r? sin? 0 d¢. (7.33)

To find static solutions we set the time derivatives in the FEuler equations to zero
and the four-velocity to u” = (1,0,0,0). The energy equation is trivially satisfied,
and the only non-trivial Euler equation is

dP dv
— =—(p—2P)— 7.34
= —(p-2P) (7:34)

The scalar gravity field equation is

VU = rizar (r’0, V) = 4me” (p — 3P). (7.35)
Let

YT =07, (7.36)

and write (7.35) as a first order system

8T =T (7.37)
2 v
oY = —;T +4mwe” (p — 3P). (7.38)

The symmetry conditions require that d¥/dr = 0 at the origin. Solutions can be
found by choosing the central pressure, P,, and the central value of the scalar field,

U,, and then integrating equations (7.34), (7.37), and (7.38) until P < 0.

181



—

[¢]
(@]
(&)
\H‘\H‘H\‘\H‘\Hﬁ
//

p

©
o O

v

/‘/y/\ “HH‘HH‘HH‘HH‘H ‘/\H‘:JHH‘HHJ“HH‘

RHS
O = NV W A - O = NN W

O

Figure 7.1: Spherically symmetric, static “star” solutions in scalar gravity for I' = 1.35
for varying values of k, where we use the isentropic equation of state P = kpl. Frame (a)
shows p,, frame (b) shows P, frame (c) shows ¥, and frame (d) shows the scalar gravity
coupling term, 4me¥(p — 3P). In all of these solutions we set ¥(0,t) = —1, po(0,¢) = 1, and
vary k. The outward integration is halted when P < 0. The solid line shows the solutions
for £ = 0.1, the dotted line for k = 0.5, the short-dashed line for &k = 1, the long-dashed line
for k = 1.5, and the dot-dashed line for k = 2. As T" > 4/3, the coupling term plotted in
frame (d) is not positive definite. When k = 0.1, ¥ essentially couples to the rest mass, p,.
As k increases, the coupling to p, becomes increasingly weaker, as can be seen in frame (d).
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Figure 7.2: A continuation of the solutions plotted in Figure 7.1 for 3 < k < 6.5. Frame (a)
shows p,, frame (b) shows P, frame (c) shows U, and frame (d) shows the scalar gravity
coupling term, 4we¥(p — 3P). The solid line shows the solutions for k¥ = 3, the dotted line
for k = 4, the short-dashed line for £ = 5, the long-dashed line for & = 6, and the dot-dashed
line for k£ = 6.5. The coupling between ¥ and p, (or indeed p!) continues to weaken, while

the gravitational force, V.U, tends to zero near the origin.
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Figure 7.3: A continuation of the solutions plotted in Figure 7.1 for 6.9921875 < k <
6.999998092651367. (These results, and others in this chapter are preliminary. Although
the values for k reported here are given with 16 digits, not all of these digits are “significant.”
No attempt has been made rigorously determine the proper level of precision.) Frame (a)
shows p,, frame (b) shows P, frame (c) shows ¥, and frame (d) shows the scalar gravity
coupling term, 4me? (p—3P). The solid line shows the solutions for k¥ = 6.9921875, the dotted
line for k = 6.9990234375, the short-dashed line for k = 6.9998779296875, the long-dashed
line for k = 6.999984741210938, and the dot-dashed line for &k = 6.999998092651367. These
solutions represent the extreme limiting solutions before T changes sign near the origin. The
effects noted in the previous two figures are greatly exaggerated in these solutions.
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Figure 7.4: A continuation of the solutions plotted in Figure 7.1 for 7.01 < k < 10. The
coupling term T has now changed sign near the origin, and the scalar gravity has changed
from an attractive, to a repulsive force. Frame (a) now shows log;, p,, frame (b) now
shows log;q P, frame (c) shows ¥, and frame (d) shows the scalar gravity coupling term,
47me¥(p — 3P). The solid line shows the solutions for £ = 7.01, the dotted line for k = 8,
the short-dashed line for k£ = 9, and the long-dashed line for k¥ = 10. (Note that the vertical
scales in these plots are very different from the others in the series, especially the logarithmic
scale in (a) and (b).)
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As discussed in Section 7.2 above, the perfect-fluid/scalar-gravity coupling is
problematic for ' > 4/3, because T is no longer negative definite. Figures 7.1-7.4,
present a series of spherically symmetric, static solutions for I' = 1.35 with the

isentropic equation of state
P =kp}. (7.39)

The figures begin with £ = 0.1, gradually increasing k to k = 7, where T first
becomes positive. Figure 7.4 shows four solutions with & > 7, all of which have

“repulsive” gravity with T > 0.

