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I investigate numerical algorithms to solve the initial value problem for two
black holes. We study black hole collisions for three main reasons. First, black
hole collisions should be efficient generators of gravitational radiation and are
prime candidates for detection by gravitational wave observatories. Second,
black holes are the “point masses” of general relativity, making studies of their
interactions as relevant as the Kepler problem is to Newtonian gravity. Thus,
there is a high probability that we may discover new information concerning
the gravitational interaction. Third, this is a difficult problem for numerical rel-
ativists and an apparently impossible problem without a numerical approach.
A major goal of numerical relativists is to compute “general” solutions to the
Einstein equations, and the ability to solve the black hole problem will take us
much closer to this goal. Analytical solutions to the Einstein equations are un-
available for strong-field and highly time-dependent regimes. These equations
are a set of non-linear, coupled, hyperbolic, and elliptic PDE’s, which must

be solved numerically. I use the space-plus-time approach which separates the
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problem into an initial value problem and an evolution problem to generate

future (or past) data.

In this dissertation I solve one of the initial value (constraint) equa-
tions using finite differencing in Cartesian coordinates. This coordinate system
allows for multiple black holes and contains no coordinate singularities. One
of my major goals was to overcome the difficulties associated with using this
coordinate system, since the coordinate surfaces are not coincident with the

domain boundaries.

This dissertation is mainly concerned with discovering and eliminat-
ing deficiencies of my first code written to solve the Hamiltonian constraint
equation. In doing so I have found several empirical schemes to generate ex-
trapolatable solutions, needed to provide extremely accurate initial data for
wave prediction. In particular I develop extensions to Multi Level Adaptive

Techniques to generate extrapolatable results.

With these new techniques I will be able to create “general” solutions to
the black hole initial value problem to a specifiable accuracy. These techniques
will be of substantial importance in evolving black hole collisions to prepare a

library of expected gravitational radiation waveforms.
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Chapter 1

Introduction

1.1 General overview

Einstein’s general theory of relativity is perhaps the most elegant theory in all
of physics. Proposed in 1915 by Albert Einstein, it has forever changed our
understanding of the nature of gravity and how it shapes our universe. The
beauty of this theory is that it links gravity with space and time, in which the
curvature of space-time is a direct consequence of gravity. Many predictions
from this theory have been experimentally verified to better than one percent
[53][54]. The classical tests of general relativity, namely the deflection and
time delay of light and the perihelion shift of Mercury, test only the weak-field
and stationary features of the theory. Even the binary pulsar PSR 1913+16
is not a test of general relativity in a fully dynamical field regime, but we
are able to indirectly observe gravitational waves from it. There are, however,
no direct theoretical experimental tests of the dynamical strong-field limits of
general relativity. The direct detection of gravitational radiation will provide
the means to more fully test Einstein’s theory, and will eliminate skepticism
of Einstein’s theory that persists because we still have not been able to detect
gravity waves. From a theoretical point of view, the details of gravitational

waveforms can be used as an additional test for general relativity and other



alternative theories of gravitation.

For more than 30 years, experimentalists have been working on gravita-
tional antennas, but there has been no detection to date. The latest generation
of detectors use Fabret-Perot interferometers, the largest of which will be known
together as the Large scale Interferometer Gravity wave Observatory(LIGO).
LIGO is designed to be sensitive enough to have a high probability of detecting
gravitational waves emitted by the last few minutes of neutron stars or black
hole infall. As discussed by Thorne [48], the most obvious candidate for source
of gravitational radiation is the collision of two black holes. This type of event
should be the most astrophysically “clean” source for gravitational signals. The
strongest gravitational wave production should arise from non-head on colli-
sions, a fully three dimensional situation, and a very difficult one to model,
requiring advanced numerical techniques. This dissertation deals with some
of these techniques which we believe will aid in the quest of modeling general

relativity in fully three dimensional situations.

When dealing with numerical computations in physics, we are faced
with the dilemma of choosing between accuracy of the solution and available
computational resources ( i.e. CPU time and memory). This is because, in
general, when we model the equations on the computer, we discretize the sys-
tem onto some mesh, via finite differencing, finite elements, or finite volume.
The finer meshes generate more accurate results, but use more CPU time and
more memory. Since we are limited in CPU time and memory, we can only
discretize the system to some degree which will limit the accuracy of the solu-
tion. Complex problems which model three spatial dimensions use tremendous

amounts of computer memory and time, and therefore must use efficient algo-



rithms and powerful supercomputers. The goal of this dissertation is to develop
algorithms which are optimally efficient, where the amount of computational
work is proportional to the amount of real physical change in the computed

systems. This is what Achi Brandt terms his “golden” rule[9] .

In order to deal with very large high performance computers, we must
deal with the issue of parallelization. Today’s supercomputers are no longer
single CPU’s, but rather massively parallel systems with numerous CPU’s. !
This issue of parallelization further complicates the development of computer
codes, since we must worry about scalability; i.e. we want a code to run twice

as fast if we use twice the number of processors.

1.2 Evolving black holes

The pursuit of numerical solutions to Einstein’s equations first began in the
1960’s when spherical collapse problems were carried out by May and White
(1966),and others. Hahn and Lindquist [30] (1964) attempted the first compu-
tation of the coalescence of two black holes, but because of the lack of sufficient
computer resources, their attempt was only partially successful. It was not un-
til the mid 1970’s that Smarr, Cadez and Eppley revisited the 2-black hole
problem. Smarr explored the head-on collision of two black holes. During this
time, sufficient memory and computational speed was available to work with
axisymmetric black hole encounters; head-on non-spinning black holes. This
was possible because this problem has only 2-spatial dimensions, (evolving in

time) which requires far less computer time and memory to model than cases

L As of today, the largest MIMD machine is over 1800 CPU’s on a Intel Paragon at Sandia
Laboratory



which vary in all three spatial dimensions. We shall consider time dependent
codes. Thus, our 3-dimensional code is often referred to in the literature as a

(341)-dimensional code, the (4+1) denoting time dependence.

Smarr and Eppley [46][25] (1975) succeeded in evolving the collision
and coalescence of two black holes and obtained estimates of the gravitational
waveforms emitted. Today we are looking to evolve two black holes with non-
aligned momenta and non-aligned spins, a generically 3-dimensional problem.

We need these computations in order to prepare a library of waveforms expected

for LIGO.

1.3 Choice of coordinate system

The vast majority of numerical research on the collision of two black holes
performed to date has used the Cadez coordinate system [19]. These coor-
dinates are shown in Figure 1.1 [20]. The Cadez coordinates are body-fitted
coordinates that become spherical at large distances from the black holes and,
“split” near the holes to encircle each throat. Thus in Figure 1.1, we see two
half circles where the two throats are, and between the holes we see a singular
point. Although Cadez coordinates are ideal for numerical studies of two black
holes, they cannot be extended to configurations containing more than two
black holes. These coordinate grids contain coordinate singularities which can
cause problems for numerical evolution schemes. Using Cartesian coordinates
eliminates both of these problems since there are no coordinate singularities
and any number of black holes can, conceivably, be handled. One of the key
features of the Cartesian approach is that points of the lattice (3.1) are used

to approximate the inner boundaries (i.e. the “holes”) of the solution domain.



Figure 1.2 illustrates a typical computational domain which might be used for
the case of a computation involving two holes in two dimensions. The throats
of the two holes are represented by the large circles, and the points in the do-
main are labeled by the smaller circles. The small dots are those points which
are not in the computational domain. Here we see the biggest disadvantage
of rectangular coordinates, namely there are very few points exactly on the
boundaries. So, the coordinate surfaces will no longer be coincident with the
domain boundaries at the black holes, making accurate imposition of boundary
conditions much more difficult than with adapted coordinates, such as Cadez
coordinates. Cartesian coordinates also tend to cover the coordinate surfaces
less efficiently than do Cadez coordinates. One way around this issue is to use
compactified coordinates, since this will then allow the grid spacing around the
holes to be very small, whereas far away from the holes the grid spacing would
be very large. Here, a compactified Cartesian coordinate system will allow us
to set the outer boundary to large distances from the strong field regime while
maintaining high accuracy near the black holes [15]. The problem with com-
pactified coordinates is that the effective physical spacing increases towards
the outer boundary, and the information concerning gravitational waveforms
will be lost. Thus, there is apparently a limit on how coarse the zoning can
be. We believe that by using a rectangular coordinate system with no coordi-
nate singularities along with adaptive gridding techniques, we should be able
to develop highly accurate evolution schemes to evolve the extremely accurate
initial data we can already generate[20]. The adaptive gridding techniques will
dictate where more grid points will lie. Thus, more grid points will lie close to

the throats, and fewer points will be used far away from the throats.



1.4 Survey of existing work of the initial value problem

Einstein’s equations are tensor equations which treat the entire four dimen-
sional spacetime concurrently. Arnowitt, Deser and Misner (ADM)[1] decom-
posed this spacetime into a set of space-like slices stacked together and labeled
by a time coordinate. We refer to this decomposition as the 3+1 ADM for-
malism. Using this formalism it has been shown that general relativity has
a well posed initial value problem, i.e. one can find initial value data on a
space-like slice that can be evolved using the geometrodynamic equations of
motion of the 3+1 ADM formalism, to generate the complete spacetime. Un-
like other theories in physics which allow us to freely specify the initial condi-
tions of a situation, general relativity dictates constraints in which not all of
the degrees of freedom are freely specifiable. Work on the initial value problem
began in 1944 by A. Lichnerowicz[35]. Years later Choquet[17], York and his
collaborators[57][5][7][6][33] decomposed spacetime into a foliation of spacelike
slices, and formulated the initial value problem. The key feature of York’s pro-
cedure is that it provides us with a well-defined prescription for which some
degrees of freedom are to be specified, and other degrees of freedom must be
determined from the solution of the constraint equations. These constraint

equations are the initial value problem.

With York’s formalism, one has a “simple way” of calculating the ini-
tial data with non-zero linear and angular momentum. Once York formu-
lated his scheme for solving “the initial value equations”, many investigators
[47][19][12][56] computed numerical solutions describing data for two black
holes. For example, York [57], Bowen[4], and Bowen and York [7] developed a

formalism for specifying part of the initial data for a single black hole with non-



zero linear and angular momenta. Later, many authors, York and Piran[56],
Choptuik[15], Rauber[43], Thornburg[47], Cook and York[21], studied single-
hole, axisymmetric initial-data sets based on this framework which used nu-
merical methods to solve the Hamiltonian constraint. In 1983, Kulkarni et
al.[33] developed a formalism for prescribing the initial data for multiple black
holes. Based on this formal approach, Bowen, Rauber, and York [55] detailed
an approach for specifying the initial data for two black holes with axisymmet-
ric parallel spins. Rauber[43] attempted to solve these equations numerically,

but was unable to generate any complete solution.

In was not until 1993 that three independent groups generated initial
data for two black holes with general spin and linear momentum [20]. It was
clear that all three of the methods were able to construct useful initial data
sets to be used in the simulation of black-hole collisions. The most accurate
solutions were generated by Cook’s[20] code which solved the finite differenced
2 341 Hamiltonian constraint ® equation on a Cadez coordinate grid; the dif-
ference equations were then solved via the multigrid algorithm[8]. Choptuik,
Klasky, and Matzner also used finite difference techniques, but this time on
a uniform Cartesian grid. The resulting equations were solved using a vari-
ant of line successive overrelaxation (LSOR)[58]. The approach developed by
Dubal, Oliveria and Matzner[20], used a global, spectral-like method known

as the multiquadric approximation scheme. Here, functions are approximated

2Finite Difference methods are a way to generate discrete versions of differential equations
using a set of Taylor series approximations, truncated to some order, to approximate the
differential equation.

3The initial value problem involves the solution of the momentum and Hamiltonian con-
straint equations[57]. There is a prescription[19] which determines the momentum constraint
for two black holes, but the Hamiltonian constraint equation involves the solution of a partial
differential equation which we carry out numerically.



by a finite sum of weighted quadric basis functions which are continuously
differentiable. An important result of this paper was that Cook’s code was pre-
cisely second order. Second order solutions have errors which have a leading
error term which is in the square of the discretization scale. These errors usu-
ally result from truncating Taylor series expansions to generate the difference
equations. This allowed a kind of extrapolation, Richardson extrapolation to
achieve errors which were demonstrably fourth order in the discretization scale,
h. Another important result of this paper was that the solutions obtained using
Cartesian coordinates were successful in modeling the “non-trivial” boundary
topologies. The multi quadric method was an intriguing alternative approach,
but there were two main drawbacks: the ill-conditioning of the matrix system

to be solved, and the lack of formal numerical analysis.*

1.5 The goals of this dissertation

In this dissertation we describe numerical techniques which we will use to con-
struct three-dimensional initial data for the collision of two black holes. In par-
ticular we look at the solution of the Hamiltonian constraint equation which is
an elliptic partial differential equation with Robin boundary conditions. Here
we also examine general linear elliptic systems with a large number of un-
knowns. Our goal is to develop techniques to solve elliptic systems using Multi
Level Adaptive Techniques and obtain solutions which can be extrapolated to
fourth order accuracy. In order to achieve this goal, we find it useful to look at

systems which are more simple than the 3d Hamiltonian constraint equation.

*What we mean by the lack of numerical analysis for this approach, is that when one
increases the number points used in calculation, there is no formalism developed to tell one
how fast the error will be reduced.



dinate system.

Figure 1.1: A Cadez coor




Figure 1.2: A Cartesian coordinate system.
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We use Cartesian coordinates although there are clearly two major dis-
advantages using these coordinates instead of Cadez coordinates. The first
disadvantage is that the coordinates do not conform to the inner boundaries
(“holes”) of the problem domain. This means that the formulation of accurate
differenced versions of the boundary conditions is considerably more involved
here than those formulations which use Cadez coordinates[20] . Secondly, be-
cause we use a uniform Cartesian grid (constant mesh increment, k, in each of
the coordinate directions), the combination of 1) the need to resolve steep gradi-
ents near the holes and 2) limitations on our computational resources (memory
and time), places a severe restriction on the radius at which the outer edge of
the computational domain is located. In practice this means that we must use
an adaptive mesh in order to impose the asymptotic boundary condition (2.34)

far away from the holes.

Our hope is that by working with the initial value equations we can
more readily address the complications induced by the non-trivial boundaries
than we could by looking at them in an evolution code. The goal is not to
produce the most accurate code to solve the initial value equation, since Cook
already has a code that will solve to extrapolatable second order accuracy, but
rather to develop numerical techniques which we should be able to use in a
Cartesian evolution code. Another goal is to incorporate the most powerful
numerical solver for elliptic equations, multigrid, to solve our equations. All of

the codes that we use are coded in FORTRAN 77.

In Chapter 2, we give a brief discussion of the initial value problem
for general relativity. We start with the ADM formalism, then use York’s

formalism to rewrite the initial value problem as a coupled quasi-linear set of

11



elliptic partial differential equations (PDE’s) for four “potentials” which can
be viewed as the general relativistic generalization of the familiar Newtonian
gravitational potential. Next, the two constraint equations which must be

solved in order to obtain initial data for the two black holes are presented[22] .

In Chapter 3, we discuss the basic numerical analysis needed to solve
elliptic partial differential equations. It is in this section that we will attempt
to understand the need to use the most powerful numerical techniques to solve
these equations. These more powerful techniques must be used in order to
obey Brandt’s golden rule[9] and because the coordinate surfaces are not co-
incident with the domain boundaries at the black holes. We introduce basic
concepts of finite differencing and present some traditional methods of solving
elliptic equations[58] [50]. In particular, we present the “art” of finite differenc-
ing around boundaries, which is much more difficult than differencing around
interior points. We present only the traditional iterative methods for solving el-
liptic equations, and make no attempt to detail any of these techniques. These
traditional methods are conceptually easier to understand than the more mod-
ern techniques, but unfortunately they do not obey Brandt’s golden rule. In
particular, we use one of these methods (Line SOR) to solve the Hamiltonian

constraint for two black holes [20].

In Chapter 4, we discuss the multigrid method for solving elliptic equa-
tions. The multigrid method is an algorithm which uses a series of meshes
to solve an elliptic partial differential equation. We first describe the basic
philosophy of multigrid, and then discuss how one can develop and apply this
technique in a general problem. Next we introduce Richardson extrapolation,

which is a technique that can be used to obtain fourth order accurate solutions
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from second order accurate solutions. Deferred correction is also introduced.
This is a technique which allows one get more accurate, higher order, solutions,
from low order solutions. Finally we will describe the Adaptive Multiple Re-
finement (AMR) scheme based on the Berger and Oliger[2], and Choptuik[15]
algorithm.

In Chapter 5 we present our three dimensional, two black hole code.

Here we examine some solutions obtained using this code and compare our
results to results from other published codes. We also present convergence

studies to show that this code is only first order accurate.

In Chapter 6 we present a series of test problems that address different
questions concerning the development of an adaptive multigrid code in three
dimensions for two black holes. The first test is a model problem that fo-
cuses on the multigrid methodology only. The second problem addresses the
development of adaptive codes. Here we examine issues such as the cost of
computation and data structures. A third test examines the asymptotic condi-
tion, equation (2.34), which requires that the spacetime be flat far away from
the black holes. This test not only allows us to see the difficulty in imple-
menting non-trivial boundary conditions in a multigrid algorithm, but also it
implements deferred correction and attempts to obtain extrapolatable solutions
from this algorithm. The fourth problem examines the issue of Richardson ex-
trapolation using a adaptive multigrid code, explained in Chapter 4. The fifth
problem looks at the problem of designing an efficient multigrid code in one
dimension, when the grids are non-uniform. The sixth problem combines the

previous three to design a general one dimensional multigrid code which has

13



Robin boundary conditions. ® Finally, the last problem examines the develop-

ment of a two dimensional multigrid code for a single black hole.

Chapter 7 summarizes our work and examines some of the critical issues

that need to be further investigated in future work.

Finally, we present a parallel implementation of a 1D multigrid algo-
rithm. Since computers of today are using multiple CPU’s, we feel that we
should examine the issue of parallelization of multigrid algorithms. In partic-

ular, we examine the overall effectiveness of our implementation.

5Robin boundary conditions are differential equations which include the function and its
first derivative.
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Chapter 2

The initial value problem for 2 black holes

This chapter provides a brief introduction to the initial value specification for-
malism. This is not complete by any means, and we refer the reader to the

vast amount of literature written on this subject[22] [15] [57] [5] [26].

2.1 Introduction

One of the most outstanding achievements of the general theory of relativity
is that there is no longer some preferred notion of time. In this chapter we
will demonstrate how to decompose spacetime into space plus time in a general
way using the Arnowitt-Deser-Misner (ADM )formalism[1], allowing space to be
separated from time. The need to do this becomes apparent when we attempt
to solve Einstein’s equations numerically using the space 4+ time technique. If
we use the various “null cone approaches” then we do not need to split space
and time. This procedure is well established and we will give a brief summary of
only the major steps necessary to derive the initial value equations for two black
holes[31]. We show how the ADM split of spacetime results in a set of Cauchy
surfaces parameterized by time. Thus, the spacetime manifold M is separated
into a family of spatial hypersurfaces ¥;. Next we will follow Wald’s approach

to derive the constraint equations[53] . We then outline York’s procedure that,
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when applied to the constraint equations, results in a set of equations that are
of a form particularly amenable to numerical solution. Finally we apply these

equations to black hole spacetimes.

2.2 The ADM approach

In order to exploit the special nature of time in Einstein’s equations, we break
the full, four-dimensional covariance to help reveal their dynamical nature.
Here we will use the usual geometric units (G = ¢ = 1) and use the MTW[36]
sign conventions for the metric and curvature. We also let the tensor indices ¢, 5
run from one to three whereas all other indices run from zero to three,( where
the zero component is the time-like index). The 341 approach to general
relativity involves a decomposition of the 4-dimensional spacetime manifold
into an infinite family of edgeless 3-dimensional spacelike hypersurfaces; i.e.
we decompose spacetime into space and time where each hypersurface, ¥; is at

a certain time, ¢.

This decomposition enables us to break the four-dimensional covariance

of Einstein’s equations,
G = 87T}, (2.1)

such that it is possible to pose them as a Cauchy problem[22]. Here (G, is the
Einstein tensor, and 7}, is the stress energy tensor. Einstein equations consist
of 10 equations, of which 4 are the initial value or constraint equations and 6

are the evolution equations. The initial value equations are

Goo = 87T

Goi = 87TT02' (2.2)
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which provide constraints on the initial data ¢;;. The reason why these equa-
tions are known as constraint equations is that, since these equations involve no
second derivatives with respect to time, they represent equations which must
be satisfied at all times, i.e. constraints. There is nothing surprising about why
these equations exist, since there is a direct analogy with Maxwell’s equations
[56]. The reason why the Ggo equation represents the Hamiltonian constraint
equation is that it involves the energy density. The Gy, equation involves the

momentum density and thus it is called the momentum constraint equation.

A relationship between the components of the metric of spacetime g,
and those of the spatial 3-metric 4;; in the 3+1 split must be defined. The

standard Arnowitt-Deser-Misner (ADM) form for this metric is,

ds* = —a?dt* + v (da’ + Bldt)(da? + Bldt) (2.3)
where the functions « and 3' are called the lapse and shift functions, respec-
tively. Here, a determines the lapse in proper time experienced by an observer
moving between nearby hypersurfaces in the direction normal to the surfaces
while 3 describes the shift in the spatial coordinates between the two slices
relative to normal propagation. We see that the introduction of the lapse and
shift are simply a manifestation of the fact that we have chosen a particular co-
ordinate system to label the events of our spacetime, (see Figure 2.1). We will

now follow Wald’s[53] derivation in generating the initial value equations. Since

the ¥, are level surfaces, at each point it is possible to construct a one-form,
n, = —aV,t, (2.4)
where

a=—t%, = (navat)_l (2.5)
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and V, is the covariant four derivative.

2.3 Projection tensors and the covariant derivative

Now that we have decomposed space-time into space and time, we define the
projection tensor needed to project an arbitrary vector into the hypersurface,

Y:. So, on every Y; we define the projection tensors:

1y = 6 + n'ny,

N = —nn,. (2.6)

The projection tensor, Lj, projects the free indices of a given tensor into ;.
Similarly Vi projects the free indices normal to ;. The projection tensor L

induces a 3-metric from the 4-metric:
Yab =LE LT Gea = (Gap + namis) - (2.7)
where 7" is the inverse of 7, and 7, = 0, where | denotes a covariant

derivative in ;.

The 3-covariant derivative D induced on ¥;, by V is obtained by pro-

jecting every index of the tensor produced by V onto ;. For instance,
D.f = L1iVif,
Dy* = 1515 V.l

D, T? = L1i1017V,T5. (2.8)
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Figure 2.1: Spacetime displacement in the 341 formalism.

>(t+dt)

2(t)
2.4 The constraint equations

We will start this section by defining the extrinsic curvature, and then pro-
ceed by deriving the constraint equations. The extrinsic curvature tensor is a
spacelike object which determines the contraction and shear of the normals to
Y . Thus, its trace is the average contraction of these normals. The extrinsic
curvature can be thought of, roughly, as the “velocity” of the 3-metric. We
let v* and w® be two vector fields, which we shall project on the hypersurface
using L,
" =17v" and @’ =1"w*

Then, the extrinsic curvature of ¥; is defined by

KV, W) = — (V)"0

1
=3 (LnYab) viw® (2.9)

where Ly, is the Lie derivative along n . The Lie derivative , £y, describes the

flow of points in the direction of the vector field n.: . To derive the Hamiltonian
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(4)

constraint equation, we expand y*y* R} as

gacgbd J—ZLJ—]I)CJ—ZCJ—Z R'E?j;cls = ’}/ml’yksR?(;l;cls
— (gml + nmnl) (gks + nkns) R’E:;gls
= R+ 2Ry,nn’

= 2Gn"n". (2.10)
The first Gauss-Codazzi equation[53] is

Lm0k 15 RY = Ry + KooKpg — KpeK oy (2.11)

mkls

which is identical to the left hand side of equation (2.10).
Using the Einstein field equations (2.2) and the first Gauss-Codazzi
equation (2.11), we can write the Hamiltonian constraint in the form
R+ K? — K, K™ = 167p, (2.12)
where
p = Tun'n®,
is the local energy density.

We can derive the momentum constraint equations by looking at

1
L0 G = L7 (B = Sgnnl?)
= 1™ p"RY (2.13)
and the second Gauss-Codazzi equation
NP 1p1218 BY =, (DyKy — DKgy). (2.14)
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where again N is the projection tensor. If we act on both sides of equa-

tion (2.14) with n%g* we get
n™ 15 R = D.K§ — DyR¢ (2.15)

which we can equate with equation (2.13) to derive the momentum constraint

D.Kj; — DgK: =8mn" L} T,,. (2.16)
Finally, we use
7 =" (2.17)
where
Ik = —ndy (2.18)

to write the momentum constraint in the form
D; (K'Y =4V K) = 85", (2.19)

This equation is a vector equation, which is equivalent to 3 scalar equations.

Here j° is the momentum density.

2.5 Conformal transformation of the constraints

In order to make the constraint equations easier to model numerically, we will
use the York[57] procedure of conformal transformations. York[57] provided a
constructive way to solve the constraint equations that involves solving elliptic

partial differential equations.

A key idea (originally suggested by Lichnerowicz in 1944)[35] of York’s

approach is to specify the physical data up to conformal equivalence. York’s
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contributions (along with various coworkers)[57] include applying the conformal
and transverse-traceless decomposition of the constraint equations, as well as
developing a method of imaging applicable to tensors[22] . The chief success of
York’s work is that it puts the initial value equations into a form which allows
them to be solved with numerical methods, and in some cases, by analytic
means. Before applying this formalism, we will first choose a coordinate system
with a basis (n,e;) where e; are spatial vectors, and n is a time-like vector.

Hereafter, we make the following identifications
Yab = Vij
Ly= ¢
D, —= V,.

where we now use latin indices ¢, j , ( which range from 1 to 3) to indicate that

we are in the basis.

We write the physical 3-metric in the conformal form
%i; = ¥ i (2.20)
where 4;; is a background metric which is to be freely specified. (In the remain-
der of this chapter, a caret will denote a “bare” 3-tensor which is related to the
physical tensor via a conformal transformation. Also, bare tensors have their
indices raised and lowered with the bare metric.) All quantities which are func-

tions of the metric have transformation properties which follow from (2.20). In

particular we find that

Phe = T 207" (6hvk + 6l ik — 4" 4000)

R = o *R—8p Ay (2.21)

22



where Ay = "V, V ;1.

The York procedure requires us to specify freely on the hypersurface the

value of the mean extrinsic curvature, T'r K
K=TrK = ~; K", (2.22)

Since T'r K is assumed to be given, it is convenient to isolate the trace-free part,

/AW, of the bare extrinsic curvature, Kid;
N BTy
AY = K" — g’y”[& (2.23)
Now Kulkarni[34] showed that for any symmetric rank-2 tensor field Fid.
Vil = 710 (Y FT) — 2074 A B (2.24)

In particular, Al will have this property. This helps us in deriving a conformal
transformation of the constraints since the equations contain terms of this form.

Now we make the following transformations:

Azy — ¢—10Aij

Ay =AY
,]Z — 771)—10}2'
p=10""p. (2.25)

Using equations (2.25), (2.24) and (2.23), we can rewrite the momentum con-

straint equation[34] as
). Aid 2 6215 1 I oy 5 ¢
D;AY — 577/) ' D; K = 8ny (2.26)
and the Hamiltonian constraint as

8AY — Rip — %;ZPKQ + A AT = —16mpp ", (2.27)
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Here is where we see the beauty of York’s procedure. We are left with
four equations which have the freely specifiable quantities: 1) the base 3-metric
¥ij, 2) the mean extrinsic curvature TrK, 3) a certain part of Aij ([56]) , and
4) the conformally scaled energy and momentum densities p and 7% Once we
specify these variables, we can solve the constraint equations for /Alij and .

We can construct the physical initial data using these variables.

2.6 Application of the constraint equations to black
hole spacetimes

The initial value equations are simplified when one considers conformally flat,
maximal volume, vacuum slices. Conformal flatness means that the physical

metric, v;;, of the hypersurface may be written as
%ii = V'S (2.28)
where f;; is the flat background 3-metric (previously 4;;) Maximal volume

means that
TrK =0.
The standard t= constant hypersurfaces in Minkowskii spacetime also have this
property.
The vacuum requirement means that there are no matter sources on the
hypersurface:
p=i=0,
and finally we note that conformal 3-flatness implies R =0. Thus, the con-

straint equations take the much simplified form

8AWp = —1p7TA;; AV (2.29)
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and
D; AV = 0. (2.30)

For the black hole spacetimes that we consider, the topology of the
initial-data hypersurface is fixed to be two asymptotically flat universes, i.e.
they tend to flat spacetimes at large radii, connected by an Einstein-Rosen
bridge [24] for each black hole. Each bridge is a connection to another identical
universe and we require that the bridges link only two identical universes. To
achieve the condition that bridges link only identical universes, an isometry
condition[54] must be imposed. This is derived from an inversion symmetry

requirement ,which is

b(r) = ~4 (—)

and has the effect of ensuring an inversion-symmetric solution with r = a
as a minimal surface. The solution of the momentum constraint under these
conditions was found by Kulkarni et al. [34]. Their solution was in the form of
an infinite series generated by a method of images applied to tensors. For the
case of two black holes, an accurate numerical scheme for evaluating the formal
infinite series was developed by Cook[19]. To solve the momentum constraint,
we give values for the radius a, and coordinate center C' | the linear momentum
P! and the spin S', where a labels the hole. Figure 1.2 shows a, and C! for

two holes.

We use a routine developed by Matzner[37] based on Cook’s work which

determines the solution of the momentum constraint.
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Given a solution of the momentum constraints, we then must solve the
Hamiltonian constraint with some boundary conditions. The isometry condi-
tion applied to the physical metric at a, yields the following inner boundary

condition for the conformal factor

W

Dby, + — =0 2.31
nae I7b| a —I_ 2ra|aa ( )
where
) ; T Cz
S p— (2.32)
Ta

is the unit normal to the surface of the ath isometry surface and
ro = |zt — C. (2.33)
The asymptotically flat condition sets the outer boundary condition to
P — 1 as 7 — 00 (2.34)

where r is measured from the “hole” singularity, which is somewhat arbitrary
in the limit r — oo. In practice, it is not often possible to model equations
on grids with boundaries set at r — oo. However, a multipole expansion can
be performed for the conformal factor and truncated at monopole order to

generate an approximate asymptotic boundary condition[56]

g_¢ —1-p+0(r) (2.35)

We note that higher order approximate boundary conditions can be derived
[19]. We will not use these, however, since our ultimate approach will be to use

a very large outer radius where ¢ ~ 1.

26



To summarize, our goal is to solve the following equations given values

for the radii a, and coordinate centers C?, the linear momenta P! and spins

Se

8V = —op~TA; AV

(2.36)

and
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Chapter 3

Numerical techniques

In this chapter, we wish to present our philosophy of numerical analysis. In the
first section we present the “art” of finite differencing. We call this an art since
there are many ways to finite-difference an equation. Some iterative algorithms
will diverge for certain differencing techniques whereas if we use other methods

of differencing we could make the algorithms converge.

We use finite differencing techniques, (versus finite element and finite
volume methods), since they are often much easier to program than these two
other methods. Since the code that will be written to evolve the evolution
equations will probably be discretized by finite differencing, we can also gain

experience with the differencing around the boundaries of the holes.

After discussing finite differencing, we then present methods of numeri-
cally solving elliptic partial differential equations. Here, we look at three “clas-
sic” iterative methods,( Jacobi, Gauss-Seidel, and Successive Over Relaxation),
although no attempt is made to describe all of the available techniques, nor
is any particular method presented in detail. All of these techniques can be
written in terms of a general matrix equation. This general matrix equation,
is a set of coupled equations, which describe how the solution will change from

one iteration to the next. For each method, the matrix eigenvalues will deter-
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mine the rate of convergence. Later we present interpolation and extrapolation
techniques for high order accuracy. We present a general algorithm which will
interpolate and extrapolate to fourth order. These interpolation techniques
work with all the systems considered in this dissertation. That is, these tech-
niques will be for lattices with holes(spheres), cut out. Next we present further
enhancements to the interpolation algorithm, along with some alternative ap-
proaches. Finally, we pose a few model problems that we will examine with
more elaborate algorithms in Chapter 6. We assume that the reader is already

familiar with the basic techniques. !

3.1 Spatial finite differencing
3.1.1 Basic techniques

In describing spatial finite differencing it is perhaps best to start with a model
problem, and then expand from there to handle general problems. Since we
do not deal with systems which evolve in time, we will only describe finite
differencing for spatial varying systems. In all of our examples we will work in
Cartesian coordinates, and use uniform differencing, i.e., constant grid spacing

as shown in Figure 3.1.

We will look at two example systems: a one dimensional elliptic PDE, (
actually an ODE, but we ignore this for our example), and a two dimensional
elliptic PDE. It then should be intuitively obvious how to extend the ideas in
this section to three dimensions. The computational domain we use is that of

a lattice which has n grid points on an edge. For example, the one dimensional

!Some classical references to this subject are Young[58], Varga[50], Numerical Recipes[41],

and Mitchell and Griffiths[40].
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Figure 3.1: A discretized domain with uniform differencing.

lattice which we use, is defined by
{(zh)}, 1=1,2,---.,n (3.1)

where h, is the (unique) discretization scale. As a matter of convenience, we will
refer to any point with coordinates of the form (ih), with ¢ as an integers, as a
lattice point, even though it may not be contained in the actual computational

domain. We now describe the techniques used to model the following equation

u(x)
Pl f(x) z € [0,1]
u(0) = wug
u(l) = wu. (3.2)

This problem can also be represented as
Lu=f (3.3)

where L represents the differential operator in the system,

B 0%u ()
L= ox?

