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This dissertation concerns the numerical simulation of scalar fields in curved space-
times, in configurations which bear similarities to certain astrophysical systems.
We present a new study of black hole threshold phenomena associated with “boson
stars”, which are star-like equilibrium solutions of the coupled Einstein and Klein-
Gordon equations. We construct Type I critical solutions dynamically by imploding
around the boson star a carefully tuned spherical shell consisting of a massless real
scalar field. We compare the resulting critical solutions with unstable boson stars
via an extension of the linear perturbative analysis of Gleiser and Watkins [Nucl.
Phys. B319 733 (1989)], and establish a close link between spherically-symmetric
critical solutions of a massive complex field and unstable boson stars. This work
implies that unstable boson stars are unstable toward dispersal in addition to black
hole formation, and may imply that neutron stars at or beyond the point of insta-
bility may also be unstable to explosion. We also discuss “multi-scalar stars”, a
new class of quasi-periodic compact solutions which were discovered in the course

of the boson star simulations. We further present work toward the development
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of a computing environment to provide parallel adaptive mesh refinement (AMR)
automatically to developers of sequential, single-grid finite difference codes. This
work involves a hybrid of algorithms developed over several years at multiple insti-
tutions, presented in one cohesive package with the addition of several important
new features. We consider an application to solve a canonical hyperbolic system,
the wave equation, which serves as a prototype for a “generic driver” for AMR ap-
plications. To serve as a test case for the adaptive mesh refinement methods, as
well as to provide information about a system which has received little study, we
consider the evolution of a massive complex field coupled to an electromagnetic field
in the vicinity of a Kerr black hole. Such a system has features similar to those
of magnetohydrodynamic accretion disks, yet should allow for a simpler numerical
treatment due to the absence of shocks. We present work in progress to create a
three-dimensional single-grid code to interface with the adaptive mesh refinement

driver.
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Chapter 1

Introduction

1.1 Notation and Conventions

Throughout this dissertation we will use the traditional “numerical relativity” nota-
tion which is also employed in Misner, Thorne and Wheeler [73]. Namely, we employ
a metric with signature — + ++, we will use Greek indices to run from 0 to 3 (i.e.
over time and space) and Latin indices to run from 1 to 3 (for spatial quantities),
with the summation convention applied over each set of indices. We will use the
symbol V, to denote the covariant derivative compatible with the four-dimensional
metric g, and the symbol D; as the covariant derivative compatible with the three
dimensional “spatial” metric h;;. (Indices of “spatial” vectors such the electric and
magnetic fields E* and B’ are raised and lowered using h;;.) As an additional short-
hand notation throughout this dissertation, we will often employ the non-tensorial
operator O* = g"9,. (We will only use this operator on scalar fields.) We will
work in geometrized units, such that Newton’s constant G = 1 and the speed of
light ¢ = 1. For the massive scalar fields covered in this dissertation, the “boson
mass” m has units of inverse length, for which the corresponding physical mass is

mh/c. Thus we choose i = 1, but we emphasize that all the discussions and results



to follow are given within the context of classical field theory.

1.2 Layout

This thesis is concerned with the numerical simulation of systems which feature
scalar fields in strong gravitational fields. These systems bear many similarities to
well-known astrophysical fluid systems. A scalar field provides a useful matter source
which shares many features of a fluid, yet the scalar field is described by simpler
equations of motion, and thus can provide a simple “toy model” of an astrophysical
matter source with which to study dynamics in general relativity. This thesis is
divided into the following principal parts: boson stars, multi-scalar stars, scalar
accretion and adaptive mesh refinement.

Boson stars are compact bodies composed of a complex massive scalar field,
minimally coupled to the gravitational field of general relativity. These objects are
local equilibrium solutions of the Einstein and Klein-Gordon equations, in which the
spacetime is static, although the real and imaginary components of the scalar field
oscillate. Boson stars have similarities to neutron stars, such as their possession
of a maximum mass which marks the transition from stability to instability. We
present dynamical simulations of boson stars which are driven to the threshold of
black formation via an exchange of energy with an additional real, massless scalar
field. We show that the critical solutions appear to be unstable boson stars.

Multi-Scalar Stars are a family of stable, quasi-periodic compact solutions
to the Einstein-Klein-Gordon system which were discovered in the course of the
boson star simulations. This class of solutions contains boson stars and oscillating
soliton stars (which are periodic solutions involving a single real field) as subsets.
The remarkable feature of these multi-scalar solutions is that they indicate that
stable, quasi-periodic solutions are perhaps more generic than has been previously

assumed. We discuss the construction of multi-scalar stars and relate results of some



simulations of these objects.

Adaptive Mesh Refinement (AMR) is the name given to a class of techniques
that can be used when modeling physical systems using approximate finite-difference
solutions of partial differential equations. For simulations in which a fixed local ac-
curacy is desired, the required resolution may vary widely both in space and in
time, in a manner which is unknown a priori. AMR is a way of providing the
appropriate amount of resolution throughout the space-time domain, and allows
one to generate solutions within a desired error tolerance at a fraction of the cost
of a corresponding uniform-grid (unigrid) application. However, even given a cer-
tain amount of computing efficiency one obtains from AMR, current finite-difference
codes must be parallelizable if they are to take full advantage of the largest com-
puters commonly available to researchers. AMR and parallelization each present
significant challenges which for many researchers may be prohibitive and lead us
to investigate the development of environments where AMR and parallelization are
provided “automatically”. This thesis includes work towards the creation of one
such environment.

Scalar accretion is a term we will use to denote the dynamics of a scalar field
which is being swallowed by a black hole. The intended system referenced here is a
scalar “accretion disk” in which the scalar field is charged and coupled to an electro-
magnetic field, and evolving in the vicinity of a rotating black hole. This research
was intended to serve as useful test case for the adaptive mesh refinement tech-
niques described above. This work is just beginning, and we discuss the necessary

background for the material and give a current status report.

1.3 Connection with Other Research

Scalar fields have not been measured by any experiment to date, yet current the-

ories of particle physics and cosmology call for the existence of one or more scalar



(or pseudo-scalar) fields. Furthermore, measurements of galaxy rotation curves and
the properties of galaxy clusters indicate that there is a substantial amount of non-
baryonic matter, “dark matter”, in the universe. The scalar fields studied in this
thesis provide one candidate for the weakly-interacting “missing mass” of our uni-
verse. It is reasonable to suggest that, if these fields exist, they might reach suf-
ficient densities in certain places as to condense into the compact objects we call
boson stars, or be drawn into black holes (formed by scalar or fermionic matter)
and display some of the dynamics described in this work.

The boson star research is interesting principally for what it tells us about
strong-field gravity. Dynamic solutions of Einstein’s equations in their full nonlin-
earity are fairly recent additions to the field of relativity, and the solution space of
the theory is still largely unexplored. The work presented in this thesis is a further
contribution to the study of critical phenomena in gravitational collapse, which be-
gan not quite a decade ago. This research may also suggest a direction for neutron
star research in the near future, given the suggestion that, because boson stars can
explode, neutron stars can probably do the same. This may prove to be a foundation
for providing yet another scenario (among many) describing the mysterious gamma
ray bursts measured by spaceborne gamma ray observatories.

The scalar accretion study, like the boson star work, also serves as both a “toy
model” for more conventional (fermionic) astrophysics, and an interesting study in
its own right about a system which has received very little attention. It is in part a
stepping-stone to the goal of full 3D magnetohydrodynamic (MHD) simulations in
evolving spacetimes. We may be able capture some features thought to be important
in astrophysical fluid systems, such as processes for extracting energy from the black
hole, and the production of high-speed jets.

The AMR work has relevance for computational physics as a whole, because

many researchers are now interested in performing 3+41-dimensional simulations of



various phenomena, and such simulations will require efficient use of computational
resources to provide sufficient resolution of interesting features in the system. Two
applications of interest to this author are the binary black hole problem and the

global simulation of MHD accretion disks.

1.4 Our Matter Model

1.4.1 Scalar Fields Themselves

What is a scalar field, “physically”? All the systems considered in this thesis are
conceived within the context of classical field theory. In this view, the scalar field rep-
resents another fundamental field, like the electromagnetic and gravitational fields
As mentioned previously, such additional fundamental fields are a feature of some
popular theories of particles physics and cosmology, so fields such as those studied
in this thesis may indeed exist in our universe. We will use the term “boson” at
times (e.g. “boson star”), since scalar fields would be composed of spin-0 (bosonic)
particles. The scalar field is regarded as a smoothly-varying field, a function defined
on all points in space and time, for which the values of this function and its spa-
tial and temporal derivatives contribute to a local energy density everywhere in the
spacetime. This function evolves according to the well-known Klein-Gordon equa-
tion, with some possible coupling to other fundamental fields in the model, and may
include a “mass” term which gives a dispersive quality to “wave packets” comprised
of the scalar field. This dispersion is important as it provides an effective repul-
sive pressure, which can support a condensed mass of the field against gravitational
collapse and allow it to form a boson star. Even if scalar fields do not actually
exist in our universe, their study is nevertheless significant. Scalar fields have often
been employed in relativity research because they represent a very simple matter

source, having only one (coordinate-invariant) component and possessing nontrivial



dynamics in spherical symmetry.

In this thesis, we will consider complex and real scalar fields. For the boson
star study of Chapter 3, we will use a model in which one complex massive field
and one real massless field are coupled to the gravitational field of general relativity
in spherical symmetry. Chapter 4 discusses the dynamics of two real massive fields
coupled to gravitational field of general relativity. In Chapter 6, we will we will
consider a massive complex field coupled dynamically to an evolving electromagnetic

field in the presence of the static spacetime of a rotating black hole.

1.4.2 Scalar Fields vs. Hydrodynamics

Scalar fields share some properties with perfect fluids, which are often used in more
‘realistic’ models of astrophysical systems. A perfect fluid is characterized by three
quantities: a fluid 4-velocity vector field, an energy density scalar field, and an
isotropic pressure scalar field [37]. The stress energy tensor for a perfect fluid is
given by

" = (p+ p)uru” + pg"” (1.1)

where p and p are the energy density and pressure, respectively, in the rest frame
of the fluid, u* is the fluid 4-velocity, and ¢g*” is the metric tensor.

An important difference between scalar fields and fluids is that characteris-
tics of the scalar field wave equation do not cross, and thus these systems do not
develop discontinuities in generic evolutions of smooth initial data. The tendency
of fluids to form shock waves presents a significant challenge to computational fluid
dynamicists, requiring a host of sophisticated numerical techniques to handle these
features properly in a computer code. Fluid systems also require special treatment
for very low densities because the fluid equations are not well defined in the vacuum
limit. For this dissertation, we will not need to handle shock waves, and can employ

the more conventional methods developed for smoothly-evolving functions.



The similarities between scalar fields and perfect fluids can be made more
rigorous by following a discussion due to Madsen [68]. A real scalar field can be

described by the Lagrangian density

1
L=

= =3 (060,6) + V(©) (12)

where V(¢) is some potential term. The stress energy tensor is written as
T = 9Fpd” ¢ + LgH (1.3)

By comparing (1.1) and (1.3), we see that the fluid quantities are related to the

scalar field quantities by
p=L (1.4)

(p + p)utu” = 0p0" ¢ (1.5)

For the effective 4-velocity of the scalar field, we can define a vector field of unit

magnitude via
%9
V—=0"¢0,6’

which only provides a meaningful notion of velocity when 0* ¢ is timelike. Contract-

ut = (1.6)
ing (1.5), we find
—(p+p) =0"9p0u0
or, using (1.2) and (1.4),
p=p+2V(e). (1.7)
For the complex fields used in this thesis, the discussion proceeds in the same

manner as above, where V(¢) becomes V (|¢|), and in which we define the 4-velocity

as
OH
w=— 2L (1.8)
\/ —9*9l0x 9|
An alternative definition would involve a complex 4-velocity,
Gt
at = __9%% (1.9)

V=0 porg*

7



for which u%u); = —1, and in which the real and imaginary parts of % provide notions
of the 4-velocities of the real and imaginary parts of the field, respectively. With a

complex 4-velocity the stress-energy tensor takes the form
™ = (p + p)ata™ + pg"” . (1.10)

It is perhaps worth noting that in recent work by Schunck and collaborators
[87, 35, T2], as well as the original work of Kaup [62], stated that the effective
pressure is anisotropic in a boson star, whereas our preceeding discussion indicates
that the effective pressure for scalar fields is indeed a scalar quantity (namely, the
Lagrangian density). Schunck and collaborators seem to claim the existence of this
pressure anisotropy on the basis that the stress energy tensor in mixed form, T}#, is

not expressible in the form diag(—p, p, p, p) but rather as

I} = diag(—p, prsp1,P1) (1.11)

where p, and p, are generally different. It seems likely that these authors do not
pursue the idea of defining a velocity field in the manner described in preceeding
paragraphs, since (as we shall see) the boson star is a standing wave and is not mov-
ing in the usual Schwarzschild-like coordinates, and thus the anisotropic stress (for
comparison to static fluid stars) may be regarded as an anisotropic pressure. Since
a scalar field is not a fluid, the notion of the field “velocity” (and hence “pressure”),
while not entirely arbitrary, may be best chosen according to the features of the
problem in which one is interested.

The preceeding discussion is intended to help establish the link between scalar
fields and fluids. In addition to the merits of studying scalar field systems in their
own right, and in addition to the value of such studies as testbeds for developing
numerical techniques, the similarities between some properties of scalar fields and
perfect fluids provide us with the possibility of deeper understanding of some fluid

systems.



Chapter 2

Theoretical Background

2.1 Topics in Relativity

2.1.1 3+1 Decomposition

Often it is useful to view the “timeless” four-dimensional spacetime manifold as a
series of snapshots of three-dimensional space which evolve with time. More techni-
cally, we say that we can decompose the spacetime into a one-parameter foliation of
spacelike hypersurfaces, with the family parameter ¢ serving as a time coordinate.
We often refer to these spacelike surfaces as “slices” through the spacetime, and the
choice of time coordinate as a choice of “slicing.” In this view we then have three
spatial dimensions plus one time dimension, and hence we attach the name “3+1”
to this view of spacetime. The mathematical formalism associated with this view
was presented in definitive form by Arnowitt, Deser and Misner [8], and hence we
use the term “ADM formalism” to refer to their system.

In the ADM formalism, all dynamical tensor objects exist as 3-dimensional
“spatial” tensors on each spacelike hypersurface, and are provided with “time deriva-
tive” quantities which connect spatial tensors on one hypersurface to those on the

next hypersurface. The coordinate freedom is expressed in terms of the lapse a and



X+AX

Figure 2.1: A schematic of the 3+1 decomposition. Here we show a 141 dimen-
sional subset of the full spacetime, in which the time coordinate ¢ advances roughly
vertically, and the spatial coordinate x advances in an essentially horizontal direc-
tion. The surfaces ¥; and ¥4 A; define nearby surfaces of constant ¢. The amount
of “skew” in the coordinates is given by [(*, which is called the shift vector. The
amount of proper time 7 along an interval normal to the spacelike hypersurfaces is
T = adt.

the shift vector (', which are often chosen to vary with position. Figure 2.1 shows a
schematic of the type of coordinates used in the ADM formalism. The lapse defines
the relation between coordinate time ¢ and the proper time 7 measured by observers

moving normally to the spacelike hypersurfaces; this relation is given by 7 = adt.

The hyperbolic character of Einstein’s equation
G = 811y,

allows us to solve the equation by means of an initial value problem, in which we
specify data on some initial spacelike hypersurface and determine the geometry of
spacetime at later values of ¢ via a set of equations of motion. Einstein’s tensor
equation consists of 10 equations for 10 variables. Four of these variables can be
chosen arbitrarily as a result of coordinate (or “gauge”) freedom. Thus we have an
overdetermined system of 10 equations for six variables. Six of the equations contain
second time derivatives of the 3-metric g;; and are referred to as evolution equations.
The remaining set of four equations (which do not contain second time derivatives)
are constraint equations, which must be satisfied on each spacelike hypersurface

to ensure that the evolution produces valid solutions to Einstein’s equation. The

10



four constraints on the six evolution equations imply that there are two degrees of
freedom in the theory, such as the two polarizations available for gravitational wave
propagation.

The structure of the Bianchi identities tells us that if the initial data satisfies
the constraint equations, the resulting evolution equations preserve these constraints
for all time. Numerically, however, these constraints are solved imperfectly and some
care must given to the specific form of evolution scheme used in a numerical simula-
tion. The ADM formalism provides only a quasi-hyperbolic system of equations to
solve. A host of explicitly hyperbolic formalisms [5, 14, 40, 41] have recently received
attention, and are being implemented in numerical relativity codes [16, 57, 59, 92].
(For a review of hyperbolic formulations, see the review by Reula [83]). Neverthe-
less, the ADM formalism has provided the backbone for evolution codes for many
years, and we will employ it (minimally) in Chapters 3 and 4 for our evolution of

scalar fields in spherical symmetry.

2.1.2 Critical Phenomena

Note: Much of the discussion in this subsection is taken from a paper written with
Matthew W. Choptuik [56].

Over the past decade, detailed studies of models of gravitational collapse
have revealed that the threshold of black hole formation is generically characterized
by special, “critical” solutions. The features of these solutions are known as “critical
phenomena”, and arise in even the simplest collapse models, such as a model consist-
ing of a single real massless scalar field, minimally coupled to the general relativistic
field in spherical symmetry [24]. Although we present here a brief overview of black
hole critical phenomena, we suggest that interested readers consult the excellent
reviews by Gundlach [45, 46] for many additional details.

The impetus for the pioneering study of critical behavior came from

11



Christodoulou who, in the course of his analytic studies of the Einstein-Massless-
Klein-Gordon system in spherical symmetry (cf. [31, 32]) posed the following ques-
tion [25]: Consider a generic smooth one-parameter family of initial data, such that
for large values of the parameter p a black hole is formed, and for small values of
p no black hole is formed. If one performs a bisection search to obtain the critical
value p* for which black hole is just barely formed, will this black hole have finite or
infinitesimal mass? Choptuik was able to demonstrate, using sophisticated numer-
ical techniques, that for a massless scalar field, the answer to this question is the
latter. In so doing, he observed that all families of initial data near the critical point
evolve to a single solution, term the “critical solution”, which serves as intermediate
attractor.

In subsequent studies carried out since then, it has invariably turned out that
the solutions which appear in the strongly-coupled regime of the calculations (i.e.
the critical solution), are almost totally independent of the specifics of the particular
family used as a generator. In fact, the only initial-data dependence which has been
observed so far in critical collapse occurs in models for which there is more than one
distinct black-hole-threshold solution. In this sense then, black hole critical solutions
are akin to, for example, the Schwarzschild solution, which can be formed through
the collapse of virtually any type and/or shape of spherically distributed matter.
In particular, like the Schwarzschild solution, black hole critical solutions possess
additional symmetry (beyond spherical symmetry) which, to date, has either been
a time-translation symmetry, in which the critical solution is static or periodic, or a
scale-translation symmetry (hometheticity), in which the critical solution is either
continuously or discretely self-similar (CSS or DSS).

However, in clear contrast to the Schwarzschild solution, black hole threshold
solutions are, by construction, unstable. Indeed, after seminal work by Evans and

Coleman [38] and by Koike et al [64], we have come to understand that critical
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solutions are in some sense minimally unstable, in that they tend to have precisely
one unstable mode in linear perturbation theory. Thus letting p — p* amounts to
minimizing or “tuning away” the initial amplitude of the unstable mode present in
the system.

