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The continuing proliferation of computational resources makes it more and more
powerful to conduct numerical studies on physics problems for which either analytic meth-
ods fail, or well-controlled experiments are very difficult, if not impossible. In particular, a
finite-difference based numerical approach has been an indispensable tool in the three ar-
eas of physics that I study in this thesis: numerical relativity (boson stars), Bose-Einstein

condensates, and atomic hydrogen in strong laser fields.

Numerical relativity (NR) enables us to tackle problems of astrophysical interest
which are difficult or impossible to study using analytic methods. Many of these problems
involve strong and dynamical gravitational fields, and many involve the dynamics of one
or more gravitationally compact objects such as black holes, neutron stars or, more specu-
latively, boson stars. A long term goal of NR, then (and of this research) is the accurate
simulation of the dynamics of one or more compact objects. Here, as a step in that direction,
I present some of the first results for a fully coupled Einstein/Klein-Gordon system in 3D,

wherein I attempt to evolve a static relativistic boson star using the full equations of motion.

A key motivation for the study of self-gravitating bosonic matter (in both the New-
tonian and Einsteinian regimes) is the observation that, even though any direct physical
relevance has yet to be demonstrated, boson star systems provide excellent numerical labo-
ratories in which to develop techniques for NR. Specifically, the boson star model provides
an ideal vehicle with which to implement and evaluate (1) various coordinate conditions in
the context of the ADM formalism and (2) multi-dimensional adaptive mesh refinement tech-
niques which appear crucial for many problems in 3D numerical relativity. Again, as a step

towards studying the fully relativistic problem, I first consider boson stars in the Newtonian

vi



regime, which are described by the solutions of Schrédinger-Poisson equations. In particu-
lar, I study the dynamics of stationary stars, stars with linear momentum, and binary star

systems.

The recent discovery of Bose-Einstein condensates (BEC) in dilute atomic gases has
led to renewed experimental and theoretical interest in the study of quantum degenerate
gases. These condensates provide a new testing ground for atomic and many-body physics,
and there are many unanswered questions in this emerging field. I present methods for ma-
nipulating the condensates by an optical lattice generated by laser light and study the effect
of atomic interaction on the quantum transport properties. I also study Bloch oscillations

and Landau-Zener tunnelings in an accelerating optical lattice.

The study of hydrogen atoms interacting with ultra-intense laser light in the non-
perturbative regime has gained attention as a surprising new phenomena in nonlinear atomic
physics. Particularly noteworthy are high harmonic generation (HHG) and stabilization,
which provide interesting new physics. I use a 2D model to study stabilization behavior for
an arbitrary polarization. As a first step, I studied circular and linear laser polarizations.
In the circular case, I found spiral wave functions with strong stabilization. In the linear
case, I found dichotomous wave functions with weaker stabilization. I have also observed the

related HHG signatures.

Finally, adaptive mesh refinement (AMR) techniques are crucial for the numerical
solution of problems which have large dynamical range. I present results from the imple-
mentation and testing of some general algorithms for use in AMR work, including 2D and

3D clustering routines.
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Chapter 1

Introduction

In this thesis, I discuss numerical solutions of the Schriédinger-Poisson equation and the

Einstein-Klein-Gordon equation.

The Schrodinger-Poisson equation is given by

ihw = —zh—mvzqﬁ(x, t) + mc?V(x, t)p(x, t) (1.1)
V2V (x,t) = 4WG(%)2¢(x7t)¢* (x,1) (1.2)

where ¢ is a complex scalar field, V' is a Newtonian potential, and m is the mass of the scalar
field.

The Schrédinger equation is the fundamental equation of motion for quamtum me-
chanics and has been one of the most celebrated and successful equations in the history of
modern physics. Even if there are some limitations, such as the facts that the equation
holds only in the nonrelativistic limit and that generic solutions are prohibitively difficult to
obtain for many body systems, it has been the most important equation for many physicists,

chemists and engineers.

Analytic solutions of the equation have been successful in explaining many physical
phenomena such as atomic energy levels, scattering problems, and atom-light interaction—all
of which are well documented in most standard quantum mechanics textbooks [1]. However
analytic solutions have generally been limited to special geometries, or to perturbative, linear
and/or time-independent situations. Therefore, many interesting nonperturbative, nonlinear
or time-dependent problems have been left out of active research efforts. With the increasing
power of supercomputers and supporting resources, numerical studies became an alternative

approach which holds strong promise to unlock still-hidden secrets of quantum mechanics.

In principle, the Schrédinger equation can be applied to any quantum mechanical
system. However, the numerical approach I take is also useful for a larger class of problems
which have Schrédinger-like equation of motions, but may not necessarily be truly quantum-

mechanical. T am particularly interested in dynamic, nonperturbative and nonlinear problems



such as the nature of Newtonian boson stars, stabilization in 2D hydrogen atoms, Bose-
FEinstein condensation, simulation of quantum devices, plasma physics, pattern formation
and nonlinear optics. Here, I present results from numerical studies of Newtonian boson
stars, Bose-Einstein condensates, and the interaction of atomic hydrogen with ultra-intense
laser fields. In all cases, I solve the Schridinger equation directly using a finite-difference
method.

The Einstein-Klein-Gordon (EKG) system is given by

G = 81Ty, (1.3)
g;wqb;/w - m2¢ - )\|¢|2¢ =0 (14)

where the stress energy tensor T#* for the massive complex scalar field, ¢, is

T = L@ + 99") = Sg" (6507 +mllof + 2lol") (15)
Here, m and A are the scalar field mass and self-interaction coupling constants, respectively.
(T use Planck units, G = h = ¢ = 1 throughout the thesis). Stationary solutions of the EKG
equation describe boson stars in the context of Einstein’s theory of General Relativity (GR).
My goal is to develop a stable full 3D GR code that can handle boson stars for a long time. GR
boson star systems can be used to study generic dynamics of strong gravitational fields. For
example, rapidly spinning boson stars with self-interactions may have astrophysical relevance,

and a binary star system can be used for the study of gravitational waves.

Unfortunately, there are some unsolved problems which hamper progress towards a
stable evolution of relativistic boson stars. One of these problems involves the specification
of coordinate conditions which, in the context of the “3+1” formalism in which I work, are
described by a lapse function, «, and a shift vector, 4¢. In GR, coordinate systems themselves
can be strongly coupled to the dynamics of the gravitational field. Bad choices of coordinates
will result in the development of coordinate singularities, and such singularities will eventually
(and usually quickly) “crash” a simulation. In particular, a suitable coordinate condition for
binary star systems is still a topic of much debate. As a first step towards the solution of
this coordinate problem (and following work by Balakrishna et al [64]), I have implemented
and tested the maximal slicing condition for the lapse function. Other coordinate conditions

will be tested in the future.

Another current stumbling block in 3D numerical relativity is the treatment of outer
boundaries. In the “3+1” Cauchy problem, computational grids do not stretch out to infinity.
Therefore, even though there are no physical boundary conditions at the edge of the finite
computational domain, some kind of special conditions will necessarily need to be imposed
there. This is a decidedly non-trivial problem, and currently my evolutions seem at least

partly limited by instabilities arising around the outer boundary.



The outline for this dissertation is as follows:

In Chapter 2, I begin with theoretical matters and briefly discuss the “3+1” Arnott-
Deser-Misner(ADM) formalism [2].

In Chapter 3, I go over some of the finite-difference numerical techniques I have
developed and used [3], and discuss my treatment of boundary conditions. I have used two
updating schemes for the Schrédinger equation; an Alternating Direction Implicit (ADI)
method [3] and a Multigrid (MG) method [4, 5, 6]. Multigrid is also used to solve the elliptic
Poisson equation in my studies of Newtonian boson stars. Following Guenther [118], an
annihilation boundary condition is implemented for the Schrédinger equation. This condition
damps out all frequency components in an attempt to minimize unphysical reflections off the

boundary of the computational domain.

In Chapter 4, I give a brief introduction to boson stars [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and present results for Newtonian boson stars. To
set up initial conditions, I impose a spherically-symmetric, stationary ansatz, then solve the
resulting ordinary differential equations (ODEs). This data can then be interpolated to a 3D
domain on which the evolution is carried out. Results for a single stationary star, a single

moving star, and binary star systems are presented.

In Chapter 5, I discuss the initial value problems (IVP), coordinate conditions,
boundary conditions in GR. For a single stationary boson star, IVP reduces a set of ODEs
as in Newtonian case using the 1D spherical grids. For more general situations, solutions of
the full 3D constraint equations are necessary. Then I present some preliminary results for

a single stationary star.

In Chapter 6, I give brief introductions to Bose-Einstein condensates (BEC) [69,
70, 71], optical lattices [82], and nonlinear Schrodinger equations. The manipulation of a
BEC using optical lattices is demonstrated. I show how to boost a stationary condensate
into motion or stop a moving condensate. I observe Bloch oscillations and Landau-Zener
tunnelings of the condensate in an accelerating optical lattice. I show how atomic interactions

affect these processes and discuss conditions for possible experimental realization.

In Chapter 7, I review the “soft-core” atomic model [116] and discuss the equation
of motion for hydrogen atoms interacting with ultra-intense laser light. I use a 2D model
problem which includes arbitrary laser polarizations and allows transverse diffusion of the
wavefunction. I present results for circular and linear laser polarizations. I observe stabiliza-

tion and related High Harmonic Generations (HHG).
In Chapter 8, I review the Berger and Oliger [121] Adaptive Mesh Refinement (AMR)

scheme and discuss regridding procedure and clustering algorithms in some detail. I also

review Choptuik’s shadow hierarchy scheme [126] for truncation error estimation.



Finally, in Chapter 9, I conclude and discuss a few directions for further work.



Chapter 2

Theoretical Framework

2.1 Schrodinger Equation

The Schrédinger equation can be derived from the classical energy momentum relation,

2

p
E=— 2.1
o TV (2.1)

through the formal transformation:
7]

E — ih— 2.2
thoy (2.2)
P tha (2.3)

For the non-relativistic case of the motion of a particle of mass m in a potential field

V(r), the Schrédinger equation can be written in the form
in2% = —h—2v2¢+ Ve (2.4)

ot 2m

As is well-known, free particle solutions (V' = 0) of this equation are given by
spreading wavepackets. In general though, the potential field V' can be function of time, ¢,
and space, z,v, 2. In the case of Newtonian boson stars (see Chapter 4), V' is a solution of
a Poisson equation which has a ¢—dependent source (i.e. there is a gravitationally-induced
non-linearity). For Bose-Einstein condensates, V' has contributions from an external trap
potential, self-interactions, and spatially periodic functions from optical lattices. Finally, in
the case of atom-laser interactions, V' is an explicitly time-dependent function. In all cases,

I solve Eq (2.4) using numerical techniques which are discussed in Chapter 3.

A typical boundary condition for a closed quantum system is that the potential at
the edge of the domain is infinite. In practice, this condition is usually implemented by

demanding that ¢ = 0 on the boundary.

For open systems, there are no physical boundary conditions at the edge of the

computational domain. Nonetheless, a certain boundary condition has to be imposed in



any simulation. In this thesis, I use a variety of such conditions on the Schrodinger fields I
evolve. These include: an annihilation condition, periodicity (no boundary conditions), and
outgoing radiation conditions. The annihilation boundary condition [118] is similar to the
usual absorbing boundary condition [37]. It applies to situations where the system is isolated
and incoming waves are not expected. It works by damping out all frequency components of

the wavefunction around the computational boundaries. More details are given in Chapter 3

2.2 Klein-Gordon Equation
The Klein-Gordon equation for a massive scalar field with mass m is
g;qu;/w - m2¢ - /\|¢|2¢ =0 (25)

where ) is a self-interaction coupling constant.

The corresponding stress energy tensor, T+, is given by
"% 1 BTN Wk, 1 WV (% A 2 2 A 4
T" = 5(45’ ¢+ Pto™Y) — 59 (@5 9" +m7|g| +§|¢| ) (2.6)
and the Lagrangian is

0= | tog — 3 000, 4 26+ X707 (27)

One can obtain the Klein-Gordon equation by a variation of the action,
I= /d4m\/—gL (2.8)

with respect to ¢*.

Another way to derive Klein-Gordon equation (without considering gravitation) is

by using the (special) relativistic energy momentum relation, E2 = p? + m?2. Specifically,
one gets the KG equation through the formal transformation,
0
E — ih— 2.9
iho (2.9)
i — —ih 2.10
p iha (2.10)

As in the Schrddinger equation, a boundary conditions are needed for the simulation
of both open and isolated systems. In the weak gravitational-field and high frequency limit,
the characteristic speed of the equation asymptotes to 1 and the metric, g, ~ 1. Therefore,

if the edges of a computation grid are put far away from the central region where the matter



is distributed, an outgoing radiation boundary condition (wherein the field is assumed to be

massless) provides fairly good results. Specifically, we have

(rg)s+(rg),, =0 (2.11)
In a 3D cartesian coordinate system, we can reexpress this last condition as
x
zP + ;¢ +7¢.=0 (212)
Yo + %qﬁ 1, =0 (2.13)
z
2Pt + ;qb +r¢.=0 (2.14)

2.3 Einstein Equation: ADM formalism

The Einstein equation for a massive complex scalar field is given by
1
Ry, — §g,wR =81GT,, (2.15)

To = 5 (60 + 608 = 06,5 + m|6]) (216)

In general relativity, the spacetime structure is represented by a 4-dimensional differ-
entiable manifold M endowed with a 4-metric (4) guv- Even if there are no a priori preferred
ways to view spacetime, it is helpful to consider a spacetime as a foliation of spacelike hy-
persurfaces. This allows us to cast the problem as a general relativistic Cauchy problem
and helps manifest the dynamical nature of the gravitational field. Here I adopt the “3+1”
decomposition or ADM formalism [2, 26] named after Arnowitt, Deser, and Misner who first

worked out the approach.

In the “3+1” ADM formalism, a spacetime is sliced into a stack of Cauchy surfaces
(spacelike hypersurfaces), ¥,, parameterized by a time variable, 7. 7 is defined through a
vector field t# on M which satisfies t#V,7 = 1. Let n* be the unit normal vector field to the
hypersurfaces ¥,. Then the spacetime metric, (*) Juv, induces a spatial metric g;; = gi; +
n;n; on the spacelike hypersurfaces. One decomposes t# into pieces normal and tangential

to X, by defining the lapse function, «, and the shift vector, 8¢, with respect to t* by
a=—t'n, = (n*V,7)"" (2.17)
Bi = hit? (2.18)
t# is then given by an* + 3! as in Fig. 2.1.

The lapse, a encodes the proper time measured by a freely falling observer who is
moving orthogonally to the hypersurface. 3¢ describes the “shift” in spatial coordinates from

3, to a nearby hypersurface, relative to normal propagation.



Figure 2.1: This figure shows two spacelike hypersurfaces at time ¢t and ¢ + dt. adt is
the proper time measured between the two slices by a freely falling observer who travels
along the timelike normal vector. % is the shift vector and represents the spatial coordinate
transformation between the two slices. an* + 3 is the tangent-vector (four-velocity) of a
coordinate-stationary observer.

Given the foliation of a spacetime, one must identify appropriate dynamical vari-
ables which completely characterize a single slice and the way it is embedded in 4-spacetime.
Once these dynamical variables are specified on some initial hypersurface, the Einstein equa-
tion yields the time development of the corresponding variables on future hypersurfaces. In
the ADM formalism, the 3-metric and extrinsic curvature, g;;, K;; constitute an appropriate
set of variables. g;; is simply the intrinsic 3-metric of the hypersurface, whereas K;; de-
scribes how the hypersurface is embedded in the 4-spacetime. One definition of the extrinsic

curvature is
_Kij = .Kji = —ani (2'19)

It can be shown that Eqn. (2.19) implies

R 1
K= - §£ngij (2.20)

where £,,g;; is the Lie derivative of the 3-metric along the time-like normals. This also clearly
shows that the extrinsic curvature is the rate of change of the 3-metric in time; that is, K;

may be viewed as a “velocity” of the 3-metric.

The detailed derivation of Einstein equation in ADM formalism will not be repeated
here since the calculation is well documented in [26, 27]. In the ADM formalism the Einstein
equation splits into 4 constraint equations and 12 first order (in time) evolution equations.

The constraint equations do not contain second time derivatives of the metric and must



be satisfied by the geometric and matter variables on every hypersurface. They are the

Hamiltonian constraint equation
R+ K? - K;; K = 167p (2.21)
and the momentum constraint equation
DK, — D;K = 8j; (2.22)

where D; is a covariant derivative within a hypersurface. Here I have introduced various

projections of the stress tensor which are useful in the ADM formalism:

p=nun,T" (2.23)
ji = ging* = —n, T/ (2.24)
Sij = Tij (2'25)

p is the energy density, j; the 3-momentum density, and S;; spatial stress tensor as measured

by observers moving orthogonally to the hypersurfaces.