7.6 Axisymmetric scalar gravity

As mentioned previously, the motivation for introducing the scalar gravity model is
to create simple, axisymmetric test problems for the two-dimensional code. The first
“test” is merely to see if the solutions remain stable and regular along the symmetry
axis (R = 0) of cylindrical coordinates. Secondly, we can create “toy” problems that
mimic the physical problems of interest, such as the collision of two objects shown
below. Finally, the static, spherically symmetric solution of Section 7.5 tests that the
coupled fluid and scalar gravity equations are solved correctly. This section writes
the scalar gravity equations for axisymmetric systems using cylindrical coordinates,
and briefly discusses methods for solving them numerically. The static star solution
is used as initial data for the two-dimensional code, and the results indicate that
that the equations are being solved correctly. Finally, we set initial data for two
objects along the symmetry axis, which collide to form a single object. Several
frames from this evolution are included here.

In axial symmetry we adopt the canonical cylindrical coordinates, and write

the Minkowski line element as
ds? = —dt* + dR? + d2? + R?d#%. (7.40)
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The fluid equations of motion in this coordinate system are
1
oiq + E&;ng +0,f, =% — Y, (7.41)

where X, contains the coupling terms to scalar gravity

_ . -
SrZ 4+ (1 4+ D — S,v* — S¢w® — 2P)Y i + Spv° Y,
5, = | O ( ¢ )Tr+ Sk ()
SZE-I—SZURTR-I—(T+D—S’RUR—S¢U¢—2P)TZ
i S¢E + S¢URTR + S¢UZTZ ]

These equations are now written with the “densitized” variables of Section 6.3, q.

The fluid equations are now

8:q+ Opff +0.f* =% -3%,, (7.43)
where
_ . -
21/) _ SRrE + (7A'+1A7—SA’ZUZ — Sov? —2RP)TR+§RUZTZ (149)

8.2+ S, YR + (7 + D — Sgoft — Syv — 2RP)Y,
S¢E + S’¢URTR + S¢UZTZ

As in the spherically symmetric case, we write the scalar gravity evolution

equation in first order form, defining new variables

== 0,0 (7.45)
TR = 8R\I/, (746)
T, =0.7T. (7.47)

The equations of motion for ¥ are then

)
S
I

m

(7.48)
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0T r = ORE, (7.49)

9T, — 0.5, (7.50)
0= = %aR (RYR) + 8., + 4n7. (7.51)

The fluid equations and the scalar gravity evolution equations are updated
sequentially, with the fluid updated first. The fluid update consists of solving the
fluid equations in cylindrical coordinates coupled to scalar gravity (7.43) with the
high-resolution Godunov scheme described in Chapter 6. Then the scalar gravity
equations are evolved to the advanced time using the Crank-Nicholson method (Sec-
tion 3.1.1). We apply Kreiss-Oliger [76] dissipation to the scalar gravity equations,
(7.48)—(7.51), on the interior of the grid, as well as outer grid boundaries.

The out-going radiation boundary condition for spherically symmetric systems

is applied to =. In spherical symmetry this condition is
-, 1 -
HE+ -0, (rE) = 0. (7.52)
r

The spherical radial coordinate, r, is related to the cylindrical coordinates by

r? = R? + 2% (7.53)
Changing to the cylindrical variables, the out-going radiation condition becomes

8=+ (R*+22) ’[ROgE+28.2+E] =0 (7.54)

Boundary conditions are not applied to Tg, Y., or ¥, but equations (7.48)—(7.50)
are integrated here with backwards or forward differences, as required.
Time symmetric initial data is used for the fluid variables, and = is also assumed

to be time symmetric. The scalar gravity initial data is set by solving

ViU = 477 (7.55)
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To test the two dimensional scalar-gravity /perfect-fluid code we first set initial
data for a spherically symmetric, static solution (Section 7.5). We use fixed bound-
ary conditions for the outer boundaries, and require that the axis, R = 0, remain
regular. We computed this solution on a rectangular grid with 401 x 801 cells, and
the solution is discussed in Figures 7.5-7.7.