(3.4)

in this case. It is important that the functions involved are smooth, i.e. in-
finitely differentiable, since we will not be able to apply finite differencing if

they are not smooth. The first step in defining a finite difference problem is
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Table 3.1: Notation used in this dissertation

w(z) Continuum function

u Discretized function, with grid spacing h

u(™) Discretized function, which is being used
in an iterative procedure at iteration number n

u”[4] One dimensional discretized function with grid spacing h,
representing the point at z = z;

ulj] One dimensional discretized function representing
the point at z = 5

ulJ] Capital letters generally mean that we are working

with coarse and fine grids. The coarse grid functions
are denoted with capital letters, and the fine grid
have lower case letters.

u"[4, k] Two dimensional discretized function with grid spacing h,
representing the point at z = z;,y = yi

u"[j,k,1] Three dimensional discretized function with grid spacing A,
representing the point at z = z;,y = yx,2 = 2

L Continuum differential operator
Lk Discretized (difference) operator
a"[4] The newly updated value of «"[j] used in an

iterative procedure ( see u(™ )
= Assignment operator
a(b) ax 10P

discretizing the system, which means replacing the continuous domain by a
discrete domain, as shown in Figure 3.2. Before we describe the discretization
process any further, we direct the reader’s attention to Table 3.1 which defines
the notation which will be used throughout this text for discretized functions
and operators. We also put all of our algorithms in a typewriter font to em-
phasize our computer instructions. Each algorithm is pseudo-code taken from
our FORTRAN 77 codes. Where possible, we eliminate most of the clutter in the

codes.

Thus, we discretize the problem domain in the usual manner, by intro-

ducing a uniform grid, z; = jh, where j € (1,---,N) and h = (N —1)~". The



Figure 3.2: Replacement of a continuous domain with a finite differenced dis-
crete domain

Domain

Discrete Domain N

-

c o o o o o o o o

finite set of grid points is the discrete domain. Thus, the discretized model

problem can now be represented as
L' = f* (3.5)

Given the assumption that w is smooth, Taylor’s theorem can be used
to approximate the derivatives of u by linear combinations of various grid func-
tion values (or nodal values), u[j]. For example, for j = 2--- N — 1 (interior

points), we can use the usual second order, centered approximation for second

derivatives
0*u(z), . ulj + 1] + uly — 1] — 2ufj] 9 ) . )
5oz Wl = % +0(h?) 2<j<N-1 (36)

The model problem uses Dirichlet boundary conditions; thus the one dimen-

sional finite differenced model problem becomes

ulj + 1] + wly — 1] = 2ufj]
h?

= fli]+0(r?)) 2<j<N-1)



This approximation may be defined from the Taylor series expansions

u(z+h) = u(r)—{—huz(r)—i-;um(r)—{—

u(lx—h) = u(;l:)—hur(x)—l—Eum(;L‘)—l—

(3.8)
truncated at O (h*). When we use equation (3.7) to represent the second deriva-
tive, the leading order error term is in O(h?). In general we will define the

truncation error as
™= L' — f. (3.9)
The solution error is defined by
e =ut —u (3.10)

while 7% is the actual error of the difference solution. We see that the truncation

error to the model problem is

h_h2

=
12

(3.11)

which is called second order since the truncation error is of order h%. We assert
(and it can be shown) that the solution of these equations is an approximation
to the solution of equation (3.2) whose error is O(h?) as h — 0. This is perhaps
the most commonly used form for second derivatives, but it is important to note
that this is not the only second order expression for this term. For example,

we can use backward differencing to obtain the formula:

(2ulj] — bulj — 1]+ 4ulj — 2] — u[j — 3])

= +0(h?),  (3.12)
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or use forward differencing to obtain:

vl = QLA UG+ A=l 43) g () (319

Higher order approximations, while more accurate for a given grid spac-
ing, in general require more work numerically, (on a per-grid-point basis) both
for their evaluation and for the solution of the algebraic equations resulting
from their use. If we want the finite differencing to be a higher order, we then
must include more points in the stencil. As is often the case in finite-difference
work, it is convenient to describe the derivation of our discrete equations in
terms of stencils. The stencil associated with any given finite-difference ex-
pression applied at some generic lattice point (¢h) is simply the set of points
(or neighborhood) explicitly referenced in that expression. We shall see later
that there are often convergence problems when higher order schemes are used

with iterative solvers.

Now we shall extend these ideas to a two dimensional model problem,

Ouleny) | Fuley)
Ox? dy?

= f(x,y) z€]0,1],y €[0,1]. (3.14)
Here again, we discretize the system using centered differencing
aa[j, k] + gy [J, K] = 277 (ulj + 1, K] + ufj — 1, %]
tulj, k + 1] + ulj, k — 1] — 4u[j, K])
+0 (h2) JE€[2,ne— 1],k € [2,ny — 1]. (3.15)
This is the most commonly used finite difference expression for the Laplacian

V?2u, in the special case when the grid spacing in the y direction is equal to the

grid spacing in the z direction.
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One fast way of determining if a stencil is going to give convergence
problems using iterative techniques, is to check for diagonal dominance.? We
define diagonal dominance for a matrix L with entries L[j, k] by

(RAVEF)1 = D (1A A [ (3.16)
k=1,5#k

where at least one row must be have ||L[7, j]|| > 35— ;2 [| L[5, K]]|-

For example in equation (3.15), the off diagonal terms add up to 4,
as does the diagonal term. Since the sum of the off diagonal terms is not
greater than the diagonal term, we should not expect convergence problems
from this equation when we solve for u[e, j]. This is known as diagonal domi-
nance. When we look at equation (3.12) we see that the off diagonal terms add
up to 10 whereas the diagonal term is only 2. We can expect some convergence
problems using most iterative numerical solvers for this equation. Note that
we do not claim that diagonal dominance implies fast convergence. Rather, the
rule-of-thumb is that diagonally dominant systems can generally be solved iter-
atively using techniques such as the the Gauss-Seidel method described below.
Conversely, when we attempted to solve equation (3.14) using backwards dif-
ferencing with a Gauss-Seidel algorithm, the iteration did not converge. Thus,
when we finite-difference elliptic systems, we will always try to maintain diag-

onal dominance.

2By convergence problems we mean to say that by not having diagonal dominance, most
iterative methods will probably diverge.
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3.1.2 Boundaries

Perhaps the hardest part of finite differencing is working with boundaries. We
saw that in the previous section, it was quite elementary to apply finite differ-
encing to generate interior equations. We can always apply second order cen-
tral differencing for interior equations, which is diagonally dominant. When it
comes to treating boundary conditions (or even interior equations in the vicin-
ity of boundaries) we must be very careful in choosing the appropriate finite
difference stencil. In this section, we shall first look at a one dimensional exam-
ple using a general boundary condition where the physical boundary coincides
with a lattice point. Next we look at the case when the physical boundary is
no longer coincident with a lattice point. After this, we shall look at some two

dimensional cases and comment on extensions to three dimensions.

Before we start, we recall that we can easily generate O (h*) accurate
expressions for use at interior points. Thus, we shall want to be able to use
at least O (h?) approximations of the boundary equations; in fact our goal will

actually be to achieve O (h*) accuracy on the boundaries.

3.1.3 One dimensional boundary finite differencing

There are three major types of boundary conditions encountered in boundary-
value problems: 1) Dirichlet conditions, where the value of the unknown func-
tion is given on the boundary, 2) Neumann conditions, where the normal deriva-
tive of the function on the boundary is specified, and 3) Robin or mixed con-
ditions, where some combination of the function and its normal derivative on

the boundary are given.
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Figure 3.3: The 1D discretized domain where a = 0.

Boundary (x =a=0)

hysical
Boundary

Our general one dimensional boundary condition will be the Robin con-

dition
au + Puy =g (3.17)

applied at * = a. At first we shall take + = @ = 0, to explain some simple
concepts of finite differencing around boundaries. Next, we apply the bound-
ary condition at some irrational x, so that no lattice point coincides with the
boundary. We do this in preparation for extensions into multiple dimensions.

Figure 3.3 shows the discretized system for the a = 0 case.

There are two main ways of deriving approximations to the boundary
conditions. The first method applies discrete forms of both the interior equation
and the boundary equation on the boundary by introducing an extra grid point

which lies outside the actual continuous domain. The second method keeps
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the boundary equations separate from the interior equation. Thus, the only

difference between these two methods is in the grid structure used.

Applying the first method to equation (3.17), we see that we can use a

centered finite difference scheme for the boundary equation to get

Blulj +1]—wls —1])

o =glil+0 (h?) (3.18)

au[j] +

We see that this equation couples the terms at j — 1 and at j + 1, although the
point at 7 — 1 does not exist in the domain. An extra point at this location
is then introduced. By introducing another point, we are introducing another
unknown, for which we need another equation. There is no problem with
this since the usual method for solving this problem is to apply the interior
equation (3.6) on the boundary. Using these two equations, we can solve for

the boundary value, u[j = 1] as follows
(uli 1]l — =2l
12
ulj —1] = h* (flj]) + 2uls] —ulj + 1]+ O
+0

J2uli + 1] = 2ulj) = 1]
’ 2h

h

ulj] = “G1ah (3.19)

Figure 3.4 shows a picture of this situation.

The equation for u[j] is also not always diagonally dominant. In this

case we obtain the condition for diagonal dominance

Since h is usually very small, this condition will not be met in general. We

also see that we will not be able to apply centered differencing all the time in
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Figure 3.4: The discretized domain, with the addition of an extra point.

Boundary Point

Additional point

Boundary
ata =0

O O ©)

Stencil Used.

multiple dimensions, since there are occasions where we must introduce two or
more points, and we only have one extra equation. We might think that we
can generate extra equations by saying that the function is smooth across the

boundary, i.e,

(ulj =1 + ul + 1)) (3.20)

(NN

ulj] =

But we will now try to evaluate a first derivative using this averaging condition
at the location of uy shown in Figure 3.5. We need to consider this case when
we look at problems such as the one in Section 6.4, where we are using Adaptive

Mesh Refinement (AMR) techniques. The first derivative is evaluated using

2 h3

h 4

h? h3 4
u(x —h)=u— hu, + jum — Fu“’“’ +0 (h )
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Figure 3.5: Trying to get O (h?) results from averaging.

U3 Uy
O O
H=2h 2h
u(x+h)—u(z—~h h?
e
' h) + —h h?
ule );“(‘r )=u+362+0(h4) (3.21)
thus, we use
us —u; A
u, = _
2 3
, , 2
N o

where H = 2h,which shows that the equation that would be used for the stencil,

S mdmo_y g B
T 17767

i Y (3.23)
Uy = 55 .

is first order.

The second method is to apply boundary equations to the boundary
points, a scheme that we use when we try to solve the system using multigrid

techniques, since we treat interior equations separate from boundary equations.
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This does not mean that we can not use a multigrid technique to solve the
system in the first method, but rather we will only use the second method

when we use multigrid techniques. Thus, we use the equation

4ulj + 1] — u[j + 2] — 3ulj]

2h -
aulj] + ﬁ4u[] +1] — l;[}JL + 2] — 3uly] _ il

(3.24)

for the boundary value. Once again we run into problems. Notice that this
stencil will not be diagonally dominant in general, and that we are including
more points in the stencil. Through experience, we have learned that trying to
come up with diagonally-dominant second order stencils around the boundary,

especially in higher dimensions, is a “no win” situation. 3

In Figure 3.6 the boundary lies between two grid points, a situation we
refer to as “straddling” the boundary. In order to derive a second order stencil
at this point, notice that we have no use for the interior equation, i.e. all we

must do is define a set of Taylor expansions around the boundary point. We

u=ula—h+¢ = u(a)—l—(f—h)uw—l—%(f—h)Q‘um—l-O(h?’)
w=ula+€) = ula)+us + %fZMII + 0 <h3)
ur=ula+h+6&) = u(a)+(h+8&us+ % (h+ €)% ups + O (h*)(3.25)
to obtain
w2 2 Zh 2 3
Up = oy U2 + ok + Sz U (3.26)

3We do not imply that one can not come up with a scheme that will give them second order
convergence. What we are saying is that one could get into trouble solving these equations.
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which is valid to second order, and we use

w=ula+€&—h) = ula)+ (£ —h)u,

w=ula+¢é) = ula)+ u, (3.27)

to obtain

h—¢
h

u(a) = %ub + Uu. (3.28)

Thus, our boundary condition becomes

g = a(éuwh_gul) +ﬂ(h_2§u2+i—§ul+ﬂub)

h h 2h? 2h?
2afh — B (h + 2¢) a(h—&)h+260 Bh—=26) .
252 Uup + 12 (751 + TUQ(-}ZS))

Thus we see that there is considerable complexity involved with deriving
second order stencils for boundary points of this type, and the extensions into

multiple dimensions clearly suggest we abandon these techniques.

Our alternative approach is to discretize the boundaries only up to O (h)
and then use deferred correction, discussed in chapter 4 of this text, to get a
solution which will be second order accurate on the boundaries. We can easily

get a first order version of our boundary equation using forward differencing as

N Cr el )
‘ h
g = (a E %) up + %ul (3.30)

We see that as h — 0 this stencil becomes diagonally dominant.
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Figure 3.6: The discretized domain, where we “straddle” the boundary.

X=a

Up Up us

3.1.4 Two dimensional boundary finite differencing

Our approach to finite differencing in one dimension is general enough that we
can apply these principles to multiple dimensions very easily. In Figure 5.1 we
show the difference between two types of boundaries. Boundary type one is
defined such that there are no grid points defined in two directions. Once such
point in the figure is the corner point of the points surrounded by diamonds.
Boundary type two has one point undefined in all four directions, which is
shown by the center point surrounded by circles. The boundary condition that

we will apply is again a general mixed boundary condition
aug + fuy, +yu =g (3.31)

Now we derive a stencil for the equation represented by the point centered by
the circles . We can finite difference u, to second order by applying centered
differencing in the = direction, yet we can not apply centered differencing in
the y direction. * We use the interior condition to solve for the point in the

y direction, and then end up with a second order stencil involving just four

*We reproduced this discussion from chapter 5, to aid in the current discussion.
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points. We have problems on boundaries of type 1, since there are two points
undefined. For these two points we need two extra equations. One equation
will come from the interior equation. The other equation could come from an

averaging condition,
I I . :
Ul + 1+ guily — 1 —ulj] =0,

to obtain another equation but this equation will result in an overall stencil
which will be only first order accurate as we have shown previously. A better
approach is to apply center differencing in only one of the directions, and
apply second order forward differencing in the other direction. We do this by
first applying center differencing in the z direction for the diamond points in
Figure 5.1 by introducing an extra point, and equation, in the x direction. We
then apply forward differencing to second order in the y direction. To extend
this principle in three dimensions, we might have to apply center difference in
one direction and forward and backward differencing in the other directions.

This leads to 9 point stencils in three dimensions.

Our approach in two dimensions has assumed that the discretized bound-
ary points conformed to the physical boundaries. We need to develop a for-
malism when this is not the case. In the paper by Cook[20] et al., we saw
that the Cartesian algorithm had a serious flaw in this regard. It assumed that
the physical boundary conformed to the discretized boundary points. We feel
that the derivations of the correct equations are much to complex to pursue.
Thus, we feel the best approach is to apply first order finite differencing on the
boundaries, and second order finite differencing on the interior, and then use

deferred correction on the boundaries to get higher order results [14].
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3.2 DBasic iterative solvers

In this section we will discuss how to solve large linear algebraic equations
which result from finite differencing PDE’s. It is our feeling that direct solvers
are inferior to iterative solvers for solving most, if not all, physical processes,
resulting from elliptic PDE’s in multiple dimensions.® This is due to to the fact
that factoring a matrix, A, arising from a finite difference scheme involves the
phenomenon of fill-in. The upper and lower triangular factors will in general
have non-zero elements which are zero in the corresponding positions of the
original matrix. A lot of work has been devoted to designing algorithms which
reduce the fill-in since the operations needed to perform the factorization, as
well as the memory storage required, depend on the number of non-zeros in

the upper and lower triangular matrices[27][28].

We will typically use direct methods only when the iterative methods
will not converge. ( Sometimes in a multigrid algorithm® the equations will
not converge. We must therefore use direct techniques to solve the system,

which for multigrid techniques, will only be used only very small systems (n is

small).)

Since we did not have to use direct methods for the problems in this
dissertation, we will only discuss iterative methods in this section. There are
many textbooks on iterative methods and we do not attempt to provide a

complete coverage of the topic. ( See, for example Varga[50] and Young[58]) .”

50f course, for one dimensional problems, direct solvers are at least as efficient as the
best iterative solvers, if not more efficient.

SMultigrid is discussed in Chapter 4.

"We will follow Choptuik’s discussion of iterative methods[15].
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We wish only to highlight some areas that we feel will be useful for the reader,

and will help in formulating the multigrid approach.

3.2.1 Linear equations

Let
Au=f (3.32)

denote a system of n linear equations such as those represented by equa-
tion (3.14) so that A is a n X n (generally sparse) matrix.® We will typically

compare the various iterative methods used in this dissertation by examing the

2 9

number of operations, N = n* , required to solve the system of equations.

In an iterative method for solving (3.32), a series of iterates u(™ is

generated, such that

lim u'™ = u (3.33)

n—oo

where we start with some initial estimate, u(®) of the solution. Iterative meth-
ods, in principle, require an infinite number of operations to determine u. In

practice, the solution is generally terminated when u(® is “close” to u.

A common method used to monitor the convergence of the solution is

to compute at each iteration, the residual vector r(*) defined by

r(M = Au — . (3.34)

8 A sparse matrix is defined as a matrix which has more zeros than non-zeros in the array
elements.

9 An operation will typically be a multiplication, division, or addition of two floating point
numbers.



Now if the iteration converges, then

lim ™ = 0. (3.35)

n—oo

We then define the stopping criterion when

[rM]| < e (3.36)
where || - || denotes some discrete norm and € is a convergence criterion, which
is usually given before the iteration process begins.

The error vector e of the n®* iteration is defined by
e =y —y (3.37)

Now notice that by the uniqueness of the solution u, r = 0 if and only if e = 0.
But it may not be true that, when the norm of r is small, the norm of e will be
too. This is then a measure of the conditioning of the system. '° From (3.32)

and (3.34) we observe the following relation between the error and the residual:
Ae=r (3.39)
which is known as the residual equation.

Iterative methods are characterized by the manner which the new iterate

is calculated from previous iterates. A general class of iterative methods may

be defined by[58]

ur ) = () (u(”), Y L 7u(0)) + ™ (3.40)

10The condition number, cond(A), of the matrix, provides a measure of how “close” the
matrix is to being numerical singular.

cond (A) = ||A|| |47 1< cond(4) < oo (3.38)

where ||-|| denotes any vector norm. When cond(A) is very large, A is aid to be ill-conditioned.
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where G is an operator which can change from iteration to iteration as could
the vector ¢™. We will only deal with methods where G is linear, constant
and only operates on the current solution estimate, and where the vector ¢

is also constant. In this case we rewrite the previous equation as
u™) = Gu™ 4 ¢ (3.41)
where (& is known as the amplification matrix. We can now see that
) — ()0
= GO (ul —u) (3.42)

where G is the n'* power of the amplification matrix. Thus, the iterative

procedure will converge if

lim ||e(”)|| = lim ||G(”)u(0)||
— 0 (3.43)

To determine whether or not the iterative method will converge, we

examine the spectral radius, p (G), of G, defined by
p(G) = max|A; (G) ]| (3.44)

where A; () are the eigenvalues of G. In order for the method to converge, we
must have |A;| < 1 for all 7. An important aspect of the spectral radius is that
it will tell you how fast the system will converge. In general

le+2]

lim

n—o00 e(k)

G). (3.45)
We can now define an asymptotic rate of convergence, pr as

pr = logyo (p(G)7) (3.46)
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where the reciprocal of pg is the number of iterations which must be performed

in order to reduce the error by a factor of ten.

Since for any but the very simplest iterative schemes, the explicit form
of the amplification matrix becomes very complicated, we will describe the

iterative methods in a manner which is closer to the way they are implemented.

We will now discuss two general iterative techniques which will prove
useful in studying the multigrid technique in Chapter 4. Both of these methods
are used to solve equation (3.32), but we will in general look at the solution of

equation (3.7).

3.2.2 Jacobi iteration

The first method that we look at is called the Jacobi iteration, which results
from visiting each grid point in succession, changing the value of each unknown
so that, using the required neighboring values from the previous iteration, the

local difference equations are satisfied. Thus, the Jacobi iteration for the j

equation of (3.7) is defined by
: 1 : : : .
a7 = 5 (ulj = ™ + ulj + 1™ — R2£[j]) 1<j <N —1(347)

There is a simple modification which can be made to the Jacobi iteration. As
before, we compute the new Jacobi iterate using equation (3.47),( which we will
refer to as u[j]*) ), where however u[j]®) is now only an intermediate value.

The new approximation is given by the weighted average
w0 = (1 = w)ufj]" + wul]™, 1<j<N-1 (3.48)

where w is a real, freely specified weighting factor. This last equation, which

defines the weighted Jacobi method can be rewritten in terms of the residual
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vector, ()
ulf]D = u[f]™ — WDt (3.49)

Here D is the main diagonal of L, so D™ = Ih*/2, where I is the n x n identity
matrix. The eigenvalues of the weighted Jacobi method, are well documented

[10][12] and are given by
A (Gy) =1 — 2wsin? (%) 1<j<N-1 (3.50)

The modes in the lower half of the spectrum, with wavenumbers in the range
1 <k < N/2, are low-frequency or smooth modes. The modes in the upper

half of the spectrum, will be called high-frequency or oscillatory modes.

If we now replace N by A~ ( since Nh = 1) in the above equation, and
expand the sin term to O (h?) we determine that the eigenvalue associated with

the smoothest mode, ( i.e. when j =1) ,is

¢

A = 1 — 2wsin? (Z_h) :1—‘”22]”‘2 +0 (k') =140 (1)

Clearly, for small & this eigenvalue is approximately 1, and therefore, the con-
vergence of the iteration will be very slow. On the other hand, for the high-

frequency mode corresponding to j = N — 1, we have

2

~ 1 —

N -1 2
Av_q = 1 — 2wsin? (%) R il

which is clearly much less than 1.1 Thus, high frequency components are

damped much faster than the low frequency components, and this is a property

1 Unless w was extremely small. Since if w is small then clearly convergence must be small
at all wavelengths.
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shared by many iterative schemes. In the next chapter we will study these
eigenvalues further, and in Chapter 6, for pedagogical purposes, we shall briefly

discuss the application of the Jacobi method to a model problem.

Besides the fact that the Jacobi method is an extremely poor solver
for elliptic equation, we see that it also requires storage of the current itera-
tion variables, as well as storage for the previous iteration. We see that this
drawback can be overcome by the Gauss-Seidel Method: if the Jacobi method
converges, then, in general, u**!) will be a better estimate of v than u(. This
suggests that an improvement on the Jacobi iteration might result by using

newly calculated quantities whenever possible in the course of an iteration.

3.2.3 Gauss-Seidel and SOR iteration

Perhaps a more familiar iteration method is the Gauss-Seidel method. This
method may be viewed as a simple modification of the Jacobi method whereby
most-recently-computed components, u[j]"+!), are used whenever possible.
This is an intuitive modification, since if the Jacobi method converges, then
u[7]t1) will be a better estimate of u[j] than u[j]. As just mentioned, this
also reduces memory requirements since during the Jacobi iteration we must
provide storage for all of the u[j]™ and u[j]®*Y) (two vectors of length N)

n+1) Up to now

whereas for the Gauss-Seidel we “overwrite” u[j] with u[j]
we have assumed that the components of u are updated in ascending order,
commonly known as lexicographic order. For the weighted Jacobi method, the
order does not matter since components are never over-written. However, for

the Gauss-Seidel method, the order of updating is significant. Instead of sweep-

ing through the components in ascending order, we could sweep through the
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unknowns using the reverse order or we could even alternate between the two,
which is known as symmetric Gauss-Seidel. Another very important method
results from first updating all the even components, and then updating all the
odd components. This ordering, Red-Black, gets it’s name from two dimen-
sional applications. One significance of the ordering is for their implementation
on a parallel or vector computer. The Red-Black ordering allows the method to
be highly vectorizable, which is not true about lexicographical ordering. There

are other ramifications of using Red-Black order, particularly for multi-grid.

For our model problem, equation (3.7), the Gauss-Seidel iteration can

be expressed as

IR D o . . |
ulf] ™) = 5 (w0 = 1) 4 a4+ 1] = B]) . 1< SN -1 (351)

Let us now look at the eigenvalue structure of the amplification matrix
for the Gauss-Seidel method. Let us assume that the system we are going to
look at is defined by the finite difference equations given in equation (3.6) for
the interior points, and that there are a total of five points in the domain, three
interior points, and two boundary points. Let us also assume that we apply

boundary conditions:

Quy +u = g|9::0

u(xy) = u[N] (3.52)
The equation at = 0 is then finite differenced to
eu[l] + (1 —€)ul0] = ¢ (3.53)
where ¢ = a/h. Once again we write our system of equations as

Au=f

52



where now A is given by

A= S . (3.54)
0 0 -1 2

We now break A into upper— and lower—triangular matrices U and L:

0 ¢ 0 0

U=100 0 -1
00 0 0
l—e 0 0 0

L= _01 —21 (2) 8

so that A = L+ U. A particular Gauss-Seidel iteration for our equations is the

given by:

or

Lu™ + Uu™ = f (3.55)

ut D = 171 (f — Uu) (3.56)

The best way to look at the convergence properties of iterative solvers is to

look at the amplification matrix defined from the residual equation. So,

()

= (L+U)u™) — f

= (L+U)L7 (f=Uu™) —f

= f—Uu + UL f UL 'Uu™ — f
= UL (f = Uul = Lu®)

= UL (f = (L+U)u™)

— _UL~y™m (3.57)
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Thus,
rH) = G () (3.58)

where G = —UL™! is the amplification matrix ( but different from G defined

previously. In particular, for our model problem we have

_%5—61 % 0 0
11 21 _
8e—1 8 4 2
0 o 0 0
Now, the eigenvalues are
18c—4 4422 —2e+1 186 —4—4y2e? —2¢+ 1
0 .0 .- € + € e+l Lae € €+ (3.60)

"2 8¢ — 8 "2 8¢ —8

We see that when once € becomes a little greater than ( 1 /2 ), the spectral
radius, p ((), is greater than 1 which means that the system will not converge.
We also see that as € becomes larger than zero, the eigenvalues will move closer
to one. This signifies that the Gauss-Seidel iteration will take a much longer

time than if e = 0.

Because the above methods solve for one new function value at a time,
they are often referred to as point-relaxation methods. Another class of relax-
ation methods involves the simultaneous update of a group of unknowns. For
example, if we were working in two dimensions and divided up the y axis into
M lines, one could then solve the system of equations (3.51) simultaneously
for all the points that are on the same line. We can then extend the red-black

idea to lines, resulting in so-called “zebra” solvers.

Researchers[58] who used the Gauss-Seidel method for solving systems

of difference equations discovered that convergence could be accelerated by
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modifying the iteration so that
ulf]* = w uff]* + (1~ w) ufs]™ (3.61)

where u[j]* is determined by the right hand side of (3.51), and w is called the
relaxation parameter. If 0 < w < 2, then the above defines the well-known
successive over-relaxation (SOR) iteration which incorporates the Gauss-Seidel
iteration as a special case when w = 1. Typically, for large elliptic systems the

S.0.R. method requires fewer operations than the previous methods [58].

In general, it is quite difficult to get an optimal value of w, so one must
do some numerical experimentation or use some sort of adaptive procedure

which attempts to estimate the optimal w in the course of the solution process.

3.2.4 Interpolation, extrapolation and determination of derivatives

to high order

We will see in the next chapter, that in order to use deferred correction, we
will need to determine approximate values for a function and its derivatives at
spatial locations not coincident grid points. We use polynomial interpolation
for their evaluation. We determine the function values to be interpolated, along
with their derivatives via straightforward Taylor series expansion. This method

is not unique in any sense.

Since we deal with lattices, and the finite difference equations were de-
rived from truncated Taylor series expansions, it becomes natural to think of
the interpolation as just using another Taylor expansion to determine the value
of the function. Let’s suppose our computational domain is again shown in Fig-

ure 3.6, and we wish to determine the first derivative to fourth order, and the
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function value at this boundary point to fourth or higher order.'? We may at
first write down the Taylor expansion for the point w, which would make the

first derivative fourth order accurate, i.e., we write

u = ula—(h={))
1 4 5 2 g
+ 57 (€= ) e + O (7)) (3.62)

which shows that the first derivative is determined up to fourth order,

1 1
U = f_h(ub_u_ﬁ(f_h)luzz

- é (€ = 1) ttgws — i (€ = B) thyaa) +O (B*) (3.63)

There are 5 points which we need in order to determine the first derivative to
fourth order. Our basic algorithm to find the first derivative up to fourth order,
and the function interpolated value, is broken up into 2 parts. Our algorithm
finds the matrix values used in the Taylor expansions and then performs a LUD
decomposition'®. This routine is called only in the beginning of the programs
since it is a O (N?) operation [41]. The next part of the algorithm performs
the backwards substitution when the function and/or the derivative is needed

to be determined. This is an order O (N?) operation.

For multiple dimensions we use the same algorithm although the number
of terms in the matrix is greatly increased. For example, the expansion used

in three dimensions is

fletay+tB,2+7)=Ff+afe+Bf,+7f

12We use this derivation in Section 6.5.
I3LUD decomposition is described in Numerical Recipes[41].
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which uses 35 points in the stencil!

Now extrapolation involves the same principles as interpolation. We
only extrapolate for points which are O (h) from the actual computational

domain.

We have seen most of the basic components of the numerical methods
that we use in this dissertation. In the next chapter, we will use some of these
components to describe the MLAT method as well with deferred correction and

Richardson extrapolation.



Chapter 4

Multi level adaptive techniques

The main purpose of this chapter is to provide a brief introduction to multigrid
methods and the essential ingredients used in their development. This chapter
will also introduce the standard multigrid notation, which will be widely used in
later chapters. We also introduce the techniques of Richardson extrapolation,
deferred correction and AMR since we feel these techniques work extremely well
in the context of a multigrid algorithm. We in no sense give a complete overview
of multigrid, for we feel there are many excellent papers on this subject. Good
sources of reference include Brandt’s excellent 1977 paper[8], Brandt’s Guide to
multigrid development[9], along with Briggs’ multigrid tutorial[10] and Chop-

tuik and Unruh’s paper in General Relativity and Gravitation[12].

4.1 Philosophy

The basic idea of multigrid is to work with a sequence of grids, where each
coarser grid helps accelerate the convergence of the finest grid. This is only
half the picture for Multi Level Adaptive Techniques, MLAT: the other half
is that we use the solution of a coarse grid problem as an initial guess of the
fine grid problem. Multigrid algorithms use a series of discretization levels

[ = 0,...,lnax where [ = 0 is the coarsest level, and [, is the finest and
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h[ - 2h[_|_1 .

This is only half of the picture for Multi Level Adaptive Techniques,
where the other half is that we use finer discretizations only where they are

needed.

Our basic philosophy is to follow Brandt’s golden rule[9]

The amount of computational work should be propor-
tional to the amount of real physical changes in the com-

puted systems.

Thus, algorithms that require more than O (N) operations to solve a discrete
system of O (N) equations are working too hard to extract the physics of the
problem, and therefore should be discouraged. We use multigrid for three
reasons. The first reason is that it does obey Brandt’s golden rule, since it
is a O (N) solver. The second reason we use multigrid is that it provides us
with a natural way of incorporating adaptive meshes along with many other
advanced techniques, such as deferred correction and Richardson extrapolation.
The final reason is that multigrid methods provide natural stopping criterion
used for determining when a problem should be considered solved. The other
“classical” methods such as S.O.R. are neither O (N) solvers, nor do they allow
adaptive meshes to be easily incorporated. These methods do not even provide
any natural stopping criteria; the stopping criteria are preset in the algorithm

to some value which does not change.

Our other stipulation is that we want high order accuracy at the lowest
possible cost. We will see later that Richardson extrapolation helps accom-

plish this task rather nicely. But in order to use Richardson extrapolation, the
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solution must behave nicely, i.e., the function must be smooth everywhere, in-
cluding the boundaries. This will be true in the physics of black holes, since we
do not anticipate the development of discontinuities (shocks) in our solutions.
In fact, Cook[20] has already been able to extrapolate the solution of the initial

value problem.

Before we begin to describe each part of the multigrid algorithm, we
present a basic sketch of the multigrid algorithm. We start with a fine grid and
a coarse grid. The residuals on the fine grid are then smoothed until all of the
high frequency components are removed. Their residuals are then transferred to
the coarse grid. The coarse grid equations are then modified by these residuals.
The coarse grid equations are then solved, and subsequently transferred to the
fine grid. The fine grid then modifies its solution by the correction which was
found from the coarse grid equation. Multigrid then recursively applies these
ideas to a series of grids, where the coarse grid equations are smoothed on the
intermediate grids, and solved only on the coarsest grid. Thus, there are four
major components of a multigrid routine. These components are smoothing,
transfers from a fine grid to a coarse grid, transfers from a coarse grid to a fine

grid, and the solution of the coarsest grid .

4.2 Smoothing

Perhaps the most important part of any multigrid algorithm is the smoothing
of the residuals. Multigrid routines transfer the residuals from a fine grid to
a coarse grid, which has a grid spacing equal to twice that of the fine grid.
High frequency components in the residuals on the fine grid can not be ac-

curately represented on the coarse grid. Thus, the residuals must be smooth
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in order to approximate them on the coarse grid. If a multigrid algorithm is
working properly with a reasonably efficient smoother then over 70 % of the
computational time will be spent on smoothing[9]. This means that not only
do we want a good smoother, but we also want a fast smoother. For example,
if lexicographic Gauss-Seidel was used for smoothing, we would see that this
smoother would operate very slowly on a vector or parallel computer, whereas
if a well coded Red-Black Gauss-Seidel smoother was used for the smoothing,

the speed of this routine would greatly increase.