In addition to the constraints, there are 12 first-order-in-time equations of evolution

for the metric, g;;, and the extrinsic curvature, Kj;.

0i9ij = —2aK;;+ D;3; + D;p; (2.26)
BtKij = —Di_DiOt + Ol(Rz'j + KK” — 2KZ'1KIJ‘) + [«ﬂf{ij
1
—8ma(Sij — 59 (S — p)) (2.27)

where L5K;; is the Lie derivative of the K;; along /3.

The basic strategy for ADM formalism is as follows. First, an initial hypersurface
is chosen and a spatial coordinate system on that initial hypersurface is specified. Then the
initial data for g;;, K;j, p, ji is determined by solving the constraint equations with appropri-
ate matter sources. Most multi-dimensional numerical relativity codes use York’s conformal
formalism [28, 29] to construct initial data. A more detailed discussion of this topic is given
in Chapter 5.

Once the initial data is set, the evolution equations are used to evolve data from one
slice to the next. This requires the specification of coordinate conditions via a lapse function,

a, and a shift vector, 3. In this thesis, I use the maximal slicing condition

0K
K=0=— 2.2
0 5 (2.28)

to fix a, and I set 3* = 0 (normal spatial coordinates). More details can be found in Chapter
5. Given a and (' it is, in principle, a straightforward matter to evolve the geometrical
variables, g;;, K;; using Eqn (2.26) and (2.27).



Before I close this chapter, I would like to mention a recent preprint that came out
while I was preparing this dissertation. Following Shibata and Nakamura [31], Baumgarte
and Shapiro [30] suggested a modification of the original ADM equations which “factors
out” a conformal factor and introduces auxiliary spatial connection functions. Baumgarte
and Shapiro made a direct comparison of the numerical performance of the modified equa-
tions with the standard “3+1” ADM equations and found that, in conjunction with a pure
Sommerfeld outer boundary condition, the modified form exhibits much improved stability.
I feel that this method certainly deserves attention from the numerical relativity community
and I wish to try this new formalism for the evolution of relativistic boson stars particularly

since it may provide a route to stabilizing my currently unstable code.

10



Chapter 3

Numerical Methods

3.1 Finite Difference Techniques

I use finite difference methods [3, 32] to solve the equations introduced in Chapter 1. Given
partial differential equations (PDEs) to solve, one replaces differential operators by finite
difference (FD) operators, and then solves the (algebraic) finite difference equations using
direct methods or iterative methods. In FD methods, one has to construct finite difference
operators so that the solutions to the FD equations provide correct approximate solutions
to the original PDEs. Here I define some FD operators which will be used throughout this

thesis.

MRS = (= 10t (3.1)
Aoo 0 = (Fla 6 — 2f056 + fin—1,j,k)/d$2 (3.2)
Ayyfitie = Flipie — 2f05% + fir,bjfl,k)/dyQ (3.3)
A flin = (Fleer — 2f 056 + fke1)/d2° (3.4)

There are two important concepts for any accurate numerical solutions of time de-

pendent problems using FD techniques: stability and convergence.

Stability addresses the issue of whether or not generated numerical solutions have
a tendency to blow up at some finite time. Thus, stability analysis is concerned with the
conditions under which the difference between the analytic and numerical solutions of the
difference equation remains bounded as t — co. To examine the stability of a finite difference
calculation, one typically use the von Neumann method, the matrix method, and/or the

energy method [3].

The basic idea is that for a time-dependent finite difference solution, U™ (where n
indicates the disrete time-step), the totality of difference equations can be written in matrix

form,

Uttt =, U (3.5)

11



Then, in general, the spectral radius condition

p(C) <1 (3.6)

is necessary for stability and the norm condition
el <1 (3.7)

is sufficient for stability [3].

For the finite difference method used for the Schrdodinger equation (Crank-Nicholson

scheme), we have ||C|| = 1. Thus it preserves unitarity.

The concept of convergence testing, an other important idea from numerical analysis
which T will use below, involves verification that our numerical solutions do converge to the
exact solution in the limit where the mesh-spacing approaches zero [33]. For sufficiently
smooth solutions of our PDESs, we can expect that the solution error will vanish as rapidly as
the truncation error, and demonstration of a converging solution is a vital step in assessment

of the quality of any FD results.

However, there may be cases where convergence testing may need to be supplemented
with “independent residual evaluation”. To ensure consistency of the FD solution with the
original continuum PDE, one constructs an independent finite difference approximation to
the original differential equation, L. Then one computes the convergence factor (see below) of
L, where 4 is the FD solution. By demonstrating that these independent residuals converge,

one can produce convincing evidence that the FD is converging to the continuum solution.

I define a convergence factor, ¢y, as

_ =t (3.8)
= fr—fu '
Assuming the ansatz
0 =u+ O(Az® + At?) (3.9)

where u is an analytic solution, 4 a numerical solution, the convergence testing will ensure
that the numerical solution remains always within the second order errors by checking the
numerical value of ¢, even in the case one does not know the exact solutions. For a second

order scheme, ¢, tends to 4 as h — 0.

Fig. 3.1 shows a convergence factor for the solution of a 1D Schrédinger equation
in an periodic optical lattice. One of the things one can see from this plot is that a break-
down of the convergence factor signals the breakdown of the numerical solution. Fig. 3.2

shows corresponding quantum mechanical currents computed from the solutions to the 1D

12
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Figure 3.1: Convergence factor for a 1D Schrédinger solver as a function of time

Schrodinger equation as a function of time. The currents starts to behave “chaotically” when
the convergence breaks down.

The most commonly used FD technique for the Schrédinger equations is the Crank-
Nicholson (CN) scheme [32]. For linear problems, the CN scheme is unconditionally stabile—
i.e. stable for any timestep. The scheme is second order accurate in both space and time, and
has the further property (already noted above), that it maintains unitarity of the solution.
Although this scheme is stable for all At, one does not generally want to choose At too
large, since then the local truncation error may become unacceptably large. To solve the
CN finite-difference equations, I have used the Alternating Direction Implicit (ADI) method
(Sec. 3.2) and a MultiGrid (MG) method (3.3). The MG method is also used to solve the
Poisson equations for the Newtonian gravitational potential.
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Figure 3.2: Quantum mechanical current j = (%)Im(q&*%) as a function of time.

Considering now the Einstein equations, a similar CN scheme is employed, but with
one distinction. Instead of using a tridiagonal solver (or a MG solver), a so-called “CN-
iterative” approach is adopted. The CN-iterative approach can be summarized as follows:

the difference equations are of the form
ut) = o 4 (AHR(HD) (3.10)

where R("+2) is the right-hand-side evaluated at time-level n + % The update scheme is

carried out by the following procedure.

1 copy the grid functions at the current time-level (u™) to the next time-level (u(™*1).

2 compute the intermediate level (u™+2) by taking the average between n level and n + 1
level.
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3 compute the right-hand-sides(RHS) R("+2) of the equations using u"*z.
4 update u(™tD |y =y 4 (AR

5 compute the norm of the difference between thea newly updated u("t1) and the previous

estimate.

6 repeat steps (2) through (6) until the norm of the changes of the advanced values meet

some stopping criteria.

This stepping scheme is the only one that has been reasonably successful so far [34].

3.2 Alternating Direction Implicit Method

Explicit difference methods are rarely used to solve initial boundary value problems in multi-
dimensional problems [3]. Implicit methods with their superior stability properties are almost
always used (NR is somewhat of an exception). However, an implicit method in multi-
dimensions results in huge sets of algebraic equations which are not always easy to solve

directly.

Alternating direction implicit (ADI) methods are three-step methods involving the
solution of tridiagonal sets of equations along lines parallel to the z-, y-, and z-axes at the
first, second and third steps respectively. They are two-step methods when restricted to 2D;
solving tridiagonal sets of equations along z-, and y-axes at the first and second steps. For
linear problems, the ADI method is unconditionally stable and requires O(N) steps to solve

where N is the total number of (spatial) grid-points.

For example, the Crank-Nicholson type equation for a 2D Schrédinger equation can
be written in the form [118],

(1- %AtH)qﬁ("*” =1+ %AtH)éﬁ(”) (3.11)

1
where H = %(AM +Ayy)— 7ASESR Then, the equation can be broken up into three equations:

J

(1- %AtAM)S = 1+ %AtAm)qb(") (3.12)

1- iAtAyy)T = (1+ %Amyy)s (3.13)

1+ %Atvij*%)qs(”l) - (1- %Atvg*%)T (3.14)

These are the difference evolution equations of Eqn. (3.11) in ADI form—given ¢7;, one can

use a tridiagonal solver to find the updated function qﬁ;}“.

15



3.3 Multigrid Method

Traditional iterative methods for elliptic-type equations such as successive over-relaxation
(SOR) techniques have serious drawbacks [6]. Even though SOR is easy to implement and
memory-efficient, it usually converges very slowly, and the amount of computational work
required per grid point increases rapidly as h — 0, i.e., as the resolution is increased. Over
the past two decades, the Multigrid (MG) method [4, 5] has proven to be very powerful for

elliptic-type equations and has been used extensively by numerical relativists [6, 35].

A basic idea of the MG method is the use of coarse grids to speed up the convergence
process on fine grids. Fine-grid relaxation is used only to remove high frequency error
components from fine grid unknowns. Thus, once the FD solution has been smoothed on
the fine grid, a related finite difference problem is defined and solved on a coarse grid. The
solution is then interpolated back to the fine grid. This idea can be naturally extended to
multi-level grid structures. Again, relaxation is used solely to smooth residuals, except at
the coarsest grid where the actual solutions are often (but not always) fully computed using

relaxation.

For example, a problem given on a grid, Q" with a grid spacing h,
Lhyh = f" (3.15)

where L" is a linear operator, can be recast in the following form,

LM@a" + o) = " (3.16)
where @" is an initial estimation and v” a correction term. By defining a residual,
rt = Lhah — f* (3.17)
the equation to solve becomes
Lhoh = —rh (3.18)

If there were some way of representing Eqn. (3.18) accurately on a coarser grid, Q. then
an estimate of v” could be obtained on Qf and then interpolated to Q". Again, the idea is
that we use a coarse grid to accelerate the convergence of a fine grid problem. One can also

use a coarse grid to estimate initial @",

i = ! (3.19)

I will not go into any more details since there are a number of excellent reviews and

papers on this topic [4, 5, 6, 35].
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I have implemented both linear correction schemes (LCS) and full approximation
schemes (FAS). In a LCS, one computes for a correction term v whereas in FAS one directly

h

approximates the solution, u” on all levels of the multigrid hierarchy [35].

The multigrid solver used in this thesis has been tested extensively for 2- and 3-
dimensional problems. Fig. 3.3 shows the convergence of a typical MG solve, in which one

case see the rapid convergence characteristic of the technique.
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Figure 3.3: Convergence of MultiGrid solvers. (a) and (c) are for the Schrédinger equation
and (b) and (d) are for the Poisson equation. (a) and (b) are for an initial data generator
and (c) and (d) are for an evolution routine.

I have found that three V-cycles are enough to drive the residual down below 10~8
for a Poisson MG solver and it takes about 6 to 7 V-cycle for the Schrédinger equation with

Robin-type boundary conditions. For Dirichlet-type boundary conditions, a smaller number
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of V-cycle is usually needed to achieve the same-sized residuals. The Schrédinger MG solver
converges somewhat more slowly than the Poisson solver, but both solvers converge pretty

quickly.

3.4 Annihilation Boundary Condition

Imposing a proper outer boundary condition at the edge of the computational grids is ex-
tremely important for a stable numerical evolution of the finite difference equations, and for
correct extraction of physical results from the simulations. Very often what one experiences
in practice is either an unstable evolution at or around the computational boundaries, or
a reflection of unphysical modes off the boundaries. Often the amount of work being put
to make a stable evolution at the boundaries is of the same order as the effort needed to

stabilize an interior evolution.

A major stumbling block for a stable evolution with the Schrédinger fields or the
Klein-Gordon fields is a reflection of outgoing waves off the boundaries. These unphysical
reflections can distort physical information in the interior, and, in fact, can render numerical
solutions meaningless after the reflected waves have propagated inward to the regions of
interest. For hyperbolic systems such as Klein-Gordon equations, some sort of outgoing
radiation conditions can be used to remove some of the outgoing modes, and an approximate
outgoing boundary condition for the KG field is explained in Sec. 5.5. This specific approach
may not work for parabolic systems like the Schrédinger equation, but our concern is still to
minimize spurious reflections. Several boundary conditions which attempt to do this have

been reported in the literature.

For example, Baskakov and Popov [36] found a method for computing the boundary

condition at a finite point for the 1D Schrodinger equation:

00 _ _82¢

g = @qﬁ— Viz,t)o (3.20)

in a region where the potential V' (x,t) is nearly zero. Using a Green’s function technique,
they found that at x = +a:

—im/4 b t d
QU _ e =5 | o= (3:21)

where it is assumed that V(+a,t) = 0. This can be generalized to 3D, but one cannot assume

that the potential will be zero at the computational boundaries for the time-dependent

Schrédinger problem.

Another and more popular outer boundary condition for the Schrédinger equation

is the “absorbing boundary condition” of Israeli and Orszag [37]. They suggest equating the
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Schrodinger equation with the wave equation in the operator form:

824 W,
a2z = iy

where the operator L is given formally by

+V)p =L (3.22)

L= \/( l%+V—wO)+wo (3.23)

and is approximated by

8

\/_ to = \/_ +V) (3.24)

This approximation of L can be used to provide boundary conditions:

(% +L)¢p=0 at x==a (3.25)

which allow only the outgoing parts of ¢ to propagate. The absorbing boundary condition
also has drawbacks. It is effective only for the component of outgoing wave whose oscillation
frequency is near wgp, and, in multiple space dimensions, only those waves with normal, or

near-normal, incidence are absorbed effectively.

The annihilation boundary condition discussed here has been found to perform better
than the absorbing boundary condition. Basically, the annihilation condition damps out all

frequency components and extends easily to multiple dimensions [118].

The basic idea can be seen as follows. Consider the 1D Schrédinger equation with
V=0,

o9  9%¢

ik (3.26)
Given the initial data,
¢z, t=0) = i Aper® (3.27)
k=—oc0
this equation has the solution
o(z,t) Z Apexp[—ik®t + ika] (3.28)
k=—o00

The annihilation boundary condition is implemented by adding an imaginary potential to

the equation. Specifically, we add a term —v(z) ¢, yielding

96 0%

where v(z) > 0 for all z.
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Given the same initial data, the solutions of the above equation are given by

o(z,t) = Z Apexp[(—ik? — v)t + ika] (3.30)

k=—o0
Clearly then, the solution is damped exponentially in time. Therefore by setting v(z) to
be non-zero only in the vicinity of computational boundaries, one can effectively remove
outgoing modes and prevent any significant reflection off the edges of the grids. In the case
where V' # 0, the analysis is more complicated, but the basic idea of the exponential decay

of the wavefunction still applies.

Fig. 3.4 shows the time evolution of the exact and numerical solutions for a 1D
Schrédinger equation with no potential. The annihilation boundary condition is imposed in
the region 40 < x < 50. It is clear that the numerical solution is completely damped away

without significantly changing the solution in the region interior to the annihilation layer.

3.5 Periodic Boundary Condition

Periodic boundary conditions are often used in quantum mechanical systems where solutions

and potentials are often required to be periodic.

A common example is crystals in solid state physics, where a periodic structure
of the atomic potential naturally imposes periodicity on the solutions. Another example
occurs in the context of cosmological simulations. It is well known that large structure of the
universe exhibits a remarkable homogeneity and isotropy. Here, periodic boundary condition

are fairly accurate if the scales of interests are smaller than the scale of homogeneity [38].

Implementation of periodic boundary conditions can be done in various way. My
implementation involves the addition of an extra grid point at the end of the grid in each
coordinate direction, and the identification of grid points at boundaries as well as the grid
points right next to the original boundaries at each time-level. For example, consider a 1D
grid as shown in Fig. 3.5. The original grid consists of the circled points. To implement the
periodic boundary condition, I add extra grid points next to the original boundary points
(squares in the Fig. 3.5). I update the solution at the circled points on the n + 1 time level
from level n data. Note that the original boundary points at the n + 1 time level (filled
circles) do not have to be treated differently from any other points. After updating all of the
circled points at the n + 1 time level, I identify the two filled circles and the grid points next

to them as indicated by the arrows in the figure.