Christodoulou’s question identified two distinct possibilities for black hole
threshold phenomena, and both types have been observed. Which type is observed
depends in general upon the type of matter model and the initial data used— some
models exhibit both types of critical behavior. Historically, Choptuik termed these
Type I and Type II solutions, in a loose analogy to phase transitions in statistical
mechanics, but at least at this juncture, we could equally well label the critical solu-
tions by their symmetries (i.e. static/periodic or CSS/DSS) . For Type I solutions,
there is a finite minimum black hole mass which can be formed, and, in accord with
their static/periodic nature, there is a scaling law, 7 ~ —vIn|p — p*|, relating the
lifetime, 7, of a near-critical solution to the proximity of the solution to the critical
point. Here « is a model-specific exponent which is the reciprocal of the real part
of the eigenvalue associated with the unstable mode. On the other hand, Type II
critical behavior—less relevant to the current study—is characterized by arbitrar-
ily small black hole mass at threshold, and critical solutions which are generically
self-similar.

The direct construction, or simulation, of critical solutions, has thus far been
performed almost exclusively within the ansatz of spherical symmetry. In the spher-
ical case one must couple to at least one matter field for non-trivial dynamics, and
spherically symmetric critical solutions for a considerable variety of models have
now been constructed and analyzed. In addition to the massless scalar case men-
tioned above, these include solutions containing a perfect fluid [38, 74], a scalar
non-Abelian gauge field [30], and particularly germane to the current work, a mas-

sive real scalar field [15]. The work of Abrahams and Evans [2], which considered
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azisymmetric critical collapse of gravitational waves, remains notable for being the
only instance of a reasonably well-resolved non-spherical critical solution. (Stud-
ies involving Brill waves in three dimensions have demonstrated the existence of
super-critical and sub-critical solutions, however isolation and study of the critical
solutions per se will require considerably more resolution than that used in those
studies. See [4, 10].)

In Chapter 3, we will discuss critical phenomena associated with a massive
complex scalar field, which is observed when a boson star is “perturbed” by a finely-

tuned pulse of massless real scalar field.

2.1.3 The Kerr Solution

In Chapter 6, we will consider the dynamics of a compled scalar field coupled to an
electromagnetic field, both evolving in a (background) Kerr spacetime. The Kerr
solution is a stationary, axisymmetric vacuum solution to the Einstein equation.
That is, the Kerr solution possesses two Killing vector fields, one timelike and the
other a “rotational” spacelike vector field. In essence, it describes the spacetime of a
uncharged, rotating black hole. The more general Kerr-Newman solution allows for
the inclusion of a net electric charge on the black hole, however such generality is not
thought to be necessary for astrophysical applications, since any charge separation is
expected to be quickly neutralized via the attraction of oppositely-charged matter.

Typically one sees the Kerr line element written in Boyer-Lindquist (BL)

coordinates:
A —a2sin’ 6 2M7sin® 0
ds? = — =T 0020 D iidy
0 0
92 2 2 192 Yo 2
+ ZdT + 0°d0” + — sin” Ody”, (2.1)
Y
where
A = r*—2Mr+d? (2.2)
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0> = r*4+a’cos?, (2.3)

X (r* + a®)* — a®*Asin® 0, (2.4)

M is the mass of the hole and a the black hole angular momentum per unit mass.

We will only be considering the range a? < M?2.

Kerr-Schild coordinates

Kerr-Schild (KS) coordinates are a “rotational” analogue of the well-known Ingo-
ing Eddington-Finkelstein (IEF) coordinates. KS coordinates can be obtained by

transforming the BL coordinates ¢ and ¢ into the KS coordinates £ and ¢ according

to:
. 2M A
di+dr=dt + 2 T2,
A
dp = do + 2d
$ =dp+ 1dr.
Thus we arrive at the Kerr line element in KS form:
2M 4M ~ 4Mr . 2M
ds? = — (1 - 27") dP? — == sin? 0didp + ~—didr + (1 + 27") dr? —
0 0 0 0

2M 2M
2a (1 + _27«) sin? Odrdp + ¢*dh? + sin® 0 [92 + a? (1 + —2T> sin? 9] dg?.
Q o

(2.5)

Unlike the BL coordinates typically used for studies of astrophysical black
holes, KS coordinates have no coordinate singularity at the event horizon. KS
coordinates are an example of a “horizon-adapted coordinate system” [39, 77].

For a brief discussion of some properties of the Kerr solutions, we follow
d’Inverno [37]. The Kerr solution possesses two event horizons, 1 and two surfaces
of infinite redshift, Si. The event horizons occur where the surfaces of constant r

become null, which corresponds to where ¢g"" is zero. From this we find the event
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horizons are given by roots of
A=r*—2Mr+a® =0,

which are

ry =M= (M2 — a2)1/2 . (2.6)

So the event horizons are always surfaces of constant r, but have smaller radii for
larger values of a. (Again, we are only interested in the regime a? < M?2.) Since
we will be concerned with solutions exterior to the black hole, we will only need to
retain the outer event horizon, and will simply refer to 71 as the “event horizon.”
The location of surfaces of infinite redshift are found where the ¢-t component
of the metric is zero [37]. Inspecting the metric (2.5), we see that this occurs for

0> — 2Mr = 0. This gives us two roots in 7,
1/2
7"5i=Mi(M2—a2 c0329) / . (2.7)

Thus, as the black hole spin increases, the surface of infinite redshift is “pinched”
along the axis of rotation, as shown in in Figure 2.2.

The region between r and S, is called the ergosphere, in which the asymp-
totic time translation Killing field {# = (9/0t)* becomes spacelike [100]. In this
region, an observer cannot remain stationary with respect to observers at spatial
infinity, but must orbit in the direction of the black hole’s rotation. For this reason,
S, is also known as the stationary limit surface. The ergosphere allows for some
interesting physics, because in this region the energy of a test particle is not neces-
sarily positive. Penrose [80] was the first to point out that, in principle, this implies

that energy can be mechanically extracted from the spin of the black hole.

2.1.4 The Membrane Paradigm

The Membrane Paradigm (MP) is a view of black holes intended for applications

in astrophysics. It was set out by a series of papers in the late 1970’s and early
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r sin6/ M

Figure 2.2: Locations of r+, the outer event horizon, and S, the outer surface of
infinite redshift, for three values of a. For a = 0 (dashed lines), r and S, are both
spherical, and coincide. As a increases, ry decreases and S, becomes more oblate,
extended out from r at the equator but coinciding with r; at the poles. We show
data for two nonzero values of a, a = 0.75 (dotted line) and a = 1 (solid line), in
which the event horizon is the circle on the interior, and S, is shown by the curve
exterior to the circle.
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1980’s, and presented cohesively in a book [99]. We will not attempt to go into the
mathematical details of the MP, but we mention it because of its significance for
astrophysics, for its particular utility in describing the Blandford-Znajek process of
section 2.3.2, which we hope to simulate in the future as goal of the scalar accretion
study presented in Chapter 6.

In the MP, one considers a boundary layer slightly outside the event horizon
to be a material surface, having properties such as electrical resistivity, surface cur-
rent and charge, temperature and entropy. While it is intended to serve principally
as an aid to intuition regarding physical processes in black hole astrophysics, the
MP is mathematically rigorous and offers an description identical to that provided
by the usual curved-spacetime viewpoint, for the region of spacetime exterior to a
black hole. (Inside the event horizon, however, the MP completely lacks meaning.)

It is worth noting that the mental images and terminology we use to com-
municate certain scientific concepts can have a significant impact on the physical
intuition we have, and on the sorts of questions we ask in research.

Prior to the mid-1960’s, the objects we now refer to as “black holes” were of-
ten called “frozen stars.” This name arose because, for stationary observers watching
the collapse of a star, the evolution would appear to slow down as the gravitational
redshift increased, and the evolution would apparently stop when the star reached
an “infinite redshift surface.” Such an object would forever be “frozen” from the
point of view of distant observers. It was known from the previous work of Oppen-
heimer and Snyder [76] that observers freely falling with the star would see no such
“freezing”, but rather would rather see the collapse right up until the (and their)
very end, when they arrived at the curvature singularity. The term collapsed star
was used to describe the physics from the “comoving view” of Oppenheimer and
Snyder. However, this comoving view was not seen as being relevant for astrophys-

ical applications, because nothing inside the surface of infinite redshift could ever
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influence the physics outside. The “frozen star” viewpoint prevented physicists from
realizing that black holes can be dynamical objects which can pulsate, radiate and
release energy [98].

Later, the “black hole viewpoint” became popular with the advent of global
analysis of black hole spacetimes, in which coordinate systems such as those intro-
duced by Eddington and Finkelstein, rather than Schwarzschild coordinates, became
systems of choice for descriptions of stellar collapse. The conformal diagrams popu-
larized by Penrose [79, 81] served as powerful illustrations of the global properties of
black hole spacetimes. Rather than “frozen stars”, black holes were seen as regions
of spacetime from which nothing could get out, and the surface of infinite redshift
was given the name “horizon” to describe the disconnectedness of the spacetime
inside the Schwarzschild radius from the outside world. Hawking and others pro-
vided theorems regarding certain aspects of the dynamics of the horizon. All of
the mathematics associated with the “black hole viewpoint” were equivalent to the
mathematics of the “frozen star” viewpoint, yet the use of the former charted a
course of research that the latter could not provide.

Somewhat later, it was noted that the influence of a nearby gravitating body
can distort the horizon of a black hole, and also that a nearby electric charge can
produce a change in the fields in the vicinity of the hole just as if there were a charge
separation (i.e. electrical polarization) induced on the horizon itself [48]. Further
work filled in more ways in which electromagnetism in the vicinity of the horizon
can be likened, even mapped, to the physics nearby a material membrane, having
properties like resistivity and surface current [36], and temperature [50].

We will employ the Membrane Paradigm only briefly in this dissertation, to
help provide an intuitive understanding of the Blandford-Znajek process (Section
2.3.2), however we re-emphasize that this paradigm provides a view of black holes

which is helpful to astronomers in a wide variety of applications.
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2.2 Finite Difference Methods

This thesis deals with the application of finite difference techniques. There are
many other numerical methods available to researchers; most commonly, spectral
methods and finite element methods. Finite difference methods can often be simpler
to implement than other methods, particularly for solving systems of equations on a
domain with regular boundaries. We present here a brief overview of some relevant

aspects of finite difference methods.

Difference Operators

We construct finite difference operators via Taylor expansion in the mesh spacing.

For example, suppose we wish to solve the transport equation,
Oy = Oy,

on a grid using finite difference techniques. This equation also admits closed-form
analytic solutions which makes it a useful test case. Instead of the actual solution
u(t,x) to the continuum equations, we work with @;L, the solution to the finite
difference equations. We desire that ﬁ: is very nearly the same as u(nAt, jAx) for
all n and j, but ensuring some level of accuracy in our finite difference solution
requires that we maintain some level of accuracy in the finite difference equations
themselves. Consider the partial derivative d,u. A finite difference approximation

for this might be

0. :
VA (2.8)

How accurate of an finite difference expression is this? Let us construct two

Taylor expansions about u(t = nAt,x = jAx):

U = u(t,r) + Azdyu(t,z) + 1/282%02u(t, z) + O(Az?) (2.9)
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ﬁj = u(t,z) — Azdyu(t,z) + 1/282%0%u(t, z) + O(Az?) (2.10)

(2.11)

Subtracting the second equation from the first and dividing by 2Ax gives us

M — Byult,z) + O(Az?)
2Ax T )

We label the accuracy of an operator by the order of the terms which are

neglected in the expansion, and thus we say that (2.8) is second order accurate.

Convergence

We would like some assurance that the solutions we obtain from the finite difference
code are actually good approximations to the solutions of the continuum equations.
As we decrease characteristic size h of the mesh spacing, the grid functions come
closer to defining quantities on a continuum, and the finite difference operators
approach the partial derivatives. Thus we expect the finite difference solutions to
converge to the “true solutions” in the limit h — 0.

In his 1910 paper, L.F. Richardson [85] described the relationship between
the error of a finite difference calculation and the mesh spacing h. Consider a

(continuum) differential system denoted by
Lu=f (2.12)

where L is some differential operator, f is a specified function, and u is the solution
to the equation. Reducing this to a finite difference system involves using a finite
difference approximation L of L (constructed via the Taylor expansion method men-
tioned above), with the corresponding f (=f restricted to the mesh) and the finite

difference solution u:

B~
<>

Il
~

(2.13)



We will also refer to 4 as a grid function. We then define the truncation error 7 to
be
t=Lu—f, (2.14)

For centered difference operators L, the truncation error will be an even power series

in the mesh spacing h. The truncation error is related to the solution error é = u—1a
by

t=L(a+eé) —f=1Le
Richardson noted that, in the limit A — 0 for centered difference equations, the
solution error é will also appear as a even-powered series in the mesh spacing h, are

related by
é=h%e +h'es + ... (2.15)

where es, e4, etc. are smooth “error functions” which are independent of the mesh
spacing. We refer to (2.15) as a Richardson expansion.

For problems in which the continuum solution u is not known, we cannot
obtain an exact measure of the solution error or the truncation error. Using (2.15)
and finite different solutions 4" and 42" obtained on two different grids with spacings
h and 2h respectively, we can obtain approximations to these error quantities:

a2h — gh

— = 3et 15h%e4 + ..., (2.16)
where the subtraction is performed on the intersection of 4" and 42".
We can check the convergence of our numerical code by observing how well

the solutions obey the properties of Richardson extrapolation. If the code is con-

h #~2

verging properly, then three grid functions @, 42" and @*", obtained on grids with
spacings h, 2h and 4h, respectively, should to leading order produce the same error
function e;. Given that

~4h ~2h
Y Y 19ey + 15h%es + ...
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we find proper second-order convergence when
a4h _ ,&/Qh ~ 4 (th _ ah) .

To obtain a measure of the global convergence of the scheme, we first define the Lo

norm ||@|]2 to be
LN 1/2
lall> = [N > |ui|2] ,
=1
where N is the number of elements (grid points) in 4. We then define the convergence

factor Q as
_ ||ﬂ4h _ ﬂQhH2
@zt —anly

for which global second-order convergence is indicated by @ = 4.

Q (2.17)

The assumption of Richardson expandability is essential to the Berger and
Oliger adaptive mesh refinement method described in Chapter 5, because we will
use Richardson expansion to obtain an estimate of the local truncation error to

determine where new grids should be placed.

Stability

Usually we wish to evolve from some initial state towards some final state, and would
like to minimize the amount of computational work in between. One might ask the
question “How large of a time step can I take?” The answer depends on the nature
of the numerical scheme and the resolution of the grid. This question is closely
related to the work of Courant, Friedrichs and Levy (CFL) described in [47] and
[82]. The rule of thumb produced by CFL can be summed up in the following: For
stability, the numerical domain of dependence must include the physical domain of
dependence. Figure 2.3 shows a picture of this. Strictly speaking, this only applies
to truly hyperbolic systems in which characteristics are well-defined.

For the boson star study in Chapter 3, the simulation code uses an explicit

scheme called the “leapfrog” scheme, for which the CFL condition will be of im-
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Figure 2.3: Schematic of the CFL condition. This shows an ezplicit numerical
scheme, for which the numerical domain of dependence of a grid point at the ad-
vanced time level n + 1 (black dot) is bounded by the grid points on either side at
the previous time n.

portance. For the scalar accretion study of Chapter 6, we will endeavor to use an
implicit Crank-Nicholson method, for which the numerical domain of dependence is
the entire computational (spatial) domain. A more rigorous stability consideration
due to Von Neumann (described in [6]) shows the Crank-Nicholson method to be

unconditionally stable.

2.3 Topics in Black Hole Accretion

2.3.1 General Review

Shakura and Zunyaev [93] presented the first significant studies of black hole accre-
tion, in which they conceived that a gas cloud with an initial angular momentum
would collapse to form an accretion disk, with some of the material falling into the
black hole. In particular, these studies considered a model of a thin disk, in which
the height of the disk was very small compared to the disk radius. It was previously
assumed that some sort of dissipative mechanism would be active in the disk, per-
haps gas viscosity or turbulence, but no one was quite clear on what the source of
this dissipation should be. Shakura and Zunyaev bypassed much of this ambiguity

via their “a-Model”, in which the total effect of whatever dissipative mechanisms
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were active in the disk could be summed up by a single viscosity parameter, which
they called a. The role of magnetic fields was often neglected in early studies of
accretion. For a long time the specific avenue for angular momentum conserva-
tion was a major mystery in astrophysics. Recently, John Hawley [51] has shown
via three-dimensional numerical simulation that magnetohydrodynamic turbulence
provides sufficient transport of angular momentum. We consider here two important

processes involving magnetic fields in highly energetic astrophysical systems.

2.3.2 The Blandford-Znajek Process

In the Blandford-Znajek process [13], we have a virtual “circuit” in which magnetic
fields lines threading the black hole act like wires. This mechanism is best explained
via the Membrane Paradigm of section 2.1.4.

First consider a simple system in which a spinning, spherical conductor is
placed in a uniform magnetic field B = B, k. The fact that the conductor is spinning
in this field means that charges will move along the surface, with an overabundance
of positive charges accumulating at the equator, and an overabundance of negative
charges accumulating near the poles, until some force balance is set up between the
magnetic force and the induced electric force. Thus the spinning sphere becomes
a battery. We can connect a resistive load to this battery by adding wires which
touch and slip along the poles equator and poles as shown in figure 2.4, and drive a
current through the load, thus “extracting energy” from the spinning conductor to
the load.

Now instead of a typical conductor, imagine that we are dealing with the
membrane-like horizon of a black hole, and instead of wires, we have magnetic field
lines along which charged plasma can stream. By “hooking up” some resistive load
to these “wires”, we can extract energy from the induced electromotive force on the

black hole horizon. This is the essence of the Blandford-Znajek process, a schematic
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Figure 2.4: A spinning spherical conductor as a battery. The uniform magnetic field
B = B,k induces a charge separation between the equator and poles, which when
connected via wires can drive current / through a resistive load Rrycaq-

of which is shown in Figure 2.5.

Imagine that in some region close to the black hole, magnetic fields are strong
enough that a force-free magnetosphere is set up, i.e. charges can only flow along
magnetic field lines, i.e.

Fu,J” =0.

Through some process such as particle-antiparticle pair creation, we obtain a sit-
uation in which positive charges flow into the hole along the poles, and negative
charges flow in at the equator.

At some distance away from the black hole, the “force-free” approximation
will fail, and electric equipotential surfaces will deviate from magnetic field lines.
These surfaces will “connect up” over the poles, and we will have a net electric field
in the vertical direction. Blandford and Znajek speculated that the resistive “load”
in this system might therefore take the form of jets of charged particles, which are
accelerated via these vertical field lines. This provided a natural explanation for
the highly-collimated, high-speed jets which are observed to originate near some

compact astrophysical sources.
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Figure 2.5: A schematic of the Blandford-Znajek mechanism. Positive charges
stream inward along magnetic field line 1, and negative charges stream inward along
field line 2. Equipotential surfaces are shown as dotted lines. (The author’s render-
ing of a figure in [99].)