As a demonstration of the code’s ability to evolve dynamic configurations, we
present very preliminary results of a two-body collision in scalar gravity. The initial
data consist of two spherically symmetric objects of equal mass on axis, initially
positioned at R = 0 and 2z = £2z.. The initial data is time symmetric, and Dirichlet
boundary conditions, ¥ = 1, are set on the outer boundaries. The solution is
calculated on a square grid with 201 x 201 grid points. The variables p,, v*, vft, ¥,

and = are plotted at eight representative times in Figures 7.8-7.17
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Figure 7.5: The top frame shows the central density p,(R,z,t) = p,(0,0,%) of a “star” in
scalar gravity from a two-dimensional evolution. The bottom frame shows the ¢5 norm of the
error along the line z = 0, as defined to be the difference of the evolved solution, p,(R,0,t),
and the exact solution, p,(R,0). The evolution used { (R, 2) | R € [0,1.82],z € [-1.82,1.82] }
with 401 x 801 grid points. The static solution is generated using the isentropic equation
of state, P = kp', with k¥ = 0.1 and T' = 4/3, with p,(0,0) = 1 and ¥(0,0) = —1.
The star radius is rgtar = 1.81. The evolution continued for approximately 4.75 “sound-
crossing times,” as estimated by ¢/3 along the R-direction, and then crashed owing to noise
generated by the interaction of the background fluid with the star and the outer boundary
conditions. This noise is apparent in the two-dimensional plots of v of Figure 7.7. This
solution required approximately one week of computer time on a dedicated, single processor

(R10000) Silicon Graphics work station.
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Figure 7.9: A time series showing p, for a two-body collision (continued).
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A time series showing = for a two-body collision.
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Chapter 8

Conclusion

Perfect fluids have a rich phenomenology, and for relativistic fluids the range of
solutions is just beginning to be explored. Certainly some of the most dynamic
solutions are the Type II critical solutions presented here. These solutions contain
both collapsing and exploding regions, and as I' — 2, the transition between these
regions becomes more and more abrupt. Indeed, these solutions are “extreme” in
many senses of the word, including their ultrarelativistic velocities (W > 10°), the
range of length scales required to capture their evolution in time, and the strong
coupling between the fluid and the space-time geometry at the verge of black hole
formation.

These characteristics of the perfect fluid critical solutions make them difficult to
investigate using numerical techniques. However, using careful numerical analyses,
we studied these solutions using both the full set of Einstein-fluid equations and a
reduced set of equations adapted to the critical solutions’ scale-invariance. Many
of our results for 1.89 < T < 2, reported here and in [96], were unexpected by the
community, and, in part, they have been confirmed by independent researchers [24,
67].

Following the seminal work of Evans and Coleman [52], we construct globally

regular, CSS solutions for 1.89 < T < 2 using the ansatz of continuous self-similarity.
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These solutions are difficult to find—in some cases double precision arithmetic is
insufficient—and they were previously not thought to exist [86, 68, 60, 16]. We find
good evidence that the sonic point is a degenerate node for the I'q, ~ 1.8896244
solution, and not a focal point as previously reported [86].

Using the full Einstein-fluid equations we are able to verify that these new CSS
solutions are indeed the unique critical solutions, i.e., the solutions which separate
the solutions that ultimately disperse (in the high-energy limit) from those which
form black holes. We also calculate the mass-scaling exponents by evolving super-
critical initial data, which are in good agreement with the results of perturbation
theory. We have also investigated critical collapse using the ideal-gas equation of
state, and, as expected, have found that the fluid is well-described in the near-
critical regime by an ultrarelativistic approximation, and thus has critical solutions
identical to those generated using P = (I' — 1)p.

Solving the Einstein-fluid system for these solutions presents several computa-
tional challenges. We developed a code to solve these equations, whose success in
the ultrarelativistic regime is enabled only through: (i) solving the fluid equations
with modern methods for conservation laws, (ii) introducing a new set of fluid vari-
ables ({II,® }) with superior properties for spherically symmetric, stiff fluids, and
(iii) developing algorithms optimized for extremely relativistic velocities. A com-
plete description of this code, along with extensive tests, is given in Chapter 4, with
reference to the general numerical techniques given in Chapter 3.

The final part of this dissertation introduces some preliminary two-dimensional
studies. A new code for solving two-dimensional, relativistic fluid systems is de-
scribed in Chapter 6, and the first shock tube tests are presented. Currently this
code can evolve fluids only on a static space-time, but future plans are focused on
developing a fully general relativistic fluid code.

Finally, a “toy” gravitation model called scalar gravity is used to demonstrate
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the kind of physical problems we hope this code will be able to address.

Future work will undoubtedly be focused on developing a fully general rela-
tivistic fluid code, where a number of problems can be explored in axial symmetry,
including: critical phenomena, supernova core collapse, the possible appearance of
naked singularities in the collapse of rotating objects, and the production of gravi-

tational waves in neutron star collisions.

205



Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

M. Alcubierre, S. Brandt, B. Briigmann, D. Holz, E. Seidel, R. Takahashi,
and J. Thornburg, “Symmetry without symmetry: Numerical simulation of

axisymmetric systems using Cartesian grids,” gr-qc/9908012 (1999).

D.A. Anderson, J.C. Tannehill, and R.H. Pletcher, Computational fluid me-

chanics and heat transfer (Hemisphere Publishing Corp., New York, 1984).