Fig. 3.6 shows solutions of a 1D nonlinear Schrodinger equation in an accelerating
periodic optical lattice (See the chapter 6 for details).
0o 102%¢

5 = T35 + Vocos(z)¢ + C|o|* ¢ (3.31)
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The wavefunction under the periodic lattice potential is also periodic and follows the accel-

erating potential.
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Figure 3.4: Time evolution of exact and numerical data for a 1D Schrédinger equation with
an annihilation boundary condition. Initial data for the wavefunction is a moving Gaussian
pulse. Dotted and solid lines represent exact and numerical solutions respectively.
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Figure 3.5: Schematic diagram for my 1D implementation of the periodic boundary condition.
Extra grid points (squares) are added next to the original boundary points. After updating
the original grid points (circles), identification is made as indicated by arrows to enforce
periodicity.
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Chapter 4

Newtonian Boson Stars

4.1 Introduction

A resurgence of interest in scalar fields in the context of astroparticle physics and quantum
cosmology [39] has prompted investigation of their dynamics, particularly since they are
possible dark matter candidates [40]. It has been speculated that scalar fields may have
played an important role in inflationary theories [41, 42], and in the formation of Q-balls [43],
scalar soliton stars [44], and boson stars. Recently, there have been even some speculations
about possible observations of boson stars [19, 20, 46] even though the feasibility of those
scenarios has yet to be fully examined. Therefore, it is interesting to study formation[45]
and stability properties of these objects, as well as other astrophysical roles, such as the

possibility that they may act as sources of gravitational radiation.

In this thesis, I am interested in the dynamical study of boson stars in two and
three spatial dimensions. Boson stars are macroscopic equilibrium configurations of a self-
gravitating massive complex scalar field. These stars are thus nontopological soliton solu-
tions, i.e., they have a finite non-zero mass confined to a finite region of spacetime (compact),

and are free of singularities.

Intuitively, boson stars can exist because the attractive gravitational force can be
balanced by the tendency of the scalar fields to disperse. Since the number of particle,
N, is usually astronomically large, the phenomenology of the scalar fields can be completely
described classically without considering any possible-but not yet known—precise connections

to the underlying fundamental quantum field.

The typical mass of a boson star can be estimated as follows. The boson momentum
is p ~ (1/)\) ~ (1/R). If the boson star is moderately relativistic, p ~ m, then R ~ (1/m).
Equating R with the Schwarzschild radius, (2M/M3%;) (G = Mp}7), M ~ (M2;/m). The
bosonic matter can be made to couple to itself via, for example, a A\¢* type self-interaction
[9], or the field may be coupled to other types of matter. In the case of a self-interacting field,
the typical mass becomes comparable to the Chandrasekhar mass, M ~ VX(M3;/m?) [9].
For example, for the mass of the particle, m = 1 GeV, Mps ~ 10719 M, for A = 0 whereas
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Mps ~ 0.1Mg for A = 0.01. (A typical mass of a neutron star is Mygs ~ M) However, the

total mass versus radius curve is similar to that of neutron stars and white dwarfs.

Even though any direct physical relevance has yet to be demonstrated, boson star
systems provide excellent numerical laboratories in which to study strong gravitational fields

or gravitationally bound compact systems.

Specifically, the boson star model provides an ideal vehicle with which to implement
and evaluate (1) various coordinate conditions in the context of the ADM formalism, and
(2) multi-dimensional adaptive mesh refinement techniques which appear crucial for many

problems in 3D numerical relativity.

In this Chapter, I first consider boson stars in the Newtonian regime. Studying the
Newtonian limit is useful because the equations of motion are simpler than in the relativistic
case; we simply have a Schrédinger equation coupled to a Poisson equation. These equa-
tions are straightforward to solve and do not involve the problems of coordinate choice and

constraint equations present in the relativistic case.

In this Chapter, the (numerical) stability of single star systems is demonstrated and

the interaction of multiple-star-systems is simulated.

4.2 Equations of Motion

Relativistic boson stars are described by stationary solutions of the Einstein-Klein-Gordon

equation:

g;w(ﬁ;/w - m2¢ =0 (41)

1
G = R* — 29" R = 8nGT"" (4.2)

which may be derived from the following Lagrangian:

R 1 .
I=[day/=g|— — = (¢",0"0, 2o 4.3
When the gravitational field is weak enough to be considered “Newtonian”, and the
velocity that characterize the system is small compared to the speed of light, the Einstein-
Klein-Gordon equation reduces to the Schriodinger-Poisson equation [118]. One can derive

the Schrodinger-Poisson equation assuming that the metric takes the form:

goo =—(14+2V); g11=go2 = g3z = (1 —2V) (4.4)
gop =0 for a#p (4.5)
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where V is a Newtonian gravitational potential. In the Newtonian limit of general relativity,
it can be shown that: [47]

V2V = 4nGT® (4.6)
and
T% ~m?¢*¢ (4.7)
Thus,
V2V = 4nGm%¢* (4.8)

This Poisson equation is, of course, just the field equation for the Newtonian gravitational
field.

In addition, substituting the above metric, Eqns. 4.4 and 4.5, into the KG equation,
and assuming the positive energy eigenvalue condition, one obtains the Schrodinger equation
for ¢.

Therefore, the equations to solve for Newtonian boson stars are

N S|
in, = —5v2¢+v¢ (4.9)
VIV = ¢¢* (4.10)

Again, T am using Planck units (G = ¢ = h = 1) and furthermore, all variables have been

non-dimensionalized as follows:

R

= 411

Xphy e comp ( )
h

tphy = wtcomp (412)
C2

= £ 4 4.13

¢phy \/m¢ P ( )

where “phy” and “comp” denote physical and computational, respectively.

Near the boundaries of the computational domain, I use an annihilation condition
as discussed in Chapter 3.4. Thus the Schrédinger equation becomes
o¢ 1_,
| — —=V V—i 4.14
i SV26+(V — i) (4.14)
As discussed previously, the annihilation layer minimizes the reflections off the computational

boundary by effectively damping the scalar field (in the layer where v(x) is non-zero) as
¢ ~ efu(x)t‘
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4.3 Numerics

A Crank-Nicholson (CN) scheme is used to solve the Schrodinger equation (4.9). In a CN
scheme, spatial derivatives are replaced by finite difference operators centered at a “half time

level”. Specifically, the Schrédinger equation is differenced as

nt+i ) n n+i ntl
AGIRE = (G Ay + Ane) =iV g0 (4.15)

ijk ijk ijk ijk

1
where ¢Z:2 is replaced by %(gbf;,gl -l—d):-; ) and the operators Ay, Ay, Ayy and A, are defined
by Eqns. (3.1-3.4).

To solve equation (4.15), I have used two methods: the ADI (Alternating Direction
Implicit) method and the MG (multigrid) method.

In the ADI approach, the above difference equation is written in the form:

(1- iAtAm)Sijk = 1+ %Amm)qﬁzz (4.16)
) )
( 4AtAyy) ijk = (]. + ZAtAyy)Sijk (417)
(l—zAtAzz)Uijk = (1 +1Amu) " (4.18)
n n ) n+1l
1+ Atv ) = (1 - %Atvij“)Uijk (4.19)

To apply the MG method, terms in Eqn (4.15) are re-arranged so that all advanced
(n + 1)-level terms appear on the left hand side whereas all current (n)-level terms appear

on the right. Then, the equation to solve is given by

n tAt n n n ALyl o, At iyl o,
O — T (Baad™ Ay, ¢" !+ AL + VRO + e
n VAN n n n lAt n+ At n+
= ¢ijh + T(Azz¢ + + Ayy¢ + + Azz(lS +1) ”k 2¢z]k ”k 2¢zgk (4'20)

The above equation is of the form L[¢"*!] = f(¢") where the right hand side
f(o") is already known from the (n)-level unknowns, ¢". The unknowns, ¢"*!, can then be

determined using a MG solver.

The same MG solver is used to solve the elliptic Poisson equation for the Newtonian
gravitational potential. The fact that the same solution method is used for both Schrédinger
and Poisson equation should simplify the development of my parallel version of the code,

which is currently under construction.

4.4 Initial Value Problem

In this section, I discuss how to solve for a stationary boson star and how to set up the field

configurations which will be used as initial data for the dynamical studies.
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Setting up the initial data for 3D numerical relativity is in itself a tremendous prob-
lem. (It is discussed in Section 5.3.) However the situation is much simpler in the Newtonian

case.

First, to generate a ground state boson star configuration, I assume spherical sym-

metry and the following ansatz:
$(x,t) = e~ ¢(r) (4.21)

where w is an intrinsic oscillation frequency for the complex scalar field. By plugging Eqn.
(4.21) in the Eqn. (4.9) and (4.10), one gets the following ordinary differential equations, (in

spherical coordinates):

2%% <r2%)+(w—‘/)¢ = 0 (4.22)

10 oV
=5, (725) = ¢o* (4.23)

I can further assume that ¢ is a real function without loss of generality. By introducing

auxiliary variables, a set of 4 first-order ODEs follows,

% =¢ (4.24)
%—"i = —274—(’5 +2w+V)é (4.25)
%—Z =V (4.26)
88—‘: = —ZTV + ¢ (4.27)
for r # 0 and
% =d (4.28)
z—f = %(w +V)é (4.29)
%—Z =W (4.30)
%—V: = %qﬁQ (4.31)

d(r=0) = 0 (4.32)
W(r=0) = 0 (4.33)
p(r—=o00) = 0 (4.34)
V(ir— o) « —% (4.35)
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for a Dirichlet-type boundary condition and

Vo~ —raa—:f =—rW, r— o (4.36)

for a Robin-type boundary condition.

These equations form an eigenvalue problem for w. In other words, given ¢(r = 0),
the solution exists only for certain values of w. A ground state boson star solution is a zero-
node solution. (Solutions with one or more node correspond to excited states.) A binary
search algorithm is used to find the eigenvalues in the ODE solver: for a given value of
¢(r = 0), the code uses a binary search in w to find a zero-node solution that satisfies the

asymptotic conditions.

Solutions for other values of ¢(r = 0) follow immediately thanks to a scaling law
based on a property of these particular ODEs [8]. Therefore, I can obtain a solution of an
arbitrary value of ¢(r = 0) simply by making an appropriate scale change from an already-
known solution for a certain value of ¢(r = 0). Consider two solutions labeled by indices 1

and 2. Then the following scaling relations hold between the solutions:

N\ 2
w2 = W1 (ﬁj) (4.37)
N
o = TN <F:) (438)
No\?
_ N 4.
» = o(3) (1.39)
No\?
v, = % (ﬁ) (4.40)
where N is the conserved particle number given by
N=m / drog* (4.41)
Let us assume that the solution “2” satisfies the Eqns. (4.22) and (4.23):
1 0 200
— — Az = 0 4.42
2r% Or, (’"2 s ) + (w2 -12)é (4.42)
1 9 50V 9
- — = ¢ 4.4
r2 Ory <7"2 dry ) %2 (443)
Applying the scaling relstions, Eqns. (4.37), (4.38), (4.39), and (4.40), one gets
1 8 [ ,06, Ny \*
- -2 — = = 4.44
(21‘% ory (Tl arl) (@ Vl)¢1> (Nl) 0 ( )

GREE)E) - @) e
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Thus the solution “1” also satisfies the initial value equations.

Fig. 4.1 shows profiles of typical boson stars. The distribution of ¢? forms a compact

object: it has an exponential tail.
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Figure 4.1: This figure shows a Schrodinger field, ¢, and a Newtonian potential, V', as a
function of r for a stationary boson star

To give a boson star linear momentum, one can simply convolve ¢(x,t) with e'P.
To produce spinning stars, one can also give angular momentum in quantized increments
to the configuration by convolving ¢(x,t) with V¥, where ¢ is an azimuthal angle mea-
sured with respect to the axis of rotation. To set up multiple boson star initial data, I
simply superimpose the wavefunctions of two or more individual stars, compute the total
energy density peotal(x) = >, pi(x) and then re-solve the Poisson equation for the initial

gravitational potential. T have tested my codes with each one of these initial data sets.

4.5 2D Stars

I start with 2D boson stars since 2D simulation is computationally less demanding than
full 3D calculations. The 2D boson star code has also served as a testbed code for all my

subsequent 2D Schrédinger applications.

Here I impose slab symmetry along the z-axis on the spatial domain. This naturally
removes z-dependence from the equations. I then examine dynamical evolutions of single

and multiple “stars” ( which are actually infinite cylinders in this case).
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In this case, the equations of motion are the Schrédinger and Poisson equations in

the usual (z,y) (cartesian) coordinate system:

09 1,0%¢ 8%

2V v

I generate a single stationary boson star initial data using the procedure described in
Section (4.4). In 2D, solutions of Laplace’s equation go like V' ~ log(p) for large p. Therefore

a Robin-type boundary condition is given by

oV
V=p—1Io 4.48
P g, o8P (4.48)

as p goes to infinity. The ODEs used to construct initial data also differ from the 3D case:

a¢ _ 7
3= ¢ (4.49)
% = —% +2w+V)o (4.50)
8V ’
v’ V'
o =, + ¢? (4.52)

Fig. 4.2 shows the time evolution of a stationary star. It manifests a characteristic
oscillation with a frequency which depends on the total mass of the star, Mpg. I used
¢o = 1.0 for all calculations in this section. The characteristic internal frequency of the
complex scalar field ¢ is w = 0.717268. The stationary star evolves stably and the solution
error is estimated to be within 1% over a long period (up to ¢ = 100). ( tppy = 1.173x10748L
g S teomp from Eqn. (4.12). For m = 1 GeV, m = 10 5%g, then typ, ~ 10% t.5y,. Thus
t = 100 corresponds to 10® seconds. ) The initial jump in the density is due to the fact that
the initial data is generated with a higher accuracy than that charteristic of the evolution.
After an initial drift, the star oscillates with a characteristic frequency. The short period
oscillation is correlated with the intrinsic oscillation of the complex field ¢, whereas the
overall longer oscillation depends on the total mass of the star. If the spatial resolution is
increased, the error gets smaller, consistent with the second order accuracy of the numerical

scheme.

Fig. 4.3 shows time evolutions of the linear momentum and total mass of boson stars

with initial linear momenta defined by

I, = —i/gb*@z(é dxdy (4.53)
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Figure 4.2: This figure shows (a) central density and (b) total mass as a function of time for
a single stationary boson star. For this run, Ax = Ay = 0.15625, At = 0.1953125, and the
computational domain is [—20, 20] x [—20, 20]

My boson stars show stable evolution for both large and small initial momenta. In all case,
total mass is conserved in a manner consistent with the second order accuracy of the difference
scheme. The solutions maintain their original profiles very well, but detailed examination of
the linear momentum reveals a slight decrease. The reason for this is, in part, due to the fact
that I used the Dirichlet-type boundary condition for my MG solution for the gravitational
potential, V. My approach fixes values of V' at the boundary to the initial values, and thus
is only good when the boundary of the computational grid lies at very large r. However,
the boundaries of the grid are only modestly far from the origin, r ~ 64 in most of the
calculations. In addition, these Dirichlet conditions may also cause some reflections off the
boundaries. As a net result, for a long-time run, the star will gradually slow down, eventually
stop moving and then will actually reverse direction! However as I will now show, this is

clearly a “numerical artifact”, and not a physical phenomenon.

Fig. 4.4 shows the same run as Fig. 4.3 (c¢) and (d) but with the boundary extended
to r ~ 81. It can be seen here that the variation in the linear momentum is smaller than the
previous case. The total mass is conserved and the overall shape of the stars is kept during

the motion.

In the case of periodic boundary conditions, the location of the center-of-mass shows
a linear motion, Fig. 4.5. The star passes through the right end and re-appears from the left

end. This result confirms that the non-conservation of the linear momenta for the runs with
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annihilation boundary conditions, and fixed Newtonian potential at the outer boundary, is

indeed a numerical artifact.
Fig. 4.6 shows a time evolution of a head-on collision of a binary star system.

Here one can clearly see a solitonic behaviour of the boson stars. The boson stars
pass through each other as if a superposition principle holds, even though the interaction is
nonlinear. Notice how well the stars keep their identities after the collision. There is a small
oscillation after the stars pass through each other, but again, this appears due to problems

with the treatment of the boundaries.

Figs. 4.7 - 4.16 show a time evolution of the density profile for a binary star coa-
lescence. Here, initial data is set so that the stars are boosted towards one another with a
non-zero impact parameter. In this case, the net linear momentum is zero but the system has
a non-zero net angular momentum. In particular, defining the angular momentum operators,
L,L,,L, and L, by

L=rxp=—irxV (4.54)
L, = —i(y% - za%) (4.55)
L,= —i(z% - x%) (4.56)
L,= —i(x(,% - y%) (4.57)

the total (integrated) angular momentum for the 2D configurations being studied is

A, = /¢*Lz¢ dxzdy (4.58)

Fig. 4.17 shows the conservation of this quantity, as well as conservation of the total mass

for the binary simulation.