All of the smoothers used in this dissertation utilize Red-Black Gauss-
Seidel, but we feel that it is helpful to describe Jacobi smoothing too. We note
that as various researchers have shown [15][8][10] , Jacobi is not is good as a

smoother as Gauss-Seidel.

4.2.1 Damped Jacobi smoothing

The Jacobi method allows us to use analytic methods to examine its smoothing

properties. We examine the smoothing behavior of

0%u ()
Oz?

= f(z) zel01], (4.1)

where v () = sin(z), and f (2) = —sin (). In chapter 3 we described how the
eigenvalues behave for high and low frequency. The most interesting property of
this method is its smoothing. The high frequency components of the eigenvalues
are quickly damped; meaning a highly oscillatory function will be smoothed out
in roughly a few iterations. Figure 4.1 shows the smoothing behavior of the

damped Jacobi algorithm. Here we took w = 2/3, where w was defined by
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Figure 4.1: A graphical example of Jacobi smoothing.
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equation (3.48). The initial guess of u was taken to be
(4.2)

which clearly has high frequency components. To show the smoothing prop-
erties of the Jacobi iteration, we plot residuals for the 0%* and 8% iteration in
Figure 4.1. After 8 iterations we see that the high frequency components were
effectively eliminated. Although Jacobi is a good smoother, previous work
by various authors [12][10] shows that Red-Black Gauss-Seidel is a superior

smoother so we shall look at this technique next.

4.2.2 Red-Black Gauss-Seidel smoothing

We use Red-Black Gauss-Seidel(w = 1) smoothing since we find it to be the
best smoother for our purposes, and since it is well documented[10] [12] that

this is an excellent smoother. The only thing which we will point out in this
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section is the reason to use Red Black Gauss-Seidel, rather than 5.0.R., for
smoothing.

The S.O.R. iteration converges faster than the Gauss-Seidel iteration,
so we would like to see how the “w” parameter in S.0.R. affects the smoothing
rate. Again we analyze the Jacobi example, equation (4.2.1). Our stopping
criterion for this experiment is when the norm of the residual is reduced by one
order of magnitude from its initial value. In this experiment, we let N = 65,
which means that the optimal value for w should be
2z
1 4+ sin %

1.95 (4.3)

Woptimal

%

Figure 4.2 clearly shows that this value of w takes far more iterations than when
w = 1. Thus, we shall always let w = 1 for smoothing the interior points. When
we must solve a problem on a coarse grid, we use wWoptimal as our over-relaxation

parameter.

4.2.3 Smoothing boundaries

Since the boundary region is of lower dimension than the interior we can gener-
ally allow more work per grid point here without seriously degrading the overall
performance of the algorithm. In multigrid programs, it is usually good prac-
tice to treat boundary equations separately from interior equations[9]. Thus the
usual method for handling the boundary is to smooth the boundary equations

independently of the interior equations.

For one dimensional smoothing Brandt[9] says that the boundary con-

ditions need not be relaxed at all since the errors there are not functions that
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Figure 4.2: An example of 5.0.R. smoothing.
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can be smoothed in any way. In general we agree with this statement when it
is applied to simple problems. In some of our test problems in one dimension,
we allowed partial relaxation on the boundary point. Thus, for the boundary

problem

we smooth this as
W) = ) 4 (Bu(”) —g- u(n)) (4.4)

where a is the smoothing parameter. Now Brandt’s statement would put a = 0,
yet we have verified! that there are instances where a should be equal to one.

One such instance is when we have a grid structure that violates the Berger

1See Section 6.5
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Figure 4.3: The adaptive grids
Level

® O O O O o o o Ima

X

X _ 0 0 0 Imax-1
X A A Imax - 2
X

ODO@ODOZ@&

X Denot es Si ngul ar Points

and Oliger [2] principle that any grid at level [+ 1 (fine level) should be properly
contained by a parental grid at level [. This is shown in figure( 4.3), where the
finest grid contains points which are outside of the domain of the coarser grids.
We term these points as being “not properly contained”. In general, we find
that for uniform grids the fastest convergence rates occur when a & 0. Usually
(and in accord with Brandt’s general observations), we believe that « should

be chosen to result in the smoothest interior residuals.

In multi-dimensional boundary smoothing we must obey the principle
that we only smooth the residuals along the boundary. The residuals to the
boundary equation must be smoothed independently of the values on the in-
terior points. We must again demand that the smoothing on the boundaries
not disrupt the smoothness of the residuals associated with the interior equa-

tions. Brandt makes several suggestions to accomplish this. One suggestion is

65



to apply the smoothing operator

0? 0?
927" = 52"

(4.5)
instead of Bu = ¢ on the boundary, where s is the boundary arclength. Brandt

also suggests that when the boundary smoothing factor is not as good as the

interior one, a few boundary sweeps can be performed for each interior sweep.

For geometries such as in Figure 4.4, we employ Brandt’s suggestion of
using a couple of relaxation sweeps per interior sweep and also a suggestion of
Brandt’s[8] average the residuals along the boundary, i.e.

1

UL

(r[l =1]+r[{+1]). (4.6)

Here we treat the residual in this two dimensional problem as a one dimensional
object. We equate the point [{] on the boundary with the point at [j, k] in the
problem. If we wanted to smooth the boundary at the point [[] = [j, k] , using
the residuals at [[ — 1] = [j,k — 1] and [+ 1] = [j — 1,k + 1], (as shown in

Figure 4.4, for the then boundary equation,
au+ Bu, = g

where

Ju zdu  ydu

8 = 105 " pdy -
with p = /z? + y?%, we have
ulj + 1,k —ulj, k] ylklulj,k+1] —ulj,k] .
z[s] ulj | —ulj k] | ylk]uly ] —uly ]-—gbaﬂ

p h +ﬂp h
1

aulj, k] + B
g (rlisk =1 +rj = L k+1]) (4.8)
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Figure 4.4: A 2D domain, where the points “inside” the inner boundary are
not in the computational domain.

4.3 Prolongation and restriction operators for interior
equations

There are two basic types of transfer operators needed, restriction and prolon-

gation which are denoted by I and I respectively. The purpose of the I is

to take grid functions from levels [ — [ — 1, and the purpose of Il is to take

grid functions from levels [ — [+ 1.

Restriction operators use weighted averages from the fine grid functions
to determine the coarse grid functions. Prolongation operators generally use

polynomial interpolation to determine the fine grid function.

A simple one dimensional domain is shown in Figure 4.5 for two levels,

with H = 2h and 2J — 1 = j. The restriction operator is defined in stencil
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notation as

. h

H H_ hi: 111 ujﬁl .

G = T[] = <1§Z) a |, T=2,N -1, (4.9)
ot
i+l

which is a weighted average. Another common restriction operator is the in-

jection operator defined as
u"'[J] = Lu"[j] = u"[j] (4.10)

We have empirically found that for all of the problems that we have dealt with,
that the use of injections for restrictions tends to make the multigrid routines
converge more slowly. However, for one dimensional problems, we use injections

for the restriction operator of the boundary values.

Prolongation in one dimension is typically accomplished via polynomial

68

interpolation. For example, linear ( accurate to O (h?) ) prolongation/interpolation

is defined by:

u'[j] = Iiu[J]
ut[J —1]
11
= (=0= WMLI) |, #£27—1
z2) Aaen)
uf[J —1]
= (010 g |, j=2J-1 (4.11)
uH[J—I—l]

Now two dimensional restriction is more complicated since at various
times we use full weighting, halt weighting or injections defined as follows

(where j =2J — 1 and k =2K — 1):

Full Weighted Restriction

WML K] = PR = (e = Lk Lk ]



+ = Lk =1 +u[j+ 1,k 1))
b (G~ LA+ 1]
+ WMk — 1]+ Uk + 1))
+ iuh[i,j] (4.12)
Half Weighted Restriction
WA K] = 1[5, k]
_ % (6hj = 1, K] + w[j + 1, ]+ w[j, b — 1] + u[j, b + 1])
+ %uh[i,j] (4.13)
Injection
WAJ, K] = TFu"[5, k] = u"[5, k] (4.14)

Our most commonly used form of the prolongation operator, 1%, in two

dimensions is bi-linear interpolation, defined by :
K = w[ K]
W41k = S (WL K]+ ) + 1K)

k1] = 5 (LK) + K+ 1))

¢

WL k+1] = — (W[ K]+ e[ + 1, K])

WK+ 1)+ e[+ LK +1])) (4.15)

N I I G
TN N N

4.4 Boundary transfers

The hardest part of a “non-trivial” multigrid program is transferring the func-

tion values defined by the boundary equations. Sometimes we must use sepa-
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rate operators for transferring the grid function @* and the residuals, #*. The
boundary transfers are unique to each individual problem so we will come back

to this issue in our treatment of example problems in Sections 6.3- 6.7.

4.5 Linear Correction Scheme (LCS) for two levels

The Linear Correction Scheme (LCS) can only be used for linear partial differ-
ential equations[8][12][9]. Later we will look at the Full Approximation Storage
scheme (FAS)[9][8] [12], which is applicable to non-linear PDE’s. Here we are

trying to solve the linear set of equations

Lu(@)=f(z) z€Q

Blu(z)]=g¢g(z) xz€ 00 (4.16)

where L and B are some linear differential operators, x is some d-dimensional
set of coordinates, () is some subset of B¢ and 9 is the d — 1-dimensional

boundary. We finite difference these equations as,

B = ¢". (4.17)

From here on, we will exclude explicit treatment of the boundary equations
from our discussion since the techniques involved are essentially the same as
those applied to the interior equations.

As in Chapter 3, we define a residual, r* associated with the current

approximation, %"

rt =Lt — fh (4.18)
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The next assumption in the derivation of the Coarse Grid Correction (CGC)
algorithm is that r” is smooth. We presume this will have been accomplished

via application of a smoothing iteration as previously discussed.

Since L" is linear and r" is smooth we can look for a correction v* such

that
ul = aP 4 " (4.19)
Thus we have have
L (@ + ") = f7, (4.20)
and since L" is linear,
LM = LM — Lt

Now, substituting the definition of the residual, equation (4.18), into this equa-

tion we have

L' = -, (4.21)

Since we assume that r* is smooth we can sensibly pose a version of this
last equation on a grid which has a coarser scale of discretization. In particular,
we can use a grid with mesh spacing H = 2h. Thus the coarse grid equation

we wish to solve is:
LMot = ol (=) (4.22)

where 7! is the fine to coarse grid transfer operator (restriction operator). In

anticipation for non-linear operators, we see that we can rewrite this equation
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in three equivalent forms, namely

LiuH = ]}fl (—rh)
" (uf =ity = (")

A S N

Equation (4.19) defines the relationship between @ and v"*. Thus, after

solving the coarse grid equation (4.22), we update " via
ot = a4 I (4.23)

where I} is a coarse to fine grid transfer, (prolongation operator).

The correction algorithm is shown in Figure 4.6 for a two level scheme.
Here pre is the number of times the algorithm will smooth the residuals on
a grid before a coarse grid correction takes place, and pst is the number of
times the algorithm will smooth the residuals after a coarse grid correction.
We usually set both of these to two for two dimensional runs, one for one
dimensional runs, and for three dimensional runs, we usually set these to three.
The total number of coarse grid corrections is stored in the variable, o. As
Brandt suggests in his Guide to Multigrid Development[9], it is best to start
with a two level algorithm when designing a multigrid code. One can typically
see problems with the code in the two level scheme much more easily than with

multiple levels.

Since the majority of the time in a multigrid code is typically spent doing
relaxation sweeps, we can analyze multigrid codes in terms of work units. One
work unit, W, is defined to be the work required to perform one full relaxation

sweep across the finest grid. The actual work then is directly proportional to
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the work unit multiplied by the number of points of the finest level. Using this
definition, we recall that S.O.R. codes typically require O (V) work units to
solve the “model” problem. Multigrid algorithms generally compute a solution
with O (1) work units. That is, the work per grid point tends to be constant

which is the best we can hope for.

We define the convergence rate as

| | rinitial | |

pP= W_l loglo W (424)

We see p~1 is the number of sweeps needed to reduce the residuals by one order

of magnitude.

4.6 Linear correction scheme for multiple levels

The primary difference between using multiple levels and using just 2 levels
is that we apply the linear correction scheme recursively, completely solving
only on the coarsest level. Now instead of calling the right-hand side of the

H we will simply call it f# since it is just another right-

residual equation —r
hand side. Before we can give a general scheme, we must point out that there
are various ways to cycle through the grids. The simplest cycle is the V-cycle
shown by Figure 4.9 and defined by Figure 4.7, where [, 1s the maximum

level and [ o.ree 1S the coarsest level.

Now one could imagine that instead of correcting u* from the time we
solve on the coarsest grid down to the finest level, we could perform what is
known as a W-cycle as shown in Figure 4.10. We will not discuss the more
general p cycle described in Briggs[10]. In general our solvers have the capa-

bility of using p cycles but we usually let g = 1 or 2, which corresponds to the
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V and W cycles.

Recall in section 4.1 that one of the original ideas behind multigrid
was that if we wanted to solve the problem L*u" = f"* we could solve the
problem LHu® = fH and then interpolate u to u" to use as an initial guess
for the solution of Lfu" = f*. We use the high order polynomial interpolation

operator[9]
at = It (4.25)

to provide an initial estimate for the function on the next grid. In practice,
11 usually performs polynomial interpolation, but certain guidelines are set[9].
Thus, we could solve the coarsest problem, use the solution of this as the initial
guess for the next level, solve this level via multigrid, etc. This then leads to
the full multigrid cycle shown in Figure 4.8, where we restrict attention to a
V-cycle algorithm, although it should be understood that the general u cycle

could easily be incorporated. The V-cycle algorithm is the same as before.

4.7 The Full Approximation Storage Scheme (FAS)

We again start from our general boundary value problem
Lu=f (4.26)
where L. may now be a non-linear elliptic operator. This is again differenced to
LM = f
Now the local truncation error, 7" is defined by:

= L — fh (4.27)
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where u is the continuum solution. Note that if we could somehow compute 7"

then we see that we could solve
Ly = 4 7 (4.28)

and the solution, u**, of this equation would be precisely u. Now if an ap-
proximation of 7" could be determined then we could get a better solution to
the difference equations. Later, we will see how this viewpoint will aid us in

interpreting the FAS scheme.
We now derive the FAS equations. Recall that we are solving
Ll = fh
with L* assumed to be non-linear. We again define a residual, r":

vt = Lt — f (4.29)

Now we can still think about the problem as trying to compute a smooth

correction v"* such that
ulh = @t ol (4.30)
but we will need to get a modified form for the coarse grid equation. If we let

u” in the above correction be just a new value of %" then this equation becomes

o ~h h

=u"4+v
which is actually
~h

o= a4 1 (4.31)

since the correction will be determined from the coarse grid.

75



We then consider (as mentioned previously)
A R e A N e Ak

f—Lha" = =" (4.32)

Provided @" is smooth, we can then formulate a coarse grid version of this

relation:
LAy — R [Hgh = [k (4.33)
or

LA = LA fah — i (4.34)

This is the FAS coarse grid correction equation. Once an appropriately
accurate solution % has been computed to the above equation we update "

as follows

W=t + 1y (! - 1" (4.35)

Brandt points out[9] that the more obvious update, u* := I%u*, is inferior since

it would introduce the interpolation errors of @ instead of the interpolation
errors of only the correction v. (In other words, equation (4.35) preserves
smoothness information encoded in u¥ prior to the CGC, whereas the other

update throws such smoothness information away)

To see one of the major advantages of using multigrid rather than other
iterative techniques such as those discussed in Chapter 3 , and also to get
a different perspective on the FAS equations, we shall take another look at

equation (4.22). We recall that the residual vector is defined as

b= Lhah — ph
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Thus, if we rewrite equation (4.22) using this definition of the residual vector

we get
AT A R R A
= 7+ f7 (4.36)
where
=P rfa — 17 LMl (4.37)

Recall that when we discussed the FAS scheme, we introduced the notion of
correcting the equation with the local truncation error, and discussed how this
would make the difference solution a better approximation of the continuum
solution. Similarly, we can interpret 71 as an estimate of the local truncation
error of the level-H equations relative the level-h ones. This leads to what
Brandt has termed the dual point of view since we can now view the fine grid as
a device for calculating a correction 7 to the coarse grid equations. Previously
we only viewed the coarse grid as a device for accelerating convergence on the
fine grid. We now give the algorithm for the full multigrid code using the FAS

scheme in Figure 4.11.

The 7 that is generated in the FAS scheme is an estimate of the relative

local truncation error, 7#1. We see this by looking at the local truncation error,

7H [9] defined by
o= 1 (1"a) — 1" (Lu) (4.38)

where I and I are two continuum to H transfer operators. We now see

a direct analogy with equation (4.37). As @" — u then 7/ — 7. Because
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of this analogy 7/ is also referred to as the relative local truncation error.

In traditional multigrid applications local truncation error estimates are often

used to provide natural stopping criterion for the overall iterative process, i.e.
H

once the residual becomes appreciably less than 7;' we can deem the problem

solved. We will see later that 7/ can also be used in grid adaptation criteria.

4.8 Richardson extrapolation

Richardson[44] asserted a long time ago that if a grid function @ satisfies an
O (h*) centered difference approximation to some PDE, then, in the limit A —

0, we can expect the continuum solution, u, to have an expansion of the form
u =10+ h%y + h'es + hPesg + -, (4.39)

where ey, €4, - - - are error functions which are independent of the mesh spacing
h. An extremely good explanation of Richardson extrapolation can be found
in Choptuik[11] . Our application of Richardson extrapolation is quite sim-
ple. 2 Our basic approach is to solve our discrete system of equations at two

resolutions, 2k and h, and then assume

u = w4+ h%es + O (h4)

ut = u+(2h) e+ O (A7)
to obtain the fourth-order accurate approximation

4,h 1,2h_, 4
gut = gu =u+0 (h') (4.40)

?Ruede [45] has come up with much more general versions, however we will not encounter
these complications.
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Thus, once the second order solutions have been determined we can cheaply
compute a fourth-order accurate solution.

As should be expected, our experience shows us that Richardson ex-

kare small. A problem with

trapolation only works well when the errors, u — u
our straightforward application of Richardson’s ideas is that it depends rather
crucially on the uniform application of centered differences. For non centered
difference stencils, such as those we typically use on the boundaries, the error
can not be assumed to admit only even terms. Thus, extra care must be taken

when treating boundaries in order to ensure that our grid functions will have

expansions (shown in Chapter 6) .

One could also theorize that by using three levels, we could obtain O (h®)
accuracy, but this of course assumes that the leading order error term is now
up to O (k*). In our applications we generally find that the leading order error
term is only smooth up to O (h?) which makes it difficult to obtain accuracy

greater than O (h?).

In multigrid solvers, we pointed out that one can use the local relative
truncation error estimate to obtain stopping criteria. In order to use Richardson
extrapolation we must drive the residuals low enough to ensure that we are

computing smooth error terms properly.

Richardson extrapolation can not be used for general solutions to PDE’s
since in general these solutions may not be smooth. Since we expect our
equation (the Hamiltonian constraint for black hole spacetimes) to admit only

smooth solutions, we can expect to be able to use this powerful technique

[18][12][20][13] .
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4.9 Deferred correction

We have seen the complications of finite differencing boundary conditions when
we adopt coordinates which are not boundary conforming. We then pointed
out that a way around this problem is to use deferred correction. This idea

was originally suggested by L. Fox and then Brandt[9].

We can understand the basic idea behind deferred correction by recalling
the discussion of Section 4.7, where we observed that we could improve the
accuracy of a finite difference solution by adding the truncation error to the
right-hand-side of the difference equation. In the FAS scheme, we saw that we
could use the relative truncation error estimate to modify the right hand side of
the coarse grid equations to get a better estimate of the solution on a finer grid.
The methodology here is similar. We will modify the right hand side of the
difference equations on the finest grid to get a higher order approximation of the

original system of equations which the difference equations were approximating.

Through experience (ours and others) we know that a good general
strategy when finite-differencing is to first use low order techniques since they
are much easier to develop, they are typically more efficient][9] and they can

often be used as components in a subsequently developed higher-order program.

Consider again the general problem
Lu=f
We let

Lyu=f (4.41)
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be an O (h*) approximation of the continuum problem, so that
Lyu=f+0(h?)
and let
Lu=f (4.42)
be a distinct and lower order finite-difference approximation, so that

Lyu=f+0(h?) q <p.

Given these two distinct difference systems, the idea of deferred correc-

tion is to use an iterative process defined by:
Lq'u(”+1) = f+ Lqu(”) — Lpu(”). (4.43)

Now it is clear that if this iteration converges, i.e. if

w1 ),

then L,u"*") cancels out L,u™ in equation (4.43). Thus, equation (4.43)

becomes
Lu™ = f (4.44)

and we see that the grid function does indeed satisty the higher order equation.

Brandt[9] points out two interesting comments concerning deferred cor-
rection. The first comment is that the total work will be proportional to the
higher order operator and not the lower order operator. Thus, the hope of hav-

ing a faster solver by using lower order techniques is essentially gone, unless
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very few points in the domain use deferred correction. We only use deferred cor-
rection for the boundary points, which would signify that the overall work will
still be proportional to the lower order scheme. Since we wish to use Richard-
son extrapolation, we must drive the residuals down very low, which basically
means that our overall rate of convergence will be consistent with the higher
order operator. The second comment is that the higher order stencil need not
be stable. This is due to the fact that the convergence is fast only in smooth
components, for which the lower order operator is a good approximation to the
higher order operator. The convergence is slow only for high-frequency com-
ponents. Since the instability is only a property of high-frequency components
it will usually come on slowly, which means that we may have already driven

the residuals down low enough to determine a solution.

Thus, our scheme is set to handle general boundaries. There is no

problem discretizing the interior equations to second order,
Lia" = f (4.45)

The boundary equations are much more problematic since the coordinate sys-
tem is not boundary conforming, so we will use first order differencing for the

boundaries, namely,
Bl = ¢". (4.46)

We then use deferred correction only on the finest grids®right before the coarse

grid correction. Thus, we iteratively solve the system

it = g

3When one uses a FMG cycle, then we use deferred correction on all of the finest grid
used in each cycle.
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Bla" = ¢"+ (Byat - Blu"). (4.47)

We use fourth order deferred correction since our hope is to use Richard-
son extrapolation to fourth order. To understand why we need to use an equa-
tion which is greater than second order, we look at an example. The one

dimensional version of the inner boundary condition (2.31), is

Jdu u

and we can finite difference this to second order, using

u(a+&) =u+t&u +Su, + Ser + e

w(ath+€) =ut(E+h)u + 0y, + Ee, 4 CHI,

6 24

u(a+2h+€) =u+ (€ +2h) u, + G2y 4 EF27 4 27

6 24

where £ is shown in Figure 3.6. When we solve these equations for u, we obtain

u, = ou(a+&)+Pula+h+&) +yulat2h+§)

+ €2h2 + €3h3 (449)

where «,f3, and ~ are constants, and e; and ez are the coefficients of the error
terms. We see that the error contains terms in A°. In order to eliminate
the error term in front of h® we must use at least third order expansions.
Empirically we have found that by using only third order differencing, the
error term is not smooth, and thus we can not extrapolate. Therefore, we use
fourth order differencing to eliminate the third order error term, and to have a

smooth fourth order error term.

83



4.10 Adaptive Mesh Refinements (AMR)

Now that we have discussed methods to boost the accuracy of the solution, we
are ready to discuss AMR. Non-uniform resolution is needed in most practical
problems. For example, increasingly finer grids are needed near singularities,
and near non-smooth boundaries. We use increasingly coarser grids since the
initial value problem is defined on an unbounded domain. We found that some
useful discussions on AMR are found in Choptuik [15],Berger & Oliger[2] and
Brandt[8]. We use the AMR techniques which follow directly from Choptuik’s

work which followed from Brandt’s[8] work, and from Berger & Oliger’s work.

We recall from Section 4.1 that the algorithms use a series of discretiza-
tion levels [ = 0,..., [hax where [ = 0 is the coarsest level, and [, is the finest
and h; = 2h;y1 Now the basic approach to AMR is the following.

Using an FAS scheme, we compute 7 on all the points on the coarse

grid which have corresponding fine grid points. We then specify a maximum
T, Tmax- We refine all the points that have T}ff > Tmax. Lhus, we instantly come

up with a scheme for adaptive gridding.

4.11 Overview of the Berger & Oliger approach to
mesh refinement

There are four major stages in the Berger & Oliger regridding algorithm:

(1) flag points needing refinement,
(2) cluster the flagged points,

(3) generate a grid for each cluster,
(4)

4) evaluate the quality of the regridding and possibly repeat the steps.
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We can incorporate the entire regridding process in the first cycle of a FAS
scheme. This is the case since all we need is an estimate for the relative
truncation error: the values of 7/7 generated just before the first coarse grid

correction is initiated are generally acceptable.

4.11.1 Flag points needing refinement

An attractive feature of a FAS scheme is that it naturally generates a relative
truncation error estimate. Given a maximum allowable absolute value, T ax,

for 717 we define a characteristic function, char , of 1’s and 0’s where

char = 0, T}fl < Trmax
char =1, T{I > Tmax-

(4.50)

This characteristic function is generated whenever we need to regrid a level.

Note that the concept of “grid” is now distinct from that of “level”.
Previously we could assume that each level contained one grid, but now there
is a possibility of multiple grids on any given level (except perhaps for the
coarsest). For example, Figure 4.12 shows a one dimensional grid with two

refinements.

4.11.2 Cluster the flagged points

The most difficult part of any regridding algorithm is the clustering algorithm.

On one hand, if the clustering algorithm does a bad job, meaning that it clusters
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together more non flagged points than flagged points, then there will be a lot
of work wasted at the regions that do not have to be refined. On the other
hand, if the clustering algorithm does an extremely good job in clustering the
points, but takes an enormous amount of computational time, then this too
becomes wasteful. We derived three tables (4.1,4.2,4.3) to show the efficiency

of the refinement and as an aid in designing a clustering algorithm.

The % usefulness is the ratio of the total number of points minus the
boundary points divided by the total number of points. In the Berger and Oliger
approach, values at boundary points of refined grids are typically defined via
interpolation in parental meshes and hence can not contribute to an increase
in accuracy. Choptuik points out that when the % usefulness falls below 50%
then the efficacy of the refinement is questionable. Thus, for the 3 dimensional
case, we will need n ~ 17 before we should regrid. Note, however, that we are
not demanding that we must always use cubes in three dimensions, i.e. we can
use grids which contain n, x n, X n, points. Our first demand is that these

dimensions be at least 9 points, (ny > 9,n, > 9,n, > 9).

Multigrid algorithms work with an odd number of points since each level
discretization is based on a factor of 2 of the other levels, i.e. if a fine grid had
an even number of points, n, then the number of points on the coarse grid

would be
N=2n—-1,

where N is the number of points on the fine grid, hence N could not be an
integer. The clustering algorithm demands that each dimension must contain

an odd number of points. If we have flagged only an even number of points we
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then add an additional point.

Since in one dimension a grid is just an interval, clustering is trivial. An
appropriate algorithm is given in Figure 4.13. We see that this algorithm can
have clusters/grids which overlap each other. When this occurs, the clusters
should be merged otherwise boundary conditions will not be uniquely defined

and/or there will be unnecessary inter-grid communications on the same level.

Berger & Oliger[2] point out that a good clustering algorithm should
serve two purposes. The first is to separate spatially distinct phenomena so
that different features will be in separate grids. The second purpose is to sub-
divide the points on the grid, when the efficiency becomes low. This efficiency
is of course different from the efficiency we talked about previously. We cal-
culate this efficiency as the ratio of the total number of points in the cluster
with char equal to one by the total number of points in the cluster. This

estimates the fraction of the area of the rectangle that needed to be refined.

For now on we shall call this the rectangle efficiency. Unlike Berger &

Oliger we abandon rotated rectangular domains.

Figure 4.15 shows an example of the grid refinement process. Here the
filled in points represent those points which have char=1. The first step is
to draw a rectangle around the flagged points. This is shown in Figure 4.16.
In step two the efficiency of these two grids is calculated to be 52% and 43%.
Step three then sees which grids have an efficiency less then eff _small and

determines that grid two must be subdivided.

After the char is calculated in this region, the new rectangles are then

drawn. Figure 4.17 displays the new rectangles. We see that some originally
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Table 4.1: 1D uniform point refinement efficiency

n Ntotal  NMboundary % useful

2 2 2 0.0

> > 2 60.0

9 9 2 77.8
17 17 2 88.2
33 33 2 93.9
65 65 2 97.0
129 129 2 98.4

Table 4.2: 2D uniform square refinement efficiency

n Ntotal Mhoundary % useful

2 4 4 0.0

3 9 8 11.1

) 25 16 36.0

9 81 32 60.5
17 289 64 77.9
33 1089 128 88.2
65 4225 256 93.9
129 16641 512 96.9

flagged points are then not inside the new rectangles. The final step is to draw

rectangles around these missing points, which is shown in Figure 4.18.

The clustering algorithms are shown in Figure 4.14.
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Table 4.3: 3D uniform cubical refinement efficiency

n Ntotal Npoundary % useful
2 8 8 0.0

3 27 26 3.7

) 125 98 21.6

9 729 386 47.1
17 4913 1538 68.7
33 35937 6146 82.9

65 274625 24578 91.1
129 2146689 98306 95.4

Figure 4.5: Multiple levels used in multigrid algorithms
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Figure 4.6: The algorithm for the two level LCS.

PROCEDURE TWO_LEVEL_CS_SCHEME
Initialize grid_variables
DO p=1--- pre

RELAX  Smooth the residual

r=1{ ('rh)
END DO forp
WHILE r > ¢
rH .= I{Irh
SOLVE( LH»H = I}fl (—'rh) ) solve the coarse grid equation
o := I,v?  Prolongate the correction
al = @l + ol update uh
DO gq=1--- pst
RELAX Smooth the residual
END DO for g
END WHILE forr
END PROCEDURE
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Figure 4.7: The algorithm for the multiple level, V-cycle, LCS scheme.

PROCEDURE MULTIPLE LEVEL CS_SCHEME( l,¢, ncyc, pre, pst )
Initialize Variables
Initialize Memory
DOcycle= 1 , ncyc
VCYCLE( cycle, lmax , pre, pst)
END DO
END PROCEDURE

PROCEDURE VCYCLE( cycle, lnax, pre, pst )
Cycle up to the coarsest level
D01 = lmax s lcoarse+1
IF (1 # lmax) OR(cycle = 1) THEN
DOp = 1 , pre
RELAX  Smooth the residual

END DO
END IF
1= 1l
END DO

Now solve the system on the coarsest level
SOLVE(LHut = fH)

Now come back down to the finest level, performing the needed corrections

D01 = lcoar567 lmax -1
Determine the correction
ul = ul I;}uH
Now smooth out u”
DO0g =1 , pst

RELAX  Smooth the residual

END DO

END DO

END PROCEDURE
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Figure 4.8: A general FMG algorithm.

PROCEDURE Full Multigrid CS_SCHEME( /.x, ncyc, pre, pst )
Initialize Variables
Initialize Memory
SOLVE(LTwf = fH)  Solve the coarsest level problem
DOL = 1, lax
DOcycle= 1 , ncyc
ul = 1)
VCycle( cycle, 1 , pre, pst)
END DO for cycle
END DO forl
END PROCEDURE

Figure 4.9: A schematic of the V-cycle used in MG algorithms.
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Figure 4.10: A schematic of the W-cycle used in MG algorithms.
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Figure 4.11: The full multigrid FAS algorithm.

PROCEDURE FullMultigrid FAS( l,.x, ncyc, pre, pst )
Initialize Variables
Initialize Memory
SOLVE(LHuf = f)  Solve the coarsest level problem
DOL = 1, lax
DOcycle= 1 , ncyc
ul = II}_“IUH
VCycle FAS( cycle, 1 , pre, pst)
END DO for cycle
END DO forl
END PROCEDURE

PROCEDURE VCYCLE FAS( cycle, lnax, pre, pst )

Cycle up to the coarsest level

D01 = lmaX7 lcoarse +1
DOp = 1 , pre

RELAX  Smooth the residuals
END DO
END IF

T{I = LHIfuh — I]?Lhuh determine the truncation error estimate
fH = I{Ifh + T}{J Correct the rhs

END DO

Now solve the system on the coarsest level
SOLVE(LHyH = fH)
Now come back down to the finest level, performing the needed corrections
D01 = lcoar567 lmax -1

Determine the correction

uh =l + I]};} (uH — Ifuh)

Now smooth out u”

DOg =1 , pst

RELAX  Smooth the residual

END DO

END DO
END PROCEDURE



Figure 4.12: A schematic view of two levels, where the finer level contains two

grids.
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Figure 4.13: A basic, 1D clustering routine

PROCEDURE Cluster_1D( char,gmin,gmax )
CLUSTER= O , So far, zero clusters have been defined
DOj =1, n Loop on all the points on the domain j=1 --- n
IF( char(j)=1 and char(j-1)=0) THEN
CLUSTER:=CLUSTER+ 1  We found a new cluster
gmin( CLUSTER) = j
END IF
IFchar(j)=1 and char(j+1)=0 THEN
gmax (CLUSTER) = j  This is the end of the cluster
END IF
END DO
Now we check to see if there if an odd number of points defined on each grid
D0j = 1 , CLUSTER
IF mod ( 1 + gmax(j) - gmin(j) ) ,2 ) =0 THEN
If the grid contains an odd number of points then
gmax(CLUSTER) := gmax(CLUSTER) + 1
Add extra point in arbitrary direction
END IF
END DO
END PROCEDURE



Figure 4.14: A basic multidimensional clustering routine

PROCEDURE Cluster_nd( char,gmin,gmax,rmax,rff,é,grids )
DRAW_RECTANGLES( char,gmin,gmax,grids )
D0i = 1, grids Loop on all the grids now
¢ = CALCULATE_GRID_EFFICIENCY( char,gmin(i),gmax(i) )
IF (¢ < €min ) THEN €,y is in general 50%
Tmax *= Tmax — 0
Get_Char( char, T]fl y Tmax )
Cluster nd( char,gmin,gmax,rmax,r}fl,é )
END IF
END DO
END PROCEDURE
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Figure 4.16:

routine.