2.3.3 Magnetic Torques at the Marginally Stable Orbit

Early models of accretion [93], [75] were performed within the thin-disk model with
what is called a “no-torque” boundary condition at the marginally stable orbit
(MSO), which is generally considered to be the inner edge of the accretion disk.
For the no-torque condition, fluid which reaches the MSO is assumed to freely fall
into the black hole, and have no effect on the exterior part of the accretion disk.
In other words, the sort of viscous torques which were assumed to be operating
throughout the disk (such as in Shakura and Sunyaev’s a-model) were assumed to
be completely negligable at and inside the MSO. The no-torque inner boundary
condition was justified via an argument that infalling gas would quickly become
causally disconnected from the rest of the disk by nature of a low sound speed [75].
From this assumption, one can derive expressions for accretion efficiency (conversion
of rest mass into radiation) which range from 5% for gas falling into Schwarzschild

black holes to 42% for gas falling into maximally-rotating (a> = M?) Kerr black
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holes [75]. A short time ago, Charles Gammie [42] began to seriously consider
the effect of magnetic fields on accretion efficiency. Gammie knew that magnetic
fields could exert a torque, and that perhaps the no-torque boundary condition
was not applicable to astrophysical, magnetized accretion disks. In fact, he found
that the accretion efficiency can be greatly enhanced by the presence of magnetic
fields, and can even exceed unity. In other words, Gammie found scenarios in
which energy was being extracted from the black hole via the magnetic torque.
Eric Agol and Julian Krolik further explored the implications of magnetic torques
operating at the marginally stable orbit [3]. A most recent contribution on this
subject is the work of J. Hawley and Krolik [53], who show via numerical simulation
that there can be significant (magnetic) torque at the marginally stable orbit, and
that this torque is in fact continuous across the “inner boundary” of the accretion
disk. The scalar accretion study considered in Chapter 6 of this thesis was in part
aimed at obtaining results regarding the significance of magnetic torques at the inner
boundary. The new work by Hawley and Krolik appears to provide the answers we
were originally searching for, however we still hope to find many interesting and

unexpected phenomena in the charged scalar system.
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Chapter 3

Critically-Perturbed Boson Stars

Note: Most of the results and discussion given in this chapter are from a paper which

M.W. Choptuik and I recently submitted to Phys. Rev. D. [56].

3.1 Introduction

Our current interest is a critical-phenomena-inspired study of the dynamics associ-
ated with “boson stars” [62, 86, 34], a class of equilibrium solutions to the Einstein-
Klein Gordon system for massive complex fields, which are supported against grav-
itational collapse by the effective pressure due to the dispersive nature of a massive
Klein-Gordon field. Studies of boson stars began with the works of Kaup [62] and
Ruffini and Bonnazola [86], who demonstrated that stable equilibrium configura-
tions exist for self-gravitating massive Klein-Gordon fields. These configurations
are supported against gravitational collapse by the effective pressure due to the dis-
persion relation of the Klein-Gordon field. Later this work was extended by Colpi
et al. [34] to include a nonlinear self-interaction term which can give rise to an ad-
ditional pressure, and can allow for larger boson stars having masses and sizes more

relevant to astrophysical applications. Predictions from particle physics regarding
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the existence of one or more scalar or pseudo-scalar particles kindled greater interest
in the study of boson stars as astrophysical objects, perhaps as a contribution to
dark matter in the universe. Some astrophysical aspects of boson stars have been
investigated by Lee and Koh [66] and Dabrowski and Schunck [35]. Stability studies
of boson stars continued with Gleiser and Watkins [43], as well as Lee and Pang [67],
who showed that there exists a critical value of the central density which marks the
transition between boson stars which are stable with respect to infinitesimal radial
perturbations and those which are not. Dynamical stability studies were carried out
by Seidel and Suen [89] in which radial perturbations to equilibrium configurations
were applied by adding or removing mass from a section of the star. They then
solved for the resulting evolution numerically, and found that a boson star on the
unstable branch will either form a black hole or radiate scalar material and form
a boson star on the stable branch. They also showed that perturbed stable boson
stars will oscillate with a characteristic frequency which depends on the mass of the
star. Along with Balakrishna, Seidel and Suen later extended this work to include
the effects of self-interacting fields and “excited” states in which the field contains
one or more nodes [9]. They found that all excited states are unstable and either
form black holes or radiate scalar material until a stable “ground state” (zero node)
boson star is formed. Their stability study will be extended in this chapter, in which
we consider large radial perturbations of a boson star which drive it to the threshold
of black hole formation. For further reviews on the subject of boson stars, see Jetzer
[61] or Mielke and Schunck [71].

As mentioned in Chapter 2, a paper closely related to this work is that of
Brady et al. [15], which described a dynamical study of critical solutions of a massive
real scalar field. Those authors demonstrated scenarios in which black holes could
be formed with arbitrarily small mass (Type II transitions), and those in which the

black holes formed had a finite minimum mass (Type I transitions). The boundary
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between these regimes seemed to be the relative length scale of the pulse of initial
data compared to the Compton wavelength associated with the boson mass. Initial
data which was “kinetic energy dominated” evolved in a manner essentially similar
to the evolution of a massless scalar field. Initial data pulses having widths larger
than the length scale set by the boson mass were “potential dominated”, providing a
characteristic scale for the formation of the critical solutions. Brady et al. found that
the resulting Type I critical solutions corresponded to a class of equilibrium solutions
discovered by Seidel and Suen [90], which are called “oscillating soliton stars.” These
soliton stars share many characteristic with the complex-valued boson stars, such
as the relationship between the radius and mass of the star. Both types of “stars”
have a maximum mass, and show the same overall behavior as “real” (fermion) stars
in terms of the turn-over in their respective stability curves. Interestingly, although
the soliton stars are not static—they are periodic (or quasi-periodic)—many of the
same macroscopic properties seen in fluid stars are still observed.

In this chapter, we construct critical solutions of the Einstein equations cou-
pled to a massive, complez scalar field dynamically, by simulating the implosion of
a spherical shell of massless real scalar field around an “enclosed” boson star. The
massless field implodes toward the boson star and the two fields undergo a (purely
gravitational) “collision.” The massless pulse then passes through the origin, ex-
plodes and continues to r — oo, while the massive complex (boson star) field is
compressed into a state which ultimately either forms a black hole or disperses. We
can thus play the “interpolation game” using initial data which result in black hole
formation, and initial data which give rise to dispersal: specifically, we vary the
initial amplitude of the massless pulse to tune to a critical solution. We analyze the
black hole threshold solutions obtained in this manner, and discuss the similarities
between our critical solutions for the self-gravitating complex massive scalar field

and boson stars on the unstable branch. To further this discussion, we extend the
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work of Gleiser and Watkins [43] and compare the results of the simulations with
those of linear perturbation theory.

The layout of the remainder this chapter is as follows: In Section 3.2, we
describe the mathematical basis for our numerical simulations. In Section 3.3, we
present results from our simulations, in which the Type I character of the critical
solutions is demonstrated, along with the close similarities one finds between the
features of the critical solutions and those of boson stars. In most of the critical
solutions we find a halo of mass near the outer edge of the solution which is not a
feature of boson star equilibrium data. Inside this halo, however, the critical solu-
tions match the boson star profiles very well. In Section 3.4, we give a synopsis of
our linear stability analysis of boson star quasinormal modes, from which we obtain
the boson star mode frequencies as functions of the central value of the modulus of
the complex field. Section 3.5 concerns the radial profiles of the perturbative modes
per se, and includes a comparison of the mode shapes and frequencies obtained from
perturbation theory with our simulation data. The modes obtained by these two
different methods agree well with each other, although the additional oscillatory
mode in our simulation data is only shown to agree with the corresponding boson
star mode in terms of the oscillations in the metric and not in the field (possibly as
an artifact of our simplistic approach to extracting this mode from the simulation).
In Section 3.6 we provide further discussion regarding the properties of the halos
surrounding the critical solutions. Conclusions are given in Section 3.7. The ap-
pendices of this dissertation give tables of mode frequencies versus the central field
value of the boson star, details about our finite difference code, and details of our
linear stability analysis, which includes a description of our algorithm for finding

the frequencies of boson star modes.
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3.2 Scalar Field Model

A boson star is described by a complex massive scalar field ¢, minimally coupled to
gravity as given by general relativity. We work solely within the context of classical
field theory, and choose units in which G and ¢ are unity. Furthermore, since all
lengths in the problem can be scaled by the boson mass m [34], we choose m = 1.
To the usual boson star model, we add an additional, massless real scalar field, ¢s,
which is also minimally coupled to gravity. This additional scalar field will be used
to dynamically “perturb” the boson star.

The equations of motion for the system are then the Einstein equation and

Klein-Gordon equations:

G = By = SR = 87 (TE,(0) + TL (63)) (3.
O¢ — m2¢ = 0 (3.2)
Ogg = 0 (3.3)
where
STTS, (6) = 0ud0,0" + 048" 0y — g (0,00° 6" + m?|9[) (3.4)
8TTE (¢3) = 20,030,03 — G0 D300 3, (3.5)

and O is the D’Alembertian operator. While more general potentials in (3.2) have
been employed recently [9, 88], we will restrict our discussion to the simplest case,
i.e. merely the m?¢? potential. We also stress that the complex scalar field, ¢, and
the massless, real scalar field, ¢3 are coupled only through gravity—in particular we
do not include any interaction potential Vj(¢, ¢3).

Restricting our attention to spherical symmetry, we write the most general

spherically-symmetric metric using Schwarzschild-like “polar-areal” coordinates

ds? = —a?(t,r)dt? + a®(t,r)dr? + r2dQ? (3.6)
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and generally make use of the “3+1” formalism of Arnowitt, Deser and Misner [§]
which regards spacetime as a foliation of spacelike hypersurfaces parameterized by
t (cf. Section 2.1.1.

We write the (spherically-symmetric) complex field, ¢(¢,7), in terms of its

components
o(t,7) = ¢1(t,r) +ida(t,7) (3.7)

where ¢1(t,7) and ¢o(t,r) are each real. Again, since our model includes no self-
interaction (anharmonic) potential for the complex field, ¢1 and ¢2 are only coupled
through the gravitational field.

We then define

(I)l(t,T) = (f)ll <I>2(t,r) = qj)lz (38)
Mtr)==d  Tatr)==ds, (3.9)
Ba(t,r) =y Ma(tr) = ~dy. (3.10)

where ' = 9/0r and "= 9/0t.
With these definitions, the equations we solve are the Hamiltonian constraint,

ad 1-—a?

a 2

.
5 [+ I + 107 4+ 02 + @27 + 85 +a (00° + &%) ], (3.1D)

(where II;2 should be read as (II1)?), the slicing condition,

o a?—=-1 d
Ol 1), (3.12)
@ r a

and the Klein-Gordon equations,

. o [r’a I
where k = 1,2,3 and 3, is a Kronecker delta used to denote the fact that ¢3 is a
massless field.
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We also have equations which are used to update the spatial gradients of the
scalar fields, as well as the scalar fields themselves. These follow directly from the
definitions (3.8) and (3.9):

&y = (%Hk>l (3.14)

bk = /0 Py dr (3.15)

Equations (3.11)—(3.15) are solved numerically using the second order finite differ-
ence method described in Appendix B.
Initial conditions for our simulations are set up as follows. First, initial data

for the massive field are constructed from the boson star ansatz

o(t,r) = o(r)e ™", (3.16)

where we let ¢o(r) be real. Substitution of this ansatz into the full set of equations
(3.11)-(3.15), yields a system of ordinary differential equations (ODEs), whose so-
lution, for a given value of the central field modulus, is found by “shooting”, as
described in [86]. Once the boson star data is in hand, we add the perturbing mass-
less field by freely specifying ®3 and II3. At this point, all matter quantities have
been specified; the initial geometry, a(0,r) and (0, ) is then fixed by the constraint
and slicing equations (3.11) and (3.12).

In relating the simulation results which follow, it is useful to consider the
individual contributions of the complex and real fields to the total mass distribution
of the space-time, in order that we can meaningfully and unambiguously discuss, for
example, the exchange of mass-energy from the real, massless field to the massive,
complex field. By Birkhoff’s theorem, in any vacuum region, the mass enclosed
by a sphere of radius r at a given time ¢ is given by the Schwarzschild-like mass
aspect function M (t,r) = r(1 —1/a?)/2. However, at locations occupied by matter,
M(t,r) cannot necessarily be usefully interpreted as a “physical” mass. In polar-

areal coordinates, the mass aspect function is related to the local energy density
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p(t,r) by
OM (t,r)

_ .2
a,r =r p(t’ T)? (3'17)

with p(¢,r) given in our case by

p(t,r) = % [H12 + 1% + &1 + ®9% + a? (¢12 + ¢22)] + % [H32 + +‘I’32} :
(3.18)
Here, we have explicitly separated the contributions from the complex and real
fields. Since M /0r is given by a linear combination of the contributions from each
field, we can decompose M /Or so that, in instances where there is no overlap in the
supports of the distinct fields, we can unambiguously refer to the mass due to one
field or the other. That is, we can refer to the individual contributions of each field
to the total mass as being physically meaningful masses in their own rights. Then,
by integrating the contribution of each field to M /dr over some range of radius
(Fmin ** * Tmax ), (Where there is some region of vacuum starting at ryi, and extending
inward, and some region of vacuum starting at r > ry. and extending outward),
and demanding that none of the other type of field is present in the domain of
integration, we can obtain a measure of the mass due to each field.
Motivated by such considerations, we define an energy density for the com-
plex field, pc, as
1

5o [H12 + 5% + &2 + &2 + o (¢12 + ¢22)} , (3.19)

pc(t,r) =
with a corresponding mass aspect function, M¢(¢,r), given by
T
Mc(t,r) = / 7 po dFF . (3.20)
0
Similarly, the energy density due to the real field is defined as
prltr) = — (3% + +®37] (3.21)
) = 20/2 3 3 | .
with a corresponding mass aspect function, Mg(¢,r) given by

MR(t,T‘) :/ prRdf.
0
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We again emphasize that in regions where the supports of the different fields
overlap (and in non-vacuum regions in general) it may not be possible to ascribe
physical meaning to the individual mass aspect functions defined above. (However,
even in such instances, these functions are still useful diagnostics.) Most impor-
tantly, where the supports of the fields do overlap, and only in these regions, it is
possible for mass-energy to be exchanged from one scalar field to the other—through
the gravitational field—while the sum Mo+ Mg = M (measured in an exterior vac-
uum region) is conserved. The quantities given above allow us to measure this
exchange of mass by looking at the profiles M¢(t,r) and Mg(t,r) before and after
a time when the fields are interacting. This is shown in the next section.

As a further consideration, we point out that the U(1) symmetry of the

complex field implies that there is a conserved Noether current, J*, given by

= g ($0,9" — 6"0,9). (3.22)
s
The corresponding conserved charge or “particle number” N is
N = / rzx/—th.
0

We may also wish to regard N as a function of ¢ and r by integrating the above

function from zero to some finite radius, in which case

% =r” (i — Tah1) . (3.23)
Some authors have considered the difference Mc —mJIV to be a sort of “bind-
ing energy” of the complex field [61], however this quantity does not correspond to
any transition in the stability of boson stars, and we have not found it to be very
useful in understanding the dynamics of our simulations.
Finally, following Seidel and Suen [89], we define a radius Rgs(¢,r) for the
boson star implicitly by M¢|ges = 0.95 Mc|r—00. Alternatively, we will also consider

aradius Rg3(t,r) which encloses (1—e 1) ~ 63% of M¢|r— o0, and which will include

the “bulk” of a boson star but will neglect the “tail”.
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3.3 Simulation Results

We choose the initial data for the complex field to be a boson star at the origin,
with a given central density ¢¢(0). For the massless field ¢3(0,r), we choose one of
the families in Table 3.1. We generate critical solutions by tuning the amplitude A
of ¢3(0,r) (holding the position ry and width A constant) using a bisection search,
until the resulting solution is arbitrarily close (i.e. within some specified precision)
to the point of unstable equilibrium between dispersal and black hole formation.

Figure 3.1 shows a series of snapshots from a typical simulation in which the
parameter p (p = A), is slightly below the critical value p*, for a boson star on
the stable branch with a mass of M = 0.59M}23l/m, where Mp; is the Planck mass.
(The boson mass m has units of inverse length, so the corresponding physical mass
is mh/c, and we use i = 1.) The shell of massless field, a member of initial data
Family I, implodes through the boson star and explodes back out from the origin,
and the gravitational interaction between the fields forces the boson star into a new
state, a “critical solution.” We see from this animation, and from Figure 3, that
dispersal from the critical state does not mean that the boson star returns to its
original stable configuration, but rather that the star becomes strongly disrupted
and “explodes.” That is to say, if we were to follow the evolution beyond ¢ = 475,
the massive field would continue to spread toward spatial infinity. At some late
time, after a large amount of scalar radiation has been emitted, the end state would
probably be a stable boson star with very low mass.

The gravitational interaction between the two fields results in an exchange of
energy from the massless field to the massive field, as shown in Figure 3.2. Figure 3.3
shows some timelike slices through the simulation data, giving a plot of the maximum
value of a, the value of |¢| at the origin, and the radius Rys as functions of time.
These are given to help elucidate the point that the critical solution oscillates about

some local equilibrium, before dispersing or forming a black hole. The lifetime of
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Figure 3.1: Evolution of a perturbed boson star with ¢o(0) = 0.04 x /47 and
mass Mo = 0.59M3%,/m. This shows contributions to 9M/dr due to the massive
field (solid line) and massless field (dashed line). We start with a stable boson star
centered at the origin, and a pulse of massless field given by Family I with rq = 30
and A = 8. (We see two peaks in dM/dr of massless field because it is only the
gradients of ¢3, not ¢3 itself, which contribute to Mg(r,t) for a massless field.) In
the evolution shown above, the pulse of massless field enters the region containing
the bulk of the boson star (¢ ~ 15), implodes through the origin (¢ ~ 30) and leaves
the region of the boson star (¢t ~ 50). Shortly after the massless pulse passes through
the origin, the boson star collapses into a more compact configuration, about which
it oscillates for a long time before either forming a black hole or dispersing. (The
case of dispersal is shown here.) Note that the perturbing field ¢3 passes through
the boson star and exits the region containing most of the star, even before the
massive field reaches its denser, critical state. Thus the massless field is not part
of the critical solution per se. Black hole formation (always with a finite black hole
ADM mass in our study) can take place at times long after the massless pulse has

left the neighborhood of the boson star. 39



Table 3.1: Families of initial data. For both families, the initial data, ¢(0,r) =
¢1(0,7)+i¢p2(0,7), for the massive complex field is given by a boson star, obtained by
solving (3.11)—(3.13) numerically according to the ansatz (3.16) (with the parameter
w found via “shooting”). The initial real massless field profile, ¢3(0,7), is given in
closed form by the “gaussian” and “kink” initial data. For each family, we also
choose 9;¢3(0,7) such that the pulse is initially in-going, 1.e. II3(0,7) = ®3(0,7) +
¢3(0,7)/r.

Family Complex Field ¢1 + 2¢o Real Field ¢3
Name Parameters Profile | Name  Parameters Profile

— 2
I Boson Star ¢0(0) ¢o(r) | Gaussian A, ro, A Aexp <_ (%)

A _
IT | Boson Star  ¢p(0)  ¢o(r) | Kink  A,rg,A 5(1+tanh (r A”’))

the critical solution increases monotonically as p — p*. Figure 3.4 shows that the
scaling law expected for Type I transitions is exhibited by these solutions.