In this evolution, the stars have enough initial momentum to avoid a direct collision,
but not enough to escape from each other’s gravitational pull so they end up in a mutual
orbit. If they were initially closer, the stars would have merged into a single, distorted,
rotating star after 1-2 orbits. The “merged star” would radiate some of its energy while

settling down to an axisymmetric configuration.

Fig. 4.18 shows results for spinning boson stars with intrinsic angular momenta,
S =1and S = 2. Although there is some loss of energy and angular momentum at late
times, the evolutions are stable for long times. However, I have found that for S > 2, the
wave packet rapidly collapses and the subsequent interaction with the boundaries quickly

ruins the calculations.
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In summary, in this section I have described a 2D boson star code and have demon-
strated that the code generates stable evolutions of initially stationary stars, stars with linear

momentum, binary star systems and spinning stars.

A modified version of this test-bed code will be used to study interactions of 2D

model atoms with strong laser fields in Chapter 7.

4.6 Axisymmetric Stars

The axisymmetric boson star code assumes an axial symmetry about the z-axis. Therefore,
the wavefunction and the Newtonian potential do not depend on the azimuthal angle ¢ in
the cylindrical coordinate system, and we are again left with a 2D problem. This code also

serves as a test-bed for other axisymmetric applications.

In this Section, I study stationary boson stars and binary star systems. The restric-

tion to axisymmetry limits the binary evolutions to head-on collisions.

Fig. 4.19 shows the time evolution of a stationary boson star. As in the 2D calcula-
tions, the central density oscillates with a characteristic frequency, but in this case there are

two distinctive frequency components, with a ratio of about 5:1.

Fig. 4.20 shows time evolutions of linear momentum and total mass for moving
boson stars with linear momentum along the z-axis. Both linear momentum and total mass
are well conserved during the evolution. In axisymmetric runs, Dirichlet boundary conditions
perform better than in the slab-symmetric runs. This can be attributed to the fact that the

Newtonian potential drops off as 1/r in this case, whereas for slab symmetry, V' ~ log(p).

In head-on collisions, axisymmetric boson stars sometimes show the same solitonic
behaviour as in the slab-symmetric case. In particular, for sufficiently large initial momenta,
the stars pass through each other as if a superposition principle is in action. For small initial
momenta, the stars collide and merge to form a single star. As with the slab-symmetric

mergers, after the single star forms, it oscillates, radiating some of its energy in the process.

A modified version of this axisymmetric code will be used in a future study of 3D

Bose-Einstein condensates.

4.7 3D Stars

In the preceding two sections, I have dealt with 2D codes. However, development of 3D codes
is necessary to study truly generic binary coalescence and merger (i.e. no particular spatial
symmetries). Thus far, my 3D runs have been limited to a few simple cases due to a lack

of computational resources. However with the help of special techniques such as adaptive
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mesh refinement (AMR), I hope I can overcome this limitations to a certain degree in the
near future. Currently, development of an AMR program is under way and AMR in general

will be discussed in more detail in Chapter 8.

Fig. 4.21 shows a stable evolution of a single stationary boson star and Fig. 4.22
shows a time evolution of the total mass for the same run. I used ¢g = 1.0 for all the runs in
this section. The characteristic internal oscillation frequency for the complex scalar field is
computed from the initial value problem: w = 0.649925. To check long-time stability, I ran
a coarse grid evolution of a single stationary boson star, Fig. 4.23. The star remains stable

for a fairly long period of time.

Fig. 4.24 shows evolutions of boson stars with linear momenta. For both v, = 0.1
and v, = 1.0, the total mass is well conserved. Linear momentum is well conserved for v, =
1.0 for a short time, t ~ 20. For v, = 0.1, conservation is not as good, particularly at late

times.

Results for binary star coalescence are given in Fig. 4.25. Initially, the stars are
located at (zo,y0,20) = (—5.25,0,0) and (5.25,0,0) with linear momenta p; = (0,0.3,0)
and ps = (0,—0.3,0), respectively. The total mass, Fig. 4.25 (a), is conserved for ¢ ~ 300
and the linear momentum is conserved up to ¢ = 220. It increases for ¢ > 220. From a
careful examination of a full 3D data set (not shown here), it was found that there was mass
transfer from one star to the other at ¢ ~ 180. In this simulation, the boson stars orbit about
each other on trajectories centered on the origin. At the start of the evolution, they attract
each other and barely avoid a direct collision. As soon as they separate, gravity pulls them
back again. As can be seen from Fig. 4.25 (c) the stars then “skid” through each other
periodically.

If the initial separation of the stars is reduced, the two stars quickly merge to form a
single rotating star. Fig. 4.26 shows results from a run where the stars start at (g, yo, 20) =
(—5.0,0,0) and (5.0,0,0), with linear momentum p; = (0,0.3,0) and p, = (0,—0.3,0). In
this case the stars merge before completing a single orbit. In the process, they radiate some
of the energy (mass), Fig. 4.26 (a), and oscillate after they have merged at ¢t ~ 60, Fig. 4.26
(c). Linear momentum violation increases with time, Fig. 4.26 (b), and this drift eventually

moves the final star away from the origin.

Currently, all of the 3D runs are severely restricted by lack of resolution. For more
accurate calculations, an AMR version of the code should be implemented, and I will continue

to work towards that goal.
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Figure 4.3: This figure shows time evolutions of linear momentum and total mass for a
single boson star with initial linear momentum. (a),(b) Initial position  =-3.2 and initial
momentum p, = 0.1 ; (c),(d) Initial position x =-20.25 and initial momentum p, = 1.0.
For these runs, computational parameters are Az = Ay = 0.25, At = 0.0625, and the
computational domain is [—64, 64] x [—64, 64].
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Figure 4.4: This figure shows time evolutions of (a) linear momentum and (b) total mass for
a single boson star with an initial linear momentum p, = 1.0 computed in an extended grid.
Here Az = Ay ~ 0.21, At ~ 0.0527, and the computational domain is [—81,81] x [-81, 81].
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Figure 4.5: This figure shows the location of the center-of-mass of the boson star as a function
of time. Periodic boundary conditions are used, with x = —20 and z = 20 identified. The
initial momentum is p, = 1.0. The boson star passes through the “boundary” at ¢ ~ 20.
Az = Ay = 0.25, At = 0.0625, and the computational domain is [—20,20] x [—20, 20].
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Figure 4.6: Binary boson stars— head-on collision: Time evolution of the density along the x-
axis. Az = Ay ~ 0.1429, At ~ 0.0357, and the computational domain is [—64, 64] x [—64, 64].
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Figure 4.7: Binary star coalescence: Time evolution, t =0

Figure 4.8: Binary star coalescence: Time evolution, t = 6

Figure 4.9: Binary star coalescence: Time evolution, ¢t = 10

Figure 4.10: Binary star coalescence: Time evolution, ¢t = 13

Figure 4.11: Binary star coalescence: Time evolution, ¢t = 15



Figure 4.12: Binary star coalescence: Time evolution, ¢t = 18

Figure 4.13: Binary star coalescence: Time evolution, ¢t = 25

33.

s

Figure 4.14: Binary star coalescence: Time evolution, ¢t = 33

Figure 4.16: Binary star coalescence: Time evolution, ¢t = 42
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Figure 4.17: This figure shows time evolutions of (a) angular momentum and (b) total mass
for a binary star coalescence. Az = Ay = 0.125, At = 0.03125, and the computational
domain is [—48,48] x [—48, 48].
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Figure 4.18: This figure shows time evolutions of a spinning boson star with a spin S = 1
(a),(b) and S = 2 (c), (d). For (a) & (b), Ax = Ay ~ 0.083, At ~ 0.04167, and the
computational domain is [—32,32] x [-32,32]. For (¢) & (d), Az = Ay ~ 0.0893, At ~
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Figure 4.19: Time evolution of a single axisymmetric stationary boson star. For this run,
Ap = Az = 0.15625, At = 0.0234375, and the computational domain is [0, 20] x [—20, 20].
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Figure 4.20: Time evolutions of linear momentum and total mass for a boson star moving
along the z-axis. For these runs, Ap = Az = 0.15625, At = 0.0234375, and the computa-
tional domain is [0, 30] x [—30, 30].



1.1

1.05 —

Central Density

0.95 ‘ ‘
0 50 100 150

Time

Figure 4.21: This figure shows a central density, ¢3, of a 3D stationary boson star as a
function of time.
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Figure 4.22: This figure shows the total mass of a 3D stationary boson star as a function of
time from the run described in Fig. 4.21.
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Figure 4.23: This figure shows a long time evolution of a single stationary boson star. For
this run, Az = Ay = Az = 0.5, At = 0.125, and the computational domain is [—16,16] x
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Figure 4.24: This figure shows the linear momenta, (a) & (c), and the total mass, (b) & (d)
as a function of time for a 3D moving boson star with initial momenta v, = 0.1 for (a) & (b)

and v, = 1.0 for (¢) & (d).

Total mass is conserved well over the course of the evolution.

For these runs, Ax = Ay = Az = 0.3125, At = 0.15625, and the computational domain is

[—20,20] x

[—10,10] x [—10, 10].
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Figure 4.25: This figure shows (a) total mass, (b) linear momentum, in z-direction and (c)
central density, ¢3, for a 3D binary boson star coalescence. The stars are initially located at
(z1,91,21) = (—5.25,0,0) and (z2,ya, 22) = (5.25,0,0) with linear momenta p; = (0,0.3,0)
and py = (0,—0.3,0), respectively. Computational parameters are Az = Ay = Az = 0.4,
At = 0.1, and the computational domain is [—16,16] x [-16, 16] x [—16, 16].
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Figure 4.26: This figure shows (a) total mass, (b) linear momentum in z-direction, and (c)
central density, ¢Z, for a 3D binary boson star merger. The stars are located initially at
(z1,91,21) = (—5.0,0,0) and (x2,y2,22) = (5.0,0,0) with linear momenta p; = (0,0.3,0)
and p2 = (0,—0.3,0), respectively. Az = Ay = Az = 0.4, At = 0.1, and the computational
domain is [—16, 16] x [—16, 16] x [—16, 16).
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Chapter 5

Boson Stars in General Relativity

5.1 Introduction

As mentioned in the introduction to the Chapter 4, even though there have been no elemen-
tary scalar fields observed in nature to date, a resurgence of interest from particle physics
and quantum cosmology has provided renewed motivation for the study of the physics of
scalar fields in the context of general relativity. I can think of examples from Higgs bosons

[48], inflatons, bosonic dark matter, etc [25].

Boson stars provide also provide an excellent numerical laboratory to study strong
gravitational fields. Here it should be noted that most current work in 3D numerical relativ-
ity involves black hole spacetimes. However, the singularity residing inside the event horizon
of a black hole spacetime presents tremendous challenges for simulation. To date, there have
been two strategies to deal with these physical singularities. The “old” way to avoid a singu-
larity is to use singularity-avoiding slicing conditions which may penetrate or asymptote to
apparent or event horizons. Most previous calculations in numerical relativity have used this
strategy. For example, the maximal slicing condition slows down the evolution around the
physical singularity, and prevents the spacelike hypersurfaces from intersecting the singular-
ity. But “freezing out” the evolution around the singularity eventually introduces coordinate
singularities, and thus long-term evolution of black hole spacetimes with such conditions is
essentially fruitless. The “new” way to deal with a singularity is to “excise” the blackhole
interiors since, by definition, the blackhole interior can not influence the exterior [49]. This
technique has been used in the study of blackhole-scalar field interactions in spherical symme-
try [50] and Einstein-Yang-Mills collapse [51] producing new results which were unattainable
with the old strategy. In 3D, stable evolution has been achieved in characteristic evolution
of a single blackhole spacetime with excising techniques. [52]. However, since boson stars
are, by definition, nonsingular compact objects, I can at least avoid problems arising from

the horizon boundary as long as no black hole forms.

Boson stars may have lesser astrophysical importance than black holes and neu-

tron stars at the moment as sources of gravitational radiation, but they may be used as
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model systems to study the detailed nature of gravitational waveforms. For example, Wil-
son, Mathews and Marronetti recently claimed that their simulation of binary neutron stars
using an approximation to full GR shows that the individual neutron stars collapse to black
holes prior to merger [54, 55, 56, 57]. Their claim has been disputed by several researchers
utilizing a variety of approximate analytical and numerical techniques [58, 59, 60], and the
results remain controversial in the astrophysics community [61]. Therefore, it would be very

interesting to study the equivalent problem in a fully relativistic boson star code.

Boson stars also provide an excellent system to implement and evaluate various
coordinate conditions in the context of 3D numerical relativity, as well as for the development

of multi-dimensional AMR techniques.

The first significant work on boson stars was due to Ruffini and Bonazzola, and came
out in 1969 [8]. They calculated equilibrium states of both Newtonian and relativistic boson
stars. In 1986, Colpi et al [9] studied boson stars with \¢* self-interaction, and showed
that the self-interacting stars could have a mass comparable to neutron stars. The first
published study of the dynamics of relativistic boson stars was due to Suen and Seidel [14]
in 1990. These authors computed dynamical evolutions of perturbed boson stars in spherical
symmetric in order to study their stability. Here I am trying to accomplish dynamical

evolutions of 3D boson stars by using a fully general 3D numerical relativity code.

5.2 Equation of Motion

General-relativistic boson stars are described by the Einstein-Klein-Gordon equation:

glwd);/w - m2¢ =0 (5.1)
1
GHVZR“U—igHVRZ&TGT”V (5.2)

where the stress energy tensor T+” for a massive complex scalar field is given by

™= %(qﬁ*’”cﬁ’” +gHen) — %9“”@?@’* +m?|¢[?) (5.3)

To evolve the geometric variables, I use the ADM code developed collaboratively
by the Binary Black Hole Grand Challenge Alliance [62]; to this code I have added my
own routines for the Klein-Gordon equation. This ADM-scalar code uses a Cartesian-like

coordinate system, (t,z,y, z).
The “3+1” equations of motion for the geometric variables are
0i9i; = —2aK+ D;B;+ D;p; (5.4)
O K;; = -D;Dja+a(R;;+ KK —2KyK';) + LsK,;
~8ma (S — 39i(5 ~ p)) (5.5)
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where
p= 69" + S(6567 +m?lgf) (56)
3= 67"+ 6167 = g (950> +m?I6P) (5.7)
Sy = (0465 +6,0%) — 20(6307 +m?lof%) (58)
S = — 206" — 265 — o (m?[oP) (59)

Introducing auxiliary scalar field variables, ®;,II, defined by

_ 99
®i=5- (5.10)
Il = g(@ - 3'8:)¢ (5.11)

the equation of motion for the scalar field can be written in the first-order-in-time form:

I, — BT = B + (aVhh¥ %)) i — avhm?¢ (5.12)
i$. . — (T 4 B

éi,t - ﬁ q>],z (\/EH)J + ﬁ’ZCI)] (513)

bi—Bid; = %H (5.14)

Eqns. (5.4), (5.5), (5.12), (5.13), and (5.14) are evolved with an iterative Crank-
Nicholson scheme as outlined in Section (3.1). It usually took 4-5 CN iterations to drive the

residuals down to 108 for a single stationary star run.

5.3 Initial Value Problem

In this Section, I will briefly review initial value problems in 3D and describe how to set up

a single stationary boson star initial data in spherical symmetry.

In the “341” formalism, there are 12 dynamical variables, {g;;, K;;} and 4 constraint
equations, G, = 8nT,,0—the constraints do not involve second time derivatives of g;;. The
initial value problem consists of determining which 8 out of 12 variables are freely specifiable

and solving for the remaining 4 variables by solving 4 constraint equations.

In principle, (and often in practice), it is possible to specify any 8 variables. However,
York’s prescription for the initial value problem [28] does have the nice property that we know
that it leads to an elliptic set of equations for which proofs of existence of a unique solution

exist.

In York’s approach, the freely specified data on the initial hypersurface is §;; the

conformal metric and E; the transverse-traceless part of the extrinsic curvature tensor. g;
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and E;-*j are related to g;; and K;; by:

9i; = ¥'9i (5.15)
K = ¢ 10Fis

= OBV 4 %¢_4trKgij

= 7B 4 (IW)9] + %zp—“trKg"j (5.16)
where
(W) = VW + VIW* — ggijmw’“ (5.17)
The conformal factor ¢ and W* satisfy the transformed constraint equations,

8AY = Rip + §¢5(trK)2 — "B EY —16mpp 3 (5.18)
(AW): = %vﬁ@itrlx’ +81)t =V, E* (5.19)

where A is the Laplacian operator computed using the conformal metric and (AIW)i =
ViAW) = (AW): + IVi(V,;W7) + RiW7, where (AW)i = VIV, Wi Ry is the Ricci
tensor associated with §;; and R =g Rij.