Figure 4.15: The flagged points in an AMR routine.
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Figure 4.17: The revised rectangles generated from the flagged points in an
AMR routine.
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Figure 4.18: The final revision of the rectangles that were generated from the
flagged poigts in an AMR routine.
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4.11.3 Grid generation

The grid generation algorithm takes gmin, an array which contains the smallest
value of z,y and z, gmax , the largest value of z,y and 2z, and grids , the
number of independent cluster regions, and then determines make sure that
each dimension of the rectangular region contains an odd number of points and
that each dimension is also greater than or equal to the minimum allowable
number. If any of these criteria are not satisfied gmin and gmax must be

modified as to satisfy them.

The grid generation routine defines all the grid functions on the new grid,
sets up the links to the tree structures[16] and then initializes the functions on

this grid.

4.11.4 Memory management

A crucial task in designing a MLAT algorithm is designing the data structures.

Here we utilize Choptuik’s[16] tree manipulations and data structures.

All the memory for the grid functions is allocating in a single, one-
dimensional array q. We typically manipulate grid functions on two grids
simultaneously: for example we need a coarse and a fine grid in order to define
a truncation error estimate. Thus, we include separate pointers for coarse
and fine grid functions. We use pointers which are shown in Figure 4.19.
gqptr_typel(g) is a vector which contains an integer value pointing to the
beginning of the the storage for grid g of size typel. We now introduce the
possibility of various grid types which we label as qptr_typel, qptr_type2

. Thus, gptr_type2(g) would then contain the integer value of where the
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storage of grid g begins in q. In general we can have an arbitrary number of
types. Each type has an associated number of values for each g. The number
of values associated with each g is then determined by the length of each array
of the type multiplied by the number of functions which are of this length,
nfcn typel. The functions are given unique names which are then stored in
a common block . These common blocks are then EQUIVALENCEd to another
pair of pointers which are of length nfcn typen, where typen refers to the set
of all types. This pair is set to distinguish between the coarse and fine points.
The storage scheme is shown in Figure 4.19. Storage can then be allocated and
deallocated dynamically since the only change in memory is in the values of

the q pointers.

Whenever we need to address grid functions for a particular set of grids,
we first call a routine which loads up the coarse and fine grid functions for the
particular two grids we wish to address. We then reference these arrays such as
q(uc) which would then point to the place in memory where the u function

is defined for the coarse grid.

4.11.5 Tree structures

Tree structures are the natural data structure for AMR using the Berger and
Oliger[2] approach. We use Choptuik’s Fortran 77 implementation of the tree
structure[16]. This approach uses the linked lists[32] 1head, gpp, gpngh, gpsib,
gpch. A sample linked-list structure is shown in Figure 4.20. 1head is a list of
grids which are the last grids of each level. Thus, 1head(/coarse) is the head grid
of the coarsest level and 1head(lyay) is the head grid of the finest level. gpp(g) is

the parent of g, whereas gpch(g) is the first child of g. Likewise gpsib(g) is
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Figure 4.19: Memory management.
Memory Storage Scheme

Q
Grid 1 Grid 2 Grid 3
uc fc xc /F uc fc X
gptr_typel(2)
gpt r _type2(1)
ptr_typel(3)
qptr_typel(1)

gptr_type2(2)

the sibling of g and gpngh(g) is the neighbor of g. The difference between a
sibling and a neighbor, is that siblings have the same parent, and neighbors do

not necessary have the same parent.

To better understand this we will give an example. Figure 4.20 shows a
one dimensional grid with various refinement regions. Here there are 4 levels.

The tree structure is also shown in Figure 4.20. Here UNDEF is a grid which

Table 4.4: Grid Links for tree structure
g  8pp gpch  gpsib  gpngh

1 UNDEF 3 UNDEF  UNDEF
2 1 ) UNDEF  UNDEF
3 1 6 2 2
4 2 UNDEF UNDEF  UNDEF
) 2 UNDEF 4 4
6 3 7 UNDEF )
7 6 UNDEF UNDEF  UNDEF




has not been defined. Now to traverse all the grids at a given level, all we
would have to do is determine the head of the level, via g = 1head(l), and then
each grid on the level can be scanned by g = gpngh(g). One can then chain

through the list using the algorithms shown in Figure 4.21.

We have now defined all of the major components in our MLAT codes.
We discussed the multigrid Linear Correction Scheme and FAS scheme, the
AMR schemes, deferred correction, and Richardson extrapolation. We will
examine these schemes in Chapter 6 to demonstrate how we will be able to
develop an extrapolatable MLAT code to model the initial value problem in

Cartesian coordinates.
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Figure 4.20: Adaptive grids shown with tree pointers.

grid1

grid 2 grid 3

grid4 grid5 grid6

grid 7

Neighbor Pointer
-<-------

Sibling Pointer
-

_
)
v

N First Child Pointers

)



103

Figure 4.21: Algorithms to chain through the tree structure.

PROCEDURE CHAIN_ALL_LEVELS( )
This routine will chain through all the defined grids, starting
with the coarsest level. This routine will print out the grid number.
1= lcoarse
grid = lhead(l)
START:
IF( grid = UNDEF ) GOTO END1
This is the last list defined at the level
PRINT grid
grid = GPNGH(grid)
GOTO START
END1
grid = lhead(GL(1 + 1)
The grid number is now the starting grid of the next finer level
IF ( grid = UNDEF ) GOTO END2
GOTO START
END2
END PROCEDURE

PROCEDURE PRINT_SIBLINGS(grid)
Given a grid, this routine will print out its siblings
PRINT "THE SIBLINGS OF THIS GRID ARE:"
START
grid = GPSIB(grid)
IF ( grid = UNDEF ) GOTO END
PRINT grid
GOTO START
END
END PROCEDURE



Chapter 5

genpsi: A three dimensional code for the
solution of the Hamiltonian Constraint

Most of the contents of this chapter have been published in the paper, “Three-
dimensional initial data for the collision of two-black holes”[20]. The only
change that we make in this dissertation is to point out at least one correction
to the original code. In the original version, there were a number of mistakes in
the stencils which were defined for the sweep in the z direction. To alleviate this
problem, we removed the sweep in the z direction. In this code, we made no
use of the more powerful techniques discussed in the last chapter. Our original
motivation for developing a code which used the techniques of the previous
chapter derived from flaws of the code described in this chapter. This code
also served as a test-bed, where we were able to determine if a Cartesian code

could generate accurate initial data.

5.1 The basic approach of genpsi

This approach to the numerical solution of the Hamiltonian constraint, equa-
tion (2.29), for a pair of black holes employs a finite-difference method based on
the usual Cartesian coordinates (z,y, z). The algebraic equations which result

from finite-differencing in these coordinates are solved by a variant of line-SOR
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(Successive OverRelaxation) [50].

There are two clear, major disadvantages with the Cartesian approach
we outline in this section. The first is that the coordinates do not conform
to the inner boundaries (“holes”) of the problem domain. This means that
the formulation of accurate differenced versions of the boundary conditions is
considerably more involved here than in the other two approaches described in
this paper. Secondly, because we use a uniform Cartesian grid (constant mesh
increment, h, in each of the coordinate directions), the combination of 1) the
need to resolve steep gradients near the holes and 2) limitations on our compu-
tational resources, places a severe restriction on the radius at which the outer
edge of the computational domain is located. In practice this means that we
must impose the asymptotic condition (2.34) in a regime where the neglected
terms in the multipole expansion are still significant. These shortcomings be-

came apparent in the numerical results discussed in the Results section of [20].

In Cartesian coordinates, equations (2.29), (2.31) and (2.34), are

N
ngg—imz%mig—f = —%Ba’ (5:2)
x%+y%+zg—f - 1:¢. (5.3)

where
B o= A, (5.4)

ro= yJx?+y?r+ 22, (5.5)

To = \/(1: — J/’Q)Q + (y — ya)2 + (z — ZQ)2, a=1,2, (5.6)
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z

%) are the unit normals to the holes, and the “centers” of the

ﬁa = (nzvnlojnn
holes are located at C, = (Zay Yoy 2a). Equation (5.2) holds at the hole sur-
faces and equation (5.3) is imposed at the outer boundary. The non-linear

Hamiltonian constraint is solved iteratively using a linearization which, given

an approximate solution g, determines the new iterate, :

oy 0% O T o, S9
0x? T dy? + 0z2 B §A2'¢08 Y= _A2¢0 " (5‘7)

Figure 5.1 schematically illustrates a typical computational domain which
might be used for the case of a computation involving a single hole in two di-
mensions. In addition to the inner boundary points, the computational domain
also contains interior points (those marked with a + in the figure) and outer
boundary points (filled boxes). We further categorize any point on a bound-
ary as a single-edge, double-edge, or triple-edge boundary point according to
whether the point has one, two, or three nearest-neighbors, respectively, which
lie outside of the discrete domain. For example, in Figure 5.1, the four cor-
ner points are double-edge boundary points, and the remaining outer boundary
points are single-edge. Similarly, there are 6 double-edge inner boundary points
in the figure, including the point enclosed by the doubled-diamond. As we shall
now discuss, this substantial variety in the types of points in the computational
domain results in a proliferation of specific difference equations which must be

generated in order to produce a reasonably accurate solution.

5.2 Finite differencing

Our finite-difference analogues of the system (5.7), (5.2) and (5.3) are gener-

ated using standard O(h?) centered, forward, and backward approximations to
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first and second derivatives. However, as discussed below, we have not imple-
mented a scheme with true O(h?) truncation error; rather we anticipate only
O(h) convergence in the limit - — 0 and possibly indeterminate convergence

behavior at practical resolutions.

Adopting the usual finite-difference notation f(ih,jh, kh) = f[i, 7, k],

we employ the following formulae for the x derivatives:

9% I

o (ih, jh, kh) = == [i,j, k]
_ Y+l ]Zh¢[a L,J, ]+O(h2) (5.8)
_ —Yfi+2,5,H +4¢[2'éh+1,j, k] — 392, j, k] + O(h2) (5.9)
_ 3¢[i,j,k]—4¢[z‘—}Z,g,k]mw[é—zj,k]+O(h2)7 (5.10)
g?(h jh, kh) = ;f& J: Kl
_Qlit 1,5k - zw[;;;, K+ vli— 1,7, ]+O(h2) (5.11)
= W7 (= li+ 3,5, K] + 4000 + 2., K] = 59Li + 1, j, K] + 2017, 5, 4])
Lo (5.12)
= h=2(20[3, 4, K] — 53 — 1,5, k] + 40[i — 2,j, k] — [i — 3,5, k])
0 (1), (5.13)

and the obvious counterparts for the y and z derivatives. In order to gain some
sense of how this process is carried out for the 3D, two black-hole case, it is
instructive to consider the derivation of 2D difference equations associated with

the three stencils depicted in Figure 5.1.

We first consider the stencil represented by boxes in Figure 5.1 Using

(5.11) and the analogous formula for the y derivative in (5.7) and ignoring any



z-dependence, we obtain the difference expression:
B2
7

g [ 1l ] = = [A2457] 1.4, (5.14)

which may also be applied at any other grid point marked with a +.

Now consider the stencil composed of circles which is centered at the
double-circled point. In this case, we use centered-differenced versions of both

the interior equation (5.7) and the inner boundary condition (5.2). Thus, in

addition to (5.14) we have

¢B+Lﬂ—¢h—hﬂ] (5.15)

n%d][ =
o) [ LS e

5 = Tl (5.16)
Note that although we have used “second-order” differences to generate this last
expression, it is, for a general inner boundary point, only a first-order accurate
version of the inner boundary condition since the boundary point will, as shown
in the figure, generally lie a distance O(h) from the r = r, surface. Second-
order accurate formulae could be generated using Taylor series expansion and
the governing differential equations, but we have not done so. Now, (5.14) and
(5.16) both involve the value vz, j + 1], which is defined on a lattice point lying
outside the computational domain. Therefore, we solve (5.16) for ¥[¢, 7 + 1],

and substitute the result in (5.14), yielding an expression involving only the

points of the stencil:

(1 ] el 1+ [+ ] el 1
v20li = 1) = |4 o GlGd) - § [4%5°] G let )

= — [A%¢57] i, 4).
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The stencil marked by diamonds in Figure 5.1 is centered on a double-
edge boundary point. In this case, application of centered difference formulae
to the interior and boundary equations results in references to two points which
lie outside of the computational domain. In order to derive a single equation
for the center point we employ forward differencing in the y direction, and

centered differencing in the = direction to get

Oli+ 1,5+ 0l —1,5] — ¢l 5 + 3] + 49[1,5 + 2] = 5¢[,5 + 1]
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h?
e (A i 0. ) = — [ A%657] 1) (5.17)

and

2h

oo | TPl H 2+ 400+ 1 =39 ]| Y]
n¥[i, j] l 57 ]_—ZTM]. (5.18)

i) [AtA i bA)

As before, solution of the discrete boundary condition for the value ¥[i + 1, j],
followed by substitution of the result into the differenced interior equation,

yields a single equation involving only the stencil-unknowns:

(200 = 1,7) - g+ 31 1 - ] Gl + 2

+ [4Z—i —~ 5] [i, ]l + 1] — [3Z—i — TZI] [i,j]w[ivj])
7

— [A%0® i, 310l 31 = — [A7957] 1. ) (5.19)

As a last example of the derivation of our difference equations in Carte-
sian coordinates, we consider yet again the case of a stencil centered on a bound-
ary point of a hole, but this time for the 3D case. Let the center point have coor-

dinates (ih, jh, kh) and assume that of the point’s 6 nearest-neighbors, the three



with coordinates ((¢ — 1) h, jh, kh), (ih, (3 — 1) h, kh) and (¢h, jh, (k — 1)h) lie
outside the numerical domain. Then, by definition, (¢h, jh, kh) is a triple-edge
boundary point. In such a case, we use forward differences in two of the coor-
dinate directions, and centered differences in the other. Now, as we will discuss
shortly, the complete set of difference equations is solved using a line-relaxation
method in which blocks of unknowns, such as ¥[i,j, k], = —n/2---n/2 with
J and k fixed, are updated (“relaxed”) simultaneously. We will refer to the
coordinate direction along which a block of unknowns extends as the scanning
direction. Then, at a triple-edge boundary point, we always forward or back-
ward difference in the scanning direction. To determine the type of differencing
to be applied along the other two directions, we examine the components of the
normal-the direction having the smallest component is the direction in which
we use centered differences. In the current example, assume we are scanning
in the z direction and that |n*[z, j, k]| < |nY[, 7, k]|, then we use forward differ-
ences in the x and y directions and centered differences in the z direction to get
the following discrete forms of the Hamiltonian constraint and inner boundary

condition:

+pli, g, k4 1]+ L,k — 1] + 200, 5, k]|

—g [A25%] [i, 4, K li, 3. k] = — [A%57] [i, 4, A, (5.20)
g [P RRRE W LK 30l )
wvfi, i K] [—zb[i,j +2,k] + 4¢[:'2é}bj +1, k] — 30[i, j, k]] .\
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= — . 21
2h 2r[i, 7, k| (5.21)

Solving (5.21) for ¢[¢, 7, k — 1] and substituting in (5.20) we get

xT

= (—w 3,50+ [1 = | 5 M+ 25,1
+ [4:;— = 5[5, KISl + 1, K] = 6l + 3,4

+ [4 - Z—y] i, j, KJli, § + 2, ] + [4Z—y _ 5] G, . Kl j + 1, k]

+2¢[i, 5, k 4+ 1] + lz + % — SZ— + SZ—y] (4,7, k][4, 7, k])
(A% i KT 5, K] = — [A4%57) [, (5.22)

Clearly, there are seven other distinct stencils for inner triple-edge boundaries
in three-dimensions, all of which can be readily obtained from (5.22) by suitable

permutations of the ¢, 7, and & indices.

At this point, the procedure we use to generate our difference equations
should be reasonably clear. Altogether, including the various single-, double-,

and triple-edge boundary cases, we use 77 distinct stencils in the code.

5.3 Solving the difference equations

The finite-difference discretization of (5.7), (5.2), and (5.3) we have outlined
above produces a large, sparse set of linear equations which, as mentioned
previously, is solved using an iterative, line-relaxation technique. The “kernel”
of the algorithm—-a single line-relaxation sweep—can be most clearly defined

and understood if we momentarily ignore boundary conditions and focus on

the solution of the differenced form of (5.7):

B2 (10 + 1, ] 4+ 6l — L, K]+ fi + 1,4
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— (A% 15, K1l K = = [A%657] [, K (5.23)

Now, let 1)(™)[i, 5, k] denote the values of the stored grid-function after the m-th

iteration of the solution process. Then, the equations

h_2 (¢(m+1)[L + 17j7 k] - 2¢(m+1)[67.]7 k] + I/J(m-}_l)[l - 17j7 k])
o[22 [, 5, KOO o

—I'qvb(m)[%]v k — 1] - 4¢(m)[%]7 k]) - [A2¢_7] i [57]7 k]

define a line-Gauss-Seidel (LGS) iteration for the system (5.23). For fixed j and
k, (5.24) is a linear tridiagonal system for the n -+ 1 unknowns " +t1[i, 5, k],i =
—n/2---n/2. A complete relaxation sweep consists of the solution of (n + 1)?
such tridiagonal systems, one for each pairing of j and k-after such a sweep,
each unknown has been updated exactly one time. We refer to the iteration
defined by (5.24) as 2-LGS since the lines of unknowns which are simultaneously
updated extend along the x direction. Clearly, we can also define y-LLGS and

z-L.GS iterations.

Gauss-Seidel relaxation generally has a notoriously slow convergence
rate, particularly in the limit A — 0. In order to speed convergence, it is usually
helpful to employ the technique of overrelazation. For example, associated with

the z-LGS iteration (5.24) is the z-LSOR (Line Successive OverRelaxation)

iteration:

¢(m+1)[la.]7 k] = wl/;(m_'_l)[iaja k] + (1 o w) ¢(m)[la.]7 k]a (524)
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where (™ t[i j k] satisfies the Gauss-Seidel equations (5.24), and w is the
overrelaxation parameter which generally must satisty 1 < w < 2. Although
our algorithm incorporates this strategy, with an h-dependent, empirically de-
termined w, we also use another, somewhat ad hoc, technique which basically
amounts to an additional overrelaxation applied on a point-wise basis. Again,
assuming that we are scanning in the z direction, rather than solving (5.24),

we solve

B2 (94 1, 5, K] — 406, k] 4 I - 1 k)
— 2 [ 1, MO, b
= —h72 (U, 5+ Lk + 0,5 — 1 k] + 0k + 1
+ i g,k — 1] = 200G, j, k]
— [A42= " i, k).

(5.25)

Together, equations (5.24) and (5.25) define the core of what we call an -
LSOR sweep. Where necessary, boundary equations are simultaneously solved
with the interior equations (such as (5.24)), but boundary values are never

overrelaxed.

Briefly then, our complete iterative procedure for solving the Hamilto-
nian constraint proceeds as follows. We perform z-LSOR, and y-LSOR relax-

ation sweeps ! in succession until

|00, 5, k] = e K] < e, (5.26)

We do not sweep in the z direction at the time of this dissertation since a bug appears
to be in the code for some of the stencils in the z direction.

113



for some convergence parameter, ¢, typically 2 x 107°. Each d-LSOR sweep
(d = z,y or z) requires the solution of (n+1)? linear systems in n+1 unknowns.
Each linear system is either 1) tridiagonal-a situation which occurs whenever
the discrete equations involve only centered differences in the d-direction or
2) 7-diagonal, if the equations involve forward or backward differences in the
d-direction. The tridiagonal systems are solved using a tridiagonal solver which
has been optimized for the particular machine architectures (Cray Y/MP, Cray
2) on which the code is run, while the 7-diagonal systems are solved using a
bi-conjugate gradient method. ? In both cases, the linear system can be solved
using O(n) operations, so a complete d-LSOR sweep requires O(n®) computa-
tional work. Empirically, we usually obtain convergence with O(n) sweeps; this
represents the optimal asymptotic performance which can be expected for an
LSOR method. Thus, our algorithm requires O(N*/?) operations to compute
a solution on a mesh containing N ~ n® unknowns. We note that for large
N this implies significantly poorer performance than should be possible with a

multigrid technique.

5.4 Results and comparison of genpsi to Cook’s Cadez
multigrid code

5.4.1 Methodology

In this section, we assess and compare the relative performance of genpsi to
Cook’s multigrid algorithm described above by considering the solution of the

Hamiltonian constraint for several initial configurations describing two black

2For non Cray’s we use LINPACK routines for the solution of the tridiagonal systems.
The Bi-conjugate gradient method was supplied to us by John Towns[49] at NCSA.

114



holes[20]. This comparison is taken taken out of the article co-written by this

author [20].

The basic methodology we adopt in our analysis is the straightforward
technique of convergence testing—for any given physical problem and specific
solution technique we generate numerical results at several different resolu-
tions (different basic scales of discretization, h, for the finite-difference meth-
ods. From these convergence series we can then estimate, in the ideal case,
1) the actual level of error, at a given resolution, in any given solution and 2)
the rate of convergence of the numerical solution to the continuum solution,
again at some specific resolution. This approach was adopted in a previous
comparison (Choptuik et al.)[13] of different numerical techniques which had
been designed for the solution of a particular problem in numerical relativity.
The point of this approach is that quantities such as the level of error and
convergence rate should be intrinsically (i.e. without reference to an analytic
solution or a previously computed numerical solution) assessable. However, the
error analysis of the basic numerical methods employed in [13] was expedited
by the availability of high-accuracy numerical results generated from the ap-
plication of Richardson-extrapolation techniques to the “raw” output of one of
the methods. In the current case as well, the convergence behavior of one of
the methods—the Cadez scheme—is such that the output from the algorithm
is amenable to Richardson extrapolation. Both theoretical and empirical ev-
idence support our confidence that these extrapolated values are sufficiently
accurate to be considered exact for the purpose of assessing the errors and

convergence rates of the “raw” output of the three different methods.
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5.4.2 Model Parameters

We have considered 5 different models in our comparison of the methods. As
illustrated in Table 5.1, each model is characterized by a considerable number
of parameters. Recall from Chapter 2 that « is the dimensionless ratio of the
radii of the two holes, while 3 is the spatial separation of the holes in units
of the radius of the first hole, a;. The three-vectors, ]31, ]32, §1 and §2 can
be associated, roughly speaking, with the linear momenta and spins of the two
holes—the identification becomes precise only in the limit of large separation
of the holes. The parameter royuer differs from the other six in that it has no
physical significance—rather, it is the approximate outer radius of the compu-
tational domain (the radius at which the Robin boundary condition (2.34) is
imposed) used in the corresponding Cadez resolution which, in turn, were used
to generate the reference results. Note that in terms of the 6 physical param-
eters there are only three distinct models—A2B8TS (TS since the initial data
for this case generates a time-symmetric spacetime), A1B8 and A2B8. Models
AIB8NR (NR for NeaR) and A2B8NR differ from their non-NR counterparts
only in the setting of ryuter, which, for the NR computations, was chosen to
roughly coincide with the outer “radius” of the computational domain used in
the Cartesian calculations. For all of the Cartesian computations, this radius
was about 14 a;. By generating reference values with a reduced royter, we are
able to assess the effect of the smaller computational domain (relative to the
other two algorithms) employed in the Cartesian solutions. The point is that

imposing the boundary condition (2.34) at a smaller outer radius, 7/ .. < Touters

!/

outer a

does not produce the same solution as that obtained by truncating at r

solution with the boundary condition set at rouger-
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We ascribe no particular physical significance to the three basic models
we consider; the various parameter combinations enumerated in Table 5.1 were
chosen to produce relatively interesting and illuminating data sets from the
numerical viewpoint, which were also germane to the issue of generating initial
data for “realistic” black hole encounters. Thus, based on experience gleaned
from axisymmetric computations [19, 23], we chose 3 = 8 for the separation
parameter in order to produce configurations containing two separate holes (no
single, outer apparent horizon or event horizon which envelops both throats),
yet where interaction effects are still significant. We include a time-symmetric
model providing us with an analytic solution [39], and a useful calibration
of our error-assessment. For the models with non-vanishing ﬁa, each hole
has momentum corresponding to relativistic motion. In addition, the total
linear momentum of the “configuration” vanishes, (]31 + P = 0), so as not to
degrade the Robin boundary condition (2.34). The spin vectors, ga, endow
the holes in the A1B8/AIB8NR and A2B8/A2B8NR models with what we
consider “large” and “moderate” amounts of spin, respectively (the A1B8 holes
are almost certainly nearly maximal). The cases with non-vanishing P, are “3-
dimensional” but, without spin, contain an orbital-plane symmetry. The spin
vectors were chosen to explicitly break this remaining symmetry and ensure
that the models were truly “generic”. Finally, for all models, the coordinate
centers of the black holes were located on the z-axis: specifically, for the A1B8
computations, él/al = (0,0,4) and ég/(ll = (0,0,—4) while for the A2B8
series, C Ja; = (0,0,4.046875) and Cy/a; = (0,0, —3.953125).
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5.4.3 Resolution Parameters

For each method, and for each relevant model listed in Table 5.1, we performed
computations at three distinct resolutions—we generically refer to these com-
putations as low, medium, and high resolution runs. For the Cartesian code,
these parameters correspond to h = 64,96,128, and for the Cadez code, we
refer the reader to Cook et al.[20] to better understand these parameters. For
the Cadez scheme, the design of the computational domain, coupled with the
fact that meaningful results are attainable on relatively coarse meshes, makes
a convergence test using a 4 : 2 : 1 ratio of the low : medium : high resolution
scales natural and computationally tractable—thus, in going from a low-to-
medium or medium-to-high calculation, all of the Cadez mesh parameters are

simply doubled.

As discussed in the previous section, a Cartesian computation is char-
acterized by a single discretization scale, h, or equivalently, by the number of
mesh-points, n, on an edge of the computational cube, which, as the resolu-
tion is varied, has a fixed physical length. Here, computer resources limit our
computations to a maximum n & 128 (we prefer n = 16k, for some integer k
from hardware considerations), but solutions generated with n ~ 32 are not
meaningful, so we have produced convergence series using a 2 : 4/3 : 1 relation

of the low : medium : high resolution scales.

5.4.4 Details of the comparison

In our comparison, errors (deviations) are computed at some set of Nyer refer-

ence points, labeled, for example, by their Cartesian coordinates, (x;, y;, z;), ¢ =
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1...Nt. In both subsections, for those models where an analytic solution is
not known (that is, for all models except A2B8TS), we define “error” as de-
viation from a reference solution generated from Richardson-extrapolation of
medium- and high-resolution Cadez results to the appropriate set of reference
points. We remark that, in general, these points did not coincide with points
actually used in the various “bare” Cadez, and Cartesian, computations. Thus,
some post-processing of all the basic results was generally necessary before the
point-wise subtractions required to produce error estimates could be performed.
We are confident, however, that we have, for the most part, succeeded in keep-
ing the error due to post-processing small in comparison to the fundamental
truncation errors of the various schemes, so that the reported levels of error

are genuinely indicative of the level of error in the basic solutions.

The reference points in this comparison, were simply the points used
in the various low-resolution Cade? computations. In this case, extrapolated
values were generated using a two-step procedure: 1) the medium- and high-
resolution values were interpolated to the reference points, (interpolation was
necessary due to the “zone-centered” nature of the Cadez differencing scheme),
then 2) an appropriate linear combination of these interpolated values was
formed to yield Richardson-extrapolated values at the reference points.

Some care is required in producing such extrapolated results. All of the

, ¢Cadei

extrapolations are based on the premise that the solution , produced by

the Cadez scheme, has the asymptotic (h — 0) expansion
,¢Cadei — ¢ + h2 egladei + h4€fadei 4. ’ (527)

where h is the basic scale of discretization and e$2d¢, ¢{ade?
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functions. In the limit 2 — 0, we expect output from the Cadez algorithm to
adhere more and more accurately to (5.27) on the Cadez grid points. In or-
der to produce two-level extrapolated results at a different set of points, we
must ensure that we interpolate the “bare” results to sufficiently high order
that we preserve the first two terms of (5.27). For example, in the two-step
procedure described above, linear (O(h?)) interpolation of the medium- and
high-resolution results to the low-resolution grid points would be insufficient
since that procedure would introduce new O(h?*) terms which, except for spe-
cial mesh geometries, would not be (significantly) “cancelled” by Richardson
extrapolation. In order to interpolate both ) and A? egadei correctly, we need
to use at least quadratic (O(h?®)) interpolation. In the generation of all of
our Richardson-extrapolated reference results we have been conservative in

our interpolation and (polynomial-)extrapolation operations, invariably using

a higher order of interpolation than is strictly necessary.

As mentioned above, the various “bare” results which were produced
by running each code/model pair at three different resolutions also had to be
postprocessed in order to produce values at the specific sets of reference points
just described. The Cadez values were (again conservatively) cubically (O(h*))
interpolated to the reference locations, while linear interpolation was employed
for the Cartesian quantities (fundamental considerations and direct numerical
experiments indicate that the O(h?) errors incurred by the linear interpolation
are negligible in comparison to the truncation error of the scheme). We also
note that we made no attempt to compute errors in the Cartesian results at

points which lie outside the (rather small) Cartesian computational domain.

In Section 5.4.5, we quantify the basic level of error in any of the numer-
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ical computations, ™°%! in terms of the following discrete ¢; and /., norms of

the relative deviation from the reference solution, ¥*:

NI
1 ref 1/)21_n0de1 _ ¢;ef| .
el = N’fz o (5.28)
ref ;=1 [
N model __ ,/ref
lello = iy 87T — i (5.29)

=1 ¢§ef
where the index ¢ in these expressions ranges over the N/ of the N values
which lie within the computational domain of the particular calculation under
consideration. For the finite difference solutions, we also estimate a convergence

rate by computing the ratio

1n(||eh1||1/||eh2||1) |
ln(hl/hg) (5.30)

where hy and hy are the low and medium, or medium and high resolution
discretization scales. Clearly, in the limit hq, hy — 0, this ratio should approach

p for an O(h?) difference scheme.

5.4.5 Results of the comparison
Global error analysis

The results of the comparison are summarized in Table 5.2; here we make a few
additional comments about overall features of the comparison as well as the
general performance of the two methods. In the first place, and perhaps most
importantly, we observe that the tabulated results show a satisfying level of
agreement among the output of the schemes. For both methods, we generally

have average agreement of the high resolution results to within 1% or so, and
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for most of the calculations, there is a general trend of decreasing deviation

with increasing resolution.

In addition to this overall agreement, the superior accuracy of the Cadez
results in comparison to the results from the other two methods is also striking.
Particularly noteworthy is the clear O(h?) convergence manifested by all of the
Cadez computations; this convergence behavior is significantly better than that
of the Cartesian algorithms and, as a result, the high-resolution Cadez results
are generally well over an order of magnitude (and in some instances nearly two
orders) more accurate than the best Cartesian results. Furthermore, as previ-
ously discussed, because of this rather precise O(h?) convergence, the Cadez
results can be substantially improved using Richardson extrapolation. For ex-
ample, Table 5.2 shows that for the time-symmetric computation (A2B8TS),
two-level extrapolation provides nearly a 500-fold improvement on the accu-
racy of the high-resolution results (the improvement in the ¢, norm is not so
dramatic, but we have not studied this issue in any detail). Based on the sim-
ilarity of the observed levels of deviation in the Cadez results from model to
model, we conclude (self consistently!) that the other extrapolated solutions

(reference solutions) have similar accuracy.

In contrast to the Cade? results, the general convergence properties of
the Cartesian data sets are more difficult to assess and quantify. As anticipated
in the above section, we believe that the somewhat erratic convergence behav-
ior of the method seen in Table 5.2 is largely attributable to: 1) The nature of
our approximation of the inner boundary conditions (which are generally O(h)
accurate while the discretization of the interior equations is O(h?)), and 2)

the small diameter of the Cartesian computational domain. The A1BSNR and
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Table 5.1: Parameters for various two-hole calculations used in the comparison.

Model a f3 ]31 [a; §1/a% ]32/@1 gg/af Touter/ @1
A2B8TS 2 8 (0,0,0) (0,0,0) (0,0,0) (0,0,0) 730
AIBS 1 8 (14,0,0) (—280,280,0) (—14,0,0) (0,280,280) 350
AIBSNR 1 8 (14,0,0) (—280,280,0) (—14,0,0) (0,280,280) 17
A2B8 2 8 (15,0,0) (-20,20,0) (—15,0,0) (0,20,20) 730
A2BSNR 2 8 (15,0,0) (-20,20,0) (—15,0,0) (0,20,20) 18

A2B8NR models were introduced specifically to estimate the relative effect of
this second aspect of the Cartesian computations on the overall level of error.
As can be seen from Table 5.2, errors in the Cartesian results in comparison
to the NR reference solutions are significantly less than the deviations from
the solution of the corresponding base model. In addition, the Cartesian con-
vergence rates of the NR data sets are clearly superior for both the A1B8 and
A2B8 models. For a model like A1BS the error induced by imposing the outer
boundary condition at such a small radius is a significant (if not dominant)

fraction of the total error, even for the low-resolution computation.
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Table 5.2: Norms of point-wise relative deviations in % using extrapolated
Cadez values as reference except for A2B8TS where the reference solution is
analytic.