Figure 3.5 shows the mass vs. radius for some critical solutions along with
the equilibrium curve for boson stars. We notice that there are great similarities, at
least for relatively high mass configurations, between the critical solutions and un-
stable boson stars in the ground state. (We do not perform studies involving boson
stars with much lower masses, because of the dynamic range required for the spatial
resolution of the finite difference code. Also, for a given |p — p*|, such low-mass
critical solutions have much shorter lifetimes than larger-mass solutions; thus it can
be more difficult to measure time-averaged properties.) When we include nearly
all of the complex-scalar mass in our comparisons, as shown in Figure 3.5(a), we
see that the time-averaged properties of the critical solutions with lower masses, i.e.
those further from the transition to instability, deviate from the curve of equilibrium
configurations, and that the deviation increases as mass decreases. When we con-
sider only the bulk of the boson star, however, we see very good agreement between
the dynamically generated critical solutions and the unstable boson stars, computed

from the static ansatz, as shown in Figure 3.5(b). The comparison between low-mass

40



®© I I I I I I I I I I I I ‘ I I I
o
™

—~ T

g )

.

Z o :
Dﬁ | ]

[V} O L _

2 A\

S - / |

= i j \\ |
>~ / .
>~ | | \ |
oL Ny \ |

- \ i
k/\
i \ |
o |
Di, | | | ‘ | | | ‘ | | | ‘ Y\\—\—‘—#—F—F—
<0 20 40 60 80 100
t

Figure 3.2: Exchange of energy between the real and complex scalar fields. For this
simulation, initial data from Family I was used, with ¢o(0) = 0.04 x /4w, rg = 40
and A = 8. The solid line shows the mass of the complex field, shifted upward on
the graph by 0.21M32,/m. The long-dashed line shows the mass of the real field,
shifted upward by 0.55M32;/m. The mass AM exchanged from the massless field
to the massive field in this simulation is nearly 0.0053, or about 2.5% of the mass
of the real field (9% of the boson star mass). The amount (and percentage) of
mass transfer goes to zero as we consider boson star initial data approaching the
transition to instability (see, e.g. Figure 7). The dotted line near the top of the
graph shows the total mass enclosed within r = 100. Throughout the simulation,
both the total mass M = M¢c + Mg and the particle number N (of the complex
field) are conserved to within a few hundredths of a percent.
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Figure 3.3: Quantities describing a near-critical solution. Here we show timelike
slices through the data shown in Figure 3.1, an evolution that ends in dispersal.
Top: Maximum value of the metric function a (for each spacelike hypersurface
parameterized by t). The local maximum at ¢ ~ 40 is due to the presence of the
pulse of massless field. Middle: Central value |¢(t,0)| of the massive field. Bottom:
Radius Rgs which contains 95% of the mass-energy in the complex field. Again,
we see evidence that after the remaining in critical regime for a while, the star can
“explode”, leaving a diffuse remnant with low mass.
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Figure 3.4: Lifetime 7 of a typical set of near-critical solutions vs. In|p — p*|. We
use initial data from Family I. The lifetime of the critical solution obeys a simple
scaling relation. Using super-critical solutions, we measure 7 to be the time from
t = 0 until black hole formation occurs. The relationship shown in the graph can
be described by 7 = —y1In |p — p*|, where for the data shown in this graph, v ~ 9.2
The value of « can be related to the imaginary part of the Lyapunov exponent o
of the unstable mode (~ €*%) by (o) = 1/ =~ 0.109. This value is the same as
that obtained from a linear perturbation analysis of the specific boson star to which
we believe this configuration is asymptoting (See Section 3.5). We note that in the
limit p — p*, the mass of the black hole formed is finite (and close to the mass of the
progenitive unstable boson star), i.e. the system exhibits Type I critical behavior.
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Figure 3.5: Mass vs. radius for equilibrium configurations of boson stars (solid line),
initial data for the complex field (triangles), and critical solutions (squares). Arrows
are given to help match initial data with the resulting critical solutions. Points on
the solid line to the left of the maximum mass My = 0.633M1%l /m correspond
to unstable boson stars, whereas those to the right of the maximum correspond to
stable stars. If one takes time averages of properties such as mass, central density
|¢(t,0)| and radius Rgs during the critical regime, one finds values which match the
profile of a boson star on the unstable branch. The squares show the time average of
each critical solution during the oscillatory phase. Graph (a) shows mass M versus
Ry5 the radius containing 95% of M, whereas graph (b) shows M versus the radius
containing (1 — e~') M. The agreement between the critical solutions and boson
stars shown in graph (a) deteriorates with decreasing mass, however the comparison
shown in graph (b), which neglects the “tail” of the critical solutions and boson
stars, shows much better agreement for all masses. (We show the tail region in
Figure 3.6.) In this simulation the massive field radiates only a small amount due
to the perturbation by the massless field, and so the stable boson star is essentially
driven to “pop” across the stability curve by the impinging massless pulse.
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critical solutions and boson stars, shown in Figure 3.5, can be further illuminated
by looking at a profile of the mass distribution as shown in Figure 3.6.

We see that there is a small halo near the outer edge of the solution (r = 8),
and it is this which throws off our measurement of Rgs used for Figure 3.5. Despite
the effect this has on the measurement of the radius Rgs of the star, we can still
obtain a good fit of a boson star to the interior of the critical solution in the low-mass
regime. We provide further discussion of these halos in Section 3.6.

It is also worth noting that the critical solution best corresponds to a boson
star in the “ground state”, i.e. a solution without any nodes in the distribution
of the fields ¢1 or ¢o. Boson stars in excited states (i.e., having nodes in ¢; and
¢2) have mass distributions which differ significantly from the critical solutions we
obtain [9].

We wish to explain these simulation results in terms of the quasi-normal
modes of boson stars. Previous work in critical phenomena [15, 24, 30, 38, 45, 46,
64, 74] leads us to surmise that there is a single unstable mode present in the system
which is excited when the boson star moves into the critical regime. The oscillatory
behavior during the critical regime may be explainable in terms of the superposition
of a stable oscillatory mode with the unstable mode. In the next section, we attempt

to confirm these hypotheses by means of perturbation theory.

3.4 Boson Star Stability Study via Linear Perturbation

Theory

We follow the work of Gleiser and Watkins [43]. For the perturbation calculations,

we find it helpful to define the following metric functions:
el/(t,r) = o

e)\(t,r) = 42
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Figure 3.6: Comparison of highly unstable (low-mass) critical solution and boson
star. Squares show a critical solution resulting from a boson star having ¢g(0) =
0.26 x \/4m. (The data has been reduced for graphing purposes; the actual spatial
resolution in the simulation is four times finer than that shown in the figure.) The
solid line shows a “best fit” (unstable) boson star we constructed by finding the time
average of |¢(¢,0)| in the critical solution and using this as the value for ¢o(0) in
the ODE integration routine which solves for the equilibrium (boson star) solutions.
We see that there is a small halo near the outer edge of the solution (r = 8). The
halo has the same relative magnitude when viewed in terms of the particle number
distribution 8N/9r. We discuss the halo phenomena further in Section 3.6.
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and to rewrite the complex field ¢(¢,r) as

B(t,7) = [1(t, ) + itho(t, r)]e ™™, (3.24)

where 91 and 1, are real. (Note that this is a different decomposition of the field ¢
than (3.7), the one used in the previous sections.)

In these variables, the equilibrium quantities are

At r) = Ao(r) (3.25)
v(t,r) = w(r) (3.26)
Yilt,r) = olr) (3.27)
Yolt,r) = 0. (3.28)

For the perturbation, we expand about the equilibrium quantities by first
introducing four perturbation fields—dA(¢t,r), dv(t,r), d¢1(t,r) and dipa(t, r)—and

then setting:

At,r) = Ao(r) + 8A(t,r) (3.29)
v(t,r) = wo(r)+ ou(t,r) (3.30)
Yi(t,r) = do(r)(1 4 0ehi(t,r)) (3.31)
Ualt,r) = dol(r)ua(t,r). (3.32)

These expressions are substituted into the relevant evolution and constraint
equations (details in Appendix C), after which the resulting system can be reduced
to the following system of two coupled second-order ordinary differential equations

for d¢p1 and dA:

n_ g V(l) — )‘6 I 6_)‘1 Ao—10 5.7,
oy = <r + 2 0y " (2) +e o
/ TRV 1 /N 2 1 — )\
05552+ (9) oo erm-o]
0 0 (A
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71\ 2
+ l1+e” +e (%) +T¢0¢6] i (3.33)

U2 9yt ! B
SN = — g( )\I 5)\/ [ +)\6/+—_( 0 2)‘0) _ VO+)‘O (5)\—}-8)\0_”05)\
- (2¢0¢0 - 7"6)‘0¢0
/ !
— 4 [2¢62 —retogl (2% + %OTJr)‘())] 5. (3.34)

To perform the stability analysis (normal-mode analysis), we assume a har-

monic time dependence, i.e.,

S (t,r) = obr (r) e
SA(t,7) = SA(r) e,

Note that (3.33) and (3.34) contain only second derivatives with respect to time,
and because there are good reasons to assume o? is purely real [61, 43], we only need
to determine whether o2 is positive or negative to determine stability or instability,
respectively.

Using the method described in Appendix C, we find the distribution for the
squared frequency o3 of the fundamental mode, with respect to ¢g, which is shown
in Figure 3.7.

Superposed with the fundamental mode, we may have other modes at higher

frequencies. Figure 3.8 shows the relation between first harmonic frequencies and

$0(0).

3.5 Comparison of Perturbation Analysis and Simula-

tion Data

We wish to compare the results of our perturbation theory calculation with the
oscillations of stable boson stars. Two differences exist between the conventions used

in the perturbation theory calculation and those used in the boson star simulation
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Figure 3.7: Mode frequencies of boson stars: fundamental mode. This plot shows
a graph of 03, the squared frequency of the fundamental mode, versus the value of
¢o at the origin. Note that, as the inset shows, o3 crosses zero when ¢(0) ~ 0.27,
which corresponds to a boson star with the maximum possible mass. (The circles
show actual values obtained, and the solid line simply connects these points.)
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Figure 3.8: Mode frequencies of boson stars: first harmonic mode. This plot shows
a graph of 07, the squared frequency of the first harmonic mode, versus the value of
¢o at the origin. Note that, as the inset shows, 0% crosses zero when ¢g(0) ~ 1.15,
which corresponds to the first local minimum on the unstable branch of the mass
vs. radius curve (see Figure 3.5). (The circles show actual values obtained, and the

solid line simply connects these points.)
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data. The first difference is in the choice of the time coordinate. In the perturbation
theory code, we choose a lapse of unity at the origin, whereas in the simulations we
set the lapse to unity at spatial infinity. Thus we have the following mapping from

the perturbation theory calculations to the simulations:

2 o’

Perturbative 2 |Simulation

The other significant difference is in the way the complex field ¢(¢,r) is
decomposed into constituent real fields. Thus we cannot directly compare ¢; and
1, for example. We can, however, compare the modulus |¢| of the field. For the
simulation data, the perturbation in |¢| can be taken directly from (¢7 4 $3)1/2. For
the data obtained from perturbation theory, the perturbation in |¢| will be, to first
order, ¢gd1)y.

Before proceeding to the comparisons per se, we wish to point out that
determining the unstable mode via numerical simulation of the full nonlinear system

was very easy to do in comparison to the linear perturbation theory calculations.

3.5.1 Modes of Stable Boson Stars

We provide this subsection as a “warm-up” for the comparison of critical solutions
and unstable boson stars. Consider the simulation data for which initially ¢(0) =
0.05 x v4m. The boson star oscillates about a point of stable equilibrium. We take
data from this equilibrium state and subtract it from the data at all times of the
simulation, in order to extract the oscillatory mode. In the simulation, we find a
period (in «(0)) of about T' = (968.75 — 109.38,¢)/4 = 214.8425. The oscillation
frequency is given by o = 27/T, from which we find 0% = 8.553017 x 10~*. The
average value of 1/a(t,0)? during this interval is (1/a2) = 1.6281. Thus the squared
oscillation frequency to compare with the perturbation theory results is 0?/a? =

0.00139.
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We choose simulation data at a local maximum in the oscillation cycle to
compare with the perturbation theory results. At this time, the amplitude of the
oscillation is A|¢(t,0)| = 5.592091 x 10~%. From the perturbation theory code, we
find the proper solution is obtained using o2 ~ 0.00140 and §\”(0) ~ 2.5 x 107
Thus the square of the oscillation frequency obtained from the simulation is in
agreement with the value of ~ 0.0014 obtained from the simulations.

We can graph the functions obtained and find good agreement between the

simulation data and perturbation theory, as shown in Figures 3.9 and 3.10.

3.5.2 Unstable modes

To measure the unstable mode, we again perform a series of simulations in which we
allow a gaussian pulse from an addition real, massless Klein-Gordon field to impinge
on a stable boson star.

By tuning the amplitude of this pulse (holding constant the width of the pulse
and its initial distance from the boson star), we can generate a family of slightly
different near-critical solutions depending on the amplitude of the initial gaussian
pulse, and can tune down the initial magnitude of the unstable mode. By subtracting
these slightly different near-critical solutions, we obtain a direct measurement of the
unstable mode.

Considering a specific example, we start with a stable boson star which has
an initial field value at the origin of ¢ (0) = 0.04x+/4x. By driving it with a gaussian
pulse tuned to machine precision, we can cause this stable star to become a critical
solution which persists for very long times, oscillating about a local equilibrium.
The average value of |¢(¢,0)| is (|¢(t,0)]) ~ 0.463. We measure the unstable mode
by subtracting data of a run which contained a gaussian pulse with an amplitude
that differed by 10~'* from that of the pulse tuned to machine precision. We can

then measure the growth factor of the unstable mode by taking the Lo norm of this
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Figure 3.9: Fundamental mode of stable boson star. The dashed (red) line shows
¢0dy1 from the perturbation theory calculations. To obtain the solid (green) line,
we took the simulation data and subtracted the Klein-Gordon field at one instant of
time from the data at another instant. We see that, to the eye, the two graphs are
indistinguishable. When we begin the discussion of unstable modes, we will show
the differences between perturbation theory and simulation results.
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Figure 3.10: Fundamental mode of stable boson star. Perturbation in metric func-
tion a. The dashed (red) line shows the perturbation to the metric function a as
found via perturbation theory calculations. To obtain the solid (green) line, we took
the simulation data and subtracted the metric function a at one instant of time from
the data at another instant.
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difference at various times, taking the logarithm, and fitting a straight line to it.
From this, we obtain ¢ ~ 0.1094, or 02 ~ —0.0118. Because of the differences in time
coordinate between the simulations and perturbation theory calculations, we need to
compute o2 /a? in order to compare with the perturbation calculations. We find the
average value of 1/a(t,0)? for the times listed above to be (1/a(t,0)?) ~ 3.80, and
thus we find 02?/a? ~ —0.0450. We choose to compare these perturbation theory
results with data from a time in the simulation for which the difference in field
values (for the two evolutions tuned slightly differently) is Al¢(¢,0)| ~ 8.4 x 1013,
We use this value in the perturbation theory solver and arrive at o2 ~ —0.045, in
good agreement with the value from the simulation. In Figures 3.11 and 3.12, we
compare the graphs of the solutions for the unstable mode. In Figure 3.13 we show
a comparison of the squared frequency values obtained from the linear perturbative

analysis and those as measured in our simulations.

3.5.3 Oscillatory modes

We can also look at the oscillatory mode during the critical regime. We study
the behavior of such a mode using the same technique we used to examine the
fundamental mode of the unstable boson star: we subtract the data at one instant
of time from the data at all other instants. Again, as a specific example, we use
the same initial boson star as that used in the previous section. During the critical
portion of the evolution, we notice an oscillation period of about T' ~ 38.4, and thus
we obtain ¢ = 27/T =~ 0.0261. During this period, the average value of 1/a?(t,0) is
about 3.80, and thus we find 02/a? ~ 0.102. We take data from a moment in the
middle of the oscillation period, and subtract it from the data at other times. We
can then compare the perturbation theory results with simulation data at a local
peak of the oscillation. For the local peak we chose at time ¢ = t,, the difference

in modulus of the field was A|¢ty,0)] ~ 0.0197. Inserting this value into the

55



B8x10-18
6x10-13

4x10-13

4[|

2x107138

o

—— Pert. Theory

s Simulation

o

(Sim. — P.T.) / Max( 6|¢|)

—0.002

—0.004

Figure 3.11: Fundamental mode of unstable boson star. (a) The solid line shows
¢pd11 from the perturbation theory calculations. The squares shows the difference

between |¢| for two simulations for which the critical parameter p differs by 1

014,

(The data has been reduced for graphing purposes; the actual spatial resolution in
the simulation is four times finer than what is shown in the figure.) Differences
between the simulation data and perturbation theory results are below 1.1 x 10715,
If a line were drawn connecting the squares, it would be indistinguishable, to the
eye, from the perturbation theory line. Thus we provide a second graph (b) showing
the difference of these results, where the scale is relative to the maximum value of

6|o|.
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Figure 3.12: Fundamental mode of unstable boson star. (a) The solid line shows
the perturbation to the metric function a, as found from the perturbation theory
calculations. The squares shows the difference between the metric function a for two
simulations for which the critical parameter p differs by 10714, (In the simulations,
the spatial resolution was four times that shown in the figure.) (b) A plot of the
difference between the mode obtained from the simulation and the mode obtained
via perturbation theory, where the scale is relative to the maximum value of da.
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Figure 3.13: Comparison of squared frequencies/Lyapunov exponents for unstable
modes. The circles show a subset of the perturbation theory data as displayed
in Figure 3.7. The squares show the measurements obtained from our simulations.
(The solid line simply connects the circles.) We note that the agreement between the
two sets is good even for the more unstable, low-mass solutions. We also point out
that the measurements of our simulations were performed along r = 0, i.e., in the
interior of the halo found in the low-mass solutions, which seems to strengthen the
remarks at the end of Section 3.3, namely that, aside from the halo at the exterior
of the critical solution, the critical solutions (of all masses) seem to correspond to
unstable boson stars.
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perturbation theory code, we find 0% ~ 0.102 for this configuration. Thus we again
find excellent agreement between the squared oscillation frequencies computed in
perturbation theory and via simulation.

In Figures 3.14 and 3.15, we compare the functions obtained from the per-
turbation theory calculation with those from the simulation. We note that the
agreement for the metric functions is very good for all radii, but the agreement in
the fields begins to decline beyond r = 5. Why do the graphs of |¢| not agree well
for the first harmonic? This could be a consequence of our simplistic method of
extracting this mode. While our method of simply subtracting different frames has
worked well for our test cases of oscillations of stable boson stars, the first harmonic
of the unstable star has a higher frequency and thus our graph could be subject
to sampling effects. A better method would be to perform a Fourier transform in
time for each grid point, and construct the higher harmonics in the field accordingly.
There may be a simple resolution to the discrepancy in the graphs of |¢|, (3.7) and
agreement in the graphs of the metric, our analysis does seem to indicate that the
oscillations observed for this data in fact correspond to the first harmonic quasinor-
mal mode of a boson star, however the analysis of the matter field needs further
attention.