York also suggests that matter terms in a conformal form be related to physical ones
by

o= 8p (5.20)
ji=e7 (5.21)

This ensures that, for all ¢ > 0, certain energy conditions will be satisfied by the physical

matter variables, if they are satisfied by the conformal variables [28].

However, I have not found it necessary to conformally transform my matter variables.
Instead, I propose the following method to set up an initially moving boson star. First, I will
assume the initial slice is maximal, trK = 0, and will specify g;; = d;; and Ej; = 0. Then

the constraint equations become
8AY = —p~T(IW) 1 (IW)¥ — 16mpep 3 (5.22)
(AW = &y’ (5.23)
For the Klein-Gordon field, T will multiply the stationary ¢.; by e?'® where p is the initial
momentum. I will then compute the physical p and j; from the boosted field, ¢, = ¢ ®. I

can then calculate 1) and W* by solving the Hamiltonian and momentum constraint equations,

using the physical p and j;. Therefore, using Eqns. (5.20) and (5.21), T will solve

8AY = = T(IW);(IW)¥ — 167 pe)® (5.24)
(AW)? = 8rjigp'© (5.25)
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Eqns. (5.23) and (5.23) can be further simplified:

(W) (IW)i; = 2(8;W)(8;W7) + 2(8; W) (8;W?) — %(aiwi)(ajwj) (5.26)

(AW) = 0,0, + %ai(ajwj) (5.27)

where lower and upper indices are the same because of conformal flatness, g;; = d;;. Finally,
I obtain,

4024 + T (O W) (8 W) + (8;W7) (9;W*) — §(@-Wi)2) +8mpp® =0 (5.28)

1 :
BjajWi + gaz(BJWJ) - 87T¢10j1 =0 (529)

I plan to implement and solve eqns. (5.28) and (5.29) using the multigrid (MG) method.

For a distant binary star system, I will use a similar prescription. I will add solutions
for distinct stars assuming that the matter distributions for each star is sufficiently compact

and well-separated from other stars.

Now, I will discuss how to set up a single stationary, spherically-symmetric ground-

state boson star. The most general “34+1” metric in spherical symmetry is given by
ds® = (—a® + a*B%)dt* + 2a*Bdtdr + a*dr?® + b*r*dQ? (5.30)

I adopt York’s conformal formalism and assume zero shift at all times, 3 = 0. My base

metric is flat, §;; = d;;. Then I have a metric of the following form:
ds® = —a(r)?dt* + (r)* (dr® + r?dQ?) (5.31)
Making the following ansatz for the scalar field (consistent with staticity of the geometry)
Bst(r,t) = B(r)e ™" (5.32)

the equations of motion reduce to the following set of ODEs. Here {¢, ¥, ¢, ®,a, A} are

functions of r only:

W = U (5.33)
v o= 2o srl(we? +¢‘”’(°‘)—2 +m?)¢?) (5.34)
B r 8 a? )
g = @ (5.35)
) 2 A 20 2
¥ = D) - )9 (5.36)
a = A (5.37)
A = —(% + %)A + 47r¢4oe(20%2 —m?)¢’ (5.38)
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This set of ODEs forms a one-parameter family of eigenvalue problems. A convenient
family parameter (analogous to central density for fluid stars) is the central field value ¢(0) =
¢o. For each ¢, a regular solution of Eqns. (5.33) - (5.38) only exists for a specific w = wg,,

which, I recall, is the intrinsic oscillation frequency of the complex Klein-Gordon field.

Typical profiles for ¢(r), ¢(r), and a(r) are shown in Fig. 5.1. The ADM mass

Mapwm is defined at spatial infinity and given by, for example,

1 1
= —_-— . = —_-— 2 .
Mapw = —5- /S Vi(r) - dS = —o- /v V2 (r)dV (5.39)
and 1 is asymptotically given by
~14 — — A4
Y(r) =1+ =22 4 o) (5.40)

A plot of the ADM mass of a boson star, Mapm(do) is shown in Fig. 5.2. Note that Mapy
reaches the maximum value, Mapys ~ 0.64 at ¢g = ¢ ~ 0.08. The curve in the Fig. 5.2
is in excellent agreement with the results in the literature [9, 14]. It is well known from the
dynamical study of perturbed boson stars [14] that boson stars with ¢ < ¢y are stable
against weak perturbations, but stars with ¢y > ¢n are unstable against them. In the

evolutions displayed below, the initial data has been chosen well into the stable branch.

A plot of the ADM mass, Mapm(we, ), is shown in Fig. 5.3.

5.4 Coordinate Conditions

General relativity allows us the freedom to choose any coordinates to describe dynamics (gen-
eral covariance). As discussed in Sec.2.3, in the “3+1” formalism, This coordinate freedom
manifests itself in the lapse function, o, and shift vector, 3¢. Careful choices of coordinate

systems will be crucial for stable evolutions of black hole /neutron star/boson star spacetimes.
In this Section, I describe the maximal slicing and K-driver conditions.

The maximal slicing condition is one of most the commonly used prescriptions for
fixing the lapse function, principally because maximal slicing condition has a property of

“singularity avoidance” [63].

The maximal slicing condition maximizes the three volume of each of the spacelike

hypersurfaces, as can be seen from the following analysis. Given a 3-volume V/,
V= /\/ —3gdx (5.41)
the condition for maximal slicing is given by maximizing the 3-volume:

SV =0 (5.42)

5v/—3g =0 (5.43)
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Assuming 8¢ = 0, I have, from the evolution equation for g;;,
g J

1
Ki; =——g9i; 5.44
J 9q Jiit ( )
Taking a trace, I get,
- 1 4
K = _%g 9 gijt (5.45)
(5.46)
Now, using the identity,
1
0v/—g = 5,/—gg””5gw, (5.47)
(5.48)
I get,
ij 6v/ =g
—2aK0t = gYdg;; =2 = (5.49)
)
(5.50)
Then, I get the maximal slicing condition,
5v/-3g=0—K=g"K;; =0 (5.51)

T impose the maximal slicing condition at all times by first choosing initial data such

that
K(Z,0)=0 (5.52)
and then imposing
0K (Z,t)
7 —0 5.53
5 (5.53)

By taking the trace of Eqn. (5.5) and using Hamiltonian constraint equation, Eqn.
(2.21), we have

0K = —D'D;a + a(—KyK") + 4wa(S + p) + ¢ LKy + (8,97 K (5.54)
Using K = 0, §; K, the maximal slicing condition becomes:
DiD;a — a(K;; K% +47(S + p)) =0 (5.55)
Now, since

D'D;a = g9;0;0 — gT% 0l (5.56)
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I must solve the following elliptic equation:

g"79;0;a — giijjaka —a(Kiy K9 +4n(S+p)) =0 (5.57)

The maximal solver was implemented using the multigrid (MG) technique and Robin
boundary conditions. I first test the maximal solver with a slightly perturbed flat spacetime.
Here I study an evolution of flat space with zero shift and an initial lapse which is close to,

but not exactly, unity
a(t = 0) = 1.0 4+ 0.001exp[—(z? + y® + 2%)] (5.58)

I evolve the initial data g;; = d0;; and K;; = 0 forward with this lapse for just the first
timestep, with the lapse subsequently determined by Eqn (5.57). Fig. 5.4 (a) shows time
evolutions of the lapse, a. The lapse returns to unity almost after the first timestep, as it
should. From this, one might expect a “healthy” evolution, i.e., g;; and K;; stabilize to the
initial flat data. However, Fig. 5.4 (b) shows the evolution of a typical metric function, ¢,
along the y axis. A “dip” in g, is developing—eventually this dip becomes too sharp to be

resolved.

The reason for this development is attributed to the fact that the maximal condition
I use does not actively reforce the condition K = 0. Rather, my maximal slicing condition

imposes the condition,

0K

= =0 (5.59)
That is, if « is perturbed at any time, making K;; (and K) non-zero, the slicing condition
Eqn. (5.57) cannot put K;; (and K) back to zero. Rather, it preserves the perturbed Kj;
(and K) throughout the evolution, as it should.

This phenomena of a secular drift in the flat spacetime model is very much prob-
lematic for the actual evolution of a full 3D GR systems involving highly nonlinear and

dynamical fields.

The authors of the paper [64] have suggested the so-called “K-driver” slicing con-
dition to cure this problem. This condition is designed to drive K back to zero when it is

perturbed away from it. Consider the equation
oK

W + cK =0 (5.60)

where c¢ is a positive number of one’s choice. If ¢ is a constant in time, K is driven to zero

c

in an exponential manner, K ~ e~°*. By controlling ¢, one has control over the stability of

the slicing. Eqn. 5.60 leads to a different elliptic equation for the lapse:

g"79:0;a — gijI‘fjﬁkoz —a(Ki; K9 +4n(S + p)) = cK (5.61)
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Fig. 5.5 shows results from the “perturbed flat-space” problem solved using the
K-driver slicing condition. The secular drift observed previously is under control and K is

actively driven to zero.

Although T use a zero shift condition 3¢ = 0 in this chapter, I will need to use more
sophisticated conditions for binary problems. I will also discuss the effect of the K-driver

coordinate condition for GR boson star runs in Section 5.6.

5.5 Boundary Conditions
In this Section, I discuss outer boundary conditions.

In a Cauchy problem such as that encountered in the 3+1 ADM formalism, one
cannot compactify spatial grids. Thus, one has to put the boundary of the grids at some
finite distance. Even though there are no physical boundary conditions at the boundary, one
has to use some kind of boundary conditions which best represent the physical situation and

minimizes unphysical effects.

I apply an outgoing wave condition [33] to update the Klein-Gordon fields at the
boundary. Assuming the edge of computational grid lies far from the center of stars, I use
the outgoing wave condition for flat massless scalar fields as a zeroth approximation. More
sophisticated conditions will be tried later. This so-called massless Sommerfeld condition will
work the best when the edge of the grid represents an almost flat spacetime. The boundary

condition is given by

(r¢)s+ (r¢),, =0 (5.62)
rér+¢+rd, =0 (5.63)

for sufficiently large r in a spherical coordinate system. In a Cartesian coordinate system,

v + §¢ +716,=0 (5.64)
Yo+ 29+16, =0 (5.65)
29t + ;qﬁ +r¢,.=0 (5.66)

I use analogous formulae for II since ¢+ ~ II far away from the stars.

¢~ 11 (5.67)
oL, + %H 4+, =0 (5.68)
ylL; + 21+ 1L, = 0 (5.69)
AL, + §H +rIl, =0 (5.70)
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For spatial derivatives, the expressions get a little bit complicated. For example, the condi-

tions for @, are given by:

2 1 a2
ey + 180+ @y AT+ (= = )6 =0 (5.71)
r r r
2xy Y Ty
Yot +1®oy = —57¢+ "8 — FI1=0 (5.72)
2
2By 18— bt B, — T =0 (5.73)
r r r

One can get expressions for ®, and ®, by the cyclic permutation, z = y — z.

To finite-difference the above equations I use backward-time-one-sided-space stencils.
For a single stationary star initial data, this condition gives a stable evolution. Testing with
more general initial data such as that for binary star coalescence will be carried out in the

future.

From my short experience with full 3D GR simulations, I learned that finding a
stable outer boundary condition (OBC) for geometry variables, namely, the metric, g;;, and

the extrinsic curvature, K;; is a highly nontrivial task [65].

Many different OBCs for 3D “3+41” general relativity have been suggested and tested
(mostly for simple model problems). Some techniques show promising test results and hold
out hope for a stable evolution in a realistic full 3D evolution, others are still plagued by
instability [65]. Here I test two OBCs: the Sommerfeld condition given above, and a blending
boundary condition [66, 67].

The (standard) interpolated Sommerfeld boundary condition computes K;; at the

boundary by enforcing the condition:
(0r +0r + ;)Kij =0 (5.74)

where a is the falloff power of r, i.e., K;; ~r~°%. I used a = 2 for all my calculations.

The basic idea of a blending boundary condition is to blend the numerical solution
with another one in a finite volume rather than only on the surface. (Note that sponge
filters [37], long known to the numerical relativity community operate in the same spirit.) I
have used a simple-minded Dirichlet blending condition: all components of K;; are smoothly
blended to the flat spacetime. For example, for the last n grid points where n is usually
larger than 4, I set the extrinsic curvature to a linear combination of the evolved value and
a fixed (Dirichlet) boundary value. Thus:

K," = (]. — a(?"))}(ij,computed + G(T)K’ij,ﬁxed (575)

where a = 0 in the interior inside n grid points from the boundary and goes smoothly to 1

in the boundary layer. K;; fixed is set to zero.
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In the current ADM implementation,

r— Ro
Tmax — RO

a(r) = ( ) (5.76)

for Ry < r < Tmax, where Ry = Tmax — n X h and n is the number of blending zones. It is

found from the blackhole runs that ¢ = 1 is optimal for such small domains.

In the future, I am going to test perturbative boundary conditions [65] such as a
pure perturbative OBC, a perturbative sommerfeld OBC, and a perturbative blending OBC.
The perturbative OBCs is proposed to perform a stable evolution around outer boundaries

and to simultaneously provide for extraction of gravitational waveforms.

5.6 Evolution: Stationary Stars

In this Section, I show some of the preliminary evolutions of a single stationary boson star.
The code is currently unstable and the sources of this instability are not clear at this point.
My current suspicion is that the outer boundary module for the extrinsic curvature may give
rise to some troubles, but more careful test runs are needed to figure out the exact cause(s) of
instability. Note that for all the runs I present here, the Klein-Gordon field remains smooth
and compact throughout the evolutions and the MG solver for the maximal slicing condition

generates a smooth lapse function.

Fig. 5.6 shows a typical profile of the lapse, a, for a single stationary star run. It
remains stable for a long time, but starts to collapse at late times due to an instability arising

from other geometrical variables.

Fig. 5.7 shows time evolutions of the maximum of |¢?| and g, for Sommerfeld and
blending OBCs using the maximal slicing condition. The code crashes eventually for the
Sommerfeld OBC run when K develops a “W” shape instability around the center of the
star, Fig. 5.9. The blending OBC run crashes when the extrinsic curvature components
develop steep gradients around the blending region and the central interior region (see Fig.

5.8)—in particular, det(g;;) becomes negative!

The results of both runs reveal that the maximal slicing condition does not put K
back to zero (as expected). Moreover, as observed previously in [64], all components of K;;

grow without bound, quickly causing the code to crash.

Following [64], I then tried a K-driver run with ¢ = 0.2. A blending OBC (8 blending
zones) was used. Fig. 5.10 shows a time evolution of the maximum of |p| = |¢|?> which slowly
increases as long as the code runs. Fig. 5.11 shows a time evolution of the maximum of |g,.|.

A typical profile of K, is shown in Fig. 5.12.

Results for a Sommerfeld OBC run is shown in Fig. 5.13, 5.14, and 5.15.
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The results for K-driver runs with ¢ = 0.2 do not produce stable evolutions, but as
¢ is increased, the results become much better, Fig. 5.16. For a K-driver run with ¢ = 1.0,
the boson star oscillates with a characteristic frequency, w ~ 0.994146 until ¢ ~ 140 and then
it slowly dissipates, Fig. 5.16 (c). gi; oscillates approximately with a light crossing time,
t ~ 60, Fig. 5.16 (d).

Very long time stable evolution is yet to be demonstrated, but study along this line

will be continued.

