
Numerical Studies in Gravitational

Collapse

by

Arman Akbarian Kaljahi

B.Sc., Sharif University of Technology, 2008
M.Sc., The University of British Columbia, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Physics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

December 2015

c© Arman Akbarian Kaljahi 2015

Abstract

In the first part of this thesis, we solve the coupled Einstein-Vlasov system in spher-

ical symmetry using direct numerical integration of the Vlasov equation in phase

space. Focusing on the case of massless particles we study critical phenomena in

the model, finding strong evidence for generic type I behaviour at the black hole

threshold that parallels what has previously been observed in the massive sector.

For differing families of initial data we find distinct critical solutions, so there is no

universality of the critical configuration itself. However we find indications of at

least a weak universality in the lifetime scaling exponent, which is yet to be under-

stood. Additionally, we clarify the role that angular momentum plays in the critical

behaviour in the massless case.

The second part focuses on type II critical collapse. Using the critical collapse

of a massless scalar field in spherical symmetry as a test case, we study a general-

ization of the BSSN formulation due to Brown that is suited for use with curvilinear

coordinates. We adopt standard dynamical gauge choices, including 1+log slicing

and a shift that is either zero or evolved by a Gamma-driver condition. With both

choices of shift we are able to evolve sufficiently close to the black hole threshold to

1) unambiguously identify the discrete self-similarity of the critical solution, 2) de-

termine an echoing exponent consistent with previous calculations, and 3) measure

a mass scaling exponent, also in accord with prior computations. Our results can

be viewed as an encouraging first step towards the use of hyperbolic formulations in

more generic type II scenarios, including the as yet unresolved problem of critical

collapse of axisymmetric gravitational waves.

ii

Abstract

In the last part, we present simulations of nonlinear evolutions of pure gravity

waves. We describe a new G-BSSN code in axial symmetry that is capable of evolv-

ing a pure vacuum content in a strong gravity regime for both Teukolsky and Brill

initial data. We provide strong evidence for the accuracy of the numerical solver.

Our results suggest that the G-BSSN is promising for type II critical phenomena

studies.

iii

Preface

All of the work presented in this thesis, except the introduction chapter, are original

work done by the Author and the research supervisor Matthew Choptuik. Chapter

2 and 3 of this thesis are identical to their published versions [1, 2] (Phys. Rev. D90,

104023, (2014) and Phys. Rev. D92, 084037, (2015)) with only minor changes to the

typesetting to fit the thesis format. Some footnotes are added for further explanation