Cadez Cartesian
Model Res. lle]|1 (conv. rate) Il€]] o |le]|1 (conv. rate) I€]|oo
A2B8TS  low  241x107° 1.06 x 1072 3.9 x 1072 1.9x 1071
med. 5.84 x 107% (2.04) 2.67x 1073 1.5x 1072 ( 2.4) 1.0x 107!
high  1.45x 107* (2.01) 6.29x 107* 5.1x 1073 ( 3.7) 2.5x 1072
extrap. 3.12x 107 1.33 x 1074 — —
A1BS low  6.80x 10~* 519x 107% 1.3 x 1072 4.5 x 1072
med. 1.65x 107% (2.04) 1.42x 1073 1.3x 1072 ( 0.0) 4.4x 1072
high  4.13x 107° (2.00) 3.54x 107* 1.3x 1072 (-0.2) 4.4x 1072
A1B8NR  low  1.43x 107 517x107% 2.3 x 1072 1.2x 1072
med. 3.48 x 1071 (2.04) 1.42x 1073 2.1x1073( 0.3) 1.1x 1072
high  8.71x 107° (2.00) 3.54x 107* 2.0x 1073 ( 0.1) 1.1x 1072
A2BS8 low  7.13x107* 4.88x 1072 1.2x 1072 7.5 x 1072
med. 1.69x 107* (2.08) 1.57x 107> 9.8x 107*( 0.5) 9.0 x 1072
high  4.23x 107° (2.00) 3.92x 107* 6.3x107° ( 1.5) 2.0x 1072
A2BSNR  low  1.74x 1073 4.93x107% 8.9x 1073 7.4 x 1072
med. 4.12x 107* (2.07) 1.58 x 107 6.1x 107> ( 0.9) 8.8x 1072
high  1.03 x 107% (2.00) 3.96 x 10=* 2.7x 1073 ( 2.8) 1.4x 1072




125

+
+
+
+
+

H
+
+
|

o+ o+ + =
o+ o+ + =
o+ o+ + =
o+ o+ + =
o+ o+ + =
o+ o+ + = J
o+ o+ + =
o+ o+ + =
o+ o+ + =
-+ + =u
-+ + =u

Figure 5.1: Schematic representation of the computational domain for a hypo-
thetical, 2D, single-hole Cartesian calculation.



Chapter 6

Test problems

In this chapter we implement most of the tools that we will need in design-
ing a 3D extrapolatable MLAT code for the initial value problem of 2 black
holes. A complete code has not yet been implemented. The original tools we
implemented in this chapter are in sections (6.3), (6.4), (6.5 ), (6.6), and (6.7).
We go through a series of test problems each usually implementing one new
technique which is different from an (all-Dirichlet) PDE, which we refer to as

the “model problem”.

The first problem, found in Section 6.1 compares a basic 3D multigrid
code with a SOR code, a Gauss-Seidel code, and a Jacobi code. We will clearly
see that the multigrid algorithms are the most efficient algorithms for solving
elliptic systems[12][20] . We also boost the accuracy of the solution using
Richardson extrapolation, and show how this can easily be introduced in the
multigrid algorithm[12][20].

The second problem, found in Section 6.2, tests the adaptive routines
which will be used in our 3D multigrid code for 2 black holes. Here we assume

an analytic solution:

prly Ly

™ L)
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which is a good approximation for # for two black holes. This code will es-
timate the truncation errors on a lattice and then refine the regions where it
determines that the truncation errors are large . This code will then generate
grid structures of the type which eventually will be used in a complete MLAT

algorithm for the initial value problem.

The third problem, found in Section 6.3, is concerned with the outer
boundary condition, equation (2.34), and we design a 1D multigrid code using
this boundary condition. Here we use a first order stencil, and cycle using
deferred correction. We see here that the outer boundary is easy to implement.
We also demonstrate that in order to Richardson extrapolate, we must use

deferred correction to an order greater than 3.

The fourth problem, found in Section 6.4, examines the issue of Richard-
son extrapolation in a MLAT code. Here we find empirically a method which
generates extrapolatable solutions in MLAT codes. Our solution to this prob-
lem involves smoothing the truncation error estimates around grid interfaces.
Here we consider both one-dimensional and two-dimensional problems and de-
sign multigrid codes for both. We see that that the results from both codes

can be Richardson-extrapolated.

The fifth problem, found in Section 6.5, considers the difficulties en-
countered in designing an efficient multigrid code in one dimension, when the
grids are non-contained. Here we must determine the correct transtfers for the
boundary equations, and for the interior equations, whose points are close to
the boundaries. We consider this issue since a three-dimensional multigrid code
for the treatment of a problem on an unbounded physical domain will not have

a uniform computational domain, i.e. the coarsest grid will certainly not cover
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the entire domain, nor will the finest.

The sixth problem, found in Section 6.6, combines features from the
previous three problems in the construction of a general 1 dimensional multigrid
code with inner and outer boundary conditions. Since derivatives can not
be approximated well on very coarse grid, we would like to use a Dirichlet
condition for the inner boundary on the coarser grids, and then use a mixture
of a Dirichlet condition and the Robin condition on intermediate grids. Thus,
we use a blended boundary condition implemented on the inner boundary, to
help improve the convergence rate. Finally, on the finest levels, we will apply

the true Robin condition.

For the last problem, found in Section 6.7, we implement a two dimen-
sional multigrid code on a domain like the one shown in Figure 6.46, where the
points inside the hole are not in the computational domain. We use special

smoothing around the boundary of the hole, along with deferred correction.

By using more the more powerful techniques developed in this chapter
we should be able to make a new version of genpsi which not only outperforms
the old version in speed, but also in accuracy. We should also be able to use
these algorithms in designing other codes which will be used to solve other
elliptic equations in numerical relativity. Here we have a cleaner mathematical
formulation of our problem than might usually be the case and our boundary
geometries, though non-trivial, are nowhere near as intricate as those often
encountered in engineering applications (airfoils etc.). We note another reason
people have not used extrapolation etc. is that it is more work and you do not
get better results until you already have solutions which are generally accurate

enough in any case. In our case the advantage of extrapolating low-order results
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lies in the need for extremely high accuracy for wave prediction, which justifies

the effort.

6.1 Four iterative algorithms to solve a model problem
in three dimensions

In this section, we wish to solve a model elliptic problem:

Pu(z,y,z)  Pu(z,y,z)  *ul(z,y,z)
Oz? 0y? 072

:f(:c,y,Z) (61)

with Dirichlet boundary conditions, where x € (0---1), y € (0---1) and z €
(0---1).

This is finite differenced on a uniform mesh (constant mesh spacing A

in all three directions) to O (h?) as usual:

R72 (ulf + Lk )+l = 1k D+ ulf b+ 1,0+ ulj k= 1,1])

+h7E (ulg, ky L4+ 1] + ulf, k1 — 1] — 6uljy, k, 1) = f[5, &, 1]. (6.2)
We then define f[7, k, (] so that the solution is
ulg, k,[] = sin (27 z[j]) % sin (27y[k]), xsin (27z[l])
fls, k, ] = —67° (sin (27z[5]) x sin (27y[k]) x sin (272[{])). (6.3)

which defines the boundary Dirichlet values.

In this section we compare the CPU time, which was measured on a
CRAY YMP, the work unit,the final {5 norm of the residuals, the convergence

rate, and the error for four iterative algorithms.
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6.1.1 The algorithms

The Jacobi algorithm we use is a point-wise algorithm shown in Figure 6.1.
The Gauss-Seidel and SOR codes have similar algorithms, but the uold’s in
the Jacobi algorithm are replaced by unew’s and an w factor is placed inside
the algorithm, setting w = 1 for the Gauss-Seidel code. The algorithms are

shown in Figure 6.2, where we use Woptimum Which was defined in chapter 3.

The full multigrid algorithm uses the same algorithm defined in Fig-
ure 4.11, which we also include in Figure 6.3 for convenience. The smoother is

defined by the RELAX routine.

A general cubic interpolation routine[14] is used to transfer the solution
of a coarse grid to a fine grid, on all grids which have over 5 points per side.
We find that cubic interpolation does help to reduce the residuals by an order
of magnitude over linear interpolation. In our test we saw that v cycles were
the fastest type of cycle. We also found empirically that multigrid performance
was best when pre and pst the number of relaxation sweeps performed before
and after a coarse grid correction respectively, were both set to 3. We also used
linear interpolation and half-weighted restriction (which we found superior to

full-weighted restriction).

6.1.2 Results

In this section we present the performance of the above algorithms on a model
problem. We run each of these codes for levels 2 through 7, where the number

of points on a cube edge, n is defined by

1

n=2

+1. (6.4)
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Figure 6.1: The Jacobi algorithm.

PROCEDURE JACOBI( 1, res2)
Solve the model problem
Initialize grid variables(l) with nx,ny,nz points

n = 0  No iterations have taken place
START

n=nt+1
Relax the system via equation (3.48)
uold = unew
IF(> res2) GOTOSTART
Compute the error
END PROCEDURE

Figure 6.2: The SOR/Gauss-Seidel algorithm

PROCEDURE SOR/GAUSS-SEIDEL ( 1, res2)
Solve the model problem
Initialize grid variables(1l) with nx,ny,nz points

n = 0 No iterations have taken place
START

n=n+1
Relax the system via equation (3.61)
IF(> res2) GOTOSTART
Compute the error
END PROCEDURE
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Figure 6.3: The FAS FMG algorithm.

PROCEDURE FullMultigrid FAS( l,.x, ncyc, pre, pst )
Initialize Variables
Initialize Memory
SOLVE(LHu = fH)  Solve the coarsest level problem
DOl = 1 , lyux
DOcycle= 1 , ncyc
ul = Il ut
VCycle FAS( cycle, 1 , pre, pst)
END DO for cycle
END DO forl
END PROCEDURE

PROCEDURE VCYCLE FAS( cycle, lpax, pre, pst )
Cycle up to the coarsest level
D01 = lmaX7 lcoarse +1
DOp = 1 , pre
RELAX(u" = f*)  Smooth the residuals
END DO

T}{J = LHI}quh - I}?Lhuh determine the truncation error estimate

A =0ffh4+7H  Correct the rhs
END DO

Now solve the system on the coarsest level
SOLVE(LHu! = fH)

Now come back down to the finest level, performing the needed corrections

DOl = lcoar567 lmax -1
Determine the correction
ul = —I—I;} (uH - Ifluh)
Now smooth out u”
DOg =1 , pst

RELAX(u" = f*)  Smooth the residual

END DO

END DO

END PROCEDURE
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The TIME is the total computational time, measured in seconds, W is the work
units (recall one work-unit is the computational work needed to relax on the
finest grid) divided by 25.8, which normalizes the FMG FAS work to unity, and
p is the convergence rate, defined in Section 4.5, as

| | T.initial | |

|| T.ﬁnal”

p =W tlog,, (6.5)

We also represent the ¢; norm of the relative error as e.

We see that the multigrid code typically takes about 4 relaxation sweeps
on the finest grid in order for the residuals to be reduced by one order of
magnitude. There are two other plots of a type which we will often show in
later chapters. The first is a plot of the 3 norm of the residuals as a function
of W (the work unit) number. Figure 6.4 shows log,, of the {3 norm of the
residuals versus the work for the SOR code, the Gauss-Seidel code, and the
multigrid code. This data was generated from the level 6 run. The other plot,
Figure 6.5 shows the reduction of the error, e, versus the work unit, W. This
figure clearly shows that in the SOR algorithm, over 200 unnecessary sweeps
were done, since we can easily see that after about 250 work units, the error
is not reduced any more. The multigrid code which we used did not use an
adaptively determined stopping criterion of the type discussed in Chapter 4
and we see that we could have easily reduced the work units on the multigrid
code too. We also see that the Gauss-Seidel code is extremely inefficient for
solving elliptic equations[12] [10]. We once again repeat that there is nothing
new in these results, we include them here primarily as motivation for using
multigrid. In the tables that we use from this point forward, we frequently

represent numbers as a(b) which is equivalent to a x 10°.
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Table 6.1: 3D FMG FAS Multigrid algorithm results

I TIME W Final ry p €

2001 08 12(-13) -7.5(-1) 5.9(-2)
3002 1.0 8509 036 1.6(-2)
4 0.08 1.1 3.4(-7) -0.26 4.2(-3)
5 033 1.0 28(7) 025 1.1(-3)

6 1.63 1.0 8.6(8) 025 2.8(-4)
70943 1.0 23(8) 025 7.0(-5)
Table 6.2: 3D SOR algorithm results

I TIME W  Final ry p e
2002 15 1.0(-12) -3.5(0) 5.9(-2)
3004 22 589 -1.7(-1) 1.6(-2)
4018 3.9  28(-7) -8.4(-2) 4.2(-3)
5143 7.7 21(-7)  -4.3(-2) 1.1(-3)
6 1551 167 3.2(8) -2.2(-2) 2.8(-4)
719400 34.6 1.6(-8) -1.1(-2) 7.0(-5)
Table 6.3: 3D Gauss-Seidel algorithm results
1 TIME W Final ry p €
2 001 01 1.0(-13) -7.2(+1) 5.9(-2)
3003 16 43(9) -2.9(-1) 16(-2)
4021 48  31(-7)  -6.7(-2) 4.2(-3)
5350 105 28(-7)  -1.7(-2) 1.1(-3)
6 7580 831  8.6(-8) -4.1(-3) 2.8(-4)
7 1866.8% 333.1 2.3(-8) -9.8(-4) 7.0(-5)

Table 6.4: 3D Jacobi algorithm results

I TIME W Final ry P €

2 0.01 0.1 1.0(-12) -7.2(4+1) 5.9(-2)
3 0.05 2.5 8.2(-09) -1.5(-1) 1.6(-2)
4 045 9.1 3.2(-07) -3.4(-2) 4.2(-3)
5  6.70 37.6  2.8(-07) -8.4(-3) 1.1(-3)
6 137.10 150.2 8.6(-08) -2.1(-3) 2.8(-4)
7 3376.21 6024 2.3(-08) -5.2(-4) 7.0(-5)
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Figure 6.4: A plot of the ¢; norm of the residual versus

level run
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Figure 6.5: A plot of the absolute error versus the work unit for a six level run.
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6.2 Adaptive tests

The purpose of this section is to see how well grid adaptation of the type
discussed in Section 4.10 will work with the type of function which tends to
approximate ¥. A good approximation to @ for two black holes with zero

extrinsic curvature is

wmodel =1 + E + % (66)

r1 T2
Bowen & York[7] also suggest a model % for one hole as

1
1

b+ S+ %) (6.7)

72

«
'¢model = (1 + —+

r
where «a, 3, and 6 are constants. We use a model ? with a similar form:

5
¢:a+ﬁ+l+r—2+i+i
1

™ T2 T% mro
where ry =r — ¢y, 79 =1 — ¢9, and «, 3, v, 0, €, and eta are constants.

We use this t to determine f from

F =V, (6.8)

h

We then compute the local truncation error,7" via equation (4.27),

= Ly —

Finally we compare 7" with 7,,.x to see where the grid needs to be refined, and
we then refine the grid at this level, thereby generating one or more new grids.
We will fully document the algorithms in the sections below, beginning with

the one dimensional case.
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6.2.1 Adaptive Mesh Refinement (AMR) in 1D

The 1D code is described fully by the algorithm in figures (6.6) , (6.7), and (6.8)
. Here sg2 is an input parameter which, if equal to one, specifies that each grid

must have its total number of points equal to 2" + 1, where n is an integer.

We now test the routines using the fixed input parameters: z,;, = —100,
Tmax= 100, Tmax= 0.01 and l,.x = 20 . We show the bounding limits of each
grid, (Figure 6.17), by generating a rectangle, which has a height equal to half
of a level. The bottom of the rectangles are at the level of the grid. The input

parameters of these runs are shown in Table 6.5.

The output of this code generates a graph and listing. The output of
the first run is shown in Table 6.6, where we include output only for the first

10 levels. The corresponding graph is shown in Figure 6.15

A careful look at this output shows that the grid refinements are “zoom-
ing” into the singular points. In fact, on the finest level, we are using over 5000
points. The other noticeable thing about this run is that, except at the coars-
est level, each grid covers a smaller region than its parent. Run 2 differs from
run 1 only in that we demand that the number of points in a grid must be
2" + 1 for some n. We see from the results in Table 6.7 that there are many
levels where GXMIN and GXMAX do not change from their parents. Thus, there
is much waste in this refinement, and in general we should not be concerned

with having children maintain NX = 2" + 1.

This one dimensional test is not a “true” test of the problem which we
will be trying to model in higher dimensions. Since the computational domain

will end at approximately the radius of each hole, the grids will never approach
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the singularity. Thus, our multidimensional test cases will have the option of

whether or not to stop the domains at or near the edge of the hole boundaries.

The third run was made such that we would be able to compare the grid
refinements of a run where the higher order terms in @ were small compared
to the first two runs. The results for this test are shown in Table 6.2.3 and
Figure 6.17. It is extremely difficult to tell the difference between the graphs
of these two runs, thus, we should also look at tables (6.6) and (6.2.3). We see
that at the 10** level, there is only about half the number of points being used

on this run.

We have also built the foundation for the multidimensional codes. Build-
ing one dimensional codes before the multidimensional cases appears to be an
excellent practice, since the one dimensional cases can be implemented, tested

and evaluated much more rapidly than their multidimensional counterparts.

6.2.2 AMR in 2D

The 2D code is described fully by the algorithm shown in figures (6.9), (6.10), (6.11),
(6.12), (6.13) and (6.14),

We now test the routines using the fixed input parameters:
Zmins Ymin = —100, Tmax, Ymax = 100, Tmax = 0.0005 and lpax = 14 and sg2 =

0. The input parameters of this run are shown in Table 6.8.

The output of the first run is shown in Table 6.9 although we truncated
the output to show only the first seven levels. To make the graphs easier to
view, we first outline a bounding box for each grid. We then shade each grid

according to its level, the finest level of each run is black, whereas the coarsest



level is white. We also include figures which zoom in on certain regions for
each graph. The graphs of this run are shown in figures (6.18), (6.19), and
(6.20). As we expect, the finest grids form a circle around the radius of the
smallest hole, since the truncation error estimates get greater as we approach
the singularity. In this run, we allowed 14 maximum levels, but the run stopped
at 10 levels since 7[7, k] < Tmax at level 11. We also see from the graphs of these
runs, that our clustering algorithm does not work extremely well. Berger and
Rigoutsos[3] have a much better algorithm which we plan to use in the future.
The truncation error must be isotropic since both of the “unknowns” (u) and
differential operator are. Our algorithm encounters difficulties when trying to

resolve the regions around the holes since not all of the grids overlap.

The only difference between the first two runs, is that the second run
does not set 7[j, k] = 0 inside the holes. Thus, we should expect the grids to
zoom into the singularity. Since we do not allow any grid to have more than
512 x 512 points, the run stopped at the 10* level although the truncation
errors were not below 7,,,. Once again we show three graphs of the bounding
boxes of the grids for this run. These graphs are shown in figures (6.21), (6.22),
and (6.23).

In the third run, we let the centers of the two holes be very far from
one another. We also let the radii of both holes be equal to 1/2. This run
required 13 levels of refinement to get the truncation error values below 7yax.
The graphs are shown in figures (6.24), (6.25) and (6.26). We see that as soon
as we got to the fourth refinement level, the grids were split into 2 regions.
We see that the grids are symmetric from one hole to the other as would be

expected. The third image for this run zooms into one of the holes to see
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the actual refinement grids used around the hole. Once again we see that the
clustering routine has done a poor job of refining the region around the finest
level. Before we can incorporate our clustering routine into our 3D multigrid

code, we must improve its performance.

We can expect that these routines can be used as regridding modules
in our 3D MLAT code. Of course that MLAT code will also use a relative
truncation error estimate instead of the true truncation error. We did not
worry about generating a table of the efficiencies since our algorithm does not
work extremely well. As we stated before, the finest grids around a hole do not

always overlap, which is a extreme deficiency in the algorithm.

6.2.3 AMR in 3D

The 3D routines are almost identical to the 2D routines. The only real differ-
ence between the two versions is in the clustering routines. In particular, in
the procedure PROCEDURE CLUSTER_1 we now add two more ways to look, UP
and DOWN which makes the routine search in a 7 point stencil now. Since it is
extremely difficult to display the grid structure, we do not, particularly since

the results look very similar to the two-dimensional case.
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Figure 6.6: The AMR algorithm

PROCEDURE ADAPT GRIDS_1D( a,f,7,06,€,m, ¢1, C2,min, max
Tmax,sg2:lmax )
Program determines ™" from V?u" = f*
where v = a + ﬁ'rl_l + 7'r2_1 +6r -2+ 67’2_2 +7 (7’17’2)_1
h =1/2(max — min)  coarsest grid has 3 points
DEFINE BASE GRID( 1 , h, sg2, min, max, gxmin , gxmax , nx )
DEFINE GRID_FUNCTIONS( lhead(0) , nx, gxmin, gxmax ,h,
o, 3,7, 6, e,n,z,u, f,T)
1=0
refine = TRUE
grid = lhead(1))
Start to loop on all the grids at this level, by first finding
the head of the level, and then finding all of the neighbors
START
IF refine = FALSE GOTOEND
bins = CLUSTER_GRID( grid, nx, sg2, T , Tmax, imin, icount )
The routine CLUSTER_GRID , makes bins clusters of points with imin(bins))
used to store the starting values and icount(bins) storing
the number of points in the bin
IF( bins > 0) GENERATE NEW_GRIDS( grid, bins, imin, icount,sg2,
gxmin, gxmax,nx )
The routine GENERATE NEW_GRIDS determines the number of points on
the grid and the extent of the grid. The routine also sets up
all the new linked lists
DEFINE GRID_FUNCTIONS( grid , nx, gxmin, gxmax ,h,
a,B,7,0,e,n,z,u, f,T)
Now DEFINE GRID _FUNCTIONS will set up all the grid
functions on all children of grid grid
IF(bins > 0) refine = TRUE
grid = gpngh(grid)
Set grid equal to its neighbor grid
GOTOSTART
END
PRINT GRIDS
END PROCEDURE



Figure 6.7: The AMR algorithm to define the base grid

PROCEDURE DEFINE BASE GRID( grid,h,sg2,min,max,gxmin,gxmax,nx)
This procedure will set up gxmin ,gxmax and nx for the grid
IF( sg2 = 0) THEN
gxmin(grid) = min
gxmax(grid) = max
nx = 1 + h™!(gxmax(grid) — gxmin(grid))
ELSE
We will only use 2" + 1 points on this gridi
nx = 1 4 2log(h™! (maz—min))
gxmin(grid) = min
gxmax(grid) = gxmin(grid) + h * (nx - 1 )
END IF
END PROCEDURE

PROCEDURE DEFINE GRID_FUNCTIONS( grid , nx, gxmin, gxmax ,h,a,f(,
v, 0,e,n,z,u, f,T)
This routine will determine x,u, f, and T for the grid
GETX(nx,gxmin(grid) ,h, z)
GETU(nx,z,a,3,7,0,€,m,u)
GETF (nx,z,a,08,7,0,¢,m, f)
GET_TAU(nx, h,u, f,T)
END PROCEDURE

PROCEDURE GENERATE NEW_GRIDS( grid, bins, imin, icount,sg2,
gxmin, gxmax,nx )
This procedure will free all the memory to be used with this grid
along with setting up all the links for 1head , gpp , gpngh , gpsib ,and gpch.
DOi = 1 , bins
g=1l1lfree(llnext) g is the next grid number that has not been used
gl(g) = gl(grid) + 1
min = z(imin(i))
max = z(imin(i)+ icount(i)—1)
DEFINE BASE_GRID( grid,h,sg2,min,max,gxmin,gxmax,nx)
lhead(g) = g
gpp(g) = grid
gpch(g) = UNDEF

gpsib(g) = find_sib(g)
gpngh(g) = find ngh(g)
END DO

END PROCEDURE
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Figure 6.8: The 1D clustering AMR algorithm.

PROCEDURE CLUSTER._GRID(grid, nx, sg2, T , Tmax, imin, icount )
This functions returns the number of unique group of points

(1) =7(2)
T(nz) = 1(nz — 1)
goodbins = 0
flag = FALSE

7 is not defined on end points

Now loop over all points and separate flagged points into clusters

DOi =1 , n

IF(flag AND ABS(7(%)) > 7Tmax ) THEN

goodbins =

flag = FALSE

goodbins + 1
minbin(goodbins) =

i

ELSEIF( NOT flag AND ABS(7(i)) < 7Tmax) THEN

flag = TRUE

maxbin(goodbins) =

ELSE
lastx = 1

lastx

IF( NOT flag AND goodbins > 0) THEN
maxbin(goodbins) = lastx

END IF
END IF
END DO

Now all the points are flagged and separated into unique bins
Now we must make sure that each bin contains an odd number of points

DO0i = 1 , goodbins

IF( MOD( (maxbin(i) - minbin(i)),2 ) NOT= O ) THEN

minbin(i) =

minbin(i) + 1

We just add an extra point to the front of the bin

END IF
END DO

Table 6.5: 1D AMR test parameters
run number sg2 a [ ~ 0 € n c1 ¢
1 0 1.0 15 1.0 10.0 10.0 0.0 -10.0 10.0
2 1 1.0 15 1.0 10.0 10.0 0.0 -10.0 10.0
3 0 10 1.0 10 0.0 0.0 0.0 -10.0 10.0
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Figure 6.8 continued

Now merge together any bins that overlap
total bins = MERGE BINS(goodbins,minbin,maxbin, iy, Zmax)
This routine will return the total number of unique bins = MERGE_BINS
This routine also returns the starting points
and ending points of the bins in Ty, and Tymax
IF( sg2 = TRUE) THEN
START1
DOi =1 , total_bins
points = xpa(i) - zpp(i) + 1
If points is not a power of two then add points to Tmin and Tmax
END DO
new_bins = MERGE BINS(goodbins,minbin,maxbin,zmin,max)
DOi = 1 , new_bins
points = Zpax(i)- zmin(i) + 1
If points is not a power of two THEN GOTO START
END DO
total_bins = new_bins
END IF
Now just put the total number of bins in CLUSTER_GRID
and the total number of points in Tmax(i)
CLUSTER_GRID = total_bins
D0i = 1 , CLUSTER_GRID
Tmax (1) = Tmax(1) - Zmin(i) +1
END DO
END PROCEDURE
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Figure 6.9: A 2D AMR algorithm

PROCEDURE ADAPT GRIDS 2D( a,f,7, ¢1, €2,minx, maxx,miny,maxy,
radiusl,radius2, mmax,582,
lmax,option)

DEFINE_BASE_GRID2D( )
gxmin , gxmax , gymin, gymax , nx ,ny)
DEFINE_GRID FUNCTIONS2D( )
1=0
refine = TRUE
grid = lhead(1)
START
IF refine = FALSE GOTOEND
bins = CLUSTER_GRID2D( grid, nx, ny, sg2, T , Tmax:s
imin, icount,jmin,jcount )
The routine CLUSTER_GRID , makes bins clusters of points with
imin(bins) and jmin(bins) used to store the starting values and
icount(bins), jcount(bins) storing the number of points in the bin
IF( bins > 0) THEN
GENERATE _NEW_GRIDS2D( )
The routine GENERATE NEW_GRIDS2D determines the number of points
on the grid and the extent of the grid. The routine also sets up
all the new linked lists
IF(bins>0) THEN
DEFINE_GRID_FUNCTIONS2D( )
Now DEFINE GRID FUNCTIONS2D will set up all the grid
functions on all children of grid grid
efficiency = CALC EFF( )
CALC_EFF computes the efliciency on the grid as described in the text
END IF
IF(bins > 0) refine = TRUE
grid = gpngh(grid)
Set grid equal to its neighbor grid
GOTOSTART
END
PRINT GRIDS
END PROCEDURE



Figure 6.10: The 2D AMR algorithm used to define the base grid

PROCEDURE DEFINE_BASE_GRID2D( grid,h,sg2,Zmin»Zmax»Ymin » Ymax
gxmin,gxmax,gymin,gymax,nx,ny)
This procedure will set up gxmin ,gxmax,gymin,gymax,nx and ny for the grid
IF( sg2 = 0) THEN
gxmin(grid) = &y
gxmax(grid) = Zmax
gymin(grid) = Ymin
gymax(grid) = Ymax
set nx
set ny
ELSE
We will only use 2" + 1 points on this grid
nx = 1+ 2Mog(h™! (Tmax—=min))
ny = 1+ 2087 (Vmax—ymin))
gxmin(grid) = gxmin(grid)
gxmax(grid) = gxmin(grid) + h * (nx - 1 )
gymin(grid) = gymin(grid)
gymax(grid) = gymin(grid) + h * (ny - 1 )
END IF
END PROCEDURE

PROCEDURE DEFINE_GRID_FUNCTIONS2D( )
This routine will determine z,y,u, f, and T for the grid
option will tell whether or not T will be defined inside radiusl and radius?2
GETX(nx,gxmin(grid) ,h, z)
GETX(ny,gymin(grid) ,h, y)
GETU(nx,ny,z,y,a,3,7,c1, ¢o,radiusl,radius2,u)
GETF (nx,ny,z,y,a,3,7,c1, ¢z ,radiusl,radius?2, f)
GET_TAU(nx, ny, h,u,f,option, radiusl, radius2, c¢j,cq,7T)
when option = I then 7(t,7) = 0 inside the two holes
END PROCEDURE
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Figure 6.11: The 2D AMR algorithm used to generate new grids.

PROCEDURE GENERATE NEW_GRIDS2D( grid, bins, imin, icount,
- jmin, jcount, sg2,gxmin,gxmax,
gymin, gymax, nx , ny)
This procedure will free all the memory to be used with this grid
along with setting up all the links for 1head , gpp , gpngh , gpsib ,and gpch.
DOi =1 , bins
g=1l1lfree(llnext) g is the next grid number that has not been used
gl(g) = gl(grid) + 1

minx = z(imin(i))
maxx = z(imin(i)+ icount(i)—1)
miny = y(jmin(i))

maxy = y(jmin(i)+ jcount(i)—1)
DEFINE BASE_GRID( grid,h,sg2,minx,maxx,miny,maxy,
gxmin,gxmax,gymin,gymax,nx,ny)
lhead(g) = g
gpp(g) = grid
gpch(g) = UNDEF
gpsib(g) = find_sib(g)
gpngh(g) = find ngh(g)
END DO
END PROCEDURE

PROCEDURE CLUSTER_GRID2D( grid, nx, ny, sg2, T , Tmaxs
imin, icount,jmin,jcount )
STEP1: First set 7(%,7) on the end points to the value one point over
STEP2: COMPUTE char(i,j)
D0j =1 , ny
DOi =1 , nx
char(i,j) = FALSE
IF( ABSC 7(i,j) )> Tmax ) char(i,j) = TRUE
END DO
END DO
STEP3: NOW form the bins
CLUSTER_GRID2D = FORM BIN( nx , ny, char, temp, sg2, imin,
icount, jmin, jcount
END PROCEDURE
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Figure 6.12: The 2D AMR algorithm to cluster the points.

PROCEDURE FORM BIN( nx , ny, char, temp, sg2, imin, icount,jmin,jcount)
set the temp array equal to 0 on all elements
temp(i,j) =0
bins = CLUSTER_1( nx,ny,char, temp )
FORM RECT( nx,ny,bins, temp, imin, jmin, icount, jcount)
IF(sg2=1) RESIZE RECT( nx,ny,bins ,imin,jmin,icount,jcount)
FORM_BIN = bins
END PROCEDURE

PROCEDURE CLUSTER_1( nx,ny,char, temp )
uses a recursive function to cluster all points that are
connected together by their nearest neighbors
bin = 0
RIGHT = O
LEFT 1
UP =
DOWN 3
D0j = , ny
DOi = , nx
IF( CHAR(i,j) AND (temp(i,j)=0) ) THEN
bin = bin + 1
temp(i,j) = bin
IF( char(i+1,j) AND temp(i+1,j)=0) THEN
id = FILL( RIGHT , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i-1,j) AND temp(i-1,j)=0) THEN
id = FILL( LEFT , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i,j+1) AND temp(i,j+1)=0) THEN
id = FILLC UP , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i,j-1) AND temp(i,j-1)=0) THEN
id = FILL( DOWN , bin, i, j, char, temp, nx , ny)
END IF
END IF
END DO
END DO
END PROCEDURE

n N n
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Figure 6.13: The 2D AMR recursive routine to determine which points to
cluster together.