Once I stabilize a single boson star, the next step is to move a single star with linear
momentum and to spin a single star. This is a first step towards a simulation of binary boson

star coalescences.
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Figure 5.1: This figure shows ¢(r), ¥(r), and V(r), as a function of r for a general relativistic
stationary boson star. For this data set, ¢(r = 0) = 0.0025 and, w = 0.994146.
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Figure 5.2: ADM mass (in units M3, /m) of the ground-state boson stars as a function of ¢,
the square root of the central density. The maximum mass M, ~ 0.64 occurs at ¢g ~ 0.08.
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Figure 5.3:

ADM mass, Mapm Vs. energy eigenvalue, w for a single stationary star.
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Figure 5.4: (a) The lapse at various times is shown. The initial lapse (¢ = 0) is put in by hand.
Subsequent values are computed using the maximal MG solver. (b) g, at various times is
shown. The maximal result shows a secular drift. (¢) K, at various times is shown. The
value of K, reaches a non-zero profile with maximal slicing and does not go back to zero.
Az = Ay = Az = 0.25, At = 0.05 and the computational domain is [—5, 5] x [-5, 5] X [—5, 5].
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Figure 5.5: (a) The lapse at various times is shown. The initial lapse (¢t = 0) is specified
arbitrarily. The lapse function is subsequently computed using the K-driver MG solver. (b)
gzz at various times is shown. The K-driver result shows a stable evolution. (¢) K., at
various times is shown. The K-driver condition actively enforces K = 0. Az = Ay = Az =
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68



~ g ~
" t=0 N t=30
0.995 — —

0.99 |- \ 7 \
i N\ I \/

0.985 | 1 | 1 | 1

Figure 5.6: This figure shows profile of the lapse function, «, at various times along the
y-axis for the maximal slicing condition. The lapse starts to collapse at later times due to
instabilities in K;;. Az = Ay = Az = 1.667, At = 0.1667 and the computational domain is
[—60, 60] x [—60,60] x [—60, 60].
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Figure 5.7: This figure shows the maxima of |¢?| = |p| and g, as a function of time for

a Sommerfeld OBC (a), (b) and an 8-zone blending OBC (c), (d). The maximal slicing
condition, K = 0, is used. Ax = Ay = Az = 1.667, At = 0.1667 and the computational
domain is [—60, 60] x [—60, 60] x [—60, 60).
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Figure 5.8: This figure shows K, along the y-axis at ¢ = 180 for the blending OBC from
the run described in Fig. 5.7.
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Figure 5.9: This figure shows K, along the y-axis at ¢t = 130 for the Sommerfeld OBC from
the run described in Fig. 5.7.
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Figure 5.10: This figure shows the maximum of |p| = |¢|? as a function of time using the

K-driver coordinate condition with ¢ = 0.2, and an 8-zone blending OBC. Az = Ay = Az =
2.22, At = 0.222, and the computational domain is [—80, 80] x [—80,80] x [—80, 80].

73



1.028

- K—driver(c=0.2) Blending OBC P

1.026

‘gxx‘max

1.024

1022 ‘ 1 ‘ 1 1 ‘ 1 1 ‘ 1
0 50 100 150 200

Time

Figure 5.11: This figure shows the maximum of |g,.| as a function of time from the run
described in Fig. 5.10.
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Figure 5.12: This figure shows K, along the y-axis at ¢ = 200 from the run described in
Fig. 5.10.
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Figure 5.13: This figure shows the maximum of |p| = |¢|? as a function of time using the

K -driver coordinate condition with ¢ = 0.2, and a Sommerfeld OBC. Az = Ay = Az = 2.22,
At = 0.222, and the computational domain is [-80,80] x [—80, 80] x [—80, 80].
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Figure 5.14: This figure shows the maximum of |g,.| as a function of time from the run

described in Fig. 5.13.
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Figure 5.15: This figure shows K, along the y-axis at ¢ = 180 from the run described in
Fig. 5.13.
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Figure 5.16: Maxima of |p| = |¢|? (a) & (c) and |g.z| (b) & (d) as a function of time using
the K-driver coordinate condition with ¢ = 1.0, and an 8-zone blending OBC. Az = Ay =
Az = 1.67, At = 0.167, and the computational domain is [—60,60] x [—60, 60] x [—60,60]
(c) shows a more detailed view in which the intrinsic oscillation of ¢ can be seen. In (d) the
characteristic oscillation of the star (lower frequency than the intrinsic ¢ oscillation) is also
apparent. At early times, this evolution appears considerably more stable than any of the
other runs described above. However, the code still crashes rather quickly and the precise
causes are still under investigation.
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Chapter 6

Bose-Einstein Condensates in an Optical Lattice

In this chapter, I calculate the quantum motion of a Bose-Einstein condensate in an optical
lattice generated by a standing wave of laser light. I show how to boost a stationary conden-
sate into motion or stop a moving condensate by manipulating the optical lattice, and how
to achieve Bloch oscillations of the condensate in an accelerating optical lattice. I show how
atomic interactions affect these processes and discuss conditions for possible experimental

realization. This chapter is based on a collaborative work with Qian Niu [68].

6.1 Introduction

Bose-Einstein Condensates (BEC) [69, 70, 71] in dilute atomic gases provide a good oppor-
tunity for controlled study and manipulation of their dynamics, which has not been possible
for He superfluids. Much work has already been done along this line of research, includ-
ing the studies of nonlinear response to time-dependent modulations of the trap potential
[72], two-species BEC under external perturbations [73, 74, 75, 76], vortex states in trapped
condensates [77, 78, 79, 80], and condensates in spatially periodic potentials [81].

In this Chapter, I investigate the possibility of manipulating the condensate by a
periodic potential, which may be created by a standing wave of laser light [82]. In particular,
I show how to boost a stationary condensate to a finite velocity and study how a moving
condensate may be stopped by a stationary potential. I also show how Bloch oscillations
of the condensate arise in an accelerating potential. The motion of ultra-cold but non-BEC
atoms in accelerating potentials have been studied extensively, and can be understood in a
model of non-interacting atoms [83, 84, 85]. Here I am interested in the effect of atomic

interactions on the quantum transport of the condensate.

Instead of using trapped gases, I study a model of a free condensate released from
a trapping potential after the ground state BEC is achieved. The typical size of a BEC
wavepacket is of order 10 pum, which expands with a typical time scale of 10 ms. The
wavelength of our standing wave will be much smaller than this size, and the proposed

experimental processes are also of much shorter duration than the expansion time. It is
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then reasonable to model the condensate dynamics as a one dimensional problem, where
the system varies in the direction of the standing wave and is uniform in the perpendicular
directions. Another case of interest is a BEC strongly confined in a long cigar shape [86, 87].
The density profile in the transverse directions is held fixed by the trap while the motion
along the longitudinal direction can be considered free. When the standing wave of the laser
light is applied along the longitudinal direction, it suffices to consider only that direction,
with the caution that the effective scattering length between the particles is renormalized by
a factor of half due to the transverse confinement [88]. In both cases I can model the motion
as a one-dimensional problem and take the initial state to be uniform before the standing

wave is turned on.

6.2 Quantum Transport in Optical Lattices

Quantum transport phenomena such as Bloch oscillations and Landau-Zener tunneling have
been studied theoretically in condensed matter physics since the early 1930s, but have not
been observed in a crystalline solid because scattering by impurities, phonons, and effects of
other particles preventing the completion of even a single period of Bloch oscillation. Another
problem is that the natural lattice spacing (< 1nm) is very small requiring enormous electric
fields to obtain the substantial tilt of the potential needed for small Bloch periods. The
Bloch period is 7 = h/(F'd), where h is Planck’s constant, d is the lattice spacing, and F' is

the force on the particle.

The situation becomes much more favorable in clean superlattices. The lattice con-
stant of these structures can be ~ 10nm, yielding a much shorter Bloch period under the same
electric field. In the late 1980s, Wannier-Stark ladders were seen in superlattices,evidence
for Bloch oscillations was seen,and the observation of Zener breakdown was reported.There
results represent an important breakthrough in the study of quantum transport of electrons.
But dissipation and elastic scattering by impurities are still a central problem limiting the

coherent, evolution required of quantum transport.

However, with the recent development of laser techniques, new systems have emerged
to study Bloch oscillations, Wannier-Stark ladders, and Landau-Zener tunneling. These
systems use atoms instead of electrons and a periodic light field instead of the periodic
crystalline potential. The advantages of this approach are precise initial state preparation,
and final detection, negligible dissipation or defects and the possibility for time-resolved

measurements of quantum transport.

The light field is created by a laser standing wave made of two counterpropagating,
equal-intensity waves. When they have exactly the same frequency, the potential is station-

ary. The light intensity along the standing wave is of the form Iysin?(kz), where k = (27/)),
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A is the optical wavelength. For a sufficient large detuning between the laser and the atomic
frequency, the atoms remain in the ground state and simply experience a potential V' (x) that

is proportional to the intensity.

I adopt this new approach based on the optical lattice and carried out numerical

simulations to study the quantum transport phenomena.

6.3 Nonlinear Schrodinger Equation

My study of the BEC dynamics will be based on the nonlinear Schrodinger equation. The
equation has been successfully applied to the calculation of stable BEC states, the expansion
of BEC, and collective excitations [89, 90, 91, 92, 93, 94, 95]. It can be derived from the mean-
field theory, with the atom-atom interaction modeled by a repulsive J-function potential, and
should be very accurate for the dilute, near-zero temperature condensate [96, 97]. Specifically,

I consider the following 1D equation,

L 0¢ B % Arh’a

_Lr g9 2
thar = =555 + Vocos(2krz)o + - |o|° o (6.1)

where m is the atomic mass, k;, is the wave vector of the laser light, a is the s-wave scattering

length between atoms, and V4 is the magnitude of the potential which is proportional to the
light intensity. The normalization of the wave function is such that |$|? represents the number

of atoms per unit volume.

I rescale Eqn. (6.1) by introducing dimensionless variables,

T = QkL.T (62)
t= %4]9,2;7? (6.3)
s 9
o= N (6.4)
~ m, 1
h? " 4k?
C= ”Zg” (6.6)
L

where ng is the density of BEC. Then I obtain the dimensionless equation (replacing Z by z,

etc.),

d &
z‘a—f - ‘%a—ﬁ + Vocos(z)¢ + Clo|* ¢ (6.7)

Iset Vo = 0.1 ~ 0.4 and calculate the response of the solutions to the external potential
for various values of C. As in Ref.[89], I use the Crank-Nicholson method [32, 3] for the
numerical solution of Eqn. (6.7). This method preserves the unitarity of the time-evolution,
and yields good convergence of the solutions for moderate values of the non-linear coupling
strength C (C < 1 mostly in this work).
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6.4 Blocking Condensates

First, I consider how the current of a moving condensate degrades when a stationary periodic
potential is turned on. My initial wave function is taken to be ¢ = e?*°® which has a current
ko. (In the Chapter 6.5, I will show how such a state may be prepared.) The potential is
then turned on adiabatically to a strength V; in a time ¢y, and stays constant afterwards.

From the solution, I obtain the condensate current

i = (5 tm(g ) (63)

as shown in Fig. 6.1, where I have taken kg = 1/4, V5 = 0.05, and ¢y, = 60.

0.25

0.24

Current

0.23

0.22

| ‘ | | ‘ | | ‘ | | ‘ |
0 50 100 150 200
Time

Figure 6.1: Current as a function of time for the wavefunction with initial current ko = 1/4.
Vo = 0.1, and to = 60. Results are shown for C = 0.0, 0.1, 0.4, and 1.0.

The current decreases as the potential is turned on and settles down to new values
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depending on the strength of the atomic interaction C. For small C, the current decreases
dramatically, but for C' > 1.0, the current stays almost constant (also see Fig. 6.2(a)). These
results show that the ability for the condensate to maintain its current depends crucially on

the strength of interaction between the atoms.

This strong dependence is explained by the screening effect. I view our system as

an ideal (non-interacting) gas in the effective potential
Vocos(z) + C|o|? (6.9)

with the condensate wave function corresponding to the Bloch state in the lowest energy
band of the effective potential and with initial wave number k3. The Bloch wave number is
conserved because the potential is periodic and the state lies in the lowest band because kg
lies in the first Brilloin zone and the potential is turned on adiabatically. The Bloch state
has a periodic density profile so that the periodicity of the external potential is preserved in
the effective potential. The screening effect arises because the density of atoms tends to be
larger in the potential wells and smaller in the barrier regions, so that the second term in the

effective potential tends to even out the first term which represents the external potential.

An explicit analytic expression for the effective potential can be calculated using

perturbation theory as

Vers cos(x) + const. (6.10)
where
Vo
Vers = 6.11
T 1rac (6.11)

This result is valid as long as the condensate density is nearly uniform, i.e., when V. ¢y << 1,
which is realized for either a weak external potential or a strong atomic interaction. From

this effective potential, I can also calculate the current perturbatively, with the result,

2
8koViyy

e (6.12)

7=

I plot the current and the effective potential as functions of C' in Fig. 6.2, where I see that

the analytical results agree very well with the numerical data.

The above picture of non-interacting condensate in a screened effective potential also
gives an idea of the time scale for adiabaticity. The relevant energy gap is that between the
lowest two bands at the same Bloch wave number, which is about AE = 1/4 for ky = 1/4
in the limit of small V,s¢. In order to avoid excitations across the gap, I choose our turn-on

time of the potential to satisfy the condition,

27
A = 1
to > NG 8 (6.13)

84



Tiny oscillations of the current in Fig. 6.1 are due to residual non-adiabatic excitations, as is
evident from the fact that their oscillation frequency coincides with AE. These oscillations

becomes even smaller if T use a longer turn-on time.

6.5 Boosting Condensates

In this Section, I show how a stationary condensate can be boosted to a finite velocity. I first
turn on a stationary potential adiabatically to a strength of 0.1, then accelerate the potential
to a final velocity of vs. The induced current (the average velocity) of the condensate is shown

in Fig. 6.3 for vy = 0.2 and for various values of atomic interaction C.

For C' = 0, the condensate follows the motion of the potential, acquiring the same
velocity as the potential. For nonzero C, the current is lower, implying a leakage of the
atoms through the potential. For larger C, very little current is dragged by the potential.
These results can again be simply understood in terms of the screen effect of atomic inter-
actions. The insensitivity of the motion of the condensate with strong atomic interaction to

an external potential reminds us of the property of a superfluid.

6.6 Bloch Oscillations

In this Section, I show in Fig. 6.4 Bloch oscillations of the condensate when the potential is

accelerated at a constant rate a.

The average slope of the current is given by the acceleration, meaning that the
condensate follows the potential on average. The oscillatory modulations can be understood
by the following arguments. In the co-moving frame, the potential is stationary but the
atoms feel an inertial force, which makes the Bloch wave number drifting at a rate of —a.
If the lowest band of the effective potential has the dispersion e(k), then the velocity in the
co-moving frame is given by € (—at). Because of the periodicity of the Bloch band, this
velocity has a zero mean and an oscillation period of 1/a, which agree with the results in the

figure.

The size and shape of the modulations (excluding the fast oscillations to be discussed
below) in Fig. 6.4 can also be explained in terms of Bloch oscillations in the effective potential
[84]. For C' = 0, the potential of strength V5 = 0.4 is known to produce a narrow band with
a cosine energy dispersion, which explains the small and sinusoidal modulations in that case.
For large C, the effective potential is weak, and the energy dispersion is parabolic (as k2/2 in
the free case) except near the Brilloin zone edge k = :I:%, where it becomes flat due to Bragg
reflection. The acceleration of the condensate in the comoving frame is given by —ae” (—at),

which nearly cancels the acceleration of the potential everywhere, except when k is near the
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zone edge. The velocity of the condensate should then follow a stair case curve, with the
steps coincide with the occurrence of Bragg reflections. The fast oscillations for the cases
of C = 0.3 and 0.5 in Fig. 6.4 are due to Landau-Zener tunneling [98] through the gap
between the lowest two bands of the effective potential. The critical acceleration for the
tunneling is 7V ;/2,[83] which is smaller for larger values of C' and becomes comparable to
the acceleration used in the calculation for the above two cases. A detailed study of Zener

tunneling of a BEC will be reported in the future.

6.7 Landau Zener Tunnelings

In this section, I show in Fig. 6.5 that the transition from Bloch oscillations to Landau-
Zener Tunnelings for a given acceleration, a = 0.02. For C' = 0 and 0.1, Bloch oscillations
are apparent for the £k = 0 state. As C is increased to 1, the signature for Landau-Zener
tunneling appears. The k = 8 states, which are at the edge of the first Brilloin zone, shows

different oscillation frequencies dominate by interband transitions.

This transition from Bloch oscillations to Landau-Zener tunneling can be also un-

derstood by the concept of screening via nonlinear atom-atom interaction.

The LZ tunneling rate across a gap under acceleration a of the potential can be

estimated as

ac
a

v = ae (6.14)

where a, = (7rA?/K) is the critical acceleration, with A the half width of the gap and
K = (n/2) the wave number of Bragg scattering corresponding to the nth gap. For V5 = 0.4,
a. = 0.25. For non-zero C’s, the effective potential Vs decreases as Vo5y ~ V/(1 +4C), so

does the critical acceleration, a, ~ fo Iz Applying the screening concept, a. ~ 0.010 for

3
C =1, so a = 0.02 is well over the critical acceleration. Comparing with a non-interacting
case, C' = 0.0, a clear signature of the Landau-Zener tunneling is seen in Fig. 6.6. Here
atoms are not dragged by an ever-accelerating optical potential, the current just saturates

at around 0.625.