AM. Anile, Relativistic fluids and magneto-fluids, (Cambridge University
Press, Cambridge, 1989).

R. Arnowitt, S. Deser, and C.W. Misner, “The dynamics of general relativity”,
Gravitation: An introduction to current research, edited by L. Witten (John

Wiley, New York, 1962).

D. Bale, “A Riemann solver based on the arithmetic average”, unpublished

(1998).

D.S. Balsara, “Riemann solver for relativistic hydrodynamics”, J. Comput.

Phys. 114, 284-297 (1994).

F. Banyuls, J.A. Font, J.M2. Ibafiez, J.M2 Marti, and J.A. Miralles, “Numer-
ical 341 general relativistic hydrodynamics: A local characteristic approach”,

ApJ 476, 221-231 (1997).

206



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J.M. Bardeen and T. Piran, “General relativistic axisymmetric rotating sys-

tems: coordinates and equations”, Physics Reports 96, 205-250 (1983).

M.J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial
differential equations”, J. Comput. Phys. 53, 484-512 (1984).

M.J. Berger and P. Colella, “Local adaptive mesh refinement for shock hydro-
dynamics”, J. Comput. Phys. 82 64-84 (1989).

M.J. Berger and R.J. LeVeque, “Adaptive  mesh  refine-
ment  using  wave-propagation  algorithms  for  hyperbolic  sys-
tems”, SIAM J. Numer. Anal. in press (1997); available at

ftp://amath.washington.edu/pub/rjl/papers/mjb-rjl:amr.ps.

G.V. Bicknell and R.N. Henriksen, “Self-similar growth of primordial black
holes. I. Stiff equation of state”, ApJ 219, 1043-1057 (1978).

G.V. Bicknell and R.N. Henriksen, “Self-similar growth of primordial black
holes. II. General sound speed”, ApJ 225, 237-251 (1978).

O.1. Bogoyavlenskii, “General relativistic self-similar solutions with a spherical

shock wave”, Sov. Phys. JETP 46, 633-640 (1977).

P. Brady, “Phases of massive scalar field collapse”, Phys. Rev. D 56, 6057-6061
(1997).

P. Brady and M.J. Cai, “Critical phenomena in gravitational collapse”,

gr-qc/9812071 (1998).

P. Brady, C. Gundlach, D.W. Neilsen, and M.W. Choptuik, “Black-hole

threshold solutions in stiff fluid collapse”, in preparation (1999).

S.R. Brandt and E. Seidel, “Evolution of distorted rotating black holes. I.
Methods and tests”, Phys. Rev. D 52, 856-869, (1995).

207



[19]

[20]

[21]

[22]

S.R. Brandt and E. Seidel, “Evolution of distorted rotating black holes. II.
Dynamics and analysis”, Phys. Rev. D 52, 870-886, (1995).

S.R. Brandt and E. Seidel, “Evolution of distorted rotating black holes. III.
Initial data”, Phys. Rev. D 54, 1403-1416, (1996).

S.R. Brandt, J.A. Font, J.M2 Ibanez, J. Massd, and E. Seidel, “Numerical evo-
lution of matter in dynamical axisymmetric black hole spacetimes. I. Methods

and tests”, gr-qc/9807017 (1998).

M.E. Cahill and A.H. Taub, “Spherically symmetric similarity solutions of
the Einstein field equations for a perfect fluid”, Comm. Math. Phys. 21, 1-40
(1971).

B.J. Carr and A.A. Coley, “Self-similarity in general relativity”,
gr-qc/9806048 (1998).

B.J. Carr, A.A. Coley, M. Goliath, U.S. Nilsson, and C. Uggla, “Critical phe-
nomena and a new class of self-similar spherically symmetric perfect-fluid so-

lutions”, gr-qc/9901031 (1999).

B.J. Carr and A.A. Coley, “A complete classification of spherically symmetric
perfect fluid similarity solutions”, gr-qc/9901050 (1999).

B.J. Carr, A.A. Coley, M. Goliath, U.S. Nilsson, and C. Uggla, “Physical in-
terpretation of self-similar spherically symmetric perfect-fluid models: Com-

bining the comoving and homothetic approach”, gr-qc/9902070 (1999).

S. Chandrasekhar, An introduction to the study of stellar structure (University

of Chicago Press, Chicago, 1939).

M.W. Choptuik, “Consistency of finite-difference solutions of Einstein’s equa-

tions”, Phys. Rev. D 44, 3124-3135 (1991).

208



[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

M.W. Choptuik, “Universality and scaling in gravitational collapse of a mass-

less scalar field”, Phys. Rev. Lett. 70, 9-12 (1993).