of some of the concepts.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . x

List of Figures . xi

Acknowledgments . xiii

1 Introduction . 1

1.1 Notation . 4

1.2 Einstein’s Gravitational Field Equations 4

1.3 Gravitational Waves . 6

1.4 Gravitational Collapse: Black Hole Solution 7

1.5 Critical Phenomena in Gravitational Collapse 10

1.6 3+1 Formulations of Einstein’s Equations 14

1.6.1 ADM Decomposition . 15

1.6.2 Recasting of ADM Equations: BSSN Formulation 21

1.7 Coordinate Choices . 27

1.8 Overview of Numerical Techniques for Time Dependent Problems . 31

1.9 Outline of the Thesis . 33

v

Table of Contents

2 Critical Collapse in the Spherically Symmetric Einstein - Vlasov

Model . 36

2.1 Introduction . 36

2.2 Equations of Motion . 40

2.2.1 Coordinate Choice and Equations for Metric Components . . 41

2.2.2 The Energy Momentum Tensor 42

2.2.3 Evolution of the Distribution Function 44

2.3 Static Solutions . 44

2.4 Numerical Techniques . 46

2.4.1 Evolution Scheme . 46

2.4.2 Initial Data . 50

2.4.3 Diagnostic Quantities and Numerical Tests 52

2.5 Results . 56

2.5.1 Generic Massless Case . 57

2.5.2 Near-static Massless Case . 68

2.5.3 Generic Massive Case . 76

2.6 Summary and Discussion . 78

3 Black Hole Critical Behaviour with the Generalized BSSN Formu-

lation . 82

3.1 Introduction . 82

3.2 Equations of Motion . 89

3.2.1 Generalized BSSN . 89

3.2.2 G-BSSN in Spherical Symmetry and Gauge Choices 95

3.3 Numerics . 97

3.3.1 Initialization . 98

3.3.2 Boundary Conditions . 99

3.3.3 Evolution Scheme and Regularity 101

3.3.4 Tests . 102

vi

Table of Contents

3.3.5 Finding Black Hole Threshold Solutions 107

3.4 Results . 108

3.4.1 Zero Shift . 109

3.4.2 Gamma-driver Shift . 118

3.5 Conclusion . 120

3.6 BSSN in Spherical Symmetry . 122

3.7 Scalar Field Synamics and Energy-Momentum Tensor in Spherical

Symmetry . 125

4 Non-linear Gravity Wave Evolutions with the G-BSSN Formula-

tion . 129

4.1 Introduction . 129

4.2 Equations of Motion for Strong Gravity Waves Dynamics 131

4.2.1 G-BSSN in Cylindrical Coordinate with Axial Symmetry . . 134

4.2.2 Coordinate Choices . 135

4.2.3 Note on Complexity and Regularity of the Equations 136

4.2.4 Axisymmetric Initial Data 139

4.2.5 Brill Initial Data . 140

4.2.6 Teukolsky-type Initial Data 140

4.2.7 Computing the ADM Mass of the Gravitational Pulse . . . 142

4.3 Numerics . 143

4.3.1 Numerical Grid . 143

4.3.2 Initialization . 146

4.3.3 Boundary Conditions . 149

4.3.4 Evolution Scheme . 151

4.3.5 Note on G-BSSN’s Additional Constraints 152

4.3.6 Tests: Convergence of Primary Variables 153

4.3.7 Tests: Conservation of Constraints During Evolution 155

4.3.8 Tests: Direct Validation via Einstein’s Equations 157

vii

Table of Contents

4.4 Results . 159

4.4.1 Evolution of Teukolsky-type Initial Data 159

4.4.2 Evolution of Brill Initial Data 160

4.5 Further Remarks and Conclusion 169

5 Conclusion . 171

Bibliography . 172

Appendices .

A Appendix: FD, Finite Difference Toolkit 184

A.1 Introduction . 184

A.2 Overview of Finite Difference Method 187

A.2.1 Computing the FDA Expression 190

A.2.2 Iterative Schemes for Non-Linear PDEs 193

A.2.3 Testing Facilities: Convergence and IRE 200

A.3 Semantics of FD . 209

A.3.1 Parsing a PDE: Fundamental Data Type 209

A.3.2 Coordinates . 211

A.3.3 Initializing FD, Make FD, Clean FD 212

A.3.4 Grid Functions Set: grid functions 212

A.3.5 Known Functions . 214

A.3.6 Valid Continuous Expression, VCE 214

A.3.7 Valid Discrete Expression, VDE 215

A.3.8 Conversion Between VDE and VCE 216

A.4 Discretizing a PDE . 217

A.4.1 Performing the Finite Differencing, Gen Sten 217

A.4.2 Discretization Scheme, FD table 218

viii

Table of Contents

A.4.3 Changing the FDA Scheme: FDS, Update FD Table 219

A.4.4 Accessing the FD Results: Show FD 222

A.4.5 Defining Manual Finite Difference Operators: FD 224

A.5 Posing a PDE & Boundary Conditions Over a Discrete Domain . . 225

A.5.1 Discrete Domain Specifier: DDS 226

A.5.2 Imposing Outer Boundary Conditions 228

A.5.3 Periodic Boundary Condition: FD Periodic 230

A.5.4 Implementing Ghost Cells for Odd and Even Functions: A FD Odd,

A FD Even . 231

A.6 Solving a PDEs . 236

A.6.1 Creating Initializer Routines: Gen Eval Code 236

A.6.2 Point-wise Evaluator Routines with DDS: A Gen Eval Code . 238

A.6.3 Creating IRE Testing Routines: Gen Res Code 240

A.6.4 Creating Piece-wise Residual Evaluator Routines 240

A.6.5 Creating Solver Routine: A Gen Solve Code 241

A.6.6 Communicating with Parallel Computing Infrastructure . . . 242

A.6.7 Example: Crank-Nicolson Implementation of Wave Equation 243

A.7 List of Abbreviations . 245

ix

List of Tables

2.1 Families of generic initial data . 56

2.2 Summary of measured lifetime scaling exponents for the massless . . 67

2.3 Measured lifetime scaling exponent 73

2.4 Summary of measured lifetime scaling exponents for the massive . . 78

x

List of Figures

1.1 Coordinate system in the 3+1 decomposition 16

2.1 A portion of the discretized computation domain 48

2.2 Results of various diagnostic tests . 54

2.3 Snapshots of the distribution function 58

2.4 Snapshots of the distribution function for a near-critical calculation . 59

2.5 Time evolution of ‖∂ta(t, r)‖2 . 62

2.6 Lifetime scaling of near-critical configurations 63

2.7 Radial metric function a(r̃) at criticality 64

2.8 Lapse function α(r̃) at criticality . 65

2.9 Sample static phase space configurations 70

2.10 Plots of the radial metric function 71

2.11 The value of Γ = maxr(2m/r) versus central redshift 72

2.12 Lifetime scaling computed from families of initial data 75

3.1 Results from various tests . 103

3.2 Echoing behaviour in the scalar field 110

3.3 The maximum central value, Rmax, of the four-dimensional Ricci scalar111

3.4 Discrete self-similarity of the geometry of spacetime 113

3.5 Snapshots of radial mass density . 114

3.6 Profiles of matter and geometry variables 117

3.7 Profiles of various G-BSSN variables 119

xi

List of Figures

4.1 Distribution of grid points on a non-uniform grid 145

4.2 Initial profile of the conformal metric component 147

4.3 Convergence factor for the G-BSSN variables 154

4.4 Evolution of the conserved variables 156

4.5 Convergence of the Einstein equations residuals 158

4.6 Evolution of a non-linear Teukolsky-type wave packet 161

4.7 Collapse of Teukolsky-type wave initial data 162

4.8 Non-linear evolution of a Teukolsky-type wave packet 163

4.9 Typical evolution of collapsing Teukolsky-type data 164

4.10 Time evolution of central lapse . 165

4.11 Dispersal evolution of Brill initial data 166

4.12 Collapse of Brill data . 167

4.13 Central lapse for Brill data evolution 168

A.1 Five points specifying the FDA scheme 219

A.2 Specifying different types of FD schemes 220

xii

Acknowledgments

I would like to thank my research supervisor Matthew Choptuik for his guidance and

tremendous support during the research work of my PhD program. I would also like

to express my gratitude to other members of my PhD committee: William Unruh,

Jeremy Heyl and Colin Gay for their insightful comments and thorough reading of

a draft of this thesis. My colleagues and friends in numerical relativity group in