Finally, we must remark that we have been unable, using the fundamental
and first harmonic modes of an unstable boson star, to construct a solution possess-
ing a halo similar to that shown in Figure 3.6. We do not expect higher modes to
be of any use here, because the halo is observed to oscillate with the same (single)
frequency as the rest of the star. Since, as we described at the end of Section 3.3,
the halo seems to be radiated away over time, we might not expect it to be described

by the quasinormal modes (which conserve particle number) we have constructed.
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Figure 3.14: First harmonic of an unstable boson star. (a) The solid line shows
¢pd11 from the perturbation theory calculations. To obtain the squares, we took
the simulation data and subtracted the Klein-Gordon field at one instant of time
from the data at another instant. (The data in the simulations had a spatial res-
olution four times finer than what is shown in the figure.) (b) The squares show
the difference between mode obtained from simulation and the mode obtained via
perturbation theory, scaled relative to the maximum value of §|¢|. As we describe
in the text, the lack of agreement beyond r ~ 6 may be an artifact of simplistic data
analysis. The next figure shows that the metric quantities, which depend directly
on the matter distribution (and thus on |¢|), show a favorable comparison between
the simulations and perturbation theory.
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Figure 3.15: First harmonic of an unstable boson star. (a) The solid line shows
the perturbation to a as found from perturbative calculations. To plot the squares,
we took the simulation data and subtracted the metric function a at one instant
of time from the data at another instant. (The spatial resolution in the simulation
was four times finer than what is shown in the figure.) (b) The squares show the
difference between the simulation data and the results of linear perturbation theory,
The close fit between these results

indicates that the oscillations observed in the critical solutions correspond to stable

scaled relative to the maximum value of da.

oscillatory modes in an unstable boson star.
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3.6 Halos

We have strong evidence that the critical solutions correspond to unstable boson
stars, but the principal point of disagreement is existence of a “halo” of massive
field which resides in the “tail” of the solution. It is our contention that this halo is
not part of the true critical solution, but rather, is an artifact of the collision with
the massless field.

In particular, the halo seems to be a remnant of the original (stable) boson
star which is not induced to collapse with the rest of the star to form the true
critical solution. We find that such a halo is observable in nearly all but the most
massive (least unstable) critical solutions we have considered, and that its size tends
to increase as less massive (more unstable) solutions are generated. The fact that
the halo thus decreases as we approach the turning point only makes sense—a stable
boson star very close to the turning point needs very little in the way of a pertur-
bation from the massless field to be "popped” over to the unstable branch, and the
final, unstable configuration, will, of course, be very close to the initial state.

Additionally, we note that in all cases we have examined, the field comprising
the halo oscillates with nearly the same (single) frequency as the rest of the solution.
This indicates that the halo is not explainable in terms of additional higher-frequency
modes.

As one might expect, the properties of the halo are not universal, i.e. they
are quite dependent on the type of initial data used. In contrast, the critical solu-
tion interior to the halo is largely independent of the form of the initial data. To
demonstrate this, we use two families of initial data, given by a “gaussian” of Family
I in Table 3.1 and a “kink” of Family II. A series of snapshots from one such pair
of evolutions is shown in Figure 3.16. We find different amounts of mass transferred
from the massless to the massive field for the kink and gaussian data, as shown in

Figure 3.17, yet the central values of the field oscillate about nearly the same value
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at nearly the same frequency. Both calculations start with identical boson stars with
|4(0,0)| = 0.04 x /4. In the critical regimes, this becomes (|¢(¢,0)|) = 0.130 x /47
for the solution obtained from the gaussian data, and (|¢(,0)|) = 0.135 x /47 for
the kink data. As already noted, the oscillation periods are also quite similar, dif-
fering by about 3%, and the masses interior to the halo are also quite comparable.
In particular, it seems quite remarkable that the differences in mass interior to the
halo for the two families are much smaller than the mass transferred from the real
field in either case.

If we consider the inner edge of the halo to be where 9|¢|/dr = 0 at some
finite radius (e.g., r ~ 5 in Figure 3.6), and look at the data between r = 0 and the
inner edge of the halo, we find good agreement between this data and the profile of
a boson star. This can be seen in both Figures 3.6 and 3.18.

We suspect that the halo is radiated over time (via scalar radiation, or “grav-
itational cooling” [91]) for all critical solutions. We find, however, that the time scale
for radiation of the halo is comparable to the time scale for dispersal or black hole
formation for each (nearly) critical solution we consider. Thus, while we see trends
which indicate that the halo is indeed radiating, we are not able to demonstrate this
conclusively for a variety of scenarios. With higher numerical precision, one might
be able to more finely tune out the unstable mode, allowing more time to observe

the behavior of the halo before dispersal or black hole formation occur.

3.7 Conclusions

We have shown that it is possible to induce gravitational collapse and, in particular,
Type I critical phenomena in spherically-symmetric boson stars in the ground state,
by means of “perturbations” resulting from gravitational interaction with an in-
going pulse from a massless real scalar field. Through this interaction, energy is

transferred from the real to the complex field, and complex field is “driven” and

63



r? dM./dr

10

Figure 3.16: Evolution of r2dM¢ /dr for for two different sets of initial data. Both
sets contain the same initial boson star, but the massless field ¢3 for one set is
given by a “gaussian” of Family I (solid line) with ro = 30, and A = 8 whereas for
the other set ¢3 is given by a “kink” of Family II (dashed line) with ro = 35 and
A = 3. The variable A is varied (independently for each family) as the parameter
p to obtain the critical solution. (Note that after ¢ ~ 60, the massless field has
completely left the domain shown in the figure.) We have multiplied dM¢ /dr by r?
to highlight the dynamics of the halo; thus the main body of the solution appears
to decrease in size as it moves to lower values of r. The kink data produces a larger
and much more dynamical halo, but interior to the halo, the two critical solutions
match closely — and also match the profile of an unstable boson star. Thus, the
portion of the solution which is “universal” corresponds to an unstable boson star.
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Figure 3.17: Mg vs. time for the two evolutions shown in Figure 3.16. Mass
transfer from the real to the complex field occurs from ¢ ~ 30 to t ~ 60, i.e. while
the supports of the fields overlap. There is more mass transferred using the kink
data, and yet the mass falls off rapidly. The mass of the kink data acquires a value
very close to the mass of the gaussian data, which is itself decreasing slowly with
time. We see that, beyond ¢ ~ 250, the difference in mass between the two solutions
is very small compared with the amount of mass transferred from the real field.
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Figure 3.18: Mass vs. (|¢(t,0)|), the time average of the central value of the field
for equilibrium configurations of boson stars (solid line), initial data (triangles) and
critical solutions (open and filled squares). Arrows are given to help match initial
data with the corresponding critical solution. Points on the solid line to the left of
the maximum mass My ax = 0.633M123l /m correspond to stable boson stars, whereas
those to the right of the maximum correspond to unstable stars. The data is the
same as that used for Figure 3.5, with data from one further evolution added at the
bottom of the mass range. The open squares show the time average of the mass and
|¢(t,0)| of some critical solutions, and the filled squares show the same quantities
evaluated between r = 0 and the inner edge of the halo, defined to be the point
where 0|¢|/0r = 0 for finite r. The mass of the critical solution is in general greater
than the mass of the initial data, however the mass inside the halo of the critical
solution is less than the mass of the initial data.
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“squeezed” to form a critical solution. The massless field is not directly involved in
the critical behavior observed in the complex massive field; the critical solution itself
appears to correspond to a boson star, which, at any finite distance from criticality
in parameter space, exhibits a superposition of stable and unstable modes.

Specifically, for initial data consisting of a boson star with nearly the maxi-
mum possible mass of M,y ~ 0.633le /m, the resulting critical solution oscillates
about a state which has all the features of the corresponding unstable boson star in
the ground state, having the same mass as the initial star. This result is reminiscent
of the study by Brady et al. [15], who found that the Type I critical solutions for
a real massive scalar field corresponded to the oscillating soliton stars of Seidel and
Suen [89]. For boson stars with a mass somewhat less than M.y, €.9., 0.9Mmax
or less, however, we find less than complete agreement between the critical solution
and an unstable boson star of comparable mass. This is evidenced by the presence
of an additional spherical shell or “halo” of matter in the critical solution, located in
what would be the tail of the corresponding boson star. Interior to this halo, we find
that the critical solution compares favorably with the profile of an unstable boson
star. Additionally, we have shown that the halo details depend on the specifics of
the perturbing massless field, and we conjecture that, in the infinite time limit, the
halo would be radiated away.

In order to extend the comparison between the critical solutions and boson
stars, we have verified and applied the linear perturbation analysis presented by
Gleiser and Watkins [43], extending their work by providing an algorithm to obtain
modes with nonzero frequency. We have used this algorithm to give quantitative
distributions of mode frequency wvs. central density of the boson star for the first two
modes, as well as to solve for the modes to compare with our simulation results. We
have found that the unstable mode in the critical solutions have the same growth rate

as the unstable mode of boson stars, and that the mode shapes also compare quite

67



favorably. We noted that the unstable mode of these boson stars was determined
much more easily by solving the full nonlinear set of evolution equations, rather than
via linear perturbation theory. The oscillations observed in the critical solution also
indicated agreement with first harmonic mode obtained via perturbation theory,
however the oscillatory mode in |¢| showed poor agreement at large radii, and awaits
more careful analysis.

Future work may include simulations of the critical solutions of low mass
using higher numerical precision to further tune away the initial amplitude of the
unstable mode, thus allowing more time to observe the the small halo (i.e., whether
it is in fact being radiated away). We would also hope to obtain better agreement
between simulation and perturbation theory for the first harmonic mode of the
field |¢|, perhaps using a more sophisticated method of extracting modes from the
simulation. Another direction worthy of note would be to begin the simulation with
a pulse of the complex field (instead of specifically a boson star) tune the height
of the pulse to find the critical solutions via interpolation, and then compare the
resulting critical solutions with our results obtained by perturbing boson stars.

Finally, we find it worthwhile to investigate similar scenarios for neutron
stars. While there have been studies regarding the explosion of neutron stars near
the minimum mass (e.g., [33], [96]), we would like to see whether neutron stars of
non-minimal mass can be driven to explode via dispersal from a critical solution.
This may take the form of a neutron star approaching the onset of instability via
slow accretion, or by being driven across the stability graph via violent heating from
some other matter source, in a manner similar to the perturbations of boson stars

we have considered in this chapter.
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Chapter 4

Multi-Scalar Stars

A class of general relativistic solitons is considered in which multiple real scalar
fields are expressed as Fourier cosine series with arbitrary temporal phase differences
between the fields. For the special case of two scalar fields, a one-parameter family
of solutions is found spanning from oscillating soliton stars (relative phase § = 0)
to boson stars (§ = £+m/2). Numerical evolution of these solutions confirms their

stability.

4.1 Introduction

In 1991, Seidel and Suen [90] showed the existence of non-topological solitons for a
matter model without an explicit conserved Noether current: a minimally-coupled
real-valued scalar field. Calling these “oscillating soliton stars”, they constructed
these solutions for the case of spherical symmetry by expanding the field and metric
variables as Fourier cosine series, with expansion coefficients depending only on
radial position. They then demonstrated, via direct numerical evolution, that the
solutions obtained are stable and indeed persist with the required periodicity. In

this chapter, we present an extension of Seidel and Suen’s work on oscillating soliton
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stars, in which multiple scalar fields are considered.
The matter model we are interested in is that of n Klein-Gordon fields with-
out self-interaction, minimally coupled to general relativity. Such a model has a
Lagrangian density given by
I N
_g .
L=Ry=g—-"5= > (dh”“d)i;a - mfd’?) (4.1)
=1

We work in spherical symmetry, using the “polar/areal” coordinate system
ds® = —a?(t,r)dt? + a®(t,r)dr? + r2dQ? (4.2)

The complete evolution of the field and metric is given in terms of the Klein-Gordon
equation and two constraints from Einstein’s equations. The equations can be writ-

ten as:
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where an overdot is used to denote 9/9t and a prime to denote 9/09r.
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We start by considering only one scalar field, i.e. n = 1. We note that the
“slicing condition” (4.4) and the “Hamiltonian constraint” (4.5) are unchanged if
we decompose ¢ into two identical fields (n = 2), ¢1 and ¢ = ¢1, such that

1
Y

Also, the Klein-Gordon equation (4.3) is unchanged if we multiply ¢ by a constant.
(Thus we can absorb the factors of 47G in (4.4) and (4.5) by letting vV4rG¢ — ¢.)

¢ (61 + ¢2). (4.6)

Since a soliton solution corresponding to (4.3)-(4.5) is the oscillating soliton
star, we see that a trivial multi-scalar soliton solution can be obtained by construct-
ing an oscillating soliton star with a single field, as described in Seidel and Suen’s
paper [90] and then performing the decomposition (4.6).

On the other hand, if we wish to model a boson star, then we have one massive
complex scalar field ¢, for which the real and imaginary parts behave like two real-
valued scalar fields: ¢ = ¢ + ip. The boson star ansatz is ¢ = G(r) exp(Fiwt),

where @(r) is real. This implies

-

o1 = &(r)cos(wt)
¢ = d;(r)cos(wt+(5), (4.7)

where § = Fm/2.

Comparing the soliton star and the boson star, we find that both solutions
can be obtained by using two real-valued scalar fields. For the soliton star, the fields
will have equivalent radial and temporal dependence; whereas for the boson star,
the fields have equivalent radial dependence, and the temporal dependence is the

same to within a phase.

4.2 Phase-Shifted Boson Stars

The work described in this chapter began in the midst of our numerical evolutions

of boson stars. The question arose, “What happens if we solve for the boson star
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initial data, then ‘manually’ change the phase relationship of the two fields, keeping
their radial dependence unchanged, and then, finally, re-solve for the metric vari-
ables using the new matter configuration?” For future reference, we term such a
configuration a “phase-shifted boson star.” This was in part motivated by a de-
sire to study oscillating soliton stars, and by our initial difficulty in constructing
the proper initial data. Taking the boson star initial data and manually removing
the phase shift between the two fields resulted in what might be termed a “poor

man’s soliton star.”

Such a system demonstrates a stable, quasi-periodic behavior
as shown in Figure 4.1.

We then considered solutions in which we again took the boson star initial
data <13(r) and distributed it to ¢1 and ¢o using some different value of §, such as
d = /6. The evolution for such a system can be seen in Figure 4.2.

For each of the many values of § we tried, we found an apparently stable
solution which oscillated in some nearly periodic manner for very long times. These
results led Choptuik to conjecture [28] that there may exist a continuous family of
periodic soliton-like solutions, parameterized by the phase §.

While our “phase-shifted boson stars” already constitute such a family, we

wished to construct periodic multi-scalar solutions directly via a periodic ansatz of

the form used by Seidel and Suen for their oscillating soliton stars.

4.3 Constructing Periodic Solutions

The method used for constructing the solutions is a natural extension of that used

in [90]. We expand the fields and metric variables in the following manner:

8itr) = 3 Biagr () con{(2] — 1)t + 61, (45)
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Figure 4.1: Central value of the fields ¢;(¢,0) = ¢2(¢,0) vs. time ¢, for the “poor
man’s soliton star” obtained via solving for boson star initial data and altering ¢o
by setting ¢2(0,7) = ¢1(0,7). One can see (e.g. near t = 800) that the solution is
not completely periodic, but it is nevertheless long-lived. Stable evolutions of this
system have been obtained for ¢ > 20000.
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Figure 4.2: Central value of the fields ¢1(¢,0) = ¢2(¢,0) vs. time ¢, for the phase-
shifted boson star with 6 = 7/6. Note the trade-off of energy between the two
fields.
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We insert the above expressions into Egs. (4.3)-(4.5), expanding the resulting
equations in terms of sines and cosines, and obtain a set of ordinary differential
equations (ODEs) by requiring that the coefficients of a given Fourier mode sum
to zero. Regularity at r = 0 requires (9/0r)¢; ;(0) = 0 as well as local flatness,
a; ;(0) = 0. Asymptotic flatness requires a; j(r) and ¢; ;j(r) go to zero sufficiently
rapidly as r — oo. Since the «; j(r) are part of the lapse, and thus represents
freedom in choosing a coordinate system, we require only that they asymptotically
approach constant values as r — oo. The equations (4.3)-(4.5) along with the
above boundary conditions constitute an eigenvalue or “shooting” problem. The
eigenvalues we shoot for are a; ;(0), given ¢; ;(0). (We choose w = 1 because w can
be absorbed into the choice of the time coordinate, t — t/w, @ — aw.) This would
ordinarily constitute a multidimensional parameter space search for the eigenvalues
@; ;(0), however coordinate freedom allows us to reduce the parameter space to one
dimension by choosing a;>2;(0) = 0. This choice has the additional benefit of
allowing for a simple boundary condition on the derivatives qﬁ at r = 0, which we
need in order to do the integration: Our choice a;>2;(0) = 0 means that the ;’ j(O)

completely decouple from one another in Eq. (4.3) in the limit » — 0, and we obtain

#5(0) = <¢Z’]1i‘10?10>‘ .
r=0
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In practice we must truncate the sums in (4.8)-(4.10) at some finite maxi-
mum value of 7, denoted by jmax- The resulting system of equations is in general
underdetermined, but we solve only the 3njmax + 4 equations corresponding to the
lowest modes, treating the other modes as higher order corrections which we neglect.

We now return to the previous example of boson stars and oscillating soliton
stars, both of which we can obtain by setting n = 2 in the expansions (4.8)-(4.10),
and setting m; = m and all ¢; ;(r) for a given j equal to each other, as in ¢; ;(r) =
$j(r). This has the effect of making all a; ;(r) equal to the same é;(r) for a given j,
and similarly a; ;(r) = a;(r). We also set 6; = 0 and define § = d2. Both the soliton
star of [90] and the boson star require @23(0) = 0. This means that the only free
parameters are gz?)l (0) and 0, leaving a1 ¢ as an eigenvalue for which to shoot. Thus
by construction, for a given d31 (0), one will obtain a soliton star if one sets § = 0,
and a boson star for § = £7/2.

One wonders how well the truncated series expansion matches the ideal so-
lution one would obtain given an infinite number of modes. Clearly one would hope
that the series would converge rapidly enough to justify taking only a few terms.
Figure 4.3 demonstrates the convergence of the series (4.10) for different values of
0, given jmax = 2.

The relation between between total mass and radius of the star is shown
in Figure 4.4, for various values of §. The inset shows the relation between the
maximum mass of the star and the phase angle 4.