6.8 Experimental Realization and Future Directions

In typical experiments to date, the relevant parameters are given by

ne = 102°m 3

a = 5.4nm

2
kp = Tﬁ —8.06 x 10°m "
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for Rb [99] and

no = 3 x 102'm—3
a = 2.65nm

kr =1.07 x 10"'m~*!

for Na [87]. The strength of atom-atom interaction is given by C' = (7nga/k2) = 2.6 x 102
for Rb and C = 2.2 x 107! for Na. Larger values of C' may be achieved by a higher density
of the condensate, a higher a, and a smaller k. All three parameters can be changed inde-
pendently. A higher density may be achieved by a factor 5 enhancement without rendering
the condensate’s life time too short for the processes discussed here. a can be tuned as well
by a Feshbach resonance [87, 100, 101]. A smaller k;, may be achieved by adjusting the rel-
ative angle between the two beams of interfering light without changing the laser frequency.
Therefore, the phenomena discussed in this Letter should be observable within the current

experimental capability.

Apart from a detailed study of the Landau-Zener tunneling mentioned above, future
theoretical investigations are needed to explore other possibilities of the condensate motion
such as Wannier-Stark ladders and quantum chaos, which have been observed on cold but
non-BEC atoms. Because of the non-linearity due to atomic interactions, spontaneous break-
ing of translational symmetry of the condensate can occur under certain conditions as is seen
in a primitive study of ours. Further improvement of the theoretical framework is also needed

to include the effects of thermal and quantum fluctuations.

Note added: During the revision of this thesis, I received a preprint from Anderson
and Kasevich, reporting the observation of Bloch oscillations and Zener tunneling of a BEC
in a stationary optical lattice under gravity. [102] In the free-falling frame of reference, this
experimental system is equivalent to the one described here, and offers a potentially good

testing ground for our theoretical predictions.

87



0.25 - ]
| - 0.1
r - 0.08
0.24 ]
ot i
[ i
s
= | - 0.06
= i
S| <
4 @
@
0.23 - 1
r — 0.04
- 0.02
0.22 -
\ \ \ \ \ 0
0 0.5 1 1.5 2
C

Figure 6.2: Average current (a) and the strength of the effective potential Vess (b) as a
function of C after the turn-on of the potential for the runs in Fig. 6.1. Open squares and
crosses are numerical results. Solid lines are analytic results.
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Figure 6.3: Current as a function of time for the wavefunction with zero initial current. V;
= 0.1 and the acceleration occurs between ¢t = 0 and ¢ = 50. Results are shown for C = 0.0,
0.1, 0.4, and 1.0.
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Chapter 7

Stabilization in a 2D Atomic Model

In this Chapter, I present calculations of stabilization lifetimes for 2D “soft-core” hydrogen
driven by a high intensity high frequency laser. I study this effect for both linear and circular
laser polarization. In either case, the wavefunction obtains a characteristic form. For linear
polarization, the radiative signature of stabilization is shown. I also discuss the dynamical
nature of the stabilization. This chapter is based on a collaborative work with Will Chism
and Linda Reichl [103].

7.1 Introduction

The advent of lasers capable of producing electric fields on the order of interatomic electric
fields has led to the discovery of many unexpected nonperturbative phenomena[104]. One of
the more recent effects to gain attention is the adiabatic stabilization of atoms in intense, high-
frequency laser fields. Stabilization is characterized by a decrease of ionization probability in
an atom-laser system, as the intensity of the laser is increased. This phenomena, originally
predicted by Gersten and Mittleman[105], is inherent to the dressed, or Floquet, states of
the atom-laser system. These states are time periodic, and hence, are defined only in the
limit of adiabatic turn-on. The high-frequency condition is given roughly by hw > I,, where

w is the laser frequency and I, is the ionization potential.

Using high frequency Floquet theory (HFFT), Pont, Gavrila, and co-workers[106]
presented the first computations indicating stabilization in laser driven hydrogen. For linear
polarization, they found that the wavefunction obtains a dichotomous form. Pont and Gavrila
also calculated lifetimes for atomic hydrogen driven by a high-frequency laser of circular
polarization[107], although no waveform analysis was presented. Subsequently, using a finite
difference technique, Kulander, Schafer, and Krause calculated the stabilized state lifetimes
for ground state (g.s.) hydrogen driven by linearly polarized laser fields[108]. As with the
Floquet calculations, this computation employs the non-relativistic Schrédinger equation,
treats the interaction in the dipole approximation, and assumes a classical laser field[109).

The field is ramped up to a constant value, after which the probability in the vicinity of the
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nucleus obeys a reasonably well defined exponential decay. The lifetime is identified with the
inverse of the decay rate. Comparison with lifetimes obtained via HFFT show agreement to

within an order of magnitude[110].

Insight into the mechanism for stabilization has been gained by considering the one
dimensional classical motion corresponding to linear laser polarization[111]. In the Kramers-
Henneberger frame, the electron drifts back and forth between the turning points, being
passed multiple times by the atomic core. However, the electron can only be ionized by the
longer duration impulses it may receive while it is near the turning points. The turning
points occur at +a,, where a, = F/w?, and F and w are the laser field and frequency in
atomic units (A =e =m = 1). As the field is increased, the excursion is increased, and the

electron spends more time away from the turning points. Thus, the lifetime is increased.

These predictions of stabilization were based upon the use of g.s. hydrogen as the
initial state, which requires a laser photon energy above 13.7eV, well beyond present laser
capabilities. However, Vos and Gavrila realized that stabilization might be observed with
current lasers if circular Rydberg states were used as the initial states[112]. Shortly thereafter,
de Boer and co-workers[113, 114] observed the first experimental indication of stabilization
using circular Rydberg states of neon. A decrease in total ionization yield with increasing
peak laser intensity but constant fluence was observed. This disagrees with Fermi’s golden
rule indicating nonperturbative behavior. Recently, an experiment by van Druten and co-
workers has confirmed de Boer’s results[115], also ruling out the possibility that the observed

stabilization might be due to mechanisms other than adiabatic stabilization.

In this chapter, I investigate stabilization lifetimes and characteristic waveforms in
a 2D hydrogen model driven by a high intensity laser. The laser frequencies I consider
are well within the predicted stabilization regime. I consider both linear and circular laser

polarizations.

7.2 Soft-Core Atomic Model

My model atom is a 2D version of the 1D “soft-core” atom first used by Eberly[116] in
studying laser driven hydrogen. This 1D model potential avoids the Coulombic singularity,
retains asymptotic Rydberg behavior, and is parity invariant. However, it is only applicable
to linear laser polarization. To include arbitrary laser polarizations and to allow transverse
diffusion of the wavefunction, I study the 2D version previously considered by Protopapas,

Lappas, and Knight[117]. The 2D “soft-core” potential is given by
A

Vatom = — /—()42 o y2

(7.1)
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where Z is the core charge, and a smooths the Coulombic singularity. All quantities are in
atomic units (a.u.), unless otherwise noted. The values Z = 1, and a = 0.8 are chosen so

that the ground state has the hydrogen binding energy, —0.5. The laser interaction is
Vine = g(t)F (zcos(wt + ¢) + eysin(wt + ¢)) , (7.2)

where g(t) is the laser ramping, and Fle, w, and ¢ are the laser field, ellipticity, frequency,

and initial phase, respectively.

The Schridinger equation is integrated using the O(Az?) Crank-Nicholson finite dif-
ferencing scheme[32, 3]. In order to avoid reflection of the wavefunction at the computational
boundaries, I use an imaginary absorbing potential to annihilate any outgoing portion of the
wavefunction[118, 37]. The implementation is similar to that used in other multidimensional
calculations[108, 109, 117]. The laser interaction is turned on with a sin? ramping, with
maximum ramping rate proportional to F'/n, where n is the number of cycles in the turn-on.
For all calculations, I set this ratio to one, ie. the laser electric field in a.u. s the number
of cycles in the turn-on. After the field strength of interest is reached, the intensity is set
constant. This is not designed to represent an actual experiment, where atoms would be
subject to a pulse of finite duration, but instead is chosen to ensure significant population
of the final stabilized state. My method for determination of the stabilized state lifetime
is identical to that of Kulander[108]. As the interaction is ramped on, the wavefunction
develops an outgoing component. Once this outgoing portion leaves the interaction region,
the probability follows a reasonably well defined exponential decay, from which the lifetime

is determined.

7.3 Equation of Motion

The quantum mechanical Hamiltonian for the electron interacting with classical electromag-

netic field is given by

o (59— S ) +eplr, 1) + Vir 1) (7.9

H=]
where A(r,t) and ¢(r,t) are electromagnetic vector and scalar potentials. V(r,t) represents
any other (external) potentials, and m and e are mass and electric charge of the atomic

electron. The equation of motion for the electron is simply a Schrédinger equation,

o)
ihse = Hy (7.4)

Several approximations/assumptions are made to the Eqn (7.4): (1) the electromagnetic field
is not quantized, (2) transverse gauge is used, i.e., ¢ = 0,V - A(r,t) = 0, (3) an atomic core

potential is smoothed (“soft-core”) around the center of the atom to avoid the singularity
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problem at the origin, i.e., Votom = % with a core effective charge Z.;; and an effective

atomic range a, (4) electron is assumed to be spinless, and nonrelativistic, and (5) an electric
dipole approximation is made for an atom-laser interaction. Then, the Eqn (7.4) is reduced
to

_$2
e

ot 2m

e dA
V2 + EI‘ it + Vatom ] (7.5)

where Vatom(2,y) = \/igf_:rg and the atom-laser interaction part can be rewritten so that

er - 44 becomes Eqn. (7.2).

Written in an atomic unit for the numerical experiments, the Schrédinger equation

to solve for stabilizations in 2D is given by,

By 1.9% 9% z

)_7
/a2+m2+y2

s = 552 8_y2 P + g(t)F (zcos(wt + ¢) + eysin(wt + ¢)) ¢ (7.6)

Eqn. (7.6) is integrated by the finite difference method using Crank-Nicholson

scheme.

The corresponding finite difference equation is given by

. n 1 n+i n41 . n+i n+i
zA?_wij = _i(Am + Ayy)wi]‘ 4+ (Vzg S =iy z)wi]‘ : (7.7)
ntd 4yl . . .
where ¢, * = —4——=, and the wavefunction and the potential are descretized by
o= @iy, t") (7.8)
Z
Vi = ———————tg(t")F(zicos(wt" + ¢) + ey;sin(wt" + ¢)) (7.9)

\or +ai +y3

Annihilation boundary condition is implemented via an imaginary potential, v. v damps out

any outgoing part of the wavefunction.

7.4 Stabilization Lifetime
My primary result is shown in Fig. 7.1.

Here, I plot the lifetime of adiabatically stabilized g.s. hydrogen, as a function of
laser field strength, for both linear and circular laser polarization. The laser frequency is
w = 1.2. The circularly polarized case shows a dramatic increase in lifetime as the field
is increased, indicating strong stabilization. The linearly polarized case also demonstrates
increasing lifetime with increasing field strength. The remaining normalization as a function
of time (in laser cycles), from which the lifetimes are determined, are shown in Fig. 7.2 and
Fig. 7.3.
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As seen in these figures, the probability inside the norm box remains constant ini-
tially. This corresponds to the finite amount of time required for any portion of the initial
wavefunction to propagate to the edge of the norm box. The remaining normalization then
transitions to an exponential decay as the ionization front traverses the norm box boundary.
In order to visualize the stabilization dynamics, I show snapshots of typical probability den-
sities for the adiabatically stabilized states in the laboratory frame. In Fig. 7.4 I show the
probability density for field strength F' = 10 and linear laser polarization.

I find the characteristic dichotomous waveform, with probability peaks separated
by ~ 1.3a,. This structure oscillates back and forth between the turning points, while
undergoing an overall decay. As seen in the snapshot, the peak heights are unequal. Time
series analysis reveals that the maximum probability alternates between peaks in step with
the oscillation. This indicates that I have populated a superposition of Floquet states during
the turn-on[119]. In Fig. 7.5 I show the probability density for F' = 3.75 and circular laser

polarization.

There appears to be a single peak with a tightly wound spiral tail. This structure is
similar to that found by Patel, Protopapas, Lappas, and Knight[120], using the same model,
laser frequency w = 1.0, and field strength F' = 15. However, they find a ring of enhanced
probability at the excursion parameter o, = 15. Time series analysis reveals a similar effect
for my parameters. The central peak is actually double peaked, with one maxima at the
origin, and the other circling about the origin at my excursion parameter a, & 2.32. Thus, I
find the characteristic stabilized waveform, when the laser polarization is circular, will consist
of some probability trapped near the core and some probability trapped near the classical
excursion parameter. The relative amounts of population trapping will depend on the laser

ramping, field strength, and frequency.

As mentioned previously, full 3D calculations of stabilized g.s. hydrogen lifetimes
computed using HFFT[110] and a finite difference technique[108] differ by an order of mag-
nitude. These computations assume linear laser polarization and laser frequency w = 1.0.
For comparison purposes, I have calculated stabilized state lifetimes using my 2D model with
identical assumptions. For laser fields F' ~ 1.0 — 4.0, I find an order of magnitude larger
lifetimes than those found in the 3D computations. However, for fields F' =~ 6.0 — 13.5, the
2D lifetimes agree fairly well with the 3D lifetimes. (see Table 7.1).

The discrepancy could be due to a number of factors inherent to the 2D “soft-core”
model, such as the lack of diffusion along the photon direction or the decreased maximum

electron acceleration.
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Table 7.1: Comparison of stabilized state lifetimes calculated for hydrogen in 3D, with
lifetimes calculated using the 2D model. The 3D computations use HFFT[110] and finite
differencing[108]. The laser has frequency w = 1.0 and linear polarization. All quantities are
in a.u.

Q, 3D HFFT | 3D finite diff. | 2D finite diff.
1.2 ~ 7.7 31.8 ~ 56
2.4 ~ 28.7 ~ 83
3.4 47.5 ~ 170
6.75 275.6 ~ 343
13.5 1117.3 ~ 910

7.5 High Harmonic Generation

The radiation of harmonics of the driving field as the electron interacts periodically with the
core is now well confirmed signature of stabilization. In Fig. 7.6, I show the dipole radiation

spectra, for linear laser polarization, as intensity is increased.

For lower field strengths F' = 1.0 — 2.0, there is no significant harmonic production.
However, as field strength is increased to near 6.0, I see the onset and increase of third
harmonic generation. The lack of even harmonics is due to my relatively slow ramping rate.

For field strengths F' > 7.0, I also see the fifth harmonic signature.

7.6 Dynamical Nature of Stabilization

Fig. 7.7 shows the remaining normalization as a function of time (1 laser cycle is t=5.236),
for linear laser polarizization. The different curve corresponds to the different turn-on cycle,
N. For N > 3, the lifetime is the same, but as N goes down below 2, lifetime estimation

decreases.

Fig. 7.8 shows a dipole moment in z-direction, d,, as a function of time for an
instant turn-on, i.e., zero turn-on cycle. The corresponding HHG distribution is in Fig. 7.9.
There is a clear signature for the third order harmonics. One can also see the second order

harmonics due to the non-adiabatic turn-on.
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Figure 7.1: Lifetime (a.u.) as a function of laser field strength (a.u.) for adiabatically
stabilized 2D hydrogen. The laser frequency is w = 1.2 a.u. Lifetimes are determined via an
exponential fit to the remaining normalization as a function of time, shown in Fig. 7.2 - 7.3.
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Figure 7.2: Remaining normalization as a function of time (laser cycles), for linear laser
polarizization. For final field strength F' < 2.0, there is no apparent stabilization. However,
as the final field strength increases above 3.0, transient ionization is suppressed by a slower
exponential decay, indicating stabilization.
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Figure 7.3: Remaining normalization as a function of time (laser cycles), for circular polariza-
tion. Again, for final field strength F' < 2.0, there is no apparent stabilization. As final field
strength increases above 2.5, the decay rate undergoes a dramatic decrease, characteristic of
strong stabilization.
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Figure 7.4: Snapshot of the probability density in the laboratory frame for linear laser
polarization. The field strength is F' = 10.0, and the time is ¢ = 67.5 a.u., corresponding to
approximately 13 laser cycles. The x and y values shown range from —30 to +30. We see
the dichotomous wavefunction characteristic of stabilization.
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Figure 7.5: Snapshot of the probability density in the laboratory frame for circular polariza-
tion. The laser field strength is F' = 3.75, and the time is t = 46.875 a.u., corresponding to
approximately 9 laser cycles. The x and y values shown range from —24 to +24. Probability
is peaked near the origin, with spiral tail.
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Figure 7.6: Harmonic signature of stabilization. The laser polarization is linear. For field
strength F' =~ 1.0, the dipole radiation spectra shows no significant radiation. However,
as field strength is increased to 6.0, we see the onset and increase of the third harmonic
generation. For field strengths F' > 7.0, we also see the fifth harmonic signature.
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Figure 7.7: This figure shows remaining normalization as a function of time for different
turn-on cycles, N. The runs are done with field strength F' = 6 in linear laser polarization.
(1 cycle is t=5.236.)
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Chapter 8

Adaptive Mesh Refinement Techniques

8.1 Introduction

Adaptive mesh refinement (AMR) techniques are crucial for the numerical solutions of prob-
lems which have large dynamical ranges. The usual uni-grid approach becomes inefficient
when some regions of the computational domain become hard to resolve with a fixed distri-
bution of grid points. If the finer grid is used at the start of calculations, the sharp features
may be resolved, but grid points in smoother area might be wasted. Another problem is that
in general one does not know a priori when and where the high resolution is required during

the time evolution of the solutions.