UBC, Silvestre Aguilar, Graham Reid and Daoyan Wang have provided me with

many helpful discussions and created a fun and stimulating work environment, and

I am very thankful for that. Many thanks to my lovely friends, Joy Peng and Miya

Gu, who have been my little family in Canada and brought lots of laughters and

cats to my life during my PhD program. Lastly, I cannot thank my family enough

for their support and encouragement. The majority of the simulations performed to

obtain the results in this thesis are done on Westgrid cluster. Finally, I would like

to acknowledge the financial support from UBC via FYF scholarship for my PhD

program.

xiii

Chapter 1

Introduction

Einstein’s theory of gravity relates the geometry of the spacetime to its matter con-

tent. The spacetime in General Relativity is modeled as a 4-dimensional Lorentzian

manifold. On this manifold, gravity is identified as a characteristic of its 4 dimen-

sional geometry (curvature), whereas in Newton’s theory, gravity is a field defined

on a 3 dimensional flat space and time is an independent coordinate (universal to all

observers). In this geometric interpretation, the “gravitational interaction” of parti-

cles is solely by experiencing the curved spacetime as they move along the geodesics

of the curved spacetime.

As one might expect, in the limit where the deviation of the spacetime metric

from a flat metric is large, the general relativistic geometric equations can no longer

be approximated with Newton’s field equation. This limit is related to the con-

centration of matter, or equivalently one can define a characteristic “gravitational

length”, LG, that depends on the total mass of the system1 as:

LG =
G

c2
M . (1.1)

Then the typical size of the system can be compared to LG, and for a system with

L ≈ LG (a highly compact object relative to a typical star) the non-linear effects

in General Relativity become prominent and the structure and dynamics of the

spacetime is referred as a strong gravity scenario.2 In this regime, one of the most

1This characteristic length for the Sun is 1.47 km.
2Of course, another parameter that distinguishes “classical” Newtonian system from a relativistic

system is its particles typical speed compared to the speed of light: v/c.

1

Chapter 1. Introduction

remarkable predictions of General Relativity is the black hole solution—a region of

spacetime that cannot causally affect the outside world.

Despite the early discovery (1916) of the black hole solution, only few other

physically relevant analytic solutions have been found, since the proposal of the

General Relativity theory by Einstein (1915). This is mainly due to the highly non-

linear and complex nature of the geometric equations that describe the gravitational

interaction. This complexity has spurred the development of numerical relativity,

where large scale computing is used to model strong gravity scenarios. The main

concentration of studies in numerical relativity have been on two aspects of strong

gravity: 1) the astrophysically relevant scenarios, particularly in the context of

compact objects dynamics and mergers, and 2) fundamental studies in the theory of

General Relativity. Most of the research in this thesis is in the later spirit. We refer

the reader to [3] for a recent and extensive review of the frontier of the numerical

relativity field.

The fundamental studies of General Relativity in a “numerical lab” were pio-

neered by Choptuik [4] who numerically discovered an unexpected emerging phe-

nomena at the threshold of black hole formation in the collapse of a massless scalar

field. Following works in the collapse of various matter sources unveiled similar

rich phenomenology, as the gravitational strength of the matter source is tuned to

evolve precisely at the boundary of two possible classes of final states: black hole

formation or dispersal (flat space). With features such as the apparent universality

of the solution and power-law scaling, an analogy to phase transitions in statistical

physics was established, thus the name: critical phenomena in gravitational collapse.

The research work of this thesis is mainly focused on critical phenomena and is a

contribution to fundamental studies in gravitational physics. References [5] and [6]

provide extended reviews of studies in critical phenomena in gravitational collapse.

and a more recent overview of the field can be found in [3]. A formal description of

the threshold solution and its properties will follow shortly, and all relevant critical

2

Chapter 1. Introduction

phenomena studies to the projects in this thesis will be reviewed in the introduction

section of each chapter.

Besides the existence of black hole solutions, another prediction of General

Relativity—that does not have a counterpart in Newtonian gravity—is the exis-

tence of gravitational waves. Gravitational waves may be viewed as ripples in the

geometry of spacetime that propagate at a finite speed, namely that of light. Direct

physical detection of gravitational waves is an ongoing global effort in physics. [7–11]

The expected amplitude of a gravitational wave pulse that would reach the Earth

is extremely low and can be studied in the linearized approximation. However, the

source of the wave is believed to be in the regime of strong gravity dynamics, such

as the merger of two black holes. The pioneering works in numerical relativity in

this context are the very first successful long term evolution of binary black hole

mergers by Pretorius (2005) [12] followed by Campanelli et.al. (2006) [13] and the

extraction of the gravitational wave form by Baker et.al. (2006) [14]. For a review

of the state of the art research in this topic see: [3].