RECURSIVE PROCEDURE FILL ( direction, bin, i_in, j_in, char, temp,nx,ny)

This routine is capable of calling itself, and will look in all directions to

find where char is TRUE

RIGHT = O

LEFT = 1

UP =
DOWN 3
i=ilin

n N

j = jin
IF(direction = RIGHT) i = i + 1
IF(direction = LEFT) i =1 - 1
IF(direction = UP) j = j + 1
IF(direction = DOWN) j = j - 1
£ill = O
IF( NOT CHARM OR temp(i,j) # 0 ) THEN

END PROCEDURE
ELSE
temp(i,j) = bin
IF( char(i+1,j) AND temp(i+1,j)=0) THEN
id = FILL( RIGHT , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i-1,j) AND temp(i-1,j)=0) THEN
id = FILL( LEFT , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i,j+1) AND temp(i,j+1)=0) THEN
id = FILL(C UP , bin, i, j, char, temp, nx , ny)
END IF
IF( char(i,j-1) AND temp(i,j-1)=0) THEN
id = FILL( DOWN , bin, i, j, char, temp, nx , ny)
END IF
END IF
END PROCEDURE

n .
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Figure 6.14: The 2D AMR algorithm used to form rectangles around the flagged

points

PROCEDURE FORM RECT( nx,ny,temp,bins, imin, jmin, icount, jcount)
Given the array, temp , form rectangles
set imin array = nx, jmin array = ny,
icount array =-1, jcount array = -1
D0j =1 , ny
DOi =1 , nx
IF( temp(i,j) # 0 ) THEN
IF( i < imin(temp(i,j)) THEN
imin(temp(i,j) = i
END IF
IF( j < jmin(temp(i,j)) THEN
jmin(temp(i,j) = j
END IF
IF( i > icount(temp(i,j)) THEN
icount(temp(i,j) = i
END IF
IF( j > jcount(temp(i,j)) THEN
jcount (temp(i,j) = j
END IF
END IF
END DO
END DO
DOi =1 , bins
icount(i) = icount(i) - imin(i) + 1
jecount(i) = jcount(i) - jmin(i) + 1
END DO
DOi =1 , bins
IF( MOD(icount(i),2) = 0 ) icount(i) icount(i) + 1
IF( MOD(jcount(i),2) = 0 ) jcount(i) = jcount(i) + 1
END DO
END PROCEDURE

PROCEDURE RESIZE RECT(( nx,ny,bins ,imin,jmin,icount,jcount)
Makes sure that the rectangles have 2" + 1 points per side
DOi =1 , bins
Add points to icount(i) , and change imin(i)
Add points to jeount(i) , and change jmin(i)
END DO
END PROCEDURE



Table 6.6: 1D AMR test, output for runl

GXMIN GXMAX NX
-1.00000e+02 1.00000e4-02
-1.00000e402 1.00000e4-02
-5.00000e+01  5.00000e4-01
-2.50000e+01 2.50000e4-01
-2.50000e+01  2.50000e4+01 9
-2.50000e+01 2.50000e4-01 17
-1.56250e4+01 1.56250e4-01 21
3.12500e4-00 1.56250e4-01 17
-1.56250e+01 -3.12500e4-00 17
-1.40625e4+01 -6.25000e4-00 21
6.25000e4-00 1.40625e4-01 21
6.25000e4-00 1.32813e401 37
-1.32813e+01 -6.25000e4-00 37
10 -1.28906e4-01 -7.42188e+00 57
10 7.22656e+00 1.26953e+01 57
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Figure 6.15: The output of the first run in testing the 1D AMR routine

level

J00D00oess==---
J00Donoees=c---

A



1D AMR test, output for run2

Table 6.7: 1D AMR test, output for run2

GXMIN GXMAX NX
-1.00000e402 1.00000e+402 3
-1.00000e402 1.00000e402 5
-1.00000e402 1.00000e402 9
-5.00000e4+01  5.00000e4+01 9
-5.00000e+01 5.00000e401 17
-2.50000e+01 2.50000e4-01 17
-2.50000e+01 2.50000e401 33
3.12500e4-00 1.56250e401 17
-1.56250e+01 -3.12500e400 17
-1.56250e+01 -3.12500e4+00 33
3.12500e4-00 1.56250e4-01 33
3.12500e4-00 1.56250e4-01 65
-1.56250e+01 -3.12500e4+00 65
10 -1.32813e401 -7.03125e+00 65
10  7.03125e+00 1.32813e401 65

O © 00 0~ ~1 O UL W — O

Figure 6.16: The output of the second run in testing the 1D AMR routine
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1D AMR test, output for run3

| GXMIN GXMAX NX
0 -1.00000e+02 1.00000e+402 3
1 -1.00000e4+02 1.00000e402 5
2 -5.00000e4-01 5.00000e4+01 5
3 -2.50000e+01 2.50000e401 5
4 -2.50000e4+01 2.50000e+01 9
5 -1.25000e+01 1.25000e401 9
6  6.25000e+00 1.25000e401 5
6 -1.25000e+01 -6.25000e4+00 5
7 -1.25000e+01 -6.25000e4+00 9
7 6.25000e+00 1.25000e401 9
8  7.81250e400 1.25000e401 13
8 -1.25000e+01 -7.81250e4-00 13
9 -1.17188e+01 -7.81250e4+00 21
9 7.81250e400 1.17188e4+01 21
10 8.59375e4+00 1.13281e+01 29
10 -1.13281e+01 -8.59375e+00 29

Figure 6.17: The output of the third run in testing the 1D AMR routine
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Table 6.8: 2D AMR test parameters

run number option a fJ ~ c1 c radiusl radius2
1 1 1.0 3.0 1.0 (0.0,-5.0) (0.0,5.0) 3.0 1.0
2 0 1.0 3.0 1.0 (0.0,-5.0) (0.0,5.0) 3.0 1.0
3 0 1.0 2.0 2.0 (0.0,-10.0) (0.0,10.0) 0.5 0.5

Figure 6.18: The output of the first run in testing the 2D AMR routine
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Figure 6.19: A close-up view of the first run in testing the 2D AMR routine
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Table 6.9: 2D AMR test, output for runl

1 GXMIN GXMAX GYMIN GYMAX NX NY tau.avg
0 -1.000e4+02 1.000e402 -1.000e4+02 1.000e402 17 17 2.648e-04
1 -3.750e4+01 3.750e+01 -5.000e4+01 5.000e4+01 13 17 4.371e-03
2 -2.500e+01  2.500e+01 -3.125e+01  3.125e+01 17 21 4.575e-03
3 -1.563e4+01 1.563e401 -2.188¢401 2.188e4+01 21 29 5.482e-03
4 -1.094e+01  1.094e+01 -1.563e+01 1.563e+01 29 41 4.442¢-03
5 -7.813e400 7.813e400 -1.250e4+01 1.094e4+01 41 61 1.686e-03
6 -4.297e+00 4.297e+00  0.000e+00  9.375e+00 45 49 1.558e-03
6 -1.953e+00 1.953e4+00 -2.734e400 1.172e400 21 21 1.931e-04
6 7.813e-01  3.906e400 -4.297e4+00 -1.172e400 17 17 1.782e-04
6 -3.906e4+00 -7.813e-01 -4.297e4+00 -1.172e400 17 17 1.782e-04
6 2.344e400 5.469e4+00 -7.031e4-00 -3.125e400 17 21 2.023e-04
6 -5.469e+00 -2.344e+00 -7.031e4-00 -3.125e400 17 21 2.023e-04
6 -3.906e4+00 3.906e400 -1.055e+01 -5.859e4+00 41 25 1.445e-04
7 1.563e4+00 2.734e400 -7.813e+00 -6.641e4+00 13 13 1.083e-04
7 -2.734e+00 -1.563e4+00 -7.813e+00 -6.641e4+00 13 13 1.083e-04
7 -1.172e+00 1.172e400 -8.984e+00 -7.422e4+00 25 17 1.309e-04
7 -3.906e+00 -2.344e400 -6.250e4+00 -3.516e+00 17 29 1.180e-04
7 2.539e4+00 4.102e+00 -6.250e4+00 -3.516e+00 17 29 1.082e-04
7 -1.367e+00 -7.813e-01 -2.539e+00 -1.758e+00 7 9 8.211e-05
7 -2.344e+00 -1.172e4+00 -2.930e+00 -2.148e+00 13 9  9.926e-05
7 -2.734e+00 -1.563e+00 -3.516e+00 -2.344e+00 13 13 1.157e-04
7 -3.320e+00 -2.539e4+00 -4.297e+00 -3.125e+00 9 13 5.541e-05
7 7.813e-01  1.953e+00 -2.539e+00 -1.758e4+00 13 9  5.348e-05
7 1.367e400 2.539e4-00 -2.930e+00 -2.148e4+00 13 9 1.020e-04
7 1.758e400 2.930e400 -3.516e+00 -2.344e4+00 13 13 1.016e-04
7 2.539¢e400 3.320e4-00 -4.297e+00 -3.125e+00 9 13 5.541e-05
7 -1.172e+00 1.172e+00 -2.344e4+00 -7.813e-01 25 17 1.174e-04
7  5.859e-01  1.367e400 -2.539e+00 -1.758¢4+00 9 9 1.041e-04
7 -1.367e+00 -5.859e-01 -2.539e+00 -1.758¢e4+00 9 9 1.041e-04
7 1.367e4+00 1.953e400 -2.734e+00 -1.563e+00 7 13 4.155e-05
7 -1.953e+00 -7.813e-01 -2.734e+00 -1.563e+00 13 13 5.322e-05
7 -3.125e+00 3.125e400 1.758e400 8.398e400 65 69 7.428e-04

1
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Figure 6.20: A close-up view of the hole for run 1, used in testing the 2D AMR
routine

Figure 6.21: The output of the second run in testing the 2D AMR routine
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Figure 6.22: A close-up view of the second run in testing the 2D AMR routine
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Figure 6.23: A close-up view of the hole for run 2 used in testing the 2D AMR

routine
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Figure 6.24: The output of the third run in testing the 2D AMR routine
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Figure 6.25: A close-up view of the third run in testing the 2D AMR routine
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Figure 6.26: A close-up view of the hole for run 3 used in testing the 2D AMR
routine




6.3 Examination of the outer boundary in 1D

In this section we examine the application of a Robin outer boundary condi-
tion in one dimension. The ideas that we will tie into this section are boundary
smoothing, boundary transfers, deferred correction and Richardson extrapola-
tion. The goals of this section are simple. We wish to develop techniques to

incorporate the outer boundary condition,
u—1 as r— 00

with multigrid techniques. However we do not provide a mechanism to treat
an unbounded domain with this code; instead, we will always impose the outer
boundary condition at some fixed location, x,... We mentioned earlier that
the boundaries were to be handled separately from the interior points, and in
this section we describe the algorithms to handle this boundary condition along

with our implementation of deferred correction .

Our model problem is now

O*u (z

N (G R (6.9
ou 1—u
a—x = - L = Tmax (610)

where z.c = 3 . Again, we specify the solution
1
ulz) =14 =
wx) =141,

which requires
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These equations are differenced as

ulj +1] - ZI;L[QJ] +ulj — 1] =flj] j=2---n—1, (6.11)

and

wlil—uli =1 1—w[j

h :cmax

=g J=n (6.12)

where T,y is the position of the outer boundary, ©*[j] is an intermediate value
of u[j], and ¢ is the right hand side of the outer boundary equation, which is

zero. These equations are represented as

LM = ') j=2-n—1

Zijl = 4"l i=n (6.13)

We only discretize the boundary equation to first order since we will make use
of deferred correction to recover an expandable second-order solution. Now,

the boundary operators we use do not contain the constant terms such as

1

(6.14)

:Cmax

in equation (6.12). The fourth order boundary operator which we will use for

deferred correction is

%u[n] — 4u[n — 1] 4+ 3u[n — 2] — %u[n — 3]+ iu[n — 4]
h

+ = (6.15)

Ziu"n] =

and the second order boundary operator is defined by

honeoq . duln] —4uln — 1] +uln — 2] uln]
Zyu'[n] = 57 + 2] (6.16)
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We use this second-order operator for test purposes only, in order to verify
that the solution of the difference equations will not be extrapolatable when

this operator is used. Finally, the first order operator is:

uln] —uln —1]  uln]

h + z[n]’

Zhl[n] = (6.17)

We now treat this boundary equation separately from the interior equations.
Since we have a uniform domain, the boundary equation will be only partially

relaxed using
uljl == uljl + au’fj] j=mn, (6.18)

where o > 0 is the relaxation factor. The interior transfers use the full weighted
restriction operator defined by equation (4.9), and our prolongation operator
is given by equation (4.11). The transfers for the boundary points will all be

injections, i.e., the restrictions are defined by
uf[N] = [Fu"[n] = u"[n] (6.19)
where n = 2N — 1 and the prolongations are defined by

u

h[n] = ;}uH[N] = uH[N] (6.20)

The relative truncation error estimate for the boundary point is deter-

mined from
HIN] = 28 Tn] — 1 7 ), (6.21)

where

Zhyt[n] = + 2L o (6.22)
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We will use deferred correction only on the finest level of the V-cycle.
Thus, when we use a FMG routine, the deferred correction routine gets invoked
directly after the finest level of each problem is to be smoothed. The order
used in the deferred correction algorithm is a input parameter which allows us
to examine the minimum order needed in ordr to get extrapolatable results.
Since we saw in section( 4.9) that boundary equations like this will not produce
extrapolatable results when only differenced to second order, we should expect

to see this non-extrapolatable behavior.

6.3.1 1D MG FAS algorithm using outer boundary condition

We will only describe the algorithm for the V-cycle (Figure 6.27) since for our
problem a V-cycle always converges more rapidly than any other p cycle. As
we just stated, we see that the deferred correction is only invoked on the finest

level, just before a coarse grid correction occurs.
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Figure 6.27: The V-cycle FAS algorithm with incorporation of deferred correc-
tion for the outer boundary

PROCEDURE VCYCLE FAS( ncycle, lynax, pre, pst , order)
DOcycle= 1 ,ncycle
Cycle up to the coarsest level
D01 = lmaX7 lcoarse +1
IF(1 # lnax OR cycle= 1 ) THEN
DOp = 1 , pre
RELAX_INTERIOR(u"[j] = f*[j) j=2--n—1
RELAX_BOUNDARY (u"[n] = ¢"[n],a)  j=n
END DO
END IF
IF ( 1= ly,., ) THEN
Now apply deferred correction
IF( ORDER = 2) THEN
g"[n] i= Z}(uln]) - 2} (u[n)
Since g" = 0 on the finest level, we determine g"
only from the difference of the operators
ELSE IF( ORDER = 4) THEN

g"[n] — Zi(uln]) = Z{ (u[n))

END IF
END IF
o] = LHIHG ] - [P LA [g],  J=2--n-1
AHIN) = 28 ] — 1 Zb

[

fH J) = I fAj]+ rH[J]  Correct the rhs
gH[N] = 11g"n] + rH[n]  Correct the rhs of the outer boundary
END DO
SOLVE(Lwuf = fH, and Z{u" = ¢g')
D01 = lcoar567 lma.x -1
h[j]rzuh[j]JrIg(H[J] Ha'yl) . G=2-n—1
u'[n] := ut[j] + 1y ( HIN = 1f'u'[n]) ,  § =n
Now smooth out u"
DOg =1 , pst
RELAX_INTERIOR(u*[j], fA[j]) j=2---n—1
RELAX_BOUNDARY (u[n], g"[n],0)  j=n
END DO
END DO
END DO
END PROCEDURE

u



6.3.2 Results

The first table, Table 6.10, presents the results of an experimental study to
determine which « gives the fastest convergence. This table shows the conver-
gence rate versus a for an 8 level system. We have verified that the convergence
rates, p, are the same for different level systems. We let order = 1 for these
results so that deferred correction is disabled here. We also iterate until the
residuals have been driven down to machine accuracy.! We clearly see that the

best « is a small, but non-zero value.

In Table 6.11, we show the ¢; norm of the error, e, of the difference
solution relative to the exact solution (3.10) again computed with order =I.
We expect first order convergence since the boundary condition is only treated
to first order and this is what we observe. Here we set @ = 1.0e — 10 since
we have seen that this will give the fastest convergence. Since we do not get
second order results, there is no need to check for extrapolatable results. The

order that we are getting is determined from

Thus, the order for this output is determined from

9.18¢ — 05
0=1 (7) ~ 1.0
82\ 1.38¢ — 05

Now it will be informative to see if we could use order= 2, and get
extrapolatable results. We see that in Table 6.12, the errors clearly go down

by a factor of four. We also see that the convergence rate slows down quite a

!We define ¢ (machine accuracy) such that e is the smallest floating point number such

that 1.04+¢=1.0.
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bit. As we mentioned previously, in the asymptotic limit, the convergence rate
will be that of the higher order operator, even though the algorithm relaxes the
boundary point only to first order. Figure 6.28 shows a logarithmic plot of the
errors. We only plot 17 points on each level, and the larger symbols correspond
to the coarser levels. The dotted lines in the figure are evenly spaced lines
which are factors of log,q (2) apart from each other. Thus, fourth order errors
should be signaled by points which are separated by 4 lines. Clearly, the results
show that the errors are not fourth order, but rather third order. Heuristically,
we can argue that this occurs because the outer boundary was only corrected

to second order, so that u apparently has an expansion:
u = u + hley + hies + O (h4) ) (6.23)

Thus, if we try to use Richardson extrapolation, we will not produce O (h*)
results. Now we should be able to produce an extrapolatable solution using
deferred correction of the boundary equation. If we look at the problem where
we are using some non-conforming mesh structure but with a priori knowledge
of the exact value of u at whatever lattice point the boundary condition is
applied, then clearly we expect the solution to be extrapolatable. Now it is
also true in the limit that the order of the boundary approximation, ¢, goes to
infinity we must also recover this case (since we would not be truncating the
Taylor series expansion). Now if we reduce ¢ from infinity, then for some ¢, ¢’
we will lose the ability to extrapolate, and then ¢’ 4+ 1 is the minimum order

we need.

We now look into the case when order = 4, which is shown in Ta-

ble 6.13. We see that the convergence rate once again comes down slightly,
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Table 6.10:

condition.
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Results from the 1D FAS FMG algorithm with outer boundary

ETAMINING

a p(a)

10

05
1.0

0

“1.5(-1)
~4.9(-1)
1.9(+0)
1.6(+0)
1.3(+0)
-9.5(-1)
-4.5(-1)
-4.5(-2)
-3.6(-2)

0.0(+0)
1.0(-12)
(-10)
1.0(-8)
1.0(-6)
1.0(-4)
1.0(-2)
(

)

+0
+0)

where we compute the convergen

tions.

ce rate from the residuals of the interior equa-

We also see that the errors, although second order, are slightly larger

than they were when we relaxed the boundary to second order, but Figure 6.29

clearly shows that the errors of each level are 4 lines apart, i.e. the solution is

fourth order. Thus, we see that we are getting extrapolatable results.

We have seen in this sect
easily take a first order code, and

and Richardson extrapolation.

ion that by using deferred correction, we can

get fourth order results via deferred correction
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Table 6.11: Results from the 1D FMG FAS algorithm with the outer boundary

condition imposed; where order = 1

a0 e(l)
1 -1.1(+0) 3.0(-2)
2 -14(+0) 1.1(-2)
3 -1.5(+0) 4.3(-3)
4 -1.8(+0) 1.8(-3)
5 -1.9(+0) 7.9(-4)
6 -1.9(+0) 3.7(-4)
7 -1.9(40) 1.8(-4)
8 -1.9(+0) 8.8(-5)
9 -2.0(+0) 4.4(-5)
10 -2.0(40) 2.2(-5)

Table 6.12: 1D FMG FAS algorithm with outer boundary condition, where
order = 2 and a = 1.0e-09

L p@) e(l)

1 82(1) 1.1(-2)
2 -1.1(+0) 4.0(-3)
3 -1.2(+0) 1.1(-3)
4 -1.3(+0) 3.0(-4)
5 -14(+0) 7.6(-5)
6 -1.4(+0) 1.9(-5)
7 -1.5(+0) 4.8(-6)
8 -1.5(+0) 1.2(-6)
9 -1.5(+0) 3.0(-7)
10 -1.5(+0) 7.5(-8)
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Table 6.13: 1D FMG FAS algorithm with outer boundary condition, where

order = 4 and o = 1.0e-09
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Figure 6.28: Errors in the extrapolated results with order
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6.4 Extrapolation with MLAT

In this section we develop techniques which allow us to generate extrapolatable
solutions from finite difference MLAT codes. One of the major reasons to
use an adaptive grid is to generate an “unbounded” domain, (see for example
Section 4.10). Since some of the grids in an adaptive grid/mesh structure do
not cover the entire domain, we will see that “standard” MLAT algorithms do
not produce extrapolatable results, and in fact, the solutions will generally only
be first order even for second order differencing. The methods used to obtain
extrapolatable results are certainly not well documented. This does not mean
that one can not find extrapolatable solutions, it is just that people have not

developed the methods.

We will start by defining a 1D model problem and then describe several
attempts to obtain extrapolatable solutions. For must of the attempts, we
only look at the case where there is one interface region. We believe that if we
are able to generate an extrapolatable solution which has one interface region,
then we should be able to use multiple interface regions. Next we compare
these attempts and see which one yields an extrapolatable solution. Finally,
we will use the techniques to generate an extrapolatable solution for a simple

2D problem.

6.4.1 1D model problem

The problem which we examine in this section is

= f(x) a < T < Tmax
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U(Tmax) = (T = Tmax) (6.24)

We finite-difference the interior equation to O (h?) to obtain
ulj + 1] — 2ufj] + uly — 1]

B2 = f[.]]7 .]:277N_1
ull] = u(x=a)
u[N] = u(z = Tmax) (6.25)
Once again we use
2a
flx)= et (6.26)
so that the exact solution is
a
u(z)=1+—. (6.27)
T

6.4.2 The 1D MLAT code

This code uses a FAS scheme which can be operated in a fully adaptive mode.
For this code we will define [. as the number of grids which have z[n] = zyax
However, since we are trying to test whether we can obtain an extrapolatable
solution, we have the user supply the grid structure before the code starts
execution rather than let a structure be determined via an adaptive process.
Specifically, we input a slight generalization of the the grid structure previously
determined in Section 6.2.1. We do this because we are only trying to test
whether the solutions to the equations differenced on an adaptive grid structure
are extrapolatable. We have levels [ = 0--- [, and when [ = [" a transition
in behavior occurs. In this case the fine grid does not extend to as large a value

as does the coarse grid:

z™[n] # =MN]. (6.28)



Figure 6.30: 1 interface region depicted in a 3 level scheme.
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where N is the upper limit of the coarse grid and n is the upper limit of the

fine grid. In this example we use
h L u .
™ [n] = % {N]. (6.29)

It we generalize this to a number of levels, the number of points in each grid
is the same. Figure 6.30 shows an example of this grid structure, where the
transition occurs at [ = [,.x — 1. In the algorithm we will use for this grid
structure, we will take pre =2 and pst = 1. We will also allow for the case
when the boundary equation at * = xy.x will be either a Dirichlet condition,

or the Robin condition defined by equation (6.10).

The major difference between this algorithm and the ones described in
the previous sections is that 7/7[J] is not defined at every point. We see in
Figure 6.30 that we have 3 levels. The grid at the finest level does not cover

the entire domain, thus, we choose the convention that

J] =0, (6.30)
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Figure 6.31: The adaptive grid structure.

jFn
Level 4_}1
a 000000000 on
b O O O O O O O O O 4h
c O O O O O O O O O
d O O O O O

8h

where the points on the finest grid are not defined. This brings about a major
problem, 7H[.J] is not continuous, and thus, not smooth. An example of this
is shown in Figure 6.37 where the interface point is at J = 17. We have tried
an enormous amount of unsuccessful methods, and will only describe a few of

them, with the last description being of the successful method.

In this subsection we describe the “usual” algorithm[12] used when work-
ing with adaptive grids such as the one in Figure 6.31. This algorithm is based
on the assumption that each parent has only one child; this is the case for the
test problems in this chapter. The interface boundaries are treated as Dirichlet

conditions here, thus 7/7[J] = 0 at the interface. *

Figure 6.31 shows an example of the computational domain used by the
algorithm. The algorithm starts by perform pre smoothing sweeps on grid
(a). The value of u[j] at j = n is a Dirichlet condition, and thus, we do not
change the value when we smooth. To determine this value at j = n we use an

interpolation from the points on grid (b). The interpolation routine that we

%Since Dirichlet conditions are exact conditions ( i.e. not differenced conditions ) their
relative truncation error estimate is zero)
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use is injection from the corresponding coarse grid values from grid (b).

We first test the algorithm to ensure the convergence rate, p, remains
constant as we increase the number of levels. Here we use a grid system with 5
levels, with each of the three finest grids spanning half of the domain of their
parents. We let z,.x = 4, @ = 1.0 and let outer boundary = FALSE for this
system. The work unit is defined to increase by one every time we relax over
s points, where s is the total number of points on the final finest grid. We see
that in Figure 6.30, that s = 9 + 4 = 13, since there are 13 points on the final
finest grid. Table 6.14 shows that the convergence rate remains approximately
constant as the levels get finer. The convergence rate shows that for about every
2 work units, the residuals are reduced by 6 orders of magnitude. Figure 6.32
shows a graph of the error on the overall grid, e versus z. In this graph we see
the errors from the adaptive mesh, as well as the errors from a non-adaptive
mesh. We see that when we compare the adaptive run versus the non-adaptive
run, the total number of points was tremendously decreased, while the error

remained virtually unchanged.

The goal of adaptive mesh refinement is to minimize the total compu-
tational work which generally means minimizing the number of points used
on the finest grid while ensuring that the overall level of error is comparable
to that generated by a run where the finest level of discretization is used ev-
erywhere. Table 6.15 shows the ¢; norm of the errors on a non-adaptive grid
structure as a function of the finest level of discretization used. In this case the
coarsest grid contains 3 points. () (I,{ + 1) is the reduction in error from level
[ to level [ + 1. We see that after 4 levels the reduction factor is 4.0 indicating

second-order convergence. Table 6.16 also shows the reduction of error from
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Figure 6.32: The errors using the standard 1D MLAT algorithm, with and
without adaptive grids.
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one level to the next, this time for an adaptive run. Here we see that the /;
norm of the errors are very close in comparison to the non-adaptive run. Our
problem though, is that these results are not second order accurate. They are
first order, which makes them impossible to extrapolate. We also know that as
we increase the number of levels, then these results will deviate much further

from each other, since one result is first order, and the other is second order.

The adaptive code is not second order because it is not handling the
boundaries at the interfaces correctly. We will see later, that if we do handle
the boundaries correctly, then we will obtain a second order extrapolatable

solution.

Finally we estimate the work units used by the algorithm. Here we will



only estimate this for V-cycles. For the grid structures that we use, we define
v = Totalnumberofgridswherez[n| = Zmax- (6.31)

The total amount of work for the refinements we use in this section is

f l(nf+1 linf+1 linf+1
wy = J(Pvn—+2(n T )-|-4(Il il )—l-g(Il Ll )-|-)
ie2 n ie2 ie2
f
~ aP(l/-I-l)n— (6.32)
I

where P is the total number of smoothing sweeps per grid, for each cycle, nf is
the number of grid points on the finest grid , o is the total number of V-cycles
and n is the total number of grid points for the fine grid equations. In general

n=(nf-1)/2(r—-1).
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Figure 6.33: The V-cycle for the FAS MLAT algorithm

PROCEDURE VCYCLE FAS adaptive( ncycle, lhax, pre,
pst , order,outer boundary)
DOcycle= 1 ,ncycle
Cycle up to the coarsest level
D01 = lmaxa lcoarse +1
IF(1 # lnax OR cycle= 1 ) THEN
FIND_INTERFACE(j max)
jmax = FIND_INTERFACE will find the interface point
on the coarse grid
DOp = 1 , pre
RELAX_INTERIOR(u"(j) = f*(j)) j=2---n—1
Smooth the residuals
IF( outer boundary = TRUE AND gmax(lhead(l))=x,,,y) THEN
RELAX BOUNDARY (u"(n) = ¢"(n),a)  j=n
END IF
Smooth the boundary
END DO
END IF
IF ( GMAX(lhead(1l))= @max AND
gmax(gpch(lhead(l))) # @max ) THEN
Now apply deferred correction to the outer boundary
END IF
() = LRI () - IR LA (),  J=2--- Jmax-1
determine the truncation error estimate
for the interior points
H(j)=0, j=jmax -n
set 7H () to zero where it is not defined
IF( outer boundary = TRUE AND
gmax(lhead(l))=zmax) THEN
determine the truncation error estimate for the outer boundary point
END IF
FEGY =17 )+ H(j)  Correct the rhs
NOTE: when j > j.max then determine f"(j) from the analytical rhs
END DO
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Figure 6.33 continued

Now solve the system on the coarsest level
IF( outer boundary = TRUE) THEN
SOLVE(LHul = fH, and Z{uM = ¢gM)
ELSE
SOLVE(LHuH = fH)
END IF
Now come back down to the finest level
D01 = lcoarse7 lmax -1
Determine the correction
ul () = u(G) + I} (uH(J) - I}fluh(])) , Jj=2--- jmax-1
IF( outer boundary = TRUE AND
gmax (lhead(1))=zyax) THEN
uh(n) = uh(n) + I} (uH(N) - Ifuh(n)) , j=n
END IF
Now smooth out u”
DOg =1 , pst
RELAX_INTERIOR(u(j), fM(5)) j=2---n—1
Smooth the residuals
IF( outer_boundary= TRUE AND gmax(lhead(l))=a,.x) THEN
RELAX BOUNDARY (u"(n),¢"(n),a)  j=n
Smooth the boundary
END IF
END DO
END DO
END DO
END PROCEDURE



6.4.3 The 1D hierarchal MLAT code

We will now look into another method since a “typical” MLAT algorithm does
not give second order results when we let the grids adapt. One method which
does work is given in pseudo-code form in figures (6.34) and (6.35). We see
that in this code the algorithm cycles independently on each grid. The only
inter-grid communication occurs at internal grid interface points. We transfer
values at these interface point via injection from parental grids. Thereafter,
the algorithm performs V-cycles using Dirichlet conditions everywhere. To
summarize, this algorithm will use the FMG scheme in which each fine grid
problem will have a Dirichlet condition imposed at the interface point. Thus,

when the algorithm performs the V-cycles, there are no interfaces.

We see that this algorithm should take more work units than the MLAT

algorithm in the last section. In fact the total work for o v-cycles is

£f L(nf+1 linf+1 Linf+1
— pm(n_+2<n 1) imE+l) g >+__.)
V22 n n n

nf
~ 2Pocv— (633)
n

Thus comparing equations (6.32) and (6.33), we see that this algorithm takes
about twice as much work as the standard MLAT method. However, we will

now verify that this hierarchical technique is second order.

Table 6.17 shows the ¢; norm of the errors for the hierarchal MG code.
Here we see that the results from this routine are extremely inaccurate com-
pared to those from the standard MLAT code. Using 13 levels, the error is
only reduced to that of a 4 level run of the last algorithm. In order for the

error of this routine to be smaller than the MLAT code, we would need to
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Figure 6.34: The hierarchal FMG FAS routine.

PROCEDURE FMG Hierarchal(cycle, lya.x, pre, pst , order )
Initialize Variables
Initialize Memory
DOL = 0, lyax
IF(1# 0) THEN INTERPOLATE(u')
This interpolation will inject the interface point into the parent grid
VCycle H( )
save the solution at the interface point
COPY (interface(lhead(1)) = u/(Jpmax)) )
END DO forl
END PROCEDURE

have 25 levels of refinement, which is not a realistic number of levels. We will
now look back at the MLAT algorithm, and attempt to modify it to obtain

extrapolatable results.
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Figure 6.35: The hierarchal FMG FAS V-cycle routine.

PROCEDURE VCYCLE H( ncycle, lpax, pre, pst , order )
All grids will span the domain of the grid at lax.
Temporary storage will be issued for all lower level grids.
Initialize Variables
Initialize Memory
The coarsest level will always have 3 points
DOcycle= 1 ,ncycle
Cycle up to the coarsest level
D01 = lmaxa lcoarse +1
IF(1 # lmax OR cycle= 1) THEN
DOp = 1 , pre
Smooth the residuals
Smooth the boundary
END DO
END IF
IF ( GMAX(lhead(1l))= @max AND
gmax(gpch(lhead(1))) # @max ) THEN
Now apply deferred correction
END IF
() = LRI (GG — I LM (),  j=2--- n-t
determine the truncation error estimate for the interior points
IF( outer boundary = TRUE AND
gmax(lhead(1))=xy,y) THEN
determine the truncation error estimate for the outer boundary point
Correct the rhs of the outer boundar
END IF
FH() = I fA(j)+ H(J)  Correct the rhs
END DO
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Figure( 6.35) continued

Now solve the system on the coarsest level
IF( outer boundary = TRUE) THEN
SOLVE(LHuH = f7, and BHuWH = ¢)
ELSE
SOLVE(LHWf = fH)
END IF
Now come back down to the finest level, performing the needed corrections
D01 = lcoa.rsea lma.x -1
Determine the correction
uh(j) = () + Iy (wf(J) = IHuk(G)) . j=2- n-1
IF( outer boundary = TRUE) THEN
uh(n) = uh(n) + I} (uH(N) - Ifuh(n)) , j=n
END IF
Now smooth out u"
DO0g =1 , pst
Smooth the residuals
Smooth the boundary
END DO
END DO
END DO
Release all the temporary storage
END PROCEDURE



6.4.4 Making an adaptive MLAT code extrapolatable

To simplify matters, we will again work with a single-interface system in the
following. To test the extrapolations we let the coarse grids, L =0,---, L — 1
span the whole domain, and then let the fine grid, [ span half of the domain. We
position the grid interface near & = a since the truncation error estimates will
be large there. The goal is to get an error with the single-interface, adaptive run

which is very close to the error achieved by the non-adaptive run, Table 6.15.

As mentioned previously, we can resolve our interface problems using a
single interface then presumably the techniques will immediately extend to the
case of multiple interfaces. We also emphasize that we want techniques that
can be extended to multiple dimensions with little or no modifications. We will

discuss three attempts in this section—only the third is successful.

The first attempt tries to use another boundary condition at the inter-
face point of the finest system. Previously we were using a Dirichlet condition
on the interface point, and the hope was that by using a Neumann condition,
the solutions would become extrapolatable. In hindsight, we see that this could

never work since it does not address the issue of the non-smoothness of 7.

The first attempt is based on a requirement of continuity of du/dx across

the interface:

Au (z) _ oull (z) 4 — Tmax

ox ox 2

(6.34)

which is finite differenced to fourth order as

(12h) 7" (25u"[j] — 48u"[j — 1] + 36u"[j — 2]

—16u""[j — 3] + 3u"[j — 4])=
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—12(H) ™" (25u"[J] — 48u"[J + 1] + 36u" [ ] + 2]

—16u”[J + 3] + 3u' [ ] + 4]), (6.35)

where again j = 2J—1. This equation is only used when a coarse grid correction
from the finest grid takes place. Since this is a one dimensional problem,
and we do not care about the convergence rate at this time, we do not relax
the boundary point on the finest level. Table 6.18 shows that the solution
is once again only first order. We see that there is no difference between
this solution and the original MLAT code. We also tried matching the second
derivative at the interace, and once again found that these runs did not produce

extrapolatable results.