M.W. Choptuik, T. Chmaj, and P. Bizon, “Critical behaviour in gravitational
collapse of a Yang-Mills field”, Phys. Rev. Lett. 77, 424-427 (1996).

M.W. Choptuik, “The 3+1 Einstein equations”, unpublished (1998).

M.W. Choptuik, “The (unstable) threshold of black hole formation”,
gr-gc/9803075 (1998).

M.W. Choptuik, personal communication (1998).
M.W. Choptuik, personal communication (1998).

M.W. Choptuik, E.W. Hirschmann, and R.L. Marsa, “New critical behavior
in Einstein-Yang-Mills collapse”, gr-qc/9903081 (1999).

M.W. Choptuik, “Lectures for Taller de Verano 1999 de FENOMEC: Numer-

ical analysis with applications in theoretical physics”, unpublished (1999).

A.J. Chorin and J.E. Marsden, A mathematical introduction to fluid mechanics

(Springer-Verlag, New York, 1992).

D. Christodoulou, “A mathematical theory of gravitational collapse”, Com-

mun. Math. Phys. 109, 613—-647 (1987).

D. Christodoulou, Commun. Pure Appl. Math. 44, 339 (1991).
D. Christodoulou, Commun. Pure Appl. Math. 46, 1131 (1993).
D. Christodoulou, Ann. Math. 140, 607 (1994).

P. Colella and P. Woodward, “The piece-wise parabolic method (PPM) for
gas-dynamical simulations,” J. Comput. Phys. 54, 174-201 (1984).

209



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

R. Courant and K.O. Friedrichs, Supersonic flow and shock waves (Interscience

Publishers, New York, 1948).

W. Dai and P.R. Woodward, “An iterative Riemann solver for relativistic

hydrodynamics”, SIAM J. Sci. Comput. 18, 982-995 (1997).

R. Donat and A. Marquina, “Capturing shock reflections: an improved flux

formula”, J. Comput. Phys. 125, 42-58 (1996).

R. Donat, J.A. Font, J.M2. Ibdnez, and A. Marquina “A flux-split algorithm
applied to relativistic flows”, J. Comput. Phys. 146, 58-81 (1998).

B. Einfeldt, “On Godunov-type methods for gas dynamics”, SIAM J. Numer.
Anal. 25, 294-318 (1988).

B. Einfeldt, C.D. Mungz, P.L. Roe, and B. Sjogreen, “On Godunov-type meth-
ods near low densities”, J. Comput. Phys. 92, 273-295 (1991).

F. Eulderink and G. Mellema, “General relativistic hydrodynamics with a Roe
solver”, Astronomy and Astrophysics Suppl. 110, 587-623 (1995).

C.R. Evans, “A method for numerical relativity: Simulation of axisymimetric
gravitational collapse and gravitational radiation generation” Ph.D. Thesis,

The University of Texas at Austin, unpublished (1984).

C.R. Evans, “Self-similarity: The heart of critical phenomena”, in Lecture
Notes of the Numerical Relativity Conference, Penn State University, 1993,
unpublished (1993).

C.R. Evans and J.S. Coleman, “Critical phenomena and self-similarity in the

gravitational collapse of radiation fluid”, Phys. Rev. Lett. 72 1782-1785 (1994).

T. Foglizzo and R.N. Henriksen, “General relativistic collapse of homothetic

ideal gas spheres and planes”, Phys. Rev. D 48, 4645-4657 (1993).

210



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

J.A. Font, J.M2. Ibdnez, A. Marquina, and J.M2 Marti, “Multidimensional
relativistic hydrodynamics: Characteristic fields and modern high-resolution

shock-capturing schemes”, Astron. Astrophys. 282, 304-314 (1994).

J.A. Font, M. Miller, W. Suen, and M. Tobias, “Three dimensional numerical
general relativistic hydrodynamics I: Formulations, methods, and code tests”,

gr-qc/9811015 (1998).

J.A. Font, N. Stergioulas, and K.D Kokkotas, “Nonlinear hydrodynamical
evolution of rotating relativistic stars: Numerical methods and code tests”,

Mon. Not. R. Astron. Soc. in press (1999); gr-qc/9908010.

D. Garfinkle, “Choptuik scaling in null coordinates”, Phys. Rev. D 51, 5558
5561 (1995).

S.K. Godunov Mat. Sb. 47, 271 (1959).

M. Goliath, “Self-Similar spherically symmetric perfect-fluid models”,

Filosofie Licenciatexamen, Stockholm University, unpublished (1998).

M. Goliath, U.S. Nilsson, and C. Uggla, “Timelike self-similar spherically sym-
metric perfect-fluid models”, Class. Quantum Grav. 15, 2841-2863 (1998).