Gravity waves are another topic of interest in this thesis, where again we adopt

a fundamental perspective and focus on the numerical studies of the strong gravity

regime where a gravitational wave packet can collapse and form a black hole. This

part of the thesis is inspired by some unresolved questions in critical collapse of pure

gravity waves, as we will discuss extensively in the next chapters.

We note that Chapter 2 and 3 of this thesis are published studies and there-

fore are written in a self-contained manner (to the extent that the standards of

publication allow). Chapter 4 is also an independent project, but the theoretical

formulation of it heavily depends on Chapter 3. Each chapter contains an introduc-

tory section where we introduce the research problem and review the literature on

that topic. The rest of the current chapter aims to provide a general introduction

to the formulations and techniques used in the rest of the thesis. In particular, we

continue with: a formal presentation of Einstein’s field equations, a description of

3

1.1. Notation

gravity waves and black hole solutions, an overview of critical phenomena, a sum-

mary of two formulations of Einstein’s equation used in numerical relativity as well

as the choice of coordinates, and a quick overview of the numerical methods used in

the thesis (which are more extensively discussed in the Appendix).

1.1 Notation

In this thesis we adopt units where Newton’s constant G and the speed of light c

are set to 1. The spacetime metric is chosen with the signature −+++ and all the

sign conventions are similar to Misner et al.[15]. The Latin alphabets {a, b, c, · · · , h}
are used for abstract indexing, introduced by Wald [16], of both 4-dimensional and

spatial 3-dimensional tensors. We use Latin indices starting from i: {i, j, k, · · · , n}
(that runs from 1 to 3) to specifically denote the purely spatial 3-dimensional tensors.

The Greek indices (that run from 0 to 3) are used to denote the components of the

4-dimensional tensors in a specific coordinate choice. The Einstein’s convention

is adopted throughout the thesis, whereby the summation over repeated indices is

assumed. ∇ denotes the 4-dimensional covariant derivative associated with the 4-

metric, while D denotes the 3-dimensional covariant derivative associated with the

induced 3-metric on the spatial hypersurfaces in a 3+1 decomposition. Parentheses

enclosing the indices of a tensor denote symmetrization of the tensor, for example

A(ij) = (Aij +Aji)/2.

1.2 Einstein’s Gravitational Field Equations

The geometric description of the gravitational field is encoded in the 4-dimensional

metric tensor, gab, where one dimension , identified as time, has the opposite sign

to that of the rest of the 3 spatial dimensions. This metric measures the Lorentzian

4

1.2. Einstein’s Gravitational Field Equations

distance between two spacetime points:

ds2 = gabdx
adxb , (1.2)

where xa labels the coordinates and dxa is the difference vector between two nearby

points. A special case of the metric is the flat metric (Minkowski spacetime) and in

Cartesian coordinate where x0 = t and xi = (x, y, z) is given by:

ηab = diag(−1, 1, 1, 1) . (1.3)

The structure of the spacetime (given by the metric gab) is governed by Einstein’s

equation:

Gab = 8πTab , (1.4)

where Gab is the Einstein tensor and schematically depends on the metric gab and

its first and second space and time derivatives. Tab is the energy-momentum tensor

and constitutes all of the non-gravitational energy and momentum contributions of

matter sources that are present in the spacetime.

The Einstein tensor is given in terms of the 4-Ricci tensor, Rab and its trace,

R = Raa, as:

Gab = Rab −
1

2
gabR . (1.5)

The Ricci tensor is constructed from the Riemann tensor by the contraction:

Rab = Rcacb . (1.6)

The Riemann tensor measures the curvature of the spacetime and is defined by its

action on a covariant vector as:

Rdabcvd = ∇b∇cva −∇c∇bva . (1.7)

5

1.3. Gravitational Waves

It vanishes identically if and only if the spacetime is flat. The explicit form of the

Riemann tensor in terms of the metric gab can be written using the definition of the

Christoffel symbols, Γabc,

Γabc =
1

2
gad(∂cgdb + ∂bgdc − ∂dgbc) . (1.8)

Specifically, the Riemann tensor components are:

Rabcd = ∂cΓ
a
bd − ∂dΓabc + ΓaecΓ

e
bd − ΓaedΓ

e
bc . (1.9)

As one can see from (1.8,1.9) and the definition of Einstein tensor, the Einstein’s

equation becomes a set of 10 second order PDEs for the metric components gab.

The properties of these equations will become clearer as we introduce the linearized

approximation and the 3+1 decomposition of the equations. We note that there

are several in-depth introductory textbooks in General Relativity such as Misner et

al. [15], Weinberg [17], Wald [16] and Carroll [18]. The reader may refer to these

textbooks for further explanations of the concepts introduced in this section.