This situation is true not only for numerical relativity but also for other compu-
tational physics problems. The basic idea of AMR is to “adapt” the grid structure to the
features of the solution, in order to achieve a specified accuracy with minimal use of compu-

tational resources.

In this Chapter, I briefly review the Berger and Oliger AMR Scheme [121] for finite
difference methods, and discuss some of the issues which arise in AMR applications. I have
implemented and tested general algorithms for use in AMR work [122], including 2D and 3D

clustering routines and initial regridding procedures.

8.2 Berger and Oliger Scheme

The basic idea of the Berger and Oliger (BO) scheme [121, 123] is to use multiple levels of
locally-uniform grids. This scheme allows a different local scale of discretization to be used
in different parts of the computational domain, typically in order to keep the local truncation

error, 7, below some pre-specified threshold.

Here T adopt the “minimal” Berger and Oliger scheme [124]. The minimal Berger
and Oliger scheme uses a single computational coordinate system. It has one globally uni-
form coarse grid which covers the entire computational domain and an arbitrary number

of coordinate-aligned, nested, locally uniform fine grids (arranged in a hierarchical fashion).
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Whether or not a fine grid needs to be generated depends on the truncation error estimation.
Once the grid points that require refinement are identified, locally uniform fine grids are gen-
erated by clustering those grid points into rectangular refinement regions. Grid refinements

are done in time as well as in space.

8.3 Local Truncation Error Estimation based on Shadow Hierarchy

I adopt the idea of Local Truncation Error (LTE) Estimation based on the Richardson
extrapolation [125] as a refinement criteria. Consider a 2-level update explicit scheme with
a finite-difference update operator @. I use u™ to denote a solution of the original PDEs and
4™ a finite difference solution. Then, at a given resolution, h, the advanced-time solution

a1 is given by:
o™t = Qpan (8.1)

I then assume a Richardson expansion of the finite difference solution for a second order

differencing scheme,
4" =u" + h%ey + - - - (8.2)

where the error function e} is independent of the grid spacing, h. The local truncation error

is given by
wt = Quut = KP4 - - - (8.3)
It w is smooth enough, then by taking two time steps with the operator, @,
- Qum =21 4 - (8.4)
Now, using the same operator as @) but based on grid size of 2h,
u"? — Qopu™ = (2h)*1y = 8K + - - - (85)
Then, the local truncation error, 7, is estimated by
Qiu™ — Qopu™ = —6h3ry +--- =7 (8.6)

Including only the leading order terms, the local truncation error can be approximately

computed using 4™ at a given time t”,
T~ Q0" — Qond” (8.7)
Despite some problems, this procedure of estimating the LTE has been quite effective

[124]. One does not have to know the exact form of truncation error to apply it, and it is

relatively independent of the PDE or the difference methods which are used.
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Implementation of this idea can be done straightforwardly. The simplest approach
uses a temporary array to save the grid functions at the current level because the current
data stored will be destroyed when two time steps are taken on the original grid. After the
LTE is calculated, the temporary array is deallocated. One drawback of this approach is a

dynamical memory-doubling at the regridding time.

Choptuik [126] has suggested an alternative approach based on the idea of a shadow
hierarchy. In this new approach, the numerical integration is done on a 2-to-1 coarsened
version of the base Berger and Oliger grid hierarchy, as well as on the base hierarchy itself.
At regridding times, the truncation error is calculated simply by subtracting the data on
the base hierarchy from corresponding values on the shadow hierarchy. This approach also
significantly simplifies the code for the local truncation error estimation procedure compared

to the memory-doubling approach.

Pseudo code for a typical AMR program using a 2-level differencing scheme and

using a shadow hierarchy is shown in Fig. 8.1.

8.4 Regridding Procedure

The regridding procedure consists of several steps [121].

e Local truncation error estimation

Flagging points needing refinement

Clustering the flagged points

Subgrid generation for each cluster

Initialization of subgrids

The local truncation error estimation has already discussed in the previous section.
Now, when it comes to a time for a regridding at the given level, [, the LTE is computed for
all level equal to or higher than level I. Once LTE is computed, the regridding is recursively
done starting from the finest level to the current level. This way, grids are generated using
the most accurate error estimates taken from the finest grid at any given point. This also

ensures that grids are properly level-nested.

The first step for a regridding is to identify those grid points at level, [, which need
to be in a finer grid at level [ + 1. Using a pre-determined truncation criteria, 79, I flag those
points x for which 7(x) > 79. In this step, grid points in level | grids which are interior to

grids at level [ + 2 are flagged even if 7(x) < 79 to assure a properly nested grid structure.
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The next step is to cluster flagged points by coordinate-aligned rectangular bounding
boxes. The original Berger and Oliger algorithm [121] allows arbitrary alignment of the
bounding boxes. Here I follow Berger and Collela [123] and restrict subgrids to those whose
boundaries are all aligned with coordinate directions. The clustering routine is the most
challenging part of the regridding procedure, particularly for 2/3D calculations. Different
clustering algorithms have been suggested and tested and I will them in more detail in the

following Section.

Once the clusters are determined, subgrids are allocated and the data for each grid
function on the subgrids are initialized. This initialization is done by interpolation from the
next coarser grid or transferral from the old grids at the same level which overlap with the

newly created subgrids.

I have implemented a consistent initial-time regridding procedure [127]. The original
t = 0 regridding approach “turns on” refinement, one level at a time during the early stages
of an evolution [128]. The new approach ensures that an appropriate level of discretization
(again as determined by LTE estimates) is used at the initial time, as well as at all subsequent

times.

Regridding at the initial time, ¢ = 0, is a little bit different from the regridding at
the generic time. This is because there is no pre-existing nested grid structure at ¢ = 0.
Therefore one has to create a refinement structure from the “bottom up”. In other words,
the level | = 1 grids are generated using truncation error estimates on the [ = 0 base grid.
Then, if necessary level [ = 2 grids are computed from level [ = 1 LTE’s, level | = 3 grids
are computed from level [ = 2 LTE’s, etc. I also take advantage of the shadow hierarchy to
generate t = 0 truncation error estimates, first on the base level, then on as many levels as are
necessary to ensure that the initial LTE is below the threshold throughout the computational

domain.

The only significant difference between the regridding procedure at the initial time
and later times is that, because the shadow hierarchy approach is destructive (at each stage
(level) of the regridding, we have to advance the finest-level equations of motion two time-
steps), we must reinitialize the ¢ = 0 data (and ¢ = —dt data for 3-level schemes) on each
final component of the grid hierarchy. This may involve re-reading initial data files, or
recomputing some analytic specification of the ¢ = 0 data, but it seems a safe assumption
that reinitialization will always be possible, and, significantly, the approach does not require
additional memory for start-up. In addition, normally the initial data is known to higher
accuracy than is anticipated from the evolved data. Therefore the re-initialization by re-
reading will at the initial time often result in better data than the data that is generated by

interpolations.
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The problem of memory doubling arises at the initial time, too. Fortunately, the
idea of the shadow hierarchy can be applied to the initial time. The basic idea is that the
initialization is done twice on each level by reading in the initial data set. The LTE is
computed using the shadow hierarchy and the initial data is read in before and after the
LTE estimation. This way, one can avoid memory doubling and inaccurate specification of
data from interpolation. Pseudo code for this algorithm is shown in the “Initial Data” part
of Fig. 8.1.

8.5 Testing of Clustering Algorithm

Among other things, the success of an AMR program depends on an efficient clustering
algorithm. The main problem for any clustering algorithm is to define an optimal set of
bounding boxes enclosing all the flagged points. A good clusterer should satisfy the following
conditions [129].

e There should be as little unnecessarily refined area as possible.

There should be as few bounding boxes as possible.

The bounding boxes should cover all flagged points.

The algorithm should be fast.

Finding a general and robust method is still an open problem. In fact, the first two

requirements compete with each other.

Several different clustering methods have been used in conjunction with the BO
algorithm [129]. For example, the bisection method checks the efficiency of each rectangle,
where the efficiency is defined as the ratio of flagged points to the total number of coarse
grid points in the new rectangle. If the efficiency is less than a preselected threshold, the
rectangle is bisected along the longest direction of the rectangle to generate two smaller
rectangles. The process is repeated recursively on each of the two new rectangles until all
generated rectangles satisfy the threshold. A drawback of this method is that it uses no
information about the locations of the flagged points so it tends to generate nonoptimal
grid structures, and is known to create clusters even if no natural clusters exist. To cure
this problem, the bisection step usually is followed by a merging step, wherein neighboring
rectangles are merged into larger ones if the result continues to be acceptably efficient. There
are various other methods such as the minimal spanning tree algorithm, but many of the
older algorithms produced less than optimally efficient grids which tended to overlap too

much. Better grids were easily created by hand.
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Berger and Rigoutsos [129] suggested a new algorithm based on the idea of signatures
[130] and edge detection [131]. In 2D grids, the horizontal and vertical signatures, H(z) and
H(y), are defined as

H(z) = / f(zy)dy (2.8)
and
H(y) = / f(z,y)de (8.9)

respectively. f(z,y) represents a flag information, i.e., f(z,y) = 1 where (z,y) is flagged,
and zero otherwise. This algorithm first looks for chains of 0’s or “holes”, i.e., x’s or y’s for
which H(xz) = 0 or H(y) = 0 are satisfied. The occurrence of such holes provides obvious
choices for splitting the input grid into a number of rectangles. Thus, the main idea of this
approach is to to look for zero crossings in the second derivative of a signature (inflection
points). The input grid is then partitioned into two grids at the biggest inflection point as
is illustrated in Fig. 8.2. This algorithm is applied only to those rectangles that are still

inefficient.

I have tested two clustering routines based on Berger and Rigoutsos’s algorithm.
One is a FORTRAN 77 implementation by Reid Guenther [132] and the other is a C++ imple-
mentation due to Paul Walker [133]. Both routines were tested within a DAGH-based driver
code [122].

The tests [134] are done by generating a 3D integer array defining a flag (or char-
acteristic) function (1s and 0s) and calling the clusterers with the flag function as an input.
Thus far, the clusterers have been tested with several test-flag arrays which roughly model
the flag arrays one anticipates encountering in the evolution of one or two compact objects
(black holes, boson stars, etc). These include arrays whose flagged points define one or two
spheres or one or two spherical shells. For diagnostic purposes I monitored the overall effi-
ciency, surface-to-volume ratio, total number of real boundary points and total number of
interface boundary points. I used Explorer modules [135] to visualize the output and to aid

in the analysis.

Figs. 8.3, 8.4 and 8.5 show some of test results: bounding boxes generated by a 3D
clusterer for given flagged points denoted by dots.

In general, both clusterers show similar behavior. Efficiencies were almost identical
(differences typically less than 10%), but the C++ routine tends to generate more bounding
boxes (regions requiring refinement) than the F77 routine. Both routines handled spheres
relatively well, but for the spherical shells, both routines generated many boxes (~ 100) with

very low efficiency (typically below 15%). It should be noted however, that this problem was
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anticipated in the original decision to use the minimal Berger and Oliger algorithm. The
basic claim is that, overall, areas requiring refinement in a binary-merger problem will tend
to be volume-filling (i.e. 3D rather than 2D). Real evolutions will be required to fully test
this hypothesis; in the meantime it appears that the clustering routines may be able to be

further improved and I am working towards that goal.
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MAIN
Initial Data; Initial regridding
initialize grid structure; main and shadow hierarchy
initialize data on main/shadow base grid; 1 = O
WHILE( new level )
IF( 1 .ne. L ) THEN
take 2 steps on main, take a step on shadow, swap pointers
local truncation error estimation
IF( new finest level .gt. current level ) THEN
regrid; clustering
initialize data on new fine main/shadow grids
ENDIF
re—initialize data on current main/shadow grids
IF( new finest level .ne. L ) then
take a step forward on main/shadow grid for BC for a fine level
ENDIF
ENDIF
END WHILE
END Initial Data

Evolution; time step(l)
FOR (iter = 1; iter <= niters; iter++)
FOR (i=0;i<NoIterations;i++)
IF( regridding time AND 1 < L )
local truncation error estimation
IF( nwflev .gt. curlev ) THEN
regrid; clustering
ENDIF
ENDIF
take a step on main grids
interpolate boundary-values as necessary
IF( mod(lsteps(1l),2) .eq. 0) THEN
update shadow grids from main grids
take a step on shadow grids
ENDIF
IF( 1 < L ) THEN
time step(1l+1)
ENDIF
IF( 1 >0 AND time-aligned with 1-1 ) THEN
restriction on main/shadow grids
ENDIF
END FOR
END FOR
END Evolution
END MAIN

Figure 8.1: Pseudo code for a general Berger and Oliger AMR program based on the idea of
shadow hierarchy.
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Figure 8.2: Computation of the signature and Laplacian from a given set of flagged points.
The Laplacian indicates where to divide the cluster. The rectangle is partitioned at the
biggest inflection point.
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Figure 8.3: Bounding boxes generated by the F77 version of the clusterer. The flagged points
make up a single sphere.
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Figure 8.4: Bounding boxes generated by the F77 version of the clusterer. The flagged points
make up two overlapping spheres.
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Figure 8.5: Bounding boxes generated by the C++ version of the clusterer. Here the flagged
points make up a single shell.



Chapter 9

Conclusion

In this chapter, I summarize my results and briefly outline possible future research directions.

I have implemented uni-grid Newtonian boson star codes in 2D (axially symmetric,
and slab symmetric) and 3D spatial domain. The codes have been thoroughly tested using
single stationary stars, moving stars, spinning stars, and binary star systems. Even though
I do not anticipate any “new” physics out of the codes, they will continue to serve as test-
bed codes against which the full general relativistic boson codes can be compared in weak
field limits. They will also provide excellent test problems for any AMR programs. Since
the codes are solving the Schrédinger equation, they can also be applied to other research
problems which require numerical solutions of the Schrédinger equation. My future goal is
to implement an AMR version of one or more of these codes using currently available AMR

packages.

I started research on 3D general relativistic boson stars with the hope that by the
time the uni-grid code was fully developed, a package would be available which would allow
almost automatic parallelization and adaptivity of serial uni-grid codes. At the moment, I
am still struggling with stabilizing a single boson star. This is partly due to unstable outer
boundary conditions for the geometry variables. The question of coordinate conditions still
remain even though the maximal slicing or K-driver condition seems to provide a good lapse
condition for single stationary stars. I am going to closely examine the single stationary star
runs with various outer boundary conditions. Then once the stable runs are achieved, testing
will be done with a moving star. I will also examine shift conditions and work towards stable
evolution of binary boson stars. Use of a reliable AMR program will be a crucial part of this

research.

The applications of my Schrédinger codes to other physics problems have also proven
useful as can be seen from the two examples I studied in this thesis. I showed how to ma-
nipulate BECs with an optical lattice and I studied effects of atom-atom interactions on
the quantum transport properties of BEC. I also observed Bloch oscillations of BEC in an
accelerating optical lattice. The study of interacting ultra-cold atoms or Bose-Einstein con-

densates will continue to be an intensive area of research in the atomic-molecular-optical and
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condensed matter physics communities. Optical lattices provide an excellent vehicle in which
to study quantum transport. Some of the concepts are already well-established in condensed
matter physics. One exciting thing about BECs/ultra-cold atoms is that theoretical calcula-
tions can be directly compared to the experiments. This has not been always possible with
solid state systems. I plan to examine Landau-Zener tunneling and Wannier-Stark ladders

more closely in the 1D system I studied here and eventually work with a realistic 3D model.

The study of atoms interacting with a very intense laser field has revealed many
surprising nonlinear effects. Using 2D model atoms which allow one to study the effects of
non-linear polarizations, I was able to demonstrate stabilization of atoms for both linearly
and circularly polarized light field. Solving a time-dependent Schriédinger equation makes
it possible to study the dynamic nature of stabilization. I will also pursue research in that

direction.

Testing and evaluations of each component of an AMR algorithm is crucial and
necessary for a validation or a development of a reliable AMR program which should be very
useful for my future research. I plan to look at the paramesh package developed at NASA
[136]. I will also work to develop a 3D parallel multigrid solver.
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