We see that there exist great similarities between boson stars and oscillating
soliton stars, and that both are members of a larger family of two-scalar solutions.
A question arises, however, regarding the stability of the general two-scalar stars:
Do these configurations persist and maintain their periodicity in the face of pertur-

bations? To answer this question, we opt for a numerical solution of Eqgs.(4.3)-(4.5).
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Figure 4.3: Convergence of the multi-scalar star series for the metric coefficient
functions g;, for four values of the phase shift §. The solid (red) line shows go,
the short dashed (blue) line shows g, and the long-dashed (green) line shows gy.
Thus the expansion seems to converge rapidly. For a boson star (6 = 7/2), there
is only one oscillatory mode. For this case, we find ¢3(r) — 0 as § — 7/2, but
we do not find the higher-order coefficient functions, e.g. g2(r), ga(r), vanishing
as 0 — m/2. The total contributions to the metric functions a? and a? given by
(4.10) and (4.9) contain the coefficient functions multiplied by quantities which go
as cos(wt) + cos(wt + 24), which do go to zero as § — /2.
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Figure 4.4: Comparison of mass vs. radius for a family of two-scalar stars parame-
terized by the temporal phase shift 6. We see that boson stars (§ = 7/2) are similar
to oscillating soliton stars (6 = 0) in terms of mass and radius.
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4.4 Numerical Evolution of the Solutions

We use the same numerical code as used for the boson star study of Chapter 3.
Having obtained the initial data by integrating the ODEs described above, we define
new variables

®; = ¢, I; = —¢; (4.11)

Rle

In terms of these new variables, the relevant evolution equations are

«

P, = (Eni)l (4.12)

. 1 (r? !
I = > (—T aﬂi) — miaag; (4.13)
a

and we solve for the fields ¢; and the metric variables by integrating along each

spatial hypersurface the equations ¢; = ®; and

a = a1 —a + 17“a i (HiQ + 32+ a2m2<;52) (4.14)
2r 2 = e
2 / n
—1
o =« (a " + % —ra® ;quﬁf) . (4.15)

The boundary conditions at » = 0 are the same as those stated previously
with the exception that we choose the lapse a such that the coordinate ¢ measures
proper time as 7 — oo. As in Chapter 3, we use as an outer boundary condition
the Sommerfeld condition for a massless field. We ran our simulations with different
values of computational domain size ryax, trying to test for any periodicity or other
effects that might be a function of the outer boundary, but we found the results
to be essentially independent of 7.y, €ven for times which are large compared to
the time for information to cross the grid (e.g. 0 < ¢t < 2000 with rpax ~ 50). We
attribute this to the fact that there is very little scalar radiation from these compact

objects.
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4.5 Simulation of Multi-Scalar Stars

When we evolve the initial data, we find that the resulting solutions deviate sharply
from the periodic ansatz. This is shown in Figure 4.5. We are still investigating
the cause of this disagreement. We note, however, that the numerical solutions do
follow quasi-periodic evolutions over long time scales, further promoting the idea

that quasi-periodic two-scalar solutions may be common.

4.6 Conclusion

We have demonstrated the existence of at least one family of multi-scalar solutions
we call “phase-shifted boson stars” which are obtained by solving the ODEs associ-
ated with boson stars and then altering the phase between the real and imaginary
parts of the field. These solutions may not be strictly periodic or strictly stable, but
they are very long-lived and demonstrate periodicity over these long time scales.
Direct construction of strictly periodic solutions via a Fourier cosine series similar
to that of Seidel and Suen [90] yields series which converge rapidly, and for a special
subclass produce a one-parameter family in the phase shift §, spanning oscillating
soliton stars at § = 0 to boson stars at 6 = 7/2. For other values of §, we do
not find agreement between numerical evolution of the initial data and the periodic
ansatz, rather we find a different quasi-periodic, long-lived solution. The cause of

this alternate evolution is still under investigation.
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Figure 4.5: Results from evolution of a two-scalar star for initial data with ¢;(0,0) =
0.04, § = m/4, showing the maximum value of a on each spacelike hypersurface
parameterized by t. Dashed lines show the “ideal” solution obtained by evaluating
(4.3)-(4.5) as a function of ¢. The solid lines show the results of simulation on the
domain 0 < rgax < 75. We see that the simulation data differs markedly from the
periodic ansatz solution.
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Chapter 5

Toward Automatic Adaptive Mesh
Refinement (AMR)

5.1 AMR In General

One of the most common techniques for obtaining approximate solutions to time-
dependent partial differential equations (PDEs) is the use of finite difference tech-
niques, in which the spatial domain is discretized into a grid or mesh, and the partial
derivatives are replaced with algebraic relationships between neighboring (closely-
spaced) grid points. The relative closeness of the grid points is called the resolution,
and it is in general the case that high resolution provides for high accuracy — that
is, good approximation to the underlying PDEs — but at the cost of a long time
for the computation to be performed.

Adaptive Mesh Refinement (AMR) is a class of techniques which involve
varying the resolution throughout the simulation domain, and which, in principle,
provide a given degree of accuracy in a shorter amount of time than that required
for the application of finite differencing on a single, uniformly spaced mesh — what

we will call “unigrid” algorithms. In the discussion to follow, we will mainly refer to
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methods which have been developed for systems of hyperbolic differential equations.
There is a host of literature and methods devoted to the solution of elliptic and
parabolic equations via adaptive mesh techniques, however we will not delve into

such matters here.

5.2 The Desire for ‘Adaptivity’

For any sophisticated simulation in which a high level of accuracy is required, some
sort of adaptivity in the way the various physical quantities are represented on the
domain is desirable for two main reasons.

1. Computational Necessities. Any computer system will have finite re-
sources, and furthermore may charge the user a fee in proportion to the use of these
resources. If the user wants to run a unigrid simulation to generate a highly accurate
representation of a physical system, he might desire a very large grid which would
require storage allocation in excess of what is available on many computer systems,
and even if the program fit in memory, it may take months to run the simulation. A
user’s goal would probably be to run a program which produces the desired amount
of accuracy, executes in a minimum amount of time, and consumes a minimum of
the storage resources on the system. AMR minimizes storage requirements by only
placing finely-spaced grid points where they are needed, and when they are needed,
and also minimizes computation time by minimizing the number of grid points (and
hence the number of pointwise operations).

2. Unanticipated Resolution Requirements. It is often the case that the
resolution requirements of a simulation (for a fixed local accuracy) may not be
known a priori. A unigrid code in which data evolve toward the formation of
unanticipated small-scale features may leave the user no recourse but to terminate
the execution and re-run the simulation with a higher resolution, thereby wasting

time and other computing resources. Thus it would be desirable to have an algorithm
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which dynamically responds to the need to maintain accuracy in the simulation.
For several years, AMR has been an attractive idea for researchers in numer-
ical relativity [70], yet the implementation of AMR schemes has proceeded rather
slowly from the pioneering work of Choptuik [23, 24]. During the Binary Black
Hole Grand Challenge project, it was noted by Choptuik [21] that simulation codes
in numerical relativity have tended to be fairly homogeneous from a “high-level”
perspective, in that nearly all the codes being developed at the time used low-order
(second-order) finite difference techniques on a single mesh, and had a basic struc-

ture of the form [21]

Read initial state
for NUM_STEPS
for NUM_UPDATES or until convergence
Update(Grid Function(s)) — Grid Function(s)
end for
end for
Write final state

Choptuik pointed out that most of labor in developing these sorts of simulation
codes goes into the construction of stable, accurate updates. He promoted the idea
of using the AMR algorithm of Berger and Oliger (described below) as a way to
allow relativists to concentrate on the development of stable unigrid codes for a
serial architecture. The Berger and Oliger method would then allow for parallelism

and adaptivity to be provided automatically by the main program driver.

Berger and Oliger AMR, in General

The 1984 paper of Berger and Oliger [11] describes an AMR algorithm in which
the spatial domain is decomposed into a collection of uniform, rectangular grids
of various degrees of resolution, placed throughout the computational domain at
arbitrary orientations relative to one another. These grids can (and do) overlap, i.e.

parts of different grids may contain the same subset of the domain. Each uniform
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grid is evolved separately, with boundary information supplied by other grids or
physical boundary conditions. Because the uniform grids are evolved separately, the
Berger and Oliger algorithm allows users to concentrate on writing update routines
for unigrid applications.

In this scheme, we start with a single uniform grid we call the base grid,
which covers the entire domain and does not change throughout the simulation.
We place other grids “on top of” the base grid (i.e. we define new grids which
cover a subset of the space covered by the base grid) which have finer resolution,
in order to resolve features in the simulation. We can place other, finer grids on
top of these grids as determined by the accuracy requirements of the code. The
criterion that determines when and where new grids are needed is an approximation
of the local solution error, obtained via Richardson expansion. Recall from Chapter
2 that, for sufficiently smooth functions and for centered difference schemes, we can
expect the error to be given as an even power series in the mesh spacing h, where
the coefficient functions in this series are independent of A and thus we can obtain
local approximations to these error functions by comparing data from two grids of
different resolution. Berger and Oliger used the term “truncation error” to refer
to what we have called “solution error”, and thus in this chapter we will use their
terminology in order to maintain consistency with related literature.

We begin on the base grid and integrate forward in time two steps. We also
start with the same initial data on a grid with twice the mesh spacing as the base
grid. Keeping the CFL factor A = At/Ax the same as that used for the base grid,
we evolve this coarse grid one step forward in time. The difference between the
data on the coarse grid at this time and the data on the base grid (restricted to the
coarse grid locations) gives a measure of the local truncation error. Those locations
in the spatial domain which contain truncation errors larger than some user-defined

threshold value are “flagged” as points where finer resolution is needed.
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At this point there needs to be an algorithm for determining how the flagged
points will be covered by finer grids. Such an algorithm is called a “clustering
algorithm”, because by it we seek to cluster the flagged points into large regions
which can be covered by finer grids. Great care must be given to how this algorithm
will place the new grids, in order that maximum computational efficiency be achieved
[12]. Covering a wide distribution of flagged points with only one or two large grids
may be simple and direct but will waste large amounts of time computing data at
locations which do not require high resolution (perhaps defeating the very purpose
of using AMR). Too many small grids covering a collection of points may mean high
communication costs, as well as require extra regridding work in later iterations.
It is often helpful to define a grid slightly larger than the region of those points
which need the fine resolution, such that the grid also covers nearby regions which
may require refinement in the near future. If this “buffering” is done effectively, it
will mean fewer flagged points in the future and thus less work for the clustering
algorithm at a later time. After the points have been appropriately clustered, new
grids are defined to cover the points appropriately. We call this “regridding.”

We do not perform the tasks of measuring truncation error, clustering and
regridding at every time step, but rather only at certain intervals (e.g. every four
time steps), primarily because these tasks take nontrivial time away from the actual
work of simulation. The assumption underlying this is that the features in the
simulation will not change “too rapidly.”

If the gridfunctions begin to lose their smoothness properties, the Richardson
expansion starts becoming a poor measure of the truncation error, and a typical
result of this is the allocation of fine grids which cover nearly the entire domain.
Since this is an undesirable outcome, we require that the numerical evolution scheme

be dissipative in order to try to enforce smoothness in the gridfunctions.
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5.3 AMR vs. Higher-Order Unigrid

While AMR is one means of providing high accuracy in short time, another route
which some researchers have taken is to use finite difference operators which are
better approximations to the underlying partial derivatives. This is achieved by
extending the Taylor series expansion of these derivatives to higher order, and the
most common extension is to fourth order. While it can be rather difficult to
construct such higher-order operators which still yield a stable evolution, the payoff
provided by higher order schemes has been enough to lure some researchers to
implement such evolution codes [59]. The payoff is in terms of the convergence
behavior: For every doubling of the resolution in a second-order accurate code, the
truncation error goes down by a factor of 4, but for the same refinement using a
fourth-order accurate code, the truncation error goes down by a factor of 16. Thus
even fairly modest resolution can with fourth-order codes provide extremely accurate
solutions for sufficiently smooth phenomena. It is even to be expected in a variety
of scenarios that higher-order unigrid will yield better results (i.e. faster results for
a desired accuracy) than (second-order) AMR. If the AMR scheme is only second
order, it will have to extend to very high levels of refinement to match the results
from a well-resolved fourth-order unigrid code.

Given this observation, and the difficulties involved with developing a sophis-
ticated AMR code, some have asked the question, “Why should we use AMR when
fourth-order unigrid offers much better convergence?” An initial response stems from
the fact that adaptive methods are in some sense designed to resolve small features
in a simulation which may not be easily predictable from the initial data. AMR
provides the functionality to track and resolve small-scale phenomena which might
never appear in a unigrid simulation. Higher-order unigrid can do an excellent job
for smooth data, but it still cannot resolve any features smaller than the (static)

mesh spacing.
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We should also point out that, given a sufficiently general AMR algorithm
in which we can take unigrid implementations and use them more or less directly
within the AMR code, and assuming that one can construct appropriate higher-order
interpolation operators for this AMR code, then one should be able to incorporate
any unigrid technique within the AMR code. Constructing the higher-order in-
terpolation operators may be nontrivial, and one might find challenges along the
boundaries of fine grids, but there is nothing in principle to prevent the inclusion
of higher-order techniques within the AMR algorithm. Thus the development of
high-order unigrid codes and AMR codes, while these may at present appear to be
disparate and competing efforts, can in principle work together to provide significant

increases in computing power.

5.4 The Need for Efficient Parallelization

Modern large-scale simulation packages are typically run on large-scale computer
systems, which in recent times has meant some form of parallel computing model.
Current parallel computing platforms can range from the distributed-memory-distributed-
processing architecture of a cluster of PCs to a sophisticated distributed-shared-
memory system like the SGI Origin 2000. Parallel computing is an excellent way
for an application to gain enormous increases in speed, but only if that application
parallelizes well, i.e. that the overall computation speed scales almost linearly with
the number of processors.

Typical mesh-based simulations lend themselves well to “data-parallel com-
puting”, for which one performs domain-decomposition or “partitioning” on the data
set and sends one piece of the data set to each processor. (For a distributed memory
system, the size of each piece is then limited by the amount of memory available to
a processor.) For unigrid applications, this partitioning can be fairly simple or even

trivial, but for an adaptive computation the partitioning can be highly-nontrivial,
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due to the need for even “load balancing” across all processors. This load balancing
is essential if the computation speed is to scale with the number of processors.

Partitioning and load balancing aside, a principal difficulty for parallel grid-
based simulations (adaptive or otherwise) lies in the need for different processors
to communicate with each other. Typically this is seen along the boundaries of
the individual subdomains being simulated on each processor. Communication cost
scales not only with the topology of the grid, but also with the number of proces-
sors. Communication costs are typically determined on the basis of the latency and
bandwidth of the network [84]. The latency of a communications network is the so
called “startup cost” required to establish a connection to send a message. The
latency is independent of the length of the message. Bandwidth refers to the capac-
ity of a communications channel (a specific path through the network) to transmit
information, and is typically given in bits per second (bps).

Given a system with fixed bandwidth and latency, one can imagine there
is some optimum problem size for a given number of processors, or conversely an
optimum number of processors for a given problem size [84]. Taking the latter
view, we can see that if we were to break up the domain into very tiny pieces and
distribute it on many, many processors, the communication costs would prohibit a
timely solution of the problem. Alternatively, if we divide the domain into only a
few pieces on a few processors, the inter-processor communication cost will be low,
but then we would not be taking advantage of the parallel supercomputer. From
this, we can understand that for large computations on many processors, the inter-
processor communication can be so costly that one can begin to see negative or
inverse scaling, i.e. the user would be better off re-running the simulation on fewer
processors.

For grid-based-simulation codes, the need is not so much for one processor to

communicate with other processors, but simply to access the memory to obtain data
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which were computed using other processors. Thus (as realized by Cray and others)
as long as the “memory link” is fast enough, the inter-processor communication per
se is not much of an issue. However, shared-memory architectures like the older
Cray supercomputers are falling out of fashion. On PC clusters, if one wants to
access the memory on another motherboard, i.e. in a different machine, one has to
do so through the processor(s) on the other motherboard, via a network connection.

For an adaptive mesh code, communication costs are not easy to anticipate.
One could imagine a scenario (admittedly extreme) in which an adaptive mesh
code, because of high amounts of inter-processor communications, could actually
take longer to execute than the corresponding unigrid code which renders a solution
at the same accuracy as the adaptive code.

In summary, if one wants to write a parallel AMR code, great care is required
in writing the code to help ensure load balancing and the use of the most efficient

communications as possible.

5.5 Towards Automatic, Parallel AMR

Both AMR and parallelism are very desirable qualities to have in a simulation
code, but both require significant effort to implement. We note, however, that
many of the same tasks will be performed by any AMR simulation. These include
the allocation and deallocation of memory for new grids, interpolation of coarsely-
resolved data onto fine grid cells (what we call “prolongation”), truncation error
estimation and clustering (for Berger and Oliger codes), message passing between
processors, parsing of parameters, and general input and output. Given the generic
aspects of these tasks (i.e. they are largely independent of the physical problem
being modeled), one can imagine a computing environment in which these functions
are provided as part of the package, thus freeing the user to concentrate on the

physics at hand. In particular, one might desire an environment in which a user
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supplies a set of finite difference equations, initial data, and boundary conditions
written for the solution of his or her problem on a single uniform grid, but in which
all the above-mentioned necessary components of a parallel AMR code are then

generated automatically.

5.6 An Implementation of Berger and Oliger’s Method

For our implementation of Berger and Oliger’s method, we require that new grids
share boundaries with (collections of) coarse grid cells. This means that we do not
allow grids with arbitrary orientation, but rather only grids with boundaries parallel

to those of the base grid.

5.6.1 Shadow Hierarchy

In addition to the integration of the equations of motion on the grid hierarchy, we
also continuously evolve the data on a precise copy of the grid hierarchy in which
all grids are coarsened by a factor of two. We call this coarsened copy of the grid
hierarchy a shadow hierarchy [27], and the original hierarchy the base hierarchy or
main hierarchy. The shadow hierarchy is used at regridding times to estimate the
local truncation error. The usual implementation of the Berger and Oliger method
amounts to the definition of a shadow hierarchy at each regridding time, so we choose
to be spared the effort of allocating and de-allocating storage every regridding time
and simply allow the shadow hierarchy to exist at all times. More importantly, the
shadow hierarchy eliminates the need to duplicate fine grid storage at regridding
times, which is a requirement of the original implementation of the Berger and
Oliger method. Thus we save memory and computing time. The price we pay
for this is that we evolve data on the shadow hierarchy at all times, not just the
regridding times, but the hope is that the time we save in not duplicating fine grid

storage at each regridding time makes up for this cost. The 2 : 1 refinement between
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the base and shadow hierarchies requires a refinement ratio of 2P : 1 between each

grid level, where p is some integer. In our software, p is required to be 1.

5.6.2 Refinement of Initial Data

Providing proper specification of the data and grid structure at the initial time is at
least as complicated as the AMR evolution of the data. We wish to ensure that we
begin the simulation with sufficient mesh refinement to adequately resolve all the
features of the initial data, such that the evolution does not acquire large amounts
of truncation error from the first evolution step. The initial regridding algorithm

can be summarized by the following pseudo-code:

gfs = All grid functions to be evolved (reside on Main and Shadow hierarchies)
[ = Current level in do loop

[y = Finest level currently allocated

lmax = Finest level allowed in the simulation

te = local truncation error, a grid function

G; = List of locations for new grids, obtained from clustering algorithm

Assign initial data on Main, level = 0
Assign initial data on Shadow, level = 0

[:=0,l;:=0
Repeat until (I does not change) or (I = lyax)
l=1+1
Take two steps on Main at level [
Take one step on Shadow at level [
Measure truncation error: te = gfs(Shadow) - gfs(Main)
Flag bad points: flags = where (te > Threshold)
Cluster flagged points for placement of new grids: G; = Cluster(flags)
if (G| not empty) then
Iy =1 +1
Allocate new grids on [ at locations specified by G;
Assign initial data on Main, level = 0...[;
Assign initial data on Shadow, level = 0...[¢
end if
end Repeat
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Figures 5.1 and 5.2 show a series of steps in the refinement of initial data consisting

of a sharply-peaked gaussian.

5.7 Our Software

We are working to provide what we call a generic driver for parallel AMR appli-
cations. This generic driver is intended to run a simulation using user-provided

subroutines for (unigrid) integration of the equations of motion.