1.3 Gravitational Waves

As mentioned before, one aspect of General Relativity that is absent from Newtonian

gravity is the finite-speed propagation of disturbances in the gravitational field. The

spacetime ripples—small changes in the metric gab—will carry information about

their source and in a region far away from their origin, they can be modeled as

perturbations of the Minkowski spacetime. Consider a small deviation from the flat

metric in Cartesian coordinate:

gab = ηab + hab , (hab ≪ 1) , (1.10)

6

1.4. Gravitational Collapse: Black Hole Solution

and define the trace-reversed perturbation metric, h̄ab, as:

h̄ab = hab −
1

2
ηabh , (1.11)

where h ≡ ηcdhcd is the trace of the perturbed metric. Using the linearized coordi-

nate freedom, one can further impose the condition:

∂ah̄ab = 0 . (1.12)

In this gauge choice, the linearized Einstein’s equation in vacuum (Tab = 0) is then

given by:

G
(1)
ab = ∂c∂ch̄ab = 0 (1.13)

where superscript (1) denotes the approximation where we only keep the terms in-

volving h̄ab and its derivatives up to first order. This is a wave equation for the

components of the perturbation metric, h̄ab, and illustrates the wave-like character-

istics of the Einstein’s equation. More discussions on linearized gravity waves can

be found in standard texts on General Relativity such as [15, 16].

1.4 Gravitational Collapse: Black Hole Solution

A black hole is a region of spacetime that cannot signal information to the outside

world. This region is a remnant of a gravitational collapse process where the strength

of the self-gravitation of the matter is increasing as the matter is compressed to a

rapidly shrinking region of the spacetime. Eventually, if the length scale of the sys-

tem can reach to the order of its gravitational length, L ≈ LG, (as introduced in

(1.1)) the system collapses to a black hole. From the geometrical point of view, all

of the causal curves – including the null geodesics, the path of photons – become

confined in the black hole region. The boundary of this region that causally discon-

nects the interior from the outside world is called the event horizon. It is known

7

1.4. Gravitational Collapse: Black Hole Solution

that black holes are indeed present in our universe: the super-massive black holes

in the center of most galaxies [19, 20], and black holes as the final fate of massive

stars [21].

One example of a spherically symmetric spacetime that contains a black hole is

given by the Schwarzschild metric:

ds2 = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2 . (1.14)

Here the event horizon is located at rs ≡ 2M and rs is known as the Schwarzschild

radius. 3 The interior of the black hole, r < rs, cannot physically affect the outside

world, r > rs. The solution (1.14) is known as an eternal black hole, since it exists

for all time −∞ < t <∞.

This solution also demonstrates the coordinate dependence of the metric com-

ponents, where here grr is divergent at the event horizon r = rs = 2M . However,

this pathology is purely due to the choice of coordinates and can be removed by a

coordinate transformation. For example, the Schwarzschild solution can be written

in an isotropic radial coordinate, 4 where it takes the form:

ds2 = −
(

1−M/2r̃

1 +M/2r̃

)2

dt2 +

(

1 +
M

2r̃

)4

(dr̃2 + r̃2dθ2 + r̃2 sin2 θdϕ2) . (1.15)

In this coordinate system, the horizon is located at r̃s = M/2, and there is no

divergence of the metric component grr at r̃ = r̃s.
5

In addition to the existence of the horizon, another important property of the

black hole solution is that it contains a spacetime singularity. This singularity is a

true geometric pathology of the spacetime and is manifested as divergence of certain

3For a system with a mass equal to the Sun, the Schwarzschild radius is twice its gravitational
length introduced in (1.1), i.e 2.94 km

4The coordinate transformation between the isotropic radial coordinate and the radial coordinate
associated with (1.14)—known as the areal coordinate—is given by: r = r̃(1 +M/2r̃)2.

5Note that the gtt is zero at the horizon, which is a coordinate pathology, however this form of
the metric can be used for numerical simulations.

8

1.4. Gravitational Collapse: Black Hole Solution

(coordinate independent) geometric invariants. 6 For example, for the Schwarzschild

metric (1.14) the Kretschmann scalar is given by:

I ≡ RabcdRabcd =
48M2

r6
(1.16)

and clearly diverges at r → 0. Such singularities can also form from a gravitational

collapse process, but whether they can form outside of event horizons in astro-

physical scenarios is yet an open problem. The conjecture that an event horizon

always forms to hide the singularity from the outside world is known as the cosmic

censorship hypothesis [22].

The confinement of the singularity by an event horizon has a practical implication

for numerical simulations of black hole dynamics or gravitational collapse. Of course,

no numerical solver can perform evolutions on a domain that contains a singularity

where the dynamical variables diverge. However, the event horizon isolates the

observable numerical domain (outside of the black hole) from the singularity by

disconnecting the physical characteristics of the equations inside from the outside of

the black hole. In another word, no physical effect can be transferred to the outside

since no causal curve can emerge from within the horizon. This effectively allows

an arbitrary choice of the geometry inside of the black hole. 7 Therefore, assuming

that no singularity forms outside of an event horizon, a numerical evolution of a

collapse scenario can be carried out from a spacetime with no black hole to a one

that contains a black hole which eventually settles to a stationary solution. In effect,

cosmic censorship allows us to obtain the spacetime solution for the exterior of the

black hole even if we do not have a theory to describe the physics of the singularity.

6Another example of a geometric singularity is a point of geodesic incompleteness where the
geodesics of spacetime “end” at a finite affine parameter [16]. Spacetime singularity is been proven
to always exist inside of a black hole [16].

7Under the assumption that the numerical method respects causality, for example the system is
evolved via a set of hyperbolic equations.

9

1.5. Critical Phenomena in Gravitational Collapse

1.5 Critical Phenomena in Gravitational Collapse

Critical phenomena arise in various systems of matter coupled to Einstein gravity

(or pure gravity waves) through the dynamical construction of spacetime solutions.