J.B. Goodman and R.J. Leveque, “A geometric approach to high resolution
TVD schemes”, SIAM J. Numer. Anal. 25, 268-284 (1988).

N. Grossman, The sheer joy of celestial mechanics, (Boston, Birkhduser, 1996).

C. Gundlach, “Critical phenomena in gravitational collapse”, Adv. Theor.

Math. Phys. 2 1-49 (1998); gr-qc/9712084.

C. Gundlach, “Nonspherical perturbations of critical collapse and cosmic cen-

sorship”, Phys. Rev. D 57, R7075 (1998).

211



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

C. Gundlach, “Angular momentum at the black hole threshold”, Phys. Rew.
D 57, R7080 (1998).

C. Gundlach, private communication (1999).

C. Gundlach, “Critical gravitational collapse of a perfect fluid with p = kp:
Nonspherical perturbations”, gr-qc/9906124 (1999).

T. Hara, T. Koike, and S. Adachi, “Renormalization group and critical be-

havior in gravitational collapse”, gr-qc/9607010 (1996).

A. Harten and J.M. Hyman, “Self-adjusting grid methods for one-dimensional
hyperbolic conservation laws”, J. Comput. Phys. 50, 235-269 (1983).

A.C. Hindmarsh, “ODEPACK, a systematized collection of ODE solvers”, in
Scientific Computing, edited by R.S Stepleman et al. (North-Holland, Ams-
terdam, 1983).

J.M2. Ibanez, J.M2 Marti, J.A. Miralles and J.V. Romero, in Approaches to
Numerical Relativity, ed. R. D’Inverno (Cambridge University Press, Cam-
bridge, 1992).

J.M2. Ibanez and J.M2 Marti, “Riemann solvers in relativistic astrophysics”,

J. Comput. Appl. Math. in press (1999).

T. Koike, T. Hara, and S. Adachi, “Critical behaviour in gravitational collapse
of radiation fluid: A renormalization group (linear perturbation) analysis”,

Phys. Rev. Lett. 74, 5170-5173 (1995).

T. Koike, T. Hara, and S. Adachi, “Critical behavior in gravitational collapse

of a perfect fluid”, Phys. Rev. D 59, 104008 (1999).

R.H. Kraichnan, “Special-relativistic derivation of generally covariant gravi-

tation theory”, Phys. Rev. 98, 1118-1122 (1955).

212



[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

H.O. Kreiss and J. Oliger, Methods for the approzimate solution of time-
dependent problems, GARP Publication Series No. 10 (World Meteorological

Organization, Geneva, 1973).
L.D. Landau, Fluid mechanics (Pergamon Press, London, 1959).

L.D. Landau and E.M. Lifshitz, Fluid mechanics, Second English edition
(Pergamon Press, Oxford, 1987).

R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhatiser-Verlag,
Basel, 1992).

R.J. LeVeque, “Wave propagation algorithms for multidimensional hyperbolic

systems”, J. Comput. Phys. 131, 327-353 (1997).

R.J. LeVeque, “Nonlinear conservation laws and finite volume meth-
ods for astrophysical fluid flow”, in Computational Methods for As-
trophysical  Fluid Flow, 27th Saas-Fee Advanced Course Lecture
Notes (Springer-Verlag, Berlin, to be published); also available at

ftp://amath.washington.edu/pub/rjl/papers/saasfee.ps.gz (1998).

A. Lichnerowicz, Relativistic hydrodynamics and magnetohydrodynamics

(W.A. Benjamin, New York, 1967).

S.L. Liebling Nonlinear field dynamics in general relativity: Black hole critical
phenomena and topological defects, Ph.D. Thesis, The University of Texas at
Austin, unpublished (1998).

M.K. Madsen, “A note on the equation of state of a scalar field”, Astrophys.
Space Sci. 113, 205-207 (1985).

M.K. Madsen, “Scalar fields in curved spacetimes”, Class. Quantum Grav. 5,

627-639 (1989).

213



[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

D. Maison, “Non-universality of critical behaviour in spherically symmetric

gravitational collapse”, Phys. Lett. B 366, 82-84 (1996).

A. Marquina, “Local piecewise hyperbolic reconstruction of numerical fluxes
for nonlinear scalar conservation laws”, SIAM J. Sci. Comput. 15, 892-915

(1994).

R.L. Marsa, Radiative problems in black hole spacetimes, Ph.D. Thesis, The
University of Texas at Austin, unpublished (1995).

J.M. Mart{ and E. Miiller, “The analytical solution of the Riemann problem
in relativistic hydrodynamics”, J. Fluid Mech. 258, 317-333, (1994).