5.7.1 Infrastructure Provided by GrACE

The main set of routines for handing the operations on grids, and all aspects of
parallelism, is provided in a package called GrACE written by Manish Parashar. In
earlier versions, GrACE was known as DAGH [78]. GrACE is an object-oriented set
of programming abstractions which provides the abstract programming interfaces
for the allocation and de-allocations of grids, maintenance of the grid hierarchy,
prolongation and restriction, and other operations involving grids. The clustering
algorithm supplied by GrACE is due to Paul Walker [101]. A similar clustering code
written by Reid Guenther [44] has been shown by Dae-Il Choi [20] to yield results

similar to those of Walker’s code.

5.7.2 Example: Solving 2D wave equation

The wave equation provides a natural hyperbolic system from which users may
develop their own simulations. (We choose the wave equation rather than the trans-
port equation mainly because the intended applications typically involve simulation
of wave-like phenomena.) The examples we provide are in two spatial dimensions,
but the extension to three such dimensions is straight forward. We give three dif-
ferent implementations for the solution of the 2D wave equation, and these go by

the names wave2d, wave2dlo, and amrwave2dio. The wave2d example is a unigrid
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Figure 5.1: Initial grid refinement of a sharply peaked gaussian ¢. Here we see six
different levels of refinement for the initial time in the evolution of sharp gaussian
pulse, on the domain (0,0) < (x,y) < (10, 10). Data is shown on the main hierarchy,
with refinement levels are denoted by Ll, where [ = 0 is the base grid and [ = 5
is the finest grid. Currently the computing infrastructure supplied by GrACE (see
section 5.7.1) is configured such that new grids are required to share boundaries
with the coarsest grid cells, hence the grids for levels 3, 4, and 5 span a domain
which is twice the width of a level 0 grid cell. (This requirement will be relaxed in
a forthcoming version of GrACE.) The corresponding truncation error measured on
each grid is shown in Figure 5.2.
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Figure 5.2: Truncation error 7 for the initial grid refinement of a sharply peaked
gaussian shown in Figure 5.1. The truncation error threshold, used for flagging
data points in need of further refinement, was 7 = 0.7 max(7), where max(7) is the
maximum value of the truncation error on each grid. Since the evolution scheme
is second-order accurate, we expect the leading order truncation error to go as
33¢/0x3, yet we see from this figure that the truncation error we obtain does not fit
the profile of the third derivative of a gaussian (which should be an odd function, and

the above graph shows even functions), and thus the computer code is not yielding
the expected results. This requires further study.
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implementation of the usual wave equation expressed in terms of second-order par-
tial derivatives. This can be executed on one or many processors via MPI. For the
Berger and Oliger system, it is absolutely essential to employ an evolution scheme
which is dissipative, in order to maintain the necessary smoothness of grid func-
tions and to avoid “over-gridding”, i.e., applying fine resolution to large areas of the
domain (where such resolution is unnecessary) as a result of poor truncation error
estimation. In practice, we often prefer numerical schemes in which the dissipation
is added explicitly, and we know how to add dissipative terms such as B.5 for hyper-
bolic systems cast in first-order form. With this in mind we provide a recasting of
wave2d into first-order form, called wave2dio. This implementation endowed with
the necessary AMR routines is called amrwave2dlo.

Figure 5.3 shows a 1D slice through a 2D AMR evolution using amrwave2dlo.
Full 2D visualization capabilities for AMR data are still under development. Manish
Parashar wrote a set of routines for use with the AVS visualization package [1]
which do provide visualization of 2D AMR data, however this software package is

not readily available to many researchers.

5.7.3 Implementation of ‘Generic Driver’

The generic driver should ideally be able to take a set of user-supplied update and
initialization routines which were written for a sequential, unigrid application and
generate a complete parallel AMR code. The caveat to this statement is that it
should be able to take an appropriately written set of user-supplied routines and
generate a parallel AMR code. Essentially, this means routines which are written
to operate on a uniform subset of the computational domain and which check (in-
ternally) to determine if this subset includes real, physical boundaries. In practice,
it may take some work for a user to modify an existing sequential unigrid to run in

parallel, but from there the transition to parallel AMR could be quite smooth.
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Figure 5.3: Animation of a 1D slice through a 2D evolution of the wave equation.
This shows the evolution of the massless scalar field ¢ (in Cartesian flat space) from
an initial gaussian pulse with ¢ = 0. Three levels of refinement are shown: Level 0
(base grid) data is shown as a solid (black) line, where we have omitted showing the
data points themselves to more clearly show the data on additional levels. Level 1
data is shown as (blue) triangles, and Level 2 data as (red) squares. The domain is
(0,0) < (x,y) < (10,10), and we take the 1D slice along y = 5.
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We intend to integrate the generic driver with the compiler for the Rapid
Numerical Prototyping Language (RNPL), a programming language developed by
Robert Marsa and Matthew Choptuik [69]. RNPL is designed to allow users to write
unigrid, sequential finite difference simulation codes with minimal effort. RNPL pro-
vides automatic support for routine tasks such as I/O and memory management,
and allows the user to focus on the “physics” of interest. Thus RNPL allows for
significant reductions in development time. The user specifies initial data, bound-
ary conditions, and update routines in a symbolic form, and the RNPL compiler
generates a complete simulation code (in Fortran, C or C++). An ultimate goal of
our project is to have the RNPL compiler generate a fully functional parallel AMR

application from RNPL source code.

5.8 Present and Future Projects

The specific goal of this project is for full integration with RNPL, so that authors of
RNPL source can generate parallel AMR applications automatically. Currently the
amrwave2dlo code serves as a minimal ‘generic’ driver, in which the user can replace
the update routines and some function calls in the code with their own expressions.

Prior to my work on this project, previous implementations by Mijan Hugq,
Manish Parashar, Dae-I1 Choi, Robert Marsa, Matthew Choptuik and Tom Goodale
were available. Huq and Parashar wrote a 2D wave equation solver, as did Choi.
Parashar and Goodale later provided a dual 2D/3D wave equation solver. Marsa
and Choptuik had written a package called bbh_dagh, which used Parashar’s DAGH
library (the predecessor to GrACE) and included a parallel unigrid code for solving
the 2D wave equation, using many of the constructs in the bbhutil library which
are shared with RNPL. My work consisted of selecting from these different packages
the most useful routines and rewriting many of them to serve the purposes of a

generic driver.
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The result is bbh_grace [55], an update of Marsa and Choptuik’s bbh_dagh
distribution which includes Parashar’s newest GrACE library, provided in a form
which can automatically configure itself on a variety of computing platforms. This
includes a 2D wave equation solver featuring parallel AMR, using a three-level
leapfrog update scheme (previous implementations featured only two-level schemes
such as MacCormack predictor-correctors). I rewrote the initial regridding rou-
tines of Choi to provide a clear interface with the recursive integration routines of
Parashar, and to allow for a three-level update scheme. I made two improvements to
the existing dissipation operator, first by removing a cause of asymmetry induced by
the “weighted-average” operator being used, and secondly by replacing this (first-
order-accurate) operator with the second-order-accurate Kreiss-Oliger dissipation
operator. I isolated elements of the code which would be “user-supplied” in the
“generic driver” scenario, in which the user supplies only unigrid updates and ini-
tialization routines and automatically obtains a parallel AMR code. I expanded the
capabilities of GrACE by writing an additional reliable interface for visualization
of 1D slices through the 2D data (an interface to Matthew Choptuik’s ser [22],
which offers many features for data analysis not provided by xgraph [49], which was
the only 1D visualization package with which GrACE was designed to interface),
and a utility to provide visualizations of the global grid structure as a function of
time. I began developing documentation to supplement the existing GrACE/DAGH
documentation. I added a feature for overriding the clustering algorithm to obtain
regridding directives from a file, which I used to perform convergence testing of
AMR evolutions. I interacted regularly with Parashar, and provided constructive
feedback regarding the features of GrACE and the previous parallel AMR imple-
mentations mentioned above. As a first step toward integration with RNPL, I wrote
a simple generic driver, using template files (which obey a simple, expandable and

generic HTML-like language I developed) and employed this with great efficiency
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toward the creation of a 2D parallel AMR hydrodynamics solver (albeit one which
was not perfectly flux-conservative) using existing sequential hydrodynamics update
routines. This demonstrated viability of the generic driver idea. In summary, I de-
veloped a cohesive and portable package which serves as a prototype for generic
parallel AMR applications, containing many of the features and utilities desired by
developers of computational physics applications. However, this code still has dif-
ficulties which remain to be fully resolved; as we saw in Figure 5.2, the truncation
error estimation, a key aspect of the Berger and Oliger scheme, is not yielding the
expected results. This is perhaps the most significant piece of work which needs to
be completed in the near future.

Two additional features which we consider necessary for the generic driver
are the provision of 1D coordinate grid functions (e.g. x, y) for update routines and
a “characteristic function” or “mask” to encode information about boundary condi-
tions and other special points on the grid. We would also like to provide a generic
interface which is Fortran 77 compliant (the present version of GrACE provides
subroutine headers for Fortran 90) and a simple interface to GrACE’s checkpointing
capabilities. These efforts are all underway and should be incorporated into the
software shortly.

Visualization remains an issue. It is our desire to provide visualization tools
for bbh_grace which can be obtained by many researchers at minimal cost. Prelim-
inary work involving the Iris Explorer [19] package using its curvilinear lattice data
format has been promising. A first step in this direction may be the development
of a program which collates the various data files generated in an amrwave2dlo run
and outputs a single Explorer lattice file. A group led by John Shalf at NCSA is
developing a publically-available software package for visualization of AMR, data.
This package is called LCA Vision [94], and it is compatible with the IEEE output

which bbh_grace can output using GrACE’s output routines.
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The goal of providing an environment for automatic development of parallel
AMR applications has not yet been realized, but the work presented here represents

a nontrivial step toward the fulfillment of this goal.
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Chapter 6

Scalar Accretion

This section of the dissertation represents work in progress to simulate the dynam-
ics of the Maxwell-Massive-Klein-Gordon (MMKG) system around a spinning black
hole. Such a system may have features similar to those found in magnetohydro-
dynamic accretion accretion studies [53, 63]. Currently we are working toward an
axisymmetric simulation on a Kerr background.

It has long been known that evolution of a linear scalar test field in the Kerr
spacetime can be solved via separation of variables [18]. The governing PDEs are
thereby reduced to a system of ODEs, greatly simplifying the problem. Similarly,
Maxwell’s equations in vacuum can be also solved on a Kerr background by separa-
tion of variables [97]. The reader may therefore wonder why we may be interested
in using finite difference techniques to solve for the evolution of scalar and electro-
magnetic fields on a Kerr background. In our system the scalar field acts as a source
for the electromagnetic fields, and vice versa. The coupling between these fields is
nonlinear. The author is not aware of any solution to this coupled system using sep-
aration of variables. Beyond this, the solution of this problem serves as a valuable
stepping stone toward the solution of the magnetohydrodynamic equations in the

vicinity of the black hole (which is not expected to be obtainable via separation of
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Figure 6.1: Relationship between spherical coordinates (¢, r,0y) and cylindrical co-
ordinates (¢,d, z,») (We choose the letter d because r and p are already employed
in the form of Kerr-Schild metric.).

variables except for a few simple cases).

6.1 Mathematical Preliminaries

6.1.1 Equations of Motion

We use the Kerr metric in spherical Kerr-Schild coordinates (¢,7,6,¢) to derive
the equations of motion for the scalar and Maxwell fields, because the Kerr metric
takes on a fairly simple form in these coordinates. Having obtained the equations of
motion, we will want to perform the simulation in cylindrical Kerr-Schild coordinates
(t,d, z, ) (see Figure 6.1) because the numerical treatment of the axis is less difficult
in these coordinates than in spherical coordinates. Thus we will find it helpful to

hold both coordinate systems in mind, with the transformations
d=rsinf z=rcosf

relating the two systems.
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In spherical coordinates, then, the metric takes the form

—1/a? B/a? 0 0
v B/a?  1/b% +a%sinf/p 0 a/p?
0 0 1/p? 0
0 a/p? 0 1/ (p*sin?0)

For the case of a = 0, this is the same form of the metric used in Chapters 3, and 4
(with variable a in Chapters 3 and 4 replaced by the letter b to avoid confusion with

the black hole spin parameter). For the Kerr background, we have the relations

2M 7\ 1 p?
2 _ _
Q (r,9)-<1+ e ) BRI
1
b(’]",e)—a
2Mr
OO = o pantr

The square root of the determinant of the metric is
V—g = abp? sin .

The equations of motion for the scalar field (¢, 7,0, ¢) and the gauge field
Au(t,r,0,¢) are given by

Oy =U(|[9))y — ieA,uglw(2al/d) +ieA,1p) —ieV, A"y (6.1)

OA, + R,"A, = ie(¢*0ud — ¢0,0") + 26> A, h¢". (6.2)

Because the Kerr geometry is a vacuum spacetime, we know from Einstein’s equation
that the Ricci tensor that appears in (6.2) is zero. We choose the “Lorentz gauge”
in (6.1) such that V, A” = 0. This gauge condition then becomes a constraint that
must be satisfied in addition to the equations of motion.

The equations of motion for the complex scalar field and the Maxwell field are

fairly lengthy when fully written out as a system of first-order partial differential
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equations in cylindrical coordinates. The inclusion of these equations, roughly a
page each in LaTeX format, is not thought to benefit the reader in a significant way.
The simulation code is currently not properly evolving the comparatively simple
equations for one massless, uncharged real scalar field on the Kerr background.

Thus we do not find it necessary or relevant to present the equations here.

6.1.2 Boundary Conditions

At the event horizon, the causal structure of the spacetime implies that we require
no explicit boundary condition. Rather, we simply solve the equations of motion,
using appropriate “forward” difference operators for spatial derivatives. We discuss
these further below.

The outer boundary is more problematic. If we were simply considering a
massless scalar field we could use the outgoing Sommerfeld condition for the scalar
and electromagnetic fields. Since the scalar field has a nontrivial potential, both it
and the electromagnetic fields to which it couples will not be well described by the
Sommerfeld condition. Given that this simulation is a multidimensional one, the
option of using a very distant outer boundary (as we did in Chapter 3) is not feasible.
Another option involves varying the shift 3, making §(r,8) — 1 as r — oco. This
sort of “montonically increasingly boosted” coordinate system has been shown to be
very successful for a flat background spacetime [58], and it seems possible that this
method would also work well on a curved background. The current simulation code
is not equipped to use a shift other than the shift of KS coordinates, so this option
has not been implemented. For the time being, while we improve other aspects of
the code as well, the grid functions are simply held fixed at the outer boundary (i.e.

we impose Dirichlet conditions at the outer boundary).
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6.1.3 Initial Data

Our initial data can be specified largely arbitrarily, however it must satisfy certain

constraints. One constraint is the Lorentz gauge condition,

V, A" = g"rd, A, +T7,9" A, = 0, (6.3)

14

which must be satisfied on the initial spacelike hypersurface. We solve (6.3) using
a simple prescription: To avoid solving an elliptic equation on the spacelike hy-
persurface, we solve for 0;Ap using existing data for the other fields — which at
the initial time would be freely specified. Since we are using the four-vector po-

tential A,, we expect the magnetic field B* = eijkDiAj to satisfy the constraint

i
D;B* = 0. In the work of J. Hawley and Evans [52], the authors note that for nu-
merical evolutions involving smooth functions (such as scalar fields on a background
spacetime), this expectation is warranted, however more sophisticated methods such
as their “constrained transport” scheme are necessary for systems where the data
are not expected to be smooth (e.g. in magnetohydrodynamic systems). Our final
constraint is Guass’ Law

D;E' = p,, (6.4)
where E' is the electric field related to the Maxwell tensor F, w and the four-vector

potential A, by
go— gl
= &in, L) FM
= 537@ 1) ¢" " Py,
= 53”# 17 g“)‘g"U(VAA(, —V,A))

ny = (—,0,0,0) is the normal unit one-form to the spacelike hypersurface, L) is

the projection tensor onto the spacelike hypersurface, and p, = j°, where
=i (§7040 — 60 67) + 269" A, 6"
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York and Piran [102] discuss a method for solving (6.4) by decomposing E* on the
initial slice into longitudinal and transverse (divergence-free parts), E* = E% + E&.,

allowing us to solve 6.4 as a Poisson equation
D;E; = D'D;U

where U is a scalar function. Thus we are required to solve an elliptic equation at
the initial time. We intend to develop a multigrid solver to obtain the solution to
this elliptic equation. For early computations, we will attempt to construct very
simple initial data which satisfies the constraints in closed form, if possible.

With the initial data specified, we can then evolve all the fields indepen-
dently (“free evolution”) and use the constraints (6.3), (6.4) to check that the evo-
lution is proceeding consistently, or we can solve the constraints on each spacelike
hypersurface (“constrained evolution”) to insure that the evolution proceeds as self-
consistently as possible.

What sort of initial data would correspond to reasonable astrophysical sce-
narios? We might like to construct a sort of scalar MHD accretion disk, with the
scalar field circling the black hole about the equatorial plane, and magnetic fields
threading the disk and hole vertically. We would also need to specify initial time
derivatives for the data. Given the available definitions of “velocity” for the scalar
field (cf. Section 1.4.2), we would not expect to be able to construct a uniform “Ke-
plerian” scalar accretion disk, but we may be able to construct at least a uniform
mass distribution for the field, using the “boson star ansatz” 1) ~ exp(iwt). As an
initial step, we simply consider axisymmetric initial data for an uncharged, massless
scalar field. Then, having verified that the code operates properly for this simple

case, we will add additional features such as mass and charge.
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6.2 Numerical Methods

The simulation code, as it now stands, is intended to solve the Maxwell-Massive-
Klein-Gordon equations in axisymmetry. The specifications are as follows: We use
a Crank-Nicholson update scheme with Kreiss-Oliger dissipation (as described in
the appendix). We excise a subset of the interior of the event horizon (including
the singularity), and refer to the boundary of this excised region as the “inner
boundary” of the computational domain. At the inner boundary, we impose no
explicit boundary condition, but rather solve the usual equations of motion using
“forward” and “backward” difference operators. As advocated by Choptuik [29], we
use forward and backward difference operators which share the same leading order
truncation error as the centered difference operators (2.8) used throughout the rest
of the domain [29]. For example, the forward difference operator in the d-direction

has the form

Outliing o ine —4ui’j + 7ui+17j — 4ui+2’j + Ui g -
2Az

Along the z-axis, we perform no finite difference operations because of the
coordinate singularity, and instead interpolate between the points on either side of
the axis.

The information regarding which difference operations should be performed
(forward differencing, excision, interpolation, etc.) is encoded into the grid by means
of a characteristic or mask function. This is simply a function defined over the entire
grid, which contains different numeric (integer) values to denote points which should

be excised, backwards differenced, and so on.

6.3 Status and Future Work

We are finding numerical instabilities near the inner boundary for z < 0, for the

simplest case of a massless, uncharged real scalar field. The evolution near the inner
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boundary for z > 0 seems to proceed properly, and we are investigating the cause
of this error (and asymmetry) in the calculations. We hope to resolve this shortly,
and then include the dynamics for the full Maxwell-Massive-Klein-Gordon system
shortly thereafter. We currently have a 2D code for non-axisymmetric evolution of a
scalar field in the equatorial plane of a Kerr background, which we hope to integrate

with little difficulty with the axisymmetric code for a full 3D evolution.
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Chapter 7

Conclusions

We have considered the dynamics of scalar fields in scenarios which have some
correspondence to certain astrophysical systems. We studied the nonlinear dynamics
of fairly simple systems composed of scalar fields in spherical symmetry, and yet we
found a rich set of previously unknown phenomena. For the case of boson stars,
we showed that it is possible to induce Type I critical behavior by imploding a
spherical shell of massless real scalar field. We showed that there is mass exchanged
between the two fields, and the complex (boson star) field enters a critical state
which corresponds to an unstable boson star modulo the presence of a “halo” in the
tail of the critical solution. This halo is presumed to be a remnant of the original
(stable) boson star, and does not seem to be part of the “attractor”, the critical
solution. One interesting point raised by this work concerns the behavior of neutron
stars under similar conditions: If the critical solutions (which can either implode
to form black holes or explode) correspond to boson stars on the unstable branch,
then unstable boson stars can explode; and if unstable boson stars can explode, then
perhaps unstable neutron stars — which share macroscopic stability features with
boson stars — can also explode.