The construction starts with initialization of the matter content of the spacetime,

some of whose properties are controlled by a parameter p. This parameter controls,

for example, the self-gravitational strength of the system, and can be chosen arbi-

trarily. For instance, p can be the amplitude of a pulse of matter field, or the average

velocity of a collection of particles. Naturally, this parameter also labels each of the

dynamical spacetime solutions that are constructed by numerically evolving the sys-

tem. A parameter survey over this family of spacetime solutions is then performed

by numerically evolving initial configurations defined by various values of p. The

value of p is assumed to vary in an interval with two end points: 1)“weak”: corre-

sponding to a sufficiently small value of p that the system’s self-gravitation remains

weak. The matter typically disperses to infinity leaving flat spacetime behind8;

2) “strong”: corresponding to a sufficiently large value of p that gravity is strong

enough to cause the system to collapse to a black hole. As one might speculate,

these two regimes have a point of transition along p, namely the critical value p⋆. 9

For p > p⋆ the final state is a black hole with mass MBH(p), while p < p⋆ does not

result in black hole formation, i.e. MBH = 0. The solution associated with p = p⋆

is referred as the black hole threshold solution (or critical solution). Operationally,

the value p⋆ can be found numerically using a binary search10 and its accuracy is

limited by the numerical resolution, and often (for sufficiently high resolution) can

be pushed close to the machine precision, ≈ 10−16. The characteristics of the space-

time and matter configuration at and near the precise threshold value, p⋆, comprises

8Another scenario is that a bound, stable solution such as a star is formed.
9One can imagine another possibility where the corresponding values of p for weak and strong

initial data spread over the interval with no defined single boundary. Such scenario will result in
a “chaotic” behaviour, where the slightest change in the tuning parameter causes the final state
to deviate drastically. The fact that the two regimes are disjoint by a single value is somewhat a
non-trivial observation and suggests that gravitational collapse in General Relativity is not chaotic.

10We will formally describe this process in Chapter 2 and 3

10

1.5. Critical Phenomena in Gravitational Collapse

the main subject of black hole critical phenomena.

In the numerical lab, the characteristics of the critical solution emerge only to a

certain extent, i.e. as the tuning process (binary search) is performed to drive p→ p⋆

more closely, the features of the underlying critical solution can be observed only

partially.11 As will become clear shortly, fully capturing these features numerically

(for a certain type of critical solution) requires infinite resolution and imposes severe

challenges for a numerical solver. The extreme requirement for the resolution is

due to the existence of fine structure in the critical solution. Historically, the first

success in numerically exploring the critical regime by Choptuik [4] relied on the

implementation of an Adaptive Mesh Refinement (AMR) algorithm that provided

the needed resolution.

Black hole critical phenomena can be divided into two broad categories by con-

sidering the mass of the final black hole,MBH, as a function of the tuning parameter,

p. In the weak or sub-critical regime, we simply have MBH(p < p⋆) = 0, while for

p > p⋆, namely the super-critical regime, there are two possibilities: 1) the mass

of the black hole increase continuously from zero as p crosses the value p⋆; or 2)

the mass function has a finite gap. In analogy with phase transitions in thermody-

namical systems, MBH can be viewed as an order parameter and accordingly, the

continuous transition is referred as Type II critical collapse while the critical collapse

with a mass gap is named Type I. All of the type II critical solutions discovered so

far, and some of the type I solutions, exhibit a common feature: universality. This

universality is observed in the numerical tuning experiments, where there is unique

final configuration (of the spacetime geometry as well as the matter distribution)

that is independent of the choice of parameter p and, more generally, the initial

configuration of the matter. This observation signals the existence of a unique (or

at least isolated in function space) critical solution in the function-space of all so-

11For example, only a finite number of echoes (periodic behaviour in a logarithmic radial coor-
dinate) can be observed rather than infinitly many of them that are present in the exact critical
solution.

11

1.5. Critical Phenomena in Gravitational Collapse

lutions. Moreover, the critical solution is an intermediate attractor point within

the sub-function-space labeled by p = p⋆. The dynamical-system point of view of

these critical phenomena is further discussed in [5, 23]. Beside universality, critical

solutions tend to be 1-mode unstable and the unstable eigenvalue of the universal

solution, in both types, is related to a measurable exponent in the critical solution

as we discuss in the following.

Type II Critical Phenomena

In type II collapse, the mass of the black holes that form is often given by:

MBH = |p− p⋆|γ , (1.17)

The constant γ is known as the mass-scaling exponent and is universal for a given

matter model, i.e. is independent of the details of the initial data. The mass

scaling (1.17) indicates that one can create a black hole of arbitrarily small size by

approaching p→ p⋆ from the super-critical regime.