The next attempt that we tried [42], was to use the coarse grid points
around the interface point to introduce an (additional point) at j = n + L.
Figure 6.36 shows the grid structure for this attempt. We see that the point
at § = n on the finest grid can now be used as an interior point. Thus, all
smoothing and transfers at this point are implemented as such. The only issue
that remains is how to fix the function value at the point j = n + 1. From the

results of Chapter 3, we know that if we use linear interpolation:
u'ln+1] = % (4" [man] + " [Jinax + 1]) + O (H?) (6.36)

where
[ Jmax] = z[n], (6.37)

will will not get second order results. Thus, with the benefit of hindsight, we

interpolate to fourth order as follows:

1
- h _ . H 91 _ ., H o
u"n+1] = e ([ + 2] = 0 [ — 1])
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4o (U] + 0 i + 1] (6.38)

Thus our full set of equations is:

B (M + 1)+ el -1 - 2]) = f), =21
B (M 4 -] = 20]) = L =
u"[1] = u(z =a)
and
u"ln + 1] :—T%@ﬂkm+ﬂ+uﬂkm—ﬂ)
o (0 ] + 0 i+ 1]

on the fine grid, and

H7? (W71 4 1]+ u¥ [T — 1] - 2aH[J]) =

T}Ij[‘]] = LH]fILJuh[J] - ]f]LJLhuh[JL J = 27 Ty Jmax (639)

on the coarse grid, where

_ ulj+ 1]+ ulj = 1] - 2]
h2

Lulj]

and

I ] = ol + 3 (ulj 1]+ uli +1]) G =2 N
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Figure 6.36: The 1D grid structure with a single interface.
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Extra grid point is imposed here

At this point, we will now define a new symbol that will be used in the
tables. We will now signify the extrapolation between levels a and b as xab.
Table 6.19 shows very strange behavior for the errors. We see that there is a
region where the results appear to be extrapolatable. After the sixth level we
do not show the extrapolation results, since @ (I,]+ 1) deviates from 4.

We now look at 7/[j] before we show the final algorithm. Figure 6.37
shows 7/7[j] on the points around the interface. We clearly see that the trun-
cation error is non-smooth particularly at J = Jynax — 1. Thus, by trying to

come up with a boundary condition for the point at J = Jyax, we are not able

to help smooth 7/ [Jpayx — 1].

Our final algorithm takes the original MLAT algorithm and modifies it
only in the manner that the truncation error estimate is calculated. Specifically,

after computing 7/ in the usual fashion, we set

1
TH [ Jnax — 1] = 5 (7 [max = 20 + 7 [ ) - (6.40)

By modifying the algorithm in this way we will not be able to look at the

residuals and determine when the system has converged. We are now solving a



Figure 6.37: A zoom up on the relative truncation error
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different set of equations than that of equation (6.25). We have not yet come up
with a specific scheme to determine convergence although Choptuik[14] points
out that we could stop by testing for convergence, i.e. by looking for consistency

in the extrapolation.

The output of these runs is shown in Table 6.20, with a = 0.1 so that,
around the interface region, 7{1 will be larger than the previous tests. We

clearly see that the results are extrapolatable !

We now examine the case where we have multiple interfaces. For this
run we let @ = 0.1, £ax = 512 and have 10 interfaces. We then vary the number
of coarse grids, v . Table 6.21 shows clearly that the solution is extrapolatable

for the multi-interface case.
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6.4.5 Two dimensional model problem

We now turn to a two dimensional problem, to see if we can smooth 7 around
the interface to get an extrapolatable answer. We will use the extremely simple
grid structure, shown in Figure 6.38. We see that the grid interface is located
along a constant-z line. This is a good test since the grid refinements that will
be required of our fully adaptive MLAT code will be rectangles, such that each
side of the rectangle will interface with the coarser grid along a line of coarse

grid points.

Our 2 dimensional model problem is

Pulr.y) | Pule.y)

= f(xuy) a < T < Tmax _1<y<1

Oz? Oy?
(6.41)
where we use Dirichlet conditions around all of the boundaries and
a
u(z,y) = 1+ N
a

fley) = ——. (6.42)

($2 + y2)2

In Figure 6.38 we define two separate regions, a smoothing region and

a buffer region. In the buffer zone we set

1
i (2,y) = 17 (6.43)

Since 727 is smooth, and we are using a second order difference scheme, one
quarter of this value is approximately 7/7. Secondly, since interpolation from
one grid to another introduces high frequency components, we then smooth 77

with the smoothing operator

: 1 . 1 . ,
nitli k)= gl k) + (R + LA+ 7~ LA
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Table 6.14: Convergence Rate in MLAT Dirichlet code using a 5 grid system.

)

PR s PPN

O 00 ~1 O U = W N ~

[ T T T
QW NN NN =
o O 0 =T =D

1
W
— =

[u—
o
++t++++ ++ S
scesesee=sEs

+ 1k + 1)+ 7k - 1))
1 . .
+ (A LR - Lk 1]
+ i LE— 1+ - Lk—1])  (6.44)

Table 6.22 shows that the solutions to this technique are extrapolatable.
For this run we used a = 0.125, x = a,---,24+ a,y = —1,---, 1, with a buffer

region of 4 zones, and a smoothing region of 8 zones.

We have now found a technique to generate extrapolatable solutions
using an adaptive MLAT algorithm. This technique is by no means unique,
although it works very well. We feel that it is likely that any technique that
smooths 7/ along the interfaces will produce extrapolatable solutions. In the
next section, we look into the issue of where the fine grids are not properly

contained in parental grids.
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Table 6.15: Convergence study of MLAT code using a 2 grid system, &pax = 4

All grids span the entire domain

I e() QUI+1)
1 22(-2) 2.7
2 6.5(-3) 3.4
3 1.7(-3) 3.8
4 4.3(-4) 3.9
5 1.1(-4) 4.0
6 2.7(-5) 4.0
7 6.8(-6) 4.0
8 1.7(-6) 4.0

Table 6.16: Convergence study of MLAT code using a 2 grid system, &pax = 4

Adaptive run with Dirichlet boundary conditions imposed on all
boundaries

[ T T e R
S U O s W W N

00 ~1 O U = W N =~
[
Ne
TN TN TN TN TN TN N Y
R N N N
w
()




192

Table 6.17: Convergence study of hierachical MG code using a 2 grid system,

Tmax = 4

Dirichlet boundary conditions imposed on all boundaries

I e() QUI+1)
6 3.5(-1) 1.3
7 2.7(-1) 1.6
8 1.7(-1) 2.0
9 8.4(-2) 2.8
10 3.0(-2) 3.5
11 9.0(-3) 3.8
12 2.3(-3) 4.0
13 5.8(-4) 4.0

Table 6.18: Convergence study of MLAT code using a 2 grid system, &pax = 4

Matching First Derivative at interface

I e() QUI+1)
1 2.7(-2) 2.9
2 8.0(-3) 3.4
3 2.2(-3) 3.7
4 5.9(-4) 3.7
5 1.7(-4) 3.5
6 5.4(-5) 3.2
7 1.9(-5) 2.8
8 7.6(-6) 2.5




Table 6.19: Convergence study of MLAT code using a 2 grid system, z.x = 4,
with the addition of an extra grid point.

I e() QI+
1 2.3(-2) 2.1
2 7.4(-3) 3.4
3 1.9(-3) 3.8
4 4.8(-4) 4.0
5 1.1(-4) 4.3
6 2.3(-5) 4.6
7 4.0(-6) 5.9
8 1.1(-6) 3.8
x12  1.4(-2)
x23  1.9(-3) 7.4
X34 1.6(-4) 11.9
x45  1.1(-5) 14.5
x56  6.8(-7) 16.1

Table 6.20: Convergence study of MLAT code using a 2 grid system, &pax = 4

Smoothing 7/ at the interface

I e() QUI+1)
1 1.6(-1) 2.1
2 7.8(-2) 2.9
3 2.7(-2) 3.5
4 7.7(-3) 3.9
5 2.0(-3) 4.0
6 5.0(-4) 3.9
7 1.3(-4) 4.0
8 3.2(-5) 4.0
x12 4.9(-2) 4.9
x23  1.0(-2) 8.0
X34 1.2(-3) 12.0
x56  7.2(-6) 15.7
x67  4.6(-7) 16.0
X78  2.9(-8) 16.0
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Table 6.21: Convergence study of MLAT code using a 10 grid system, @pax =
512

Smoothing 7/ at the interface

v e(v) Qvr+1)

1T 7.8(2) 1.7

2 4.5(-2) 3.5

3 1.3(-2) 3.9

4 3.4(-3) 4.0

5 8.5(-4) 4.0
x12 3.6(-2) 17.1
x23 2.1(-3) 13.4
X34 1.7(-4) 15.5
x5  1.1(-5) 16.7

Table 6.22: Convergence study of 2D MLAT code using a 2 grid system, @max =
512

Smoothing and modifying 7/! at the interface

I e() QUI+1)
2 1.3(-2) 2.5
3 5.2(-3) 9.6
4 5.4(-4) 2.8
5 1.9(-4) 3.7
6  5.2(-5) 4.0
7 1.3(-5) 4.0
8  3.3(-6) 4.0
x23  4.6(-3) 9.2
X34 5.0(-4) 6.0
x45 8.3(-5) 224
x56  3.7(-6) 16.0
x67  2.3(-7) 16.0
X78  1.4(-8) 16.0




195

Figure 6.38: 2D model problem grid structure with 1 interface
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6.5 Fast convergence for 1D problem with non-contained
grids
In this section we will develop transfers designed to yield fast convergence when
we use non-contained grids. Our adaptive structures typically look like the one
shown in Figure 6.39, which is a 2d example. Now r = 0, (the center point of
the figure), will generally not be part of the computational domain at any level
of discretization. This leads to the property that points on fine grids in the
vicinity of z[j] = a will not be properly contained by a coarser grid. We refer to
this property as non-containment or incomplete nesting. For a 1-dimensional
problem a typical grid structure looks like that shown in Figure 4.3. There the
X’s are locations which lie outside of the computational domain and the filled

points are points where a Robin boundary condition will be used.

Our model problem for this section is

0%u (z)
927 = f(z) a<x< Tmax
Ou _u _ _
dr  2a g r=4a
U(Tmax) = U(T = Tmax) - (6.45)

These equations are finite differenced to

ulj +1] — ZZ[QJ] + ulj — 1] = flj] = jmin---n—1, (6.46)

and

IR N (6.47)

where jmin 1s the point where the boundary condition will be imposed. We will

use
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2a
fle) = —
g = —% (6.48)

We use fourth-order deferred correction at the boundary, where the first-

order and fourth-order boundary operators are:

Bl = & (u[j 1] ufj] - %) = i (6.19)
and
Bluj] = uy — 57 (6.50)
2a
where

Uy = i( — 325h%u[jmin + 3] + 45 u[Jmin + 3] — 45 u[Jmin + 1]

+ 5 uJmin) + 65 u[Jmin + 2] + 8 U jmin + 4]

—  285°hu[jmin + 3] — 365°hu[fmin + 1] + 485° htu[jmin + 2]
65° htt[fmin + 4] — 565 h* uljmin + 3] — 1045° h?u[jmin + 1]
3552 h U fmin] + 1145* B2 U] jmin + 2] + 1152 A% U jmin + 4]

105°hu[jmin] + 65h°u[Jrmin + 4]

+ + o+ o+

24h4U[Jmln] + 725‘u[jmin + 2]

— 965h*uljmin + 1] + 505u[jmin]h3> = (6.51)

wy = ——h—4( 4252 huljunin + 3] — 5452 At in + 1] + 725 bt janin + 2]
+ 952 hufjmin + 4] — 5655 [ jmin + 3] — 1045k % [ fmin + 1]

4+ 355h*u[fmin] + 114802 U jmin + 2] + 118A*u[jmin + 4]
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4+ 36A°U[Jmin + 2] + 25 U[Jmin] — 85°U[Jmin + 2]
- 853ru[jmin + 1] + 253u[jmin] + 1253'u[jmin + 2]
4+ 25%u[jmin + 4] — 162°0[jmin + 3] — 482°u]jmin + 1]

+  3R°U[Jmin + 4] + 1552hu[jmin]> (6.52)
with

$ =2 (Jmin) — @ (6.53)

We use a technique similar to the one described by Figure 6.27 to apply
deferred correction (using the above operators) at the boundary point j = jmin.
The complete algorithm is shown in Figure 6.40 and we note that we are not

using a FMG scheme. We again relax the boundary as

ulj] := ulj] + e (u[j] = ulj]) (6.54)
but now we use
a = o for non contained grids
= for contained grids.

Thus, distinct boundary relaxation factors, a; and a5 are again used for cases
where the boundary grid point is not contained or is contained, respectively,

by the parent grid.



Figure 6.39: The discretized domain, where the center point is not in the

domain
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Figure 6.40: The V-cycle routine used with interfaces

PROCEDURE VCYCLE FAS( ncycle, lyna.x, pre, pst , order)
DOcycle= 1 ,ncycle
D01 = lmaX7 lcoarse +1
FIND_INNER_BOUNDARY( jumin )
IF(1 # lpay OR cycle= 1 THEN
DOp = 1 , pre
RELAX_INTERIOR, j = jumin + 1+ -n—1
o = PICKALPHA( aj, as )
RELAX_BOUNDARY, j = jmin
END DO
END IF
IF ( 1= l,.. ) THEN
Apply deferred correction

END IF
[] LHIH h[] IHLh h[ [’ j=Jmin+1--n—1
r]ff [Jinin] = BH IHyh [Jmm] TH B i)
fH[ | = I{Ifh[]] + 1[J] Correct the rhs
[ Jmin] = ]ifgh{]nunl'+'7h [Jmin]
END DO

SOLVE(LHufl = fH | and BIufl = ¢7)
DOl = lcoar567 lmax -1

u

"] =]+ I (uH[']—IH M) s G it 1

1

uh[jmin] = uh[Jmin] + I]@ ( [Jmln] - }{J h[]mln]) s ] = jmin

DOg =1 , pst
RELAX_INTERIOR
o = PICKALPHA( ap,ay )
RELAX_BOUNDARY, 7 = Jmin

END DO

END DO
END DO
END PROCEDURE
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6.5.1 Test runs

In our test runs, we always use 2 pre-smoothing sweeps on the finest level and
1 pre- and 1 post-smoothing sweep in all other cases. We also fix @y = 1 and
ay = 0 for most of the runs, and stop the V-cycles only when the ¢; norm of

the interior residuals has reached the level of machine precision.

Our chief concern is to ensure that we get extrapolatable results and
we begin with a case where all the grids are properly contained (completely
nested). We first compare the convergence behavior of deferred-corrected and
non-corrected results. Tables (6.23), (6.24) clearly show that we need to use

deferred correction in order to get extrapolatable results.

We now consider the case when none of the grids are properly contained.
For this case we use @ = 0.12506103515625 and a coarsest-level grid spacing

heoarse = 0.25. Table 6.25 shows that we again get extrapolatable results.

Since we can get extrapolatable results, we are now in a position to
investigate the convergence rate of this algorithm. For these tests we change
the value of @ which has the effect of changing the number of properly-contained
grids. We again use fourth-order deferred correction of the boundary condition
and set Tpay = 2 and heoarse = 1/2 for all tests. Our goal is to make sure that
the convergence rate remains approximately constant no matter how many
grids are not properly contained. Also, in these tests, we experiment with the
restriction and prolongation operators for the function values in the vicinity of
the boundary.

We begin by running a benchmark where all the grids are properly

contained. Thus we set @ = heoarse 50 that 2" (jmin) = 22" (Jmin) = *" (jmin) =

201



-+-. Table 6.26 shows the convergence rate, p, for levels 2 through 8. We see
that the convergence rate remains constant after about the fifth level, at which

point the problem is being solved in about one cycle.

For the next four tests, we will use the following transfers,
uH[Jmin] = ]}f]uh[]'min] = uh[jmin]
uh[.jmin] = I;LIUH[Jmin] = uH[Jmin] (655)

where jin and Jyi, are the grid locations where we apply the boundary con-
ditions on the fine and coarse grids respectively. All the interior values on the

grids are transferred with the usual restrictions and prolongations:

W) = 1]

S+ 1 (a1 — 1]+ + 1)

") = 1puf[J] = WMl] 2 —1=

u

<

— %(uH[J—l]—I—uH[J—I—l]) 2J —1 43 (6.56)

For the first 3 of the 4 tests we will also use a; = 1.0 and a3y = 0.0. In
the first test only one grid is not contained (see Figure 6.41). The convergence
test for these runs is shown in Table 6.27, where @ = heoarse/2. We see that the
convergence rate drops dramatically from the test case. We also see that the
convergence rate gets better as [ is increased since the number of grids that are
properly contained increases. For the next test, we set @ = heoarse/16 which
means that the four coarsest grids are not contained. The results of this run
are shown in Table 6.28 where again we see another dramatic decrease in the
convergence rate. Finally, we set @ = hcoarse/2048 so that all grids are not-
contained. As expected the results shown in Table 6.29 show another dramatic

decrease in the convergence rate.
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Figure 6.41: A schematic view of the not properly contained grid.
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Our goal is to build a fast solver, which means that we would like the

convergence rate, p, to be at least —0.1.> We must therefore use improved
transfers around the boundaries. Through experimentation we have found that
the point where transfers need to be modified is not at the boundary point but
at the interior point immediately adjacent to the boundary point. Figure 6.42
shows a detailed view of the grid structure near the boundary. We originally

used the following transfer for the values near the boundary:

: 1 ,
‘uH[Jmin + 1] = ]f]Lquh[.]min + 3] = §‘uh[.]min + 3]
Lo
uh[jmin + 3] = ];;LIUH[Jmln + 1] = uH[Jmin + 1]
U jmin + 1] = Ijpu"[Jmin + 1] = UNDEF . (6.57)

This left two function values undefined at the end of the transfer. We then tried
to provide values at these points by means of linear interpolation of u”"[jupin]

and u"[jmin + 3], but this procedure did not improve the convergence rate.

3We arbitrarily define this rate, which is much slower than all model multigrid algorithms.
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Figure 6.42: A close-up view of the non contained grids
jmin
X o O O O O O O O

o O O O
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min

We started by experimenting with the transfers
uH[Jmin +1]==[0 Jmm + Z Jmm + ¢ (6.58)

where, 0 < =[¢] < 1, are the transfer coefficients. Through further experimen-

tation we found the performance was best when we defined the value v [Jmin+1]
by:
H _ H,b
U [ Jin + 1] = 174" [fmnin + 3] = 001" [jmin + 5] + 0.49u" [jmin + 4] +

4+ 0.0u" [Jmin + 3] + 0.010" [jmin + 1] + 0.490"[fmin + 2](6.59)

These results suggest that residual at Jy;, + 1 is independent of the
residual at jyin + 3 although z[Jmin + 1] = #[jmin + 3]. The prolongation

operators which we use are

uh[jmin + 2] = ]}'—LIUH[Jmin + 1] - _uh[jmin + 4] + 2uh[.jmin + 3]
1
" o+ 1] = Ty [usin + 1] = 5 (" [uwin] + 0 (i +21) . (6.60)
Note that the prolongation uses extrapolation to determine the value at ji, +

2. These operators are used for all functions which are transferred from one

discretization level to another.
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Table 6.23: 1D FMG FAS algorithm with inner boundary condition imposed.

Deferred correction not used

I e() QUI+1)
2 4.7(-2) 2.0
3 2.4(-2) 2.0
4 1.2(-2) 2.0
5 6.1(-3) 2.0
6 3.0(-3) 2.0
7 1.5(-3) 2.0
8 7.6(-4) 2.0

The convergence rate obtained when we use these operators is shown
in Table 6.30 and we see that it is much faster than the original algorithm for
the case when all grids are not properly contained. However, the improved
convergence rate for the non-contained case is still much slower than that for
the case when all grids are properly nested. We have, however, been able
to reduce the residuals by one order of magnitude for every four work units,
which we believe is an excellent convergence rate in comparison with the other

traditional iterative solvers.

The last test we try varies a; to see if we can improve the convergence
rate. (Recall that «p is the boundary smoothing factor for a grid which is
not properly contained by its parent). Table 6.31 shows the convergence rate
as a function of ay for the case [ = 8. Clearly, the convergence rate is quite

insensitive to the value of ay as long as a; < 2.
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Table 6.24: 1D FMG FAS algorithm with inner boundary condition imposed,
with deferred correction to fourth order

l e(l) QU 1+1)

2 4.1(-3) 45
3 9.2(-4) 4.2
4 22(-4) 4.1
5 5.3(-5) 4.0
6  1.3(-5) 4.0
7 3.3(-6) 4.0
8  8.1(-7) 4.0
x23  2.1(-4) 8.1
X34 2.6(-5) 11.3
x45  2.3(-6) 13.5
x56  1.7(-7) 14.6
x67  1.2(-8) 15.4
X78  7.8(-10) 16.0

Table 6.25: 1D FMG FAS algorithm with inner boundary condition, deferred

correction to fourth order, and non-contained grids.

AURCIESY

—

2 6.4(-2) 4.6
3 1.4(-2) 6.1
4 2.3(-3) 5.2
5 4.1(-4) 4.7
6 8.7(-5) 4.4
7 2.0(-5) 4.0
8  5.0(-6) 4.0
9 1.2(-6) 4.0
x23  4.0(-3) 2.2
x34  1.8(-3) 6.2
x45  2.9(-4) 10.0
x56  2.9(-5) 12.6
x67  2.3(-6) 14.7
X78  1.6(-7) 16.0
x89  9.7(-9) 16.0
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Table 6.26: The convergence rate of the 1D FMG FAS algorithm with inner
boundary condition, deferred correction to fourth order, and no non-contained
grids.
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Table 6.27: The convergence rate of the 1D FMG FAS algorithm with inner
boundary condition, deferred correction to fourth order, and one non-contained

grid.

S

—~
—

~—

0 =1 O U = W N~
L e A . |
e = T = S S S |
O O 0 ~1 Ot N ]
L e A . |
e e e )
N

Table 6.28: The convergence rate of the 1D FMG FAS algorithm with inner
boundary condition, deferred correction to fourth order, and four non-contained
grids.
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Table 6.29: The convergence rate of the 1D FMG FAS algorithm with inner
boundary condition, deferred correction to fourth order, and all grids not-
properly contained.
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Table 6.30: 1D FMG FAS algorithm with experimental transfers, using deferred

correction to fourth order and all grids not-properly contained.
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Table 6.31: Survey of the effect of oy on the convergence rate for non-contained

grids

Deferred correction used to fourth order, [ = 8, all grids unaligned

s (1) p()
0. 0( 0) -2.38(-1)
1.0(-3)  -2.38(-1)
1.0(-2)  -2.39(-1)
5.0(-2)  -2.44(-1)
1.0(-1)  -2.53(-1)
2.0(-1) -2.46(-1)
1.0(+0) -2.47(-1)
2.0(+0) -2.49(-1)
3.0(+0) -7.43(-2)
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6.6 1D extrapolatable adaptive MLAT with blended
boundary condition and outer boundary condition

Before we combine all of the elements of the last three sections to form a single
algorithm, we wish to explore one more aspect of equation (6.47). Since this
equation models the boundary condition we use at the interior (hole) bound-
aries in 2 and 3 dimensions, we would like to understand how to effectively

treat it in the contexts of mesh refinement and multigrid.

Choptuik[14] pointed out that since this equation will be used on a
extremely large range of refinement levels, the performance of the solver could
suffer since the very coarse grids will not provide reasonable approximations of
the function derivative near the boundary. Our solution to this problem is to
use a “blended” boundary condition. Recall that the condition we pose at the

boundary is:

du u _
9z 22 7 Teo
(6.61)
which we now represent as
Bsu (z) = 1 rT=a (6.62)
where
2
= ——. 6.63
9 u (6.63)

We only want to apply this Robin boundary condition on the finer levels. On
the coarser levels, where we will not be able to get a good approximation for

the derivative, we will apply a Dirichlet boundary condition

Bu(z)=¢2 z=a, (6.64)
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where
Bu(z) = u(z) z=a
g2 = ITu" (). (6.65)

This last condition just sets the coarse grid value, u! (a) to the corresponding

fine grid value, u” (a). The blended boundary condition is then given by:

(BB + (1 = B) By)u = Bg1 + (1 = B) g2 (6.66)
where 3 is a function of the discretization level [ such that 3 (lmax) = 1 (so
that we recover the true Robin condition on the finest level) and 5 (0) = 0 (so
that the coarsest problem has Dirichlet conditions). For brevity we can then

rewrite equation (6.66), as

Bu=yg (6.67)
where
B=p3Bs+ (1 —-8)Bi_s (6.68)
and
g ="DBg+(1-58)g. (6.69)

The smoothing operator on the boundary is now defined as

W[ Jmin] = —2aU[Jmin + 1] + 2ahBg1 + 2ah (1 — 3) g2
S 24k (1~ B) — 2B — hf '

We use injections for our boundary transfers but the functions ¢; and g are

(6.70)

treated separately in these transfers. Specifically, we use:

oa o= g+,
H h H
92 = 92 tTh (1-p)

(6.71)
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where 7H 5 and H (1-p) are given by

T - = O

o, = B — 17 Bl (6.72)

We will now study the effects of varying (). For these experiments
we fix @ = heoarse/ 16, heoarse = 1/2 and zpax = 2. Table 6.32 shows the effect
of varying 3 (1) on a 10 level system. To determine the best 3’s we ran a
binary search through the values of 3 (I) which ranged from zero to one in 0.1

increments. The bold face numbers were the best parameters that we were able

to find.

We can not claim that our best 3 (1) yields the best possible convergence
using the blended approach since, obviously, we have not tried every conceivable
combination. What we do see in this table, though, is that the convergence
rate can be improved from —0.29 to -0.36 which means that we can improve
the convergence rate by approximately one sweep per order of magnitude of
residual reduction. This amounts to about a 25% reduction in computational

cost.

When we run tests with zpax > heoarse, we do not seem to be able to
get results which are much better than those obtained without the use of a
blended boundary condition. However, when we apply this technique to our
2- and 3-dimensional problems, we hope that the blended boundary technique
will allow us to use non-diagonally dominant stencils on the finest grids, while

solving coarse-grid systems which have all-Dirichlet conditions.

We have now introduced all the techniques we need to get a fast, extrap-

olatable solver using the Robin conditions on all boundaries. A 1-D algorithm
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which incorporates these features is shown in Figure 6.43. This algorithm works

when only one grid is defined per level.

Again, our model problem is:

0%
;x(f) = f(2) a<x< Tmax
Ou _u _ _
dr 2a g r=4a
% = L—u T = Tmax (673)
x x

(6.74)

our finite difference approximation is

72 (ulj + 1) = 2ulj] +ulj = 1)) = flj] J=Jmn+ 1 n-1
C —2aBU (juin + 1) + 2ahBg; + 2ak (1 — B) g
Juinl = 2ah (1 — ) —2a8 — hf

uljl == ulj] + e (u™ —ulj]) 7 = Jmin

_ 1 h o

14t <$max‘|‘u[j—1]—|—hg) J=n

Tmax

ulj]

ulj] = ulj] + a (uj]* —u[j]) j=n. (6.75)

and we use the model functions

gle=a)=—- (6.76)

to examine the convergence behavior of our algorithm

Figure 6.44 shows a graph of the log of the absolute errors, |e|, for the
raw solution and the extrapolated solution. (Again, the lines here are separated

by a spacing of log;,(2)). We clearly see in this graph that the open symbols
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are displaced by 2 lines, while the filled symbols are displaced by 4 lines. This
demonstrates that the basic solution is second order, while the extrapolated
solution is fourth order. For this run we only used one refinement, and placed

i and Tyax = 2.0, respectively. The

the inner and outer boundaries at a ~
placement of the inner boundary is such that no grid point at any level will
ever be coincident with it. To make the graph more readable, we plot every

thirty-second point at each level.
As previously claimed, our algorithm works with one refinement, it
should work with more. Figure 6.45 shows the results from a run where a ~ i

and Ty, = 128.0. Here we used a 5-point coarsest grid. Since we use so many

interfaces, it is better to show the results on a log-log scale.

In summary, our 1-d algorithm produces extrapolatable solutions of 1-d
analogues of the equations that we will solve for the initial value problem for
two black holes. We did not study convergence rates in this section since we
still do not fully understand the stopping criteria when we smooth the rela-
tive truncation error estimate around the interfaces. We have clearly presented
a path by which we can build multi-dimensional versions of the one dimen-
sional algorithm. However, some additional work will be needed to determine

appropriate multi-dimensional transfers for our irregular interior boundaries.
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Figure 6.43: The 1D FAS V-cycle routine which contains the inner and outer
boundary conditions

PROCEDURE VCYCLE FAS_ 1D EXTRAP( ncyc, [lmax, pre, pst, order)
DOcycle= 1 ,ncycle
Cycle up to the coarsest level
D01 = lmaX7 lcoarse +1
FIND_INNER_BOUNDARY( jumin )
IF(1 # lnax ORcycle= 1 ) THEN
FIND_INTERFACE(j max)
jmax = FIND_INTERFACE will find the interface point
DOp = 1 , pre
RELAX_INTERIOR(u"[j] = f*[5])  j = jmin- -7 —1
IF( gmax(lhead(l))=zy.,) THEN
RELAX_OUTER_BOUNDARY (u”[n] = ¢"[n],a0)  j=n
END IF
o = PICK_ALPHA(C alphai, alphas )
RELAX_INNER_BOUNDARY (t"'[jmin] = ¢"[jmin]»
B(1head(1))),  J = jmin
END DO
END IF
IF ( GMAX(lhead(1l))= @max AND
gmax(gpch(lhead(l))) # #max ) THEN
Now apply deferred correction
END IF
IF ( 1= ly., ) THEN
Now apply deferred correction
gh[jmin] =g+ Bf(u[jmin]) - B{L(u[jmin])
END IF
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Figure 6.43 continued

A = LA 5] - I LM ], J = Jmin - -+ I max-1
H(j)=0, j=jmax---n
set 71[j] to zero where it is not defined
IF( gmax(lhead(l))=zyay) THEN
] = ZH [H 0] — 17 B[]
GHIN] = I gh(n) + (V)
END IF
T8 [Jmin) = B I 0" [jmin] = If BY " [ jmin]
gH[Jmin] = I}]ngh[jmin] + T]{{[jmin]
SAL) = 1G]+ 7 1)
When j > j_max then determine f[J] from the analytical rhs
END DO
SOLVE(Luf = fH | and ZHu" = ¢g"), and Bffufl = ¢H
D01 = lcoar567 lmax -1
Wf) = w4 1y (wf ] - ]) s 5= e jmax-1
IF( GMAX(lhead(1))=zmax) THEN
uh[n] == w[n] + I} (uH[n]—I}fluh[n]) , j=n
END IF
uh[jmin] = uh[Jmin] + I;L[ ('UH[Jmin] - I}fluh[jmin]) 5 ] = jmin
DOg =1 , pst
RELAX_INTERIOR(u"[j], f*[j]) j=2---n—1
IF( gmax(lhead(l))=z.y) THEN
RELAX_OUTER BOUNDARY (u"[n], ¢"[n],a0)  j=n
END IF
o = PICKALPHA( ai, as )
RELAX_INNER_BOUNDARY (t"[jmin] = ¢"[jmin]»
B(1head())),  J = jumin
END DO
END DO
END DO
END PROCEDURE
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Table 6.32: 1D FMG FAS algorithm with blended boundary condition, and

experimental transfers

Deferred correction used to fourth order, all grids unaligned, [ = 10, zp.x = 2

B(O) beta(l) B(2) B(3) B(4) F(5) B(6) B(7) p(8) B(9) p
1.0 1.0 10 10 1.0 10 1.0 1.0 1.0 1.0 -2.88(1)
1.0 09 08 07 06 05 04 03 02 00 -3.43(-1)
1.0 09 08 07 06 00 04 03 03 00 -3.10(-3)
1.0 09 08 07 06 10 04 03 03 00 -3.19(-1)
1.0 09 08 07 06 04 04 03 03 00 -3.46(-1)
1.0 09 08 07 06 03 04 03 03 00 -357(-1)
1.0 09 08 07 06 03 00 03 03 00 -1.56(-1)
1)
1)
1)
1)
1)
1)

(
(
(
(
(
(
(
1.0 0.9 0.8 0.7 0.6 0.3 1.0 0.3 0.3 0.0 -3.41(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 0.0 0.3 0.0 -2.11(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 0.3 0.0 -3.58(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 0.3 0.0 -3.58(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 0.0 0.0 -2.65(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 1.0 0.0 -3.54(-
1.0 0.9 08 07 06 03 04 1.0 0.6 0.0 -3.62(-1)
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 0.6 0.5  -2.78(-
1.0 0.9 0.8 0.7 0.6 0.3 0.4 1.0 0.6 1.0 -2.78(-




218

Table 6.33: 1D FMG FAS algorithm with inner and outer boundary condition
and blended boundary

a= %, Tmax = 2.0
l Ev () Ql+1)
2 1.3(-2) 2.5
3 5.2(3) 9.6
4 5.A(-4) 2.8
5 1.9(-4) 3.7
6 5.2(-5) 4.0
7T 1.3(-5) 4.0
8  3.3(6) 4.0
X34 8.8(-4) 9.2
x45  2.0(-4) 22.4
x5H6 2.4(—5) 16.0
x67 1.5(-6) 16.0
X78 9.4(-8) 16.0
x89  5.9(-9) 16.0

X910 3.7(-10
x1011  2.3(-11) 16.0
x1112 1.4(-12
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Figure 6.44: The errors for extrapolated and non extrapolated results using 2

adaptive refinement levels.

0.1 g 3
E 0 1=6 g 1=9 @cxtrap 6 & 7 esextrap 9 & 10 E|
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Figure 6.45: The errors for extrapolated and non extrapolated results using 8

adaptive refinement levels.
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6.7 Two dimensional model problem with non-aligned
grids

In this section we design a multigrid code which solves the equations

u(w,y)  Ou(z,y)

axz + ayg = f (507 y) Lmin S € S Lmaxy Ymin S Yy S Ymax
du(z,y) _ ulzy)
o 24 T°
u (x = Tmax, y) = u ($maxa ‘y)
u (:Ca Yy = ymax) = u (:cy Yy = ymax) (677)

where r = \/(1: —¢.)’ + (y — ¢,)?, and the center of the hole is at (c,,c,). We
use a uniform Cartesian grid, and then exclude a roughly circular region from

the computational domain as shown in Figure 6.46.