J.M. Marti and E. Miller, “Extension of the piecewise-parabolic method to
one-dimensional relativistic hydrodynamics”, J. Comput. Phys. 123, 1-14
(1996).

J.M. Martin-Garcia and C. Gundlach, “All non-spherical perturbations of the
Choptuik space-time decay”, Phys. Rev. D 59, 064031 (1999).

M.M. May and R.H. White, “Hydrodynamic calculations of general-relativistic
collapse”, Phys. Rev. 141, 1232-1241 (1966).

M. Miller, personal communication (1998).

M. Miller, W.-M. Suen, and M. Tobias, “The Shapiro conjecture: Prompt or
delayed collapse in the head-on collision of neutron stars?” gr-qc/9904041

(1999).

C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (W.H. Freeman,
San Francisco, 1973).

D.W. Neilsen and M.W. Choptuik, “Critical phenomena in perfect fluids”,
Class. Quantum Grav. in press (1999); gr-qc/9812053.

214



[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

D.W. Neilsen and M.W. Choptuik, “Ultrarelativistic fluid dynamics”, Class.
Quantum Grav. in press (1999); gr-qc/9904052.

M.L. Norman and K-H.A. Winkler, “Why ultrarelativistic numerical hydro-
dynamics is difficult”, in Astrophysical Radiation Hydrodynamics, edited by
M.L. Norman and K-H.A. Winkler (Reidel, Dordrecht, 1986).

T. Nozawa, N. Stergioulas, E. Gourgoulhon, and Y. Eriguchi, “Construction
of highly accurate models of rotating neutron stars—comparison of three dif-
ferent numerical schemes”, Astron. & Astrophysics Suppl. Ser. 132 431-454
(1998); also gr-qc/9804048.

A. Ori and T. Piran, “Naked singularities and other features of self-similar

general-relativistic gravitational collapse”, Phys. Rev. D 42, 1068-1090 (1990).

T.J.W. Perkins, “Exploration of critical phenomena and self-similarity in the
gravitational collapse of perfect fluid”, B.S. Honors Thesis, University of North
Carolina at Chapel Hill, unpublished (1996).

L.I. Petrich, S.L. Shapiro, and S.A. Teukolsky, “Accretion onto a moving black
hole: an exact solution”, Phys. Rev. Lett. 60, 1781-1784 (1988).

L.R. Petzold, J. Sci. Stat. Comput. 4, 136 (1983).

T. Piran, in Gravitational Radiation, edited by N. Druelle and T. Piran (North-
Holland, Amsterdam, 1983).

J.A. Pons, J.A. Font, J.M2. Ibafiez, J.M2. Marti, and J.A. Miralles, “General
relativistic hydrodynamics with special relativistic Riemann solvers”, Astron.

Astrophys. 339 638—642 (1998); astro-ph/9807215.

J.J. Quirk, “A contribution to the great Riemann solver debate”, Int. J. Nu-
mer. Methods Fluids 18, 555-574 (1994).

215



[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

L.F. Richardson, “The approximate arithmetical solution by finite differences
of physical problems involving differential equations, with an application to

the stresses in a masonry dam”, Phil. Trans. Roy. Soc. 210, 307-357 (1910).

M.D. Roberts, “A scalar polynomial singularity without an event horizon”,

Gen. Rel. Grav. 17, 913-926 (1985).
M.D. Roberts, “Spacetime exterior to a star”, gr-qc/9811093 (1998).

P.L. Roe, “Approximate Riemannn solvers, parameter vectors, and difference

schemes”, J. Comput. Phys. 43, 357-372 (1981).

P.L. Roe, “Some contributions to the modeling of discontinuous flows,” Lect.

Notes Appl. Math. 22, 163-193 (1985).

J.V. Romero, J.M2. Ibdiiez, J.M2. Marti, and J.A. Miralles, “A new spheri-
cally symmetric general relativistic hydrodynamical code”, ApJ 462, 839-854
(1996).

M.A. Scheel, S.L. Shapiro, and S.A. Teukolsky, “Scalar gravitation: A labora-
tory for numerical relativity. III. Axisymmetry”, Phys. Rev. D 49, 1894-1905
(1994).

V. Schneider, U. Katscher, D.H. Rischke, B. Waldhauser, J.A. Maruhn, and
C-D. Munz, “New algorithms for ultra-relativistic numerical hydrodynamics”,

J. Comput. Phys. 105, 92-107 (1993).

B.F. Schutz, “Perfect fluids in general relativity: Velocity potentials and a
variational principle”, Phys. Rev. D 2, 2762-2773 (1970).

B.F. Schutz, A first course in general relativity (Cambridge University Press,

Cambridge, 1985).