Type II critical solutions also exhibit scale-invariance or self-similarity. A self-

similar solution can be written as a function Z⋆(τ, x) in which τ = − ln(t− t⋆)—the

logarithm of the proper time measured from the time, t⋆, that the critical solution

forms, usually referred as the accumulation time—x is the scale invariant coordinate,

x = r/(t − t⋆), and Z denotes some function of the primary dynamical fields. In

this notation, a continuous self-similar (CSS) solution is defined as:

Z⋆(τ, x) = Z⋆(x) , (1.18)

and a discrete self-similar (DSS) solution is:

Z⋆(τ +∆, x) = Z⋆(τ, x) . (1.19)

An example of discrete self similarity (DDS) arose in the original work on a

12

1.5. Critical Phenomena in Gravitational Collapse

massless scalar field collapse by Choptuik. Another way to represent the discrete

self similarity of the critical solution in time and spatial coordinates is:

Z⋆(τ, r) = Z⋆(τ + n∆, en∆r) , (1.20)

in which the notion of the echoing behaviour of the solution is clearer. After each

echo, τ → τ+∆, the solution repeats itself on a scale that is e∆ smaller. In addition,

from (1.20), in every snapshot of the solution, t = const, there is a periodic behaviour

in the profile of the matter field as a function of ρ = ln(r), with period ∆. A similar

repetitive structure forms in the geometry of spacetime as well. The constant ∆ is

known as the echoing exponent and, as for the scaling exponent, is universal for a

specific matter source. This echoing behaviour results in the formation of structure

in the solution on ever smaller scales, and as we mentioned in the previous section,

requires fine numerical resolution, i.e. adaptive distribution of grid points toward the

central collapse region. Finally, we note that as the self-similar solution approaches

the accumulation point t → t⋆, or τ → ∞, in the continuum limit , i.e. for a

precisely critical solution p = p⋆, the curvature diverges at the radial accumulation

point (center of the collapse in symmetric cases) and a naked singularity forms.

Chapter 3 and 4 of this thesis are focused in type II critical collapse studies

where we explore the applicability of a popular formulation of Einstein’s equation

in the context of type II DSS critical collapse scenarios. There, we will revisit type

II critical phenomena and discuss the features of the massless scalar field threshold

solution.

Type I Critical Phenomena

In critical collapse with a mass gap,MBH(p→ p⋆+) > 0, the solution approaches

an intermediate state (between collapse and dispersal) that is static (or periodic)

and unstable. An initial configuration that is tuned to p ≈ p⋆ exhibits a time-scaling

behaviour: the dynamically evolving solution approaches the critical static solution

and spends an increasingly large amount of time in the vicinity of it. This time

13

1.6. 3+1 Formulations of Einstein’s Equations

scaling is given by:

τ = −σ ln |p − p⋆| (1.21)

in which σ is known as time-scaling exponent, and similar to the exponents in Type

II critical collapse, can be universal for certain matter types. This scaling behaviour

suggests that the critical solution possesses a time translation symmetry.

In addition to the dynamical construction of type I/II critical solutions via a

tuning process, critical solutions can be constructed directly from an ansatz to the

coupled Einstein-matter system that reflects the symmetry of the solution (self-

similar or static). In turn, the scaling laws (1.17,1.21) can be understood from the

perspective of perturbation analysis [24–26]. The key observation here is that the

existence of the universal exponent (σ for type I and γ for type II) can be explained

by the existence of only one unstable mode in the critical solution with growth factor

(Lyapanov exponent), λ. In fact, the exponent is directly related to the growing

mode and is simply equal to its inverse, 1/λ.

Chapter 2 of this thesis is concerned with type I critical collapse in the Einstein-

Vlasov system, and answers some unresolved issues concerning this model. Extensive

reviews of all the work in type I and II critical collapse can be found in [5, 23] and

the more recent reference [3].

1.6 3+1 Formulations of Einstein’s Equations

In General Relativity, the evolution of the spacetime geometry is given by a set

of second order partial differential equations—as we observed in the approximate

linearized form (1.13). Specifically, Einstein’s equation can be posed as a standard

initial value problem (Cauchy problem): loosely speaking, the solution is expected

to be uniquely determined for given “position”, i.e gab, and “velocity”, i.e. ∂tgab at

the initial time. Schematically, the Einstein’s equation then determines the second

time derivative of the metric, ∂2t gab, which can be integrated forward for the given

14

1.6. 3+1 Formulations of Einstein’s Equations

initial data. To pose the Einstein’s equation as a Cauchy problem, one needs a

foliation of the spacetime to 3 dimensional space-like surfaces labeled by a time

coordinate t. Such process is usually referred as a 3+1 decomposition of Einstein’s

equation. In this section we review the classic ADM [27] decomposition and also

introduce a recasting of it, the BSSN formulation, that is particularly suitable for

numerical computations and that has become the most popular 3+1 formulation in

the numerical relativity community. Later in Chapter 3 and 4, a generalization of

the BSSN formulation will be introduced and implemented to perform numerical

simulations.

We note that the 3+1 casting of Einstein’s equations further reveals the internal

constraints in the field equations. They are not trivially apparent in the covariant

form of the Einstein’s equations. These equations are not of evolutionary type,

but rather constrain the initial data: gab and ∂tgab. Therefore the Cauchy problem

cannot be posed for a arbitrary initial data; rather a set of elliptic-type constraint

equations must be solved at the initial time.

1.6.1 ADM Decomposition

In the 3+1 ADM decomposition of the 4 dimensional spacetime manifold (M,gµν),

one assumes that there exist a family of disjoint 3 dimensional space-like hyper-

surfaces, Σt, which can be considered as level surfaces of a scalar function t. The

variable t can be interpreted as the global time function and using the gradient of

the function t one can define the normal vector, na, to the hypersurface Σt, as shown

in Fig. 1.1:

na = −αgab∇bt . (1.22)

We assume ∇at is non-zero everywhere and α is the normalization factor:

||∇at||2 = gab∇at∇bt ≡ −
1

α2
, (1.23)

15

1.6. 3+1 Formulations of Einstein’s Equations

.

.......................................

...................................

................................

............................
.........

......
......
.......
.....

....
...
....
....
...
....

...
..
...
...
..
...
..
...

.

...
...
..
...
...
..
...
..

....
....
...
....
...
....

.....
......
.......
......

....................
......

................................

...................................

.......................................

.

.....................

.

..............
....

...
.....
.....
.....

.....
.....
.....
...

.

...

...

...

....
...

..

...

...

....

...

..

.

...

...

....

...

...

.

.

....
...
...
...
...

....
.....
......
...

.

.....
.....
......
.

......
.............

.....................

.

...

...

..

...
.........

............
............

............
........

......
........

.......
.......
........

.......
..

....
......
.....
.....
.....
......
.....
.....
....

.

....
....
....
....
....
....
....
.

.....
....
.....
.....
.....
...

.....
.....
......
......
..

......
........

.......

...........
........

...............

.............

.

..
..
..
..
..
.

..

..

..

..

..

..

.

.

..

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

..

..

.

..

.

..

.

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

.

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

.

.......................................

...................................

................................

............................
........

......
.......
......
.....

...
....
...
....
...
....
.

...
..
...
..
...
...
..
...

.

...
..
...
...
..
...
..
...

...
....
...
....
...
....
.

.....
.......
......
......

.....................
.....

................................

...................................

.......................................

.

.....................

............
.......

..

.....
.....
......

....
.....
.....
....

....
...
...
...
...
.

..

...

...

...

...

...

.

...

...

...

...

...

..

.

...
...
...
...
....

...
.....
......
....

.....
.....
......
..

...
..............
..

.....................

.

...

...

..

...
..................

.........
............

............
...........

.......
.......
........

.......
.......
.......
..

.....
.....
.....
.....
......
.....
.....
.....
....

.

....
....
....
.....
....
....
....

.....
.....
.....
....
.....
...

.....
......
......
.....
..

.......
........

......

............
.......

...............

.............

.

..
..
..
..
..
.

..

..

..

..

.

..

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

.

.

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

Σt+dt

Σt

✻

✁
✁
✁
✁
✁
✁✕✏✏✏✶

αnadt
tadt

βadt

(t, xi)

(t + dt, xi)

.

..............................

.............................

.............................
..

.........
...........

.........

......
.......
.......
.......
...

Figure 1.1: Coordinate system in the 3+1 decomposition of Einstein’s equation. nµ

denotes the normal vector, while ta represents the unit coordinate vector along the
time coordinate t. These two vectors do not necessarily coincide and their deviation
between two hypersurfaces Σt and Σt+dt defines the the shift vector, β

a, which is by
construction purely spatial.

and is referred to as the lapse function. The space-like surfaces Σt, with a given

spatial coordinate system xi on them, constitute the 3+1 slicing of the 4-dimensional

manifold M where each point in the spacetime is assigned coordinates (t, xi). The

time coordinate vector, ta = ∂/∂t, arises from the global time function and can be

written as a linear combination of the normal vector, na, and a purely spatial vector:

βa:

ta = αna + βa . (1.24)

In this linear combination (also illustrated in Fig. 1.1), the coefficient of na is the

lapse function, α. This can be easily seen by inserting the definition of na (1.22) in

the identity: ta∇at = dt/dt = 1, and using the fact that by definition we choose βa

to be a spatial (i.e. it lives on the hypersurface, Σt), therefore:

naβ
a = 0 . (1.25)

16

1.6. 3+1 Formulations of Einstein’s Equations

The vector βa is referred as the shift vector and can be explicitly written as a 3

dimensional vector:

βa = (0, βi) , (1.26)

in the coordinate system (t, xi).

Using (1.24), one can compute the components of the normal vector, nµ, in the

coordinate system:

nµ =

(

1

α
,− 1

α
βi
)

. (1.27)

Using the normal vector we can, in turn, can build the induced 3-metric on the the

hypersurfaces, Σt:

γab = gab + nanb . (1.28)

The tensor γab is purely spatial, (as can be seen simply by verifying that γabn
a = 0)

and it measures the distances within the spatial surface Σt. In addition, the inner

product of any two purely spatial vectors, (vi, wj), computed using γab is identical

to the inner product computed with the 4 dimensional metric, gab; therefore γab

is indeed the induced metric. The full spacetime metric, gab, can be reconstructed

using the 3-metric and the lapse and shift:

gµν =

−α2 + βlβ
l βi

βj γij

 , (1.29)

Using the normal vector na, one can define the projection tensor:

γ ba = g ba + nan
b = δ ba + nan

b (1.30)

which projects 4-vectors to their spatial component on the hypersurface Σt. The

projection of higher rank tensors into the spatial hypersurfaces can be achieved

by contracting each index with the projection operator. This operator is usually

17

1.6. 3+1 Formulations of Einstein’s Equations

denoted by the symbol ⊥. For example,

⊥ Aab ≡ γ ca