The boson stars we considered are composed of complex fields in which the
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real and imaginary parts act like two real scalar fields which are completely uncou-
pled, except via gravity. We showed that if we modify the temporal phase between
these two component fields, it is possible to construct other star-like objects, which
we have termed “multi-scalar stars”. These objects persist as stable quasi-periodic
solutions for very long times. We found, however, that the direct construction of
truly periodic solutions via a Fourier cosine series ansatz did not yield the expected
evolutions, but instead different periodic (or quasi-periodic) solutions. This requires
further attention, yet our results, along with the seminal work by Seidel and Suen
[90], indicate that stable, long-lived star-like solutions are more common than pre-
viously assumed.

The work regarding adaptive mesh refinement (AMR) represents nontrivial
progress toward the goal of a computing environment in which authors of simulation
codes for sequential, unigrid processing can add parallel AMR features essentially
automatically. The work on initial data generation is the principal contribution in
this area, however additional development tools have been created to help future
developers of this computing environment. There is a problem with the truncation
error estimation, which can which can result in costly overgridding. Further devel-
opment and testing is necessary to produce a “programming systems product” [17]
which will be useful to researchers worldwide.

Lastly we considered the simulation of a charged scalar field on a Kerr back-
ground. This was intended as a test problem for the AMR system, as a possible
“toy model” of hydrodynamical accretion, and as a new dynamical study in its own
right. We look forward to pursuing this investigation in the future, working towards

the goal of simulating magnetohydrodynamical accretion in curved spacetimes.
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Appendix A

Boson Star Mode Frequencies

In this appendix we have tabulated some sample values from the perturbation theory
calculations described in Chapter 3. The values and uncertainties expressed in the
table captions were determined by integrating (3.33) and (3.34) to various maximum
radii, for a range of error tolerances in the integration routines. The values and

uncertainties given in the tables were chosen to express the variation in our results.
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Table A.1: Shooting Parameters: Fundamental Mode. The values of ¢(0) are exact.
Other quantities are given within an uncertainty of +1 in the last significant digit.

$0(0) w SN"(0) /641 (0) o?

6.0E-02 1.0417E+00 1.68E-01 0.28E-03
1.0E-01 1.0727E+00 0.29E+00 0.67E-03
1.4E-01 1.1067E+00 0.43E+00 1.11E-03
1.8E-01 1.1440E+00 0.59E+00 1.41E-03
2.2E-01 1.1849E+00 0.77E+00 1.31E-03
2.6E-01 1.2299E+00 0.98E+00 0.45E-03
2.7E-01 1.2419E+00 1.04E+00 0.05E-03
2.8E-01 1.2542E+00 1.10E+00 -0.43E-03
3.0E-01 1.2796E+00 1.24E+00 -1.71E-03
4 .0E-01 1.4281E+00 2.08E+00 -1.84E-02
5.0E-01 1.6215E+00 3.45E+00 -7.09E-02
6.0E-01 1.8777E+00 5.79E+00 -2.11E-01

Table A.2: Shooting Parameters: First Harmonic Mode. The values of ¢y(0) are
exact, w is given within an uncertainty of 1 in the last significant digit, and the
other quantities are given within an uncertainty of +2 in the last significant digit.

¢0(0) w SA(0) /041 (0) o2

6.00E-01 1.8777E+00 0.63E+01 0.22E+00
7.00E-01 2.2230E+00 1.13E+01 0.32E+00
8.00E-01 2.6963E+00 2.09E+01 0.43E+00
9.00E-01 3.3536E+00 4.11E+01 0.53E+00
1.00E+00 4.2714E+00 0.84E+02 0.54E+00
1.10E+00 5.5471E+00 1.77E+02 0.42E+00
1.12E+00 5.8555E+00 2.07E+02 3.05E-01
1.14E+00 6.1842E+00 2.41E+02 1.46E-01
1.15E+00 6.3566E+00 2.59E+02 4.30E-02
1.16E+00 6.5346E+00 2.80E+02 -8.11E-02
1.17E+00 6.7184E+00 3.02E+02 -2.28E-01
1.18E+00 6.9083E+00 3.26E+02 -4.01E-01
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Appendix B

Finite Difference Algorithm for

Spherically-Symmetric Evolution

Code

This appendix describes the numerical evolution scheme used in Chapters 3 and
chap:msschap. We approximate the continuum field quantities {«,a,IIy,IIs, I3,
Dy, By, B3, 01, 02,03} by a set of grid functions, quantities which are obtained via
the solution of finite difference approximations to the partial differential equations
(3.8), (3.11) - (3.14) on a domain which has been discretized into a regular mesh
(i.e. lattice) with mesh spacing Ar in space and At in time. For a grid function u,
we denote the value of the grid function in the mesh location j in space and n in
time by u;, e.g,

oz? ~ a(nAt,(j — 1)Ar),

where a (nAt, (j — 1)Ar) is the corresponding value for the continuum solution.
The initial data is obtained via “shooting”, a standard method of solving

ordinary differential equations, in a way essentially the same as that found in [86].

114



The numerical method used for evolving the system of equations is a leapfrog scheme,
which is an explicit scheme requiring data at two previous time steps, n and n — 1,
to compute a value at the next time step n + 1. Given a discretization of scale of
order h in time and space, the leapfrog scheme is O(h?) accurate. Throughout the
mesh, the ratio A¢ep = At/Ar is kept at a constant value, which must be less than
unity due to the stability requirements of the leapfrog scheme.

To aid in the presentation of the difference equations, we define the following

operators [23]:

n+1 n—1
: u; U
A v =
0 2At
n
u —u
+1 j—1
Ay, =2
2Ar
n n
U U
A u =2 J
J Ar
n n
ron Yiv1 T %
Au, =3 3 3
3 (r . )P—=(0._)
Jj+1 j—1

We also define the averaging operator

T n o ]. n n
% =3 (”j+1 +“j) ’
which takes precedence over other algebraic operations, e.g.

T n T n 2
r <f_92) ey (u+gj)
_|_ - T n

h 1y h],
The evolution equations, which are applied to each field {®;,II;,i = 1,2,3}

can then be written as:

t_n r (6] "
INCN (EH). (B.1)

J
AT = A (7 <1>n 2 " B.2
0 0 — 2 (aag) (B.2)



where the last term in the evolution equation for II is not applied to the massless
field.
Our boundary conditions are as follows: First, by regularity at the origin,

we have

nm =—2——3 (B.3)

which is based on the regularity condition, lim, ,oII(t,r) = Ig(t) + r2a(t) + - --
A significant challenge in the numerical solution of these equations is the
problem of the outer boundary condition for the massive field. Numerous authors
have proposed methods to handle this. Having tried various methods including first
order expansions of the dispersion relation [89], sponge filters [60], and operator
splitting [7], we were unable to obtain a scheme which produced results superior to
the simple Sommerfeld condition one uses for massless fields [54]. Since, however,
the Sommerfeld condition is still inadequate for massive fields, we have chosen to
run our simulations on a grid large enough that the outer boundary is out of causal
contact with the region of interest for the time the simulation runs. So, for example,
if we are interested in a region 0 < r < 50 and times 0 < ¢t < 400, then we place
the outer boundary ry > 450. (While unbounded phase velocities are a feature of
the Klein-Gordon equation, we can argue on physical grounds as well as see quite
clearly in simulations that it is the group velocity which is the important quantity
in the numerical evolutions, and this is sub-luminal.) Recent work using a shifted
coordinate system, with a shift vector that is vanishing in some region near r = 0 but
increases to unity as r — ry, shows promise as a means of handling the challenge of
the boundary condition for the massive field [58], and this method may be employed

in future work. Thus the outer boundary condition we employ is [26]:
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ot (3,3 2\ 19"~ aell —ell) B4
ro T \mtarty AT A (B-4)

and an analagous equation is used for each II variable.

After these evolved variables are obtained at the n + 1 time step, we apply a
form of numerical dissipation advocated by Kreiss and Oliger [65]. This is applied

n+1 n+1 . .
to both <I>j and Hj in the same manner. So, for instance we set

® =0 +6®. —49 + @

n+1 n+1 € ( n—1 n—1 n—1 n—1 nfl)
J J 16 \ j+2 J+1 J Jj-1 j=2/"

(B.5)
where € (0 < € < 1) is an adjustable parameter: typically, we use ¢ = 0.5.

The preceeding equations describe the “evolution” aspect of the code. The
other variables are evolved in a “constrained” manner, i.e. they are obtained on the
spacelike hypersurface n 4 1 after the fields @;LH and H?H have been calculated.
The field values ¢:+1 are obtained by updating the value at the outer boundary

j = J according to N

t n (67
Algh =+ (g H) | (B.6)
J
and then integrating inward from j = J to j = 1 along the spatial hypersurface at
n+1:

(B.7)

The Hamiltonian constraint (3.11) can be solved at each time step once all
the field variables have been computed for the advanced time step. We use the
variable A = In a to avoid loss of precision near the origin in the following finite

difference approximation, which is evaluated at the advanced time step n + 1:

r[1—¢t
A:Aj=u+< 2; +g[Hf+H§+H§+<I>%+<I>§+<I>§+eA(¢§+¢§)D

(jB.S)
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This equation is solved using a pointwise Newton iteration, i.e. given a value

of A;H_l (such as A;H_l = 0 at the origin), we find the next value A

outward
J+1

along the spatial hypersurface by solving (B.8) via Newton’s method.

The slicing condition can be solved once the field variables and the metric
function a have been obtained at the advanced time step, using the following linear
algebraic relation:

n+1 nt1 (1/Ar)+ Z

a. ., =a; - m, (B.9)

where

2=l (C) T et ()]
. +7j
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Appendix C

Details of Linear Stability Analysis

This appendix describes the details regarding the boson star stability analysis dis-
cussed in Chapter 3. Following Gleiser and Watkins [43], we write the most general

time-dependent, spherically-symmetric metric as
ds? = —e"M) g% 4 M) gr? 4 p24Q),
and decompose the complex massive field ¢(t,r) via
B(t,7) = [1(t, ) + itha(t, r)]e ™, (C.1)

where 11 and 1) are real.

In these variables, the Hamiltonian constraint and slicing condition can be

written as
/_1—‘3)‘ A—v [ 2 P 2 2 12 A2 2
N = —|—T(€ [(d)l—l—wwz) + (2 — wi) ] + 1" + Py et (Y1 +¢2))
(C.2)
er—1
V=N +2 — 2ret(¢F + 432) (C.3)

where a prime (') denotes 9/9r and an overdot (*) denotes 9/0t.
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The Klein Gordon equation yields:

2 V=X ;
1+ (; +2 ) v+ e (7w = 1) gy — e ey

2
NI 2 N
+ e 5 (1 +wihp) =267 Mwihy =0 (C4)
and
" 2 V=X ! A —v, 2 A—v 7
2+(;+ D) ¢2 + 6(6 w—1)1/)2—e wg
)\—I/I)_).\ ] A—v, ]
+ e 2 (Y2 —wih1) +2¢"Ywipy = 0. (C.5)
Another equation we will find useful is Gg = 87TGT99 , which evaluates to
Y V=X 1// 1/2_1//)_ 1/(1 12_1)
e < o —}—21/ +4u 41/)\ e 2)\+4)\ 41/)\
= e’ (dﬁ + 33 + 2w(d1ths — dotpr) + W (W] + ¢§))
—e WP + ) — (U7 + 43). (C.6)
We use equations (C.2) through (C.4) to obtain the equilibrium solutions,
by setting
Alt,r) = o(r) (C.7)
v(t,r) = w(r) (C.8)
Uit,r) = ¢o(r) (C.9)
Yo(t,r) = 0. (C.10)

The equilibrium equations are then given by:

1— e

Ny = . +r [e’\o(wZe_”O + 1) + ¢>62] (C.11)
Ao
vy = € " 1 +r [e>‘° (wQe_”O — 1)¢>§ + ¢62] (C.12)
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2 ! AI
0= (; + % 5 0) dp — e)‘O(WQe_VO —1)¢o. (C.13)

We now introduce four perturbation fields—dA(¢, r), dv(t, 1), 01 (¢, 7) and di)a (¢, r)—

and expand about the equilibrium configuration by writing:

At,r) = Ao(r) + 8A(t,T) (C.14)
v(t,r) = wo(r) + ou(t,r) (C.15)
Yi(t,r) = ¢o(r)(L+0¢u(t,r)) (C.16)
balt,r) = o(r)ualt,r). (C.17)

These last expressions are substituted into (C.2), (C.3), (C.4) and (C.6) to

obtain the following equations for the perturbed quantities:

(re 28\ = r? [2¢%(5¢1 — e WPy 4 2e W2 PR oYy

—2e™0wgion + 2670 (hdun + dode) — eTOGFINC.18)

6V — o\ = <u3 -\ + %) SN\ — 4rer0 ¢y (C.19)

1" g V(I) - )\6 %) / ¢_6 <(5VI - 5)\1) Ao 2 _—vp _
oy + <r + 5 + 2¢0 "51#1 + o 7‘2 +e (w e 1) OA
— 07025y — 0TSy — 2eM0T 0y = 0 (C.20)

vh — A 1 1 1
— e (OTO + 51/(')' + ZV(I)Q - ZV{))\G)

o =N 1 1 1 1 1 .
—Ao o - 7 — I = Y /'Y _ — _—Vo
+ e ( o + 2(51/ + 21/0(51/ 41/05)\ 4)\0(5u> 5¢ oA
= — [e_”Ongb%éu —e 0 (—ngbg&/.)g + 2w2¢%(51/)1) — e_)‘°¢625)\
+ e (200001 + 2008000 ) + 263691 ] (C.21)
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The four equations above can be manipulated such that two variables, dv
and i are eliminated, leaving us with only two equations in two unknowns. To

obtain the first of these two equations, we subtract (C.18) from (C.20) to get

n_ 2 Vé_)\6> 1_5_)‘I A0—V0 84,
Syt = (r+ 5 S T¢3+e oy
¢ (ua—Aa 1) (¢6)2 L=1X0 | dowo 2 _ o
Lﬁo 2 )T \g) T T W "
%\’
+ 2e l1+e”°w2+e'\° (52) +r¢o¢6] 4. (C.22)

To obtain the other equation, we differentiate (C.19) with respect to r, and

substitute the resulting expression, along with (C.18) and (C.19), into (C.21) to get

3 2 b—Xo)?  2up+ A s
A= = S(rh = A)ON + 4¢62+>\6'+—2—(U° 5 0> _ 20 N0 5y 4 hemvog
T T
—  4(2¢0dly — re0 ) o
! 2 / !
- 4[2¢62—7"e)‘0¢% 2%+%)‘0)]5¢1, (C.23)

where, differentiating (C.11) with respect to r we have

Ao Ao}/
et —1 e\
)\6' = 2 — . 0 + [e)‘o(u)ze Yo 4 1)¢)§ + ¢62]

+ o [T + e (w e 1) (Modh + 26000h ) + 26064 (C.24)

(Note that (C.22) omits a factor of exp(\g) which one finds in the ~ §\/(r2¢2) term
of equation (34) in [43].) For the stability analysis, we assume a harmonic time

dependence, i.e.,

S (t,r) = i (r)e'™
ON(t, ) = dA(r)e™".
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Note that (C.23) and (C.24) contain only second derivatives with respect to time.
There are good arguments for assuming o2 is purely real [61, 43], so we can determine
instability by simply looking for instances where o2 < 0.

As a further consideration, we note that the boson star system admits a

conserved Noether current,

T = g (80,67 — 6°0,0), (C25)

for which the corresponding charge or “particle number” is

/ BPry/=gJ"
/OOO drr2e—v)/2 (¢1¢2 — othy + w(p? + %)) (C.26)

Conventional stability analysis (see, e.g., [95]) demands that we consider
only perturbations for which the total charge is conserved. Thus we compute the
variation in the charge, 0N, and work to ensure §N = 0. In practice, since we cut
off the grid at finite radius, it makes sense to consider the function d N (r), the total

charge enclosed in a sphere with surface area 47r2. This quantity is

SN(r) = —/ d 2 elvo—20)/2 2

R I S gy V)
g {2r¢2+ l @ +(¢0> g |

— —O&pg— l—eAO—VOwQ <@> + e 51/)1}, (C.27)

%o %o

where primes denote 9/97. (Note that (C.27) contains a term involving d1], which
was not included in equation (35) of [43].) We then demand that N — 0 as r — oc.
The boundary conditions are as follows:

At r=0:
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vg = 0

¢ = 0
1
0 = —3 1o (C.28)
w1 35N 9 9
(51/)1 = g [_W + (2((4) + 1) — 0 ) 5¢1:| (029)
oA =0
SN = 0.
Asr — oo:
0N — 0
5¢1 —0
oA — 0.

To solve the system (C.23) and (C.24) subject to the above boundary condi-
tions, for a given value of ¢y(0), we resort to the method of “shooting,” first for the
equilibrium solutions, then for the perturbed quantities. Specifically, we choose a
value for w and solve the equilibrium equations numerically by integrating outward
from r = 0. We do this repeatedly, performing a “binary search” on w (as described
in [86]) until the boundary conditions for the equilibrium quantities are satisfied.

Due to the linearity of the problem, we can choose 11 (0) arbitrarily. We then
have two parameters left, namely o2 and §\"”(0). To make matters easy at first, we
consider perturbations very close to the transition between stability and instability.
At the transition point, o2 is zero. Thus for boson stars near the transition point,
we choose 02 = 0 and shoot on the parameter §A\”(0) until the boundary conditions
are satisfied. As Gleiser and Watkins [43] note, the transition point occurs at the
maximum boson star mass; so we can take two slightly different equilibrium solutions
near the maximum mass and subtract them to generate solutions which should agree

with those obtained from the perturbation problem. We use this method to obtain
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a trial value of 6\"(0), and also as a way of checking the final solution we obtain
from the perturbation analysis.

For more general configurations (o2 # 0), we choose a value of o2 and shoot
on dA\"(0) until we find §N at the outer boundary of the grid to be less than some
tolerance value. Then we use the fact (gleaned from experience) that if o2 is too
large (too positive), 6N will have a local minimum, the value of which will be less
than zero (i.e., 0N (r) will dip below zero and then turn back up at larger radii). If
o2 is too low there will be no such local minimum. We use these two criteria to select
the value of o2 via a binary search. Thus our two-dimensional eigenvalue-finding
algorithm consists simply of two (nested) binary searches, one in each direction: For
each value of o2 tried, a full binary search on the parameter §\"(0) is performed
to drive 0N (rpax) — 0. Then the solution of JN(r) is examined for the behavior
described above, and a new value of o2 is selected, and so on until both §\”(0) and

o2 have been found to some desired precision.
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