216



[117)

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars:
The physics of compact objects (New York, John Wiley & Sons, 1983).

S.L. Shapiro and S.A. Teukolsky, “Scalar gravitation: A laboratory for nu-
merical relativity”, Phys. Rev. D 47, 1529-1540 (1992).

S.L. Shapiro and S.A. Teukolsky, “Scalar gravitation: A laboratory for nu-
merical relativity. II. Disks”, Phys. Rev. D 49, 1886-1893 (1994).

S.L. Shapiro, “Head-on collision of neutron stars as a thought experiment,”

Phys. Rev. D 58 103002 (1998).

C-W. Shu and S. Osher, “Efficient Implementation of Essentially Non-
oscillatory shock-capturing schemes”, J. Comput. Phys. 77, 439-471 (1988).

C-W. Shu and S. Osher, “Efficient Implementation of Essentially Non-
oscillatory shock-capturing schemes, 117, J. Comput. Phys. 83, 32-78 (1989).

J. Smoller and B. Temple, “Global solutions of the relativistic Euler equa-

tions”, Commun. Math. Phys. 156, 67-99 (1993).

R.F. Stark and T. Piran, “A general relativistic code for rotating axisymmet-
ric configurations and gravitational radiation: numerical methods and tests,”

Computer Phys. Reports 5, 221-264 (1987).

J.M. Stewart, “Numerical relativity”, in Classical general relativity, edited by
W.B. Bonnor, J.N. Isham, and M.A.H. MacCallum (Cambridge University
Press, Cambridge, 1984).

J.L. Synge, The relativistic gas (North-Holland, Amsterdam, 1957).
A H. Taub, “On circulation in relativistic hydrodynamics”, Arch. Rat. Mech.

Anal. 3, 312-324 (1959).

217



[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

A H. Taub, “Relativistic hydrodynamics”, in Studies in applied mathematics
Volume 7, edited by A.H. Taub (Prentice-Hall, New York, 1971).

J. Thornburg, “A 341 computational scheme for dynamics spherically sym-

metric black hole spacetimes. II. Time evolution”, gr-qc/9906022 (1999).

B. van Leer, “Towards the ultimate conservative difference scheme. II. Mono-
tonicity and conservation combined in a second-order scheme”, J. Comp. Phys.

14, 361-370 (1974).

B. van Leer, “Towards the ultimate conservative difference scheme. IV. A new

approach to numerical convection”, J. Comp. Phys. 23, 276-299 (1977).

B. van Leer, “Towards the ultimate conservative difference scheme. V. A
second-order sequel to Godunov’s method”, J. Comp. Phys. 32, 101-136
(1979).

K.A. van Riper, “The hydrodynamics of stellar collapse”, ApJ 221, 304-319
(1978).

K.A. van Riper, “General relativistic hydrodynamics and the adiabatic col-

lapse of stellar cores”, ApJ 232, 558-571 (1979).

S. Weinberg, Gravitation and cosmology: Principles and applications of the

general theory of relativity (John Wiley & Sons, New York, 1972).

P.R. Woodward, “PPM: Piecewise-parabolic methods for astrophysical fluid
dynamics”, in Astrophysical Radiation Hydrodynamics, edited by M.L. Nor-
man and K-H.A. Winkler (Reidel, Dordrecht, 1986).

J.W. York, “Kinematics and dynamics of general relativity”, in Sources of
gravitational radiation edited by L.L. Smarr (Cambridge University Press,

Cambridge, 1979).

218



[138] J.W. York “The initial value problem and dynamics”, in Gravitational Radia-
tion, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983).

219



Vita

David Wayne Neilsen was born in Salt Lake City, Utah, on July 1, 1968, the son of
Wayne Leland Neilsen and Wanda Mae Self. He attended Bingham High School in
South Jordan, Utah, and then went on to better things at Brigham Young University.
After serving a two-year mission for the Church of Jesus Christ of Latter-Day Saints
in Vienna, Austria, he graduated with a BS in physics in April, 1992. David then be-
gan graduate work at Brigham Young University, studying Lie-Backlund symmetries
in axisymmetric, rigidly rotating perfect fluids, receiving an M.S. in August, 1995.
While finishing his thesis work, David wooed and courted Tracianne Beesley, and
they were married in December, 1994. After graduation, David and Tracianne both
entered the Graduate School at The University of Texas in August, 1995. While in
the midst of numerical studies of relativistic fluids under the guidance of Matthew
Choptuik, their daughter Grace was born in June, 1997. After graduation, David

will continue as a Postdoctoral Fellow at the Center for Relativity.

Permanent Address: 2432 W 12600 S
Riverton, UT 84065

This dissertation was typeset with IXTEX 2¢ by the author.

220