In order to fully describe our algorithm we first describe each major
component separately. After we have presented all of the major routines we

will then display the entire algorithm in figures (6.52) and (6.53).

6.7.1 Generation of the characteristic function

We define a characteristic function, char (j, k) , where

char*(j,k)=1 r>a
char*(j,k)=0 r<a
char(J,k)—Z if char*(j,k) =1 and

(char (j+1,k)=0o0rchar*(j —1,k) =00
char*(j,k+ 1) =0 or char*(j,k — 1) —O)

else char = char*

Thus, in Figure 6.46, the -, o, and o symbols label points where char (j, k)
is 0, 1, or 2 respectively. We use this characteristic function to encode which

equations, if any, will be applied at the grid point with indices (7, k).
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Figure 6.46: The 2D computational domain.

In this figure, interior points are labeled with the e symbol, points where the
Robin boundary condition will be applied are indicated by the (O symbol,
and points not in the computational domain are referenced by the - symbol
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6.7.2 Smoothing

We use red-black Gauss-Seidel relaxation to smooth the residuals of the interior

equations shown in the algorithm given in Figure 6.48.

The boundary smoothing is much more complicated than the interior
smoothing. We only relax the boundary to first order, but care must be taken
to determine which stencils are used on the boundaries. We pre-compute the
stencils and their coefficients to ensure boundary smoothing remains inexpen-
sive compared to interior smoothing. We now describe the boundary smoothing

in several stages. *

Once we have determined char (7, k) we can precompute the coefficients
for the various boundary stencils. We finite-difference the boundary equation
to first order using

ng 0 nyﬂ

7 (i + o, k] — ulj, k]) +

(ulj, b+ 9] — ulj, k]) (6.78)

where p and ¢ are either 1 or -1 depending upon if forward or backward differ-

encing was used and

Ny

n, = L%, (6.79)

We then store the coefficients of the stencil in arrays « and A, defined by

_ Meo
T
n, U
A = v, .
p (6.80)

4At this point, we must define what we mean by the term “boundary point”. We define
a boundary point as a point on the lattice in which we will impose the boundary condition.
This point is in general not on the physical boundary, but rather O (h) away from the
boundary.
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Figure 6.47: A view of the four first order stencils and a five point stencil.

O O O O O O
O O O O O O

The other variables which we will store are: np, the number of points on the
boundary, ¢ (np), the indices j where char(j,k) = 2, and j(np), the indices k

where char (7, k) = 2.

There are 4 first order stencils, shown in Figure 6.47, along with a
five point stencil with the points being labeled as a,b,c and d. Since there is
at least one point in the five point stencil not in the computational domain
for the points surrounding the boundary, we will use the algorithm shown in

Figure 6.49 to determine which points will be used for the first order stencil.

After we determine the lists containing the = and y indices of the bound-
ary points (2 and j), we define three additional arrays, X(np) , Y(np) and
6 (np) , which define the location of the physical boundary which is nearest to
the various boundary grid points. Specifically:

0(np) = arctan (M)

x ('l (nP) - CI)
X(np) = ¢ +a cos(f(np))
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Y(np) = ¢, +a sin(0(np)). (6.81)

After these arrays are defined, they are then sorted in order of ascending

6 (np) and then we compute x and y components of the normals to the boundary

using:
X - Lz
Ny (nP) = (nPcz °
Y (np)—c
ny (np) = %‘

At this point, k and X, the coefficients of the stencils where the boundary

equation will be applied, can be determined.

The smoothing is now simply defined by the algorithm in Figure 6.50.
We see here that we also store an array for the values of u along the boundary.

This is done purely for ease of programming.



Figure 6.48: The interior smoothing algorithm used in 2D

PROCEDURE RELAX INTERIORC w , f , h , char )

This routine will smooth the interior points via Red-Black Gauss-Seidel
points = 0  Keep track of the number of points smoothed on this grid
jacel = —4h=%  Pre-compute the Jacobian of the system
koff = 1 Variable used for Red-Black Smoothing
DO checker board = 1 , 2  Loop over the Red and Black points

joff = koff  Variable used for Red-Black Smoothing

DO k = 2,ny - 1  Loop over all the ponts on the k axis

DO j = ioff+l , nx -1 , 2
rresl = h™2 (u[] + L,k +ulj— LE| 4+ ulj, b+ 1]+ u[j, k- 1]—

4 ulj, k] - f1j,K])
ulj, k] := u[j, k] — char(j, k) (rresljacel™!)
Only change the points where char(j, k) =1
rlj, k] = char(j, k) (rresl)
Define the running residual at this point

END DO
joff = 3 - joff
END DO
koff = 3 - koff
END DO

END PROCEDURE
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Figure 6.49: The algorithm which determines the stencil to use.

PROCEDURE DETERMINE STENCIL( np, ¢, ¢ , j, k, char,
I, ya C:L‘a Cy )

a=char(j—1,k) , b=char(j+1,k)

¢=char(j,k—1) , d=char(j— 1,k+ 1)

IF ((a = 0) AND (¢ =0)) THEN
olnp)=1, Jd(np)=1
ELSE IF ((a = 0) AND (d = 0)) THEN
olnp)=1, J(np)=-1
ELSE IF (b= 0) AND (c =0)) THEN
o(np) =—1, d(np) =1
ELSE IF (b= 0) AN D (d = 0)) THEN
o(np) = -1, d(np)=—1
ELSE IF (¢ = 0)THEN
rl=(z(j) — )’ + (w(k+1) — )%,
IF (r1 > r2) THEN
olnp)=1, J(np)=1
ELSE
onp)=1, d(np)=-1
END IF
ELSE IF (b= 0) THEN
rl=(z(j) —c)’ + (y(k+1) = ¢)%,
IF (r1 > r2) THEN
onp)=—-1, d(np)=1
ELSE
Q(nP) =
END IF
ELSE IF (¢ = 0)THEN
rl=(z(G+1)— )+ (y (k) — c)%,
IF (r1 > r2) THEN
olnp)=1, J(np)=1
ELSE
onp)=—-1, d(np)=1
END IF
ELSE
rl=(x(+1) =)+ (y(k) — ),
IF (r1 > r2) THEN
onp)=1, d(np)=-1
ELSE
o(np)=-1, J(np)=-1
END IF
END IF
END PROCEDURE

-1 3 ﬁ(np) =-1

r2= (2 () — o) +(y(k—1)—c,)’

r2= (e () —co) +(y(k—1)—¢,)’

r2=(z(—1)—c)’ 4+ (y(k) —¢y)°

rR=(x(G-1)- C:c)2 + (y (k) — Cy)2
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Figure 6.50: The algorithm to smooth the boundary equations

PROCEDURE RELAX BOUNDARY( u ,g, np , ¢ , J , K, A,

0,SFK )
D0z = 1,np
J=1(1)
k=y(i)
ubli] = g[j, k] = ulj + 0 (i), k] + A ulj, k+ 9 (i)
ulj, k] = ubli]
END DO

END PROCEDURE



6.7.3 Transfer operators

We use the following interior restriction and prolongation operators:

WL K] = L) k]

1 . . . :
= 5 (U = LR+ [+ L+ (G k= 1),k + 1))

+ ;M%m
and
‘Uh[ja k] = ‘U?I(
uflj 4+ 1,k = %@ﬁUJQ+uﬂJ+LKD
u"k+1] = %@Huﬁj+uﬁLK+u)
W4+ LE+1] = i@ﬁuJﬂ+uﬂj+LK]

+ WL K+ 1]+ uf )+ 1K +1]).

Conceptually the boundary transfers are much more difficult, since there
is generally no regular relationship between the (deemed) boundary points on
successive levels of discretization. Figure 6.51 shows the computational geom-
etry of a two level structure. The finer mesh is displayed with squares whereas
the coarser mesh is displayed with circles. We apply boundary conditions at

the open circles and squares.

There is a problem in using straightforward multigrid ideas on such
domains since there is no natural two-to-one relationship between the coarse
and fine points. However, if we view the boundary points as actually coinciding
with the physical boundary, we can think of the boundary transfers in terms

of prolongations and restrictions along the # direction. The transfers become

228



easy to formulate in terms of appropriate interpolations (generally linear) in

the 6 direction. For example, the restriction operator is:

i = =D
+ up (L) 99} ((ZZ)) :%h ((zf)) (6.82)

where [; and [, are the indices of the two fine-grid points which are closest to
the coarse grid point with index L. (Note that here the superscripts on the 6

array indicate with which grid the array is associated.)

Prolongation is defined in an analogous fashion: the roles of the fine and

coarse grids are simply reversed:

0" (L) = 0" (1)
0% (L1) — 07 (L)
0" (Ly) = 0" (1)
07 (L1) — 07 (L)

Lguy! (L) = wy (1) = ' (La)

+ ufl (Ly) (6.83)

Here, Ly and L, are the indices of the two coarse-grid points which lie nearest
to the fine grid point with index [. We do not claim that these operators
define the best transfers for our model problem but we have found them to be

adequate for our purposes.

Again, to minimize computational time we precompute the coefficients

needed for the transfer operators.
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Figure 6.51: A close up view of the geometry of two levels.

The finer level is shown with squares, and the coarser level is referenced with
circles. The points which are not filled in are the ones where the boundary
equation will be applied. Notice that the 2 grids do not align with each other.




6.7.4 Deferred correction for 2D code

As usual we will generally use fourth-order deferred correction. To compute an

appropriate fourth order stencil, we use the routines described in section( 3.2.4).

We have found that by using deferred correction to fourth order, we
sometimes slow the convergence rate down by almost 50%. We must spend

more time to fix this potential problem.

6.7.5 The algorithm

Figures (6.52) and (6.53) define the complete algorithm whose components
have been described above. These routines use stacks to implement general
p cycles. To learn about stacks, we recommend the literature by Knuth[32].
The routine pushlevel, pushes pending commands, such as relax, plus level
information onto a single stack which is used on all levels. querylevel checks
the top of the stack to see which command should be executed, and at which
level. Once a command has been completed, poplevel() is invoked to delete

the corresponding entry from the top of the stack.

The upstroke command determines 77 and then adds it to f7 and ¢".
Similarly the downstroke command determines a prolonged correction after
a coarse grid correction and adds it to u". The deferred correction scheme
is implemented in the upstroke routine and makes use of the EVAL MATRIX
routine to compute the high order interpolant described in chapter 3. The
variable nwcyc is a parameter which encodes which type of p-cycle is to be

used. For example, V- and W-cycles are performed for the cases nwcyc = 1 and

nwcyc = 2, respectively. Another aspect of this algorithm which distinguishes
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it from our previous multigrid algorithms is that we differentiate between the
number of times we will smooth on the finest levels, (pref and pstf), and on
all other levels, ( pre and pst). Finally, bsweeps defines the number of times

we relax the boundary per interior sweep.



233

Figure 6.52: The 2D MG algorithm

PROCEDURE MG2D HOLE( [/,.x , ncyc , nwcyc, order , pref, pstf ,
pre , pst , bsweeps )
Set up memory initially on all levels
D0lev = lcoarses lmax  Loop over all the levels
GET_CHAR( nx(lev) , ny(lev) , char,np)
Loop over all the points where char=2 and get the stencil coeflicients.
np(lev) = 0 ,  Set the number of points on the boundary=0
DOk = 1 , ny(lev)
DO0j = 1 , nx(lev)
IF( char(j,k) = 2 ) THEN
np(lev) = np(lev) + 1
DETERMINE STENCIL( )
(np(lev)) = j
J(np(lev)) =k
GET_LISTS( )
GET_NORMALS( )
GET_BOUNDARY_COEFF( )
END IF
END DO
END DO
Sort the precomputed lists in ascending order in 6
Now compute the deferred correction LUD matrix
DEF _MATRIX( )
END DO
Now compute boundary transfer coeflicient
D0lev = lcoarses lmax  Loop over all the levels
GET_RESTRICTION( O(lev — 1),0(lev), O1p , O2)
GET_PROLONGATION( 6(lev +1),0(lev), b1p ,02p)
END DO
Now start to do a FMG cycle
Now solve the system on the coarsest level
SOLVE(Luf = fH, and Bffuf = gH
DOlev = lcoarse +1, lmax
Use linear prolongation to prolong u™ to u"
PROLONG( u” := I} (u') )
CYCLE( )
END DO
END PROCEDURE
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Figure 6.53: The p cycle algorithm, with the implementation of stacks

PROCEDURE CYCLE( )

this routine uses stacks which determine the commands to issue
1 := lnax
pushlevel(l,ncyc,pre,pst,lmax)
START: continue
s := querylevel(l,swptype)
if ( s= 0) goto DONE
case ( swptype=pre)
r := relax(l)
poplevel()
case ( swptype=pst)
r := relax(l)
poplevel()
case ( swptype=solve)
call solve(l)
poplevel()
case ( swptype=upstroke)
call upstroke(1)
poplevel()
1=1-1
pushlevel(1,nwcyc,pre,pst,lmax)
case ( swptype=downstroke)
call downstroke(l)
poplevel()
1=1+1
goto START
DONE: continue
END PROCEDURE



6.7.6 Results

We first present convergence rates for a variety of tests which clearly show
that we can effectively use the multigrid algorithm with non-trivial (i.e. non-
conforming) boundaries. We then perform additional tests to demonstrate

convergence and the use of deferred correction.

Our first test applies the multigrid algorithm described above to a 5-
level approximation of equation (6.77), with ¢, = ¢, = 0, @ = 1. The finest
level has roughly 257 x 257 points and we use a variety of p cycles. Table 6.34
suminarizes the results of this first set of experiments in which we examine the
convergence rate as a function of nwcyc, pref, pstf, pre, pst,and bsweeps.
For each run we were able to get the ¢; norm of the residuals below 1.0e-06. The
best convergence rate, which is highlighted with boldface in the table, is approx-
imately -2.0e-01, which means that for every 5 relaxation sweeps the ¢; norm
of the residuals are reduced by one order of magnitude. This is slightly slower

than typical model problems which have been discussed in the literature[9].?

We then solve a 6-level system and perform the same parameter-space
survey. Table 6.35 shows the convergence rate, p, for this series of tests. We
observe only a slight decrease in the convergence rate from the 5-level runs.

We also see that the optimal parameter settings are the same in the two cases.

Fixing the input parameters to their empirically determined values, we
now investigate if the convergence rates remain approximately constant as we
vary lpax. Table 6.36 shows that the convergence rate does remain approxi-

mately constant. This clearly shows that the code converges in O (1) cycles

5Such applications generally have convergence rates around -3.3e-01.
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(or, equivalently, O (1) work units).

We now examine the impact of fourth-order deferred correction on the
convergence rate (Table 6.37). We see that for the 5-level runs summarized
in the table, the best input parameters are just slightly different from the
uncorrected case. Relative to the uncorrected runs, the convergence rate goes
down by a factor of 2 ~ 3, but remains relatively constant. These runs show
that the residual norm is reduced by one order of magnitude for every 12 or
so sweeps. This may be seem like poor performance by traditional multigrid
standards, and there is clearly room for improvement. However, as we now
discuss, the performance of the code with respect to the reduction of the error

in the difference solution is actually quite good.

In Figure 6.54 we schematically depict a 2 level system where we also
show some boundary reference points. In order to fully test to see if the results
are extrapolatable, we interpolate the solutions to fourth order, onto reference
points, which are uniformly displaced around the boundary, as shown in the

figure.

Figure 6.55 shows the errors on several levels computed from runs with
and without deferred correction. The coarse-grid and fine-grid results are shown
with large and small symbols respectively. Squares are used for the uncorrected
run and open circles for the corrected run. The solid circles show errors in the

Richardson extrapolated results produced by application of equation (4.40),

4‘h 1‘2h_‘ 4
gu' =g =ut0(h), (6.84)

to the two levels of corrected quantities. The graph clearly hows that deferred

correction (1) reduces the overall error in the “raw” solution, and (2) pro-



Table 6.34: Results from the 2D FMG FAS algorithm with ¢ = 1, when we

vary the input parameters

Deferred correction not used, Tmax = Ymax = 2.4, 5 level system

nwcyc

pref pstf pre

pst bsweeps

1

DO = = = e e e e e e e e e e

NN R = == === = s W N =

1

— = = = = R WON e

1

— == R W = e

1

— o R N e e e e

1

1
1
1
1
1
1
1
1
1
1
1
1
2
2

P
2.0(-1)
-2.0(-1)
-2.0(-1)
-1.9(-1)
-1.6(-1)
-1.3(-1)
-1.0(-1)
“1.8(-1)
-1.5(-1)
-1.4(-1)
-1.7(-1)
“1.5(-1)
-1.3(-1)
-2.0(-1)
-1.7(-1)

duces values which are extrapolatable. In particular, these results show that

with about twice the amount of work the error in the fine grid values (after

extrapolation) is reduced by almost three orders of magnitude!

Thus, although more study is needed in order to improve the overall

convergence rate, we have clearly demonstrated that we can obtain highly ac-

curate results on non-trivial domains (and using non-conforming coordinates),

using multigrid as our elliptic solver.
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Table 6.35: Results from the 2D FMG FAS algorithm with ¢ = 1, and no

deferred correctiond

Tmax = Ymax = 2.4, 6 level system

nwcyc

pref pstf pre

pst bsweeps

p

1
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Table 6.36: Results from the 2D FMG FAS algorithm with ¢ =1

Deferred correction not used, Tmax = Ymax = 2.4
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Table 6.37: Results from the 2D FMG FAS algorithm with ¢ =1

Deferred correction not used, Tmax = Ymax = 2.4, 5 level system

nwcyc

pref pstf pre

pst bsweeps

A~

1

e S S S S S e T T T e S S Gy e gy
e e e T e S S e Sy S N ~SR UG N RS

N = = = = e e = = R QO = =

1
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1

T e Y S N T T e e e

1
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Table 6.38: Results from the 2D FMG FAS algorithm with ¢ = 1 using deferred

correction to fourth order

Tmax = Ymax = 24
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Figure 6.54: 2D domain showing 2 levels, and the reference points.
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Figure 6.55: The absolute value of the errors on the interpolated points.
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Chapter 7

Conclusion

In this chapter we summarize the results and conclusions of this dissertation.
We also briefly outline possible future research based on the work we have

presented here.

Our goal was to design a computer code which would be fast and ac-
curate for solving the Initial Value Problem (IVP) in three dimensions using
Cartesian coordinates. In Chapter 2 we saw how the Einstein equations can be
considered as evolution equations and initial value constraint equations. Later
we saw the initial value constraint equations were elliptic equations with Robin
boundary conditions. Now the goal of this dissertation was to design an al-
gorithm to solve this elliptic PDE, to fourth order accuracy, using the MLAT

techniques, and Richardson extrapolation.

We have yet to implement a code which uses all of the tools we presented
here to solve the IVP. We did, however, generate reasonably accurate data sets
using genpsi, shown in Chapter 5, which was originally developed as a test-bed
for the design of a multigrid code which would solve the same equations. We
showed in Chapter 5 that although we were only able to get first order accurate
solutions, our solutions were still accurate enough to represent the initial data.

We also presented results from another test code, which was able to produce
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fourth order extrapolatable results for a model problem. Thus, the two goals
we set for ourselves was first to design a code that would be extrapolatable such
that the solution would be accurate to fourth order, and second, to design a
code that would take O(1) work units. Since we have non-boundary conforming

meshes, both of these goals were difficult to achieve.

The first problem that we encountered was in implementing both the
inner and outer boundary conditions. Here we found that in order to inves-
tigate the problem in detail, it was advantageous to consider one dimensional
model problems, which will hopefully generalize for the multidimensional cases.
The next problem we encountered was in implementing a Berger and Oliger[2]
adaptive scheme. We used Choptuik’s memory storage scheme and tree links
to design the data structures that we will use in our final code. We also saw the
problem of using AMR and attempting to extrapolate. We saw that straight-
forward applications of the basic MLAT algorithm[9] the solution will only be
first order accurate. Therefore, we empirically found a scheme which produced
extrapolatable results. This scheme smoothed the relative truncation error esti-
mate across the interfaces. We found that by using this scheme we could always
achieve fourth order results from Richardson extrapolating the solutions. An-
other problem we saw was that grids became uncontained from their parents,
since the finer grids would be closer to the actual boundaries. Since the points
inside of the holes are not defined in the computational domain, we saw that
the finer grids approached the boundaries closer than the coarse grids. We
empirically determined transfer operators which allowed the convergence rate
to remain constant. We also applied the blended boundary condition, which

may prove to be useful for multi-dimensional codes.
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Our last problem in designing such a code was to implement the multi-
grid algorithm for non-aligned grids. We saw earlier that, by determining the
proper boundary smoothing operators and transfers, we were able to develop a
multigrid code which could be extrapolatable via deferred correction. We saw
that deferred correction is an extremely powerful tool, which we plan to use in

the future for all of our elliptic multigrid algorithms .

The work for the future is to incorporate the ideas in this dissertation
into a general 3D multigrid code. At this point we would be able to determine
the solution of the IVP up to the same order of accuracy as the boundary fitted
Cade? coordinate multigrid code developed by Cook. Our plans are then to
apply our knowledge in handling the boundaries to the evolution code. We
also plan on implementing general 3D multigrid codes which could be used to
determine the initial conditions for multiple black holes. Since other elliptic
equations arise in the evolution equations, we are also planning to develop

MLAT solvers for these equations
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Appendix A

1D parallel multigrid implementation

Here we explore the parallelization of a one dimensional multi-grid algorithm
on an Intel IPSC hypercube with 32 processors[38]. We find that our algorithm
is scalable!, and is implemented much like that of the serial algorithm, shown
in chapter( 4). Our technique is to use all the available processors on levels
which have over 129 points. When the total number of points in the domain
is less than this number, we switch to letting the entire problem be solved
on all processors identically. We find that if we do not use this technique,
the algorithm becomes non-scalable, and in fact, the time required to solve the
system begins to increase as the number of processors is increased. We feel that
the techniques utilized in our algorithm can be directly applied to the higher
dimensional cases. This code was written by this author and Reid Guenther[29]

for a class by R. Van de Geign.

Since multigrid is the best method for solving elliptic systems, it is quite
clear that one needs to establish a parallel algorithm for this method, since we
will in general be handling very large systems of equations. In this appendix

we only look at one dimensional methods, since we feel that the knowledge

! A scalable algorithm is one which time ~ p~!, where p is the number of processors.
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gained here will go into the much larger effort of designing a three dimensional

method.

Much work has been done already, but mostly in higher dimensions.
For example , one of the NAS benchmarks? is for a two dimensional multigrid
code. It is quite clear that from all of the NAS benchmarks, that multigrid is
the fastest method to solve elliptic equations, (even though this method will

never achieve the FLOPS of some of the other methods).

A.1 Target architectures

We implement this algorithm on a hypercube consisting of 2P (D =0---5).
independent processors, each with its own local memory. There is no shared
memory available- the processors cooperate by message passing. Messages
are passed over the interconnection network which is a hypercube in a space
of dimension D. Processors are located at the vertices of the D-dimensional
hypercube and adjacent vertices of the cube are connected by a communication

channel along the corresponding edge[38].

Our parallel implementation of the one dimensional multigrid method
assumes the use of a one dimensional mesh with 2” nodes, where each node
is a separate processor. We also assume that there are bidirectional links be-
tween nodes and worm-hole (cut-through) routing. Furthermore, since we are
performing message passing only between nearest neighbors on the hypercube,

we assume it is possible to model the time required for sending a message of

2A common benchmark program used today to rate the performance of computers



length n bytes between any two nodes by
a+np

where a equals the latency of the network, and 3 is the time per item, in the
absence of network conflicts[52]. Communication is single ported, meaning a
processor can only send to, or receive from, one other node at a given time.

When two messages traverse the same physical link, we assume they time-share

the bandwidth of that link.

A.1.1 Description of the basic parallel algorithm

There are only two basic changes to the serial code shown in Figure 4.11. One
is that the physical 1D mesh is broken up onto the computational ring of nodes
with adjacent parts of the mesh lying on adjacent nodes. Now, for the problem
we are solving, a given physical point will need information from its left and
right neighbors. Thus the left and right most mesh points on a node will need
information from their physical neighbor on the adjacent node. So we use

shadow points to communicate between nodes:

In Figure A.1, we show part of the physical mesh mapped onto two
adjacent physical computational nodes. Point z is a “shadow point” for node
m while point * — 1 is a shadow point for node m + 1. Node m will use
the information inherent at point x to update information at point  — 1 but
not update point z, while the opposite is true on node m + 1. So when the
information at * — 1 and x are updated by their respective nodes, this data is
communicated to the adjacent node and stored at the shadow points on each

node. So given that we have 2/ + 1 mesh points on 2 nodes, we divide the
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mesh in this manner in the figure below, with the left and right most mesh
point on a node being a shadow point for that node except for mesh points 1

and 2! + 1 which are physical boundary points.

node 0 gets mesh points ob-t 11
node 1 gets mesh points ob-1 _ 9D=l+1 41

node 2P-1 gets mesh points ot=1 _ 9l 41

The second difference between the serial and parallel codes involves
communication versus computation time. In the V-cycles of the parallel multi-
grid code computations are being performed at different levels [ which involve
0 (QI_D ) computations while communication between nodes remains constant
at each level in the V-cycle. Thus, there will be a level below which the com-
munication time will be longer than the computation time. Around this level,
we have the parallel code finish the lower part of the V-cycle in serial fashion.
This is probably best understood by going through the pseudo-code shown in
figures (A.2, A.3).

Figure A.1: A schematic of two nodes, sharing the “shadow” points
Node m



We see in the algorithms that in going up to the coarsest level in the V-
cycle routine, there is a level [;4 at which all nodes begin solving the problem
in serial fashion. Thus no communication is needed between nodes for these
levels. Then cycling from the coarse grid up to the finest grid, the routine goes
back to parallel. Since l;q is an adjustable parameter we can experiment to
see which is the best level to implement the transition from a parallel to a serial

code and vice versa.

The other difference in this code and the serial code is the updating of
the shadow points. As one sees from the pseudo-code this is done only in the
smoothing and restriction routines. Thus the differences between our parallel
1-D multigrid code and the serial code are cosmetically simple but produce

some very encouraging results which will be discussed in Section A.2.

A.1.2 Discussion of improvements that yield high performance

Since our parallel code utilizes the same multigrid routines as the serial code
except for the updating of shadow points in the smooth and restriction routines,
it is highly vectorized. The updating of shadow points uses the basic csend and
crecv routines on the iPSC/860 which we assume are efficient routines.( We
also implemented level 4 optimization on the iPSC and received a 30% speed
up.)

One problem with our code is the global collect we use to transfer the
problem from parallel mode to serial mode. On the hypercube, the ring is
embedded using a Gray code while the global collect routine is for a hypercube.
So two more csend and crecv calls are needed to have a global collect for a

ring. We used the iCC[51] call for the global collect, but a collect optimized
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for a ring embedded on the hypercube should be much faster. This is not a

serious problem as the collect occurs only once in the cycle.

A.1.3 Estimated run time and scalability

The time for the serial multigrid code to perform a V-cycle on the problem:

0*u (x)
Oz?

=f(z), O<z<l (A.1)

with Dirichlet boundary conditions on a mesh with 2= 4 1 points is about:
Imax
Ts = (Cpn+ Cup)y Z 2" ~ (Cpn + Cup) A QMmaxtl (A.2)
n=1
where v is the time for an add or multiply, Cpy i1s the number of calculations
in the down part of a V-cycle at each level and Cyp is defined similarly. This
number is calculated simply by examining the code for how many adds and

multiplies must be performed. The time for the parallel code to perform one

cycle of the same problem on 2P nodes is:

Tp = (pre —I_ 3) (lmax - Zmid) MD (Oé ‘|‘ 8,3)

max mid
+ > Con2"Py 4> Cpn2y
n=lmia+1 n=1
+ (PSt + 1) (lmax - Zmid + 1) MD (Oé + 8/3)
Imax mid—1
+ Z CUPQTL_D’)/ -+ Z CUp2n7 (A3)
m=lmniq n=1

where lyax, 7, Cyp and Cpy are the same as above, o and 3 are defined in Sec-
tion A.1, [q is the level at which the problem switches from parallel to serial
mode, Mp is the number of message passing startups a node must perform in
the red-black smoothing routine and is 2 for D = 1, because each node only

has one shadow point, and 4 for D > 1, pre is the number of pre-sweeps of



the smoother and pst is the number of post-sweeps of the smoother. Equa-
tion (A.3) is more complicated than (A.2) because it involves message passing
and a transition between running in parallel and serially. The first line of the
equation gives the time for the message passing in cycling down the V. The
second line is the time split between running in parallel from level l,.x to lniq
and serially down to [,;q. The third and fourth lines are similar to the first two

but involve going up the V-cycle.

The best way to compare how well a parallel code performs compared to
a serial code is to calculate the efficiency, which is just the time it takes serial
code to run divided by the time it takes the parallel code to run divided by the
number of nodes on which the parallel code runs. Thus, due to the overhead
of message passing, the efficiency will lie between 0 and 1. For pre = pst = 2,

a+ 80
v

~ 1000

, Mp =4, Cpy = 55 and Cyp = 37, the efficiency of the code is:

T
E =
207,
N 1 (A1)
o1 + % (229 (Zmax - Zmid) + 21mid) 9D —lmax .

This calculation appears to be very encouraging since as [,y increases, the
efficiency goes to 1. The term in parenthesis shows that [,;q should remain
constant as .y grows to maintain efficiency since 2'=i4 grows much faster than
(lmax — lmia) when increasing lnig and lynax by the same increment. Another
good feature is that to maintain efficiency when increasing the number of nodes

the problem size should grow proportionally. Thus the code should be scalable.
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A.2 Experimental results

Given the time constraints on this project, only a rudimentary analysis of the
code has been performed. Our first result was a comparison of run time versus
Imia for a given problem (/pnax = 14, pre = pst = 2 on 8 nodes). As one sees in
Table A.1, the times have a minimum for [,,;q = 7. This is to be expected since
a conflict occurs between when communication time overtakes computation
time and how much extra computation must be done in serial fashion. So one

would expect to find a level [,;4 at which the run time is minimized.

Table A.2 gives an indication of the scalability and efficiency of this
code for ( Imia = T7) at various maximum levels and cube dimensions. Our
results of the previous section predicted that [, should scale proportionally
to D to maintain scalability. As one sees by looking diagonally down the chart,
the problem does not scale very well when [, 1s small, but as [, increases,
the experimental results comply with the calculated results given in the above
section. One thing to note is the jump in times as one moves from D = 1
to D = 2 and increment [, by 1 for the lower [,.cs. There is a consistent
decrease that goes down by less than a factor of 2. This is because the number
of communications is doubling when one moves form 2 nodes to 4 due to each
node having only one shadow point for 2 nodes while the interior nodes have 2
shadow points for 4 nodes and more. Table A.2 also gives an indication of the
efficiency of this code. When [, is small, the efficiency is not very good but

as [max increases, one sees that 7, ~ 2PT as predicted above.
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Table A.1: No optimization, cube dimension =3
Variation of {;iq for {p. = 14

Imia  time (s)

4 9.2(-2)
5 8.9(-2)
6 8.6(-2)
7 8.4(-2)
8 8.5(-2)
9 8.8(-2)
10 9.7(-2)
11 1.20(-1)
12 1.7(-1)

A.3 Conclusion

Our results are very encouraging. We have a parallel one dimensional multigrid
code that is scalable for large problems. Thus we will try to implement the
knowledge gained here into a multi-dimensional parallel multi-grid code that
will be used directly in our research. This should not be as straight forward as
writing the one dimensional code since the message passing to shadow points
will no longer be a constant. We expect that we will have to have multiple
levels in our cycling at which we reduce the number of nodes running different
parts of the problem to keep the amount of message passing below the amount

of computation on a given level.



Figure A.2: The parallel V-cycle algorithm

PROCEDURE VCycle( cycle, lmaxs lmids pre, pst)
Cycle up to the coarsest level
Dol = lmax s lcoarse‘l‘ 1
IF (I = lpmiq) THEN
Begin serial processing on all nodes
IF (! # lmax) OR(cycle = 1) THEN
DO p =1, pre
SMOQOTH(/)
END DO
END IF
Now get a truncation error estimate, and update
END DO
Now solve the system on the coarsest level
SOLVE (/coarse)
DO l = lcoarse s lmax -1
IF(l::hmd)THEN
Begin parallel processing
Determine the correction
ul = —I—I]’;LI (uH - Ifuh)
Now smooth out u”
DO q =1, pst
SMOOTH(!)
END DO
END DO
END PROCEDURE

255



Figure A.3: The parallel smoothing algorithm

PROCEDURE SMOOTH(1)

First smooth the even points

DOj =2 , n-1 , 2
ulj]) = 1/2 (ulj + 1] + ulj — 1] — B2 f[j])
update shadow points

END DO

Now smooth the odd points

DOj = 3 , n-1 , 2
ulj]) = 1/2 (alj + 1]+ uli — 1] - B2 f[j])
update shadow points

END DO

END PROCEDURE

Table A.2: No optimization, lyq = 7

Scalability of 1D Multigrid Code normalized for smallest time = 1.0,

Normalization factor = 7.626e-037!

l 0 1 2 3 4 5

8 1 1.68 2.06 2.23 2.03

9 1.93 2.49 2.84 2.85 2.53

10 3.87 3.77 3.78 3.63 3.24

11 7.75 6.12 5.27 4.54 3.95

12 15.52 10.35 7.74 6.09 5.04 4.60

13 30.97 18.42  11.95 8.38 6.51 5.83

14 61.95 34.34  20.23 12.85 8.92 7.06

15 123.83 65.64 36.21 21.05 13.22 9.17

16  247.44  128.02 67.53 37.00 21.39 1381

17 494.88% 252.29 129.96 68.32 37.20 21.94

18  989.76* 253.86 130.74 68.25  37.63

19 1979.52% 254.92 131.05 68.35

20 3959.04* 252.56 131.85
253.08

21  7918.08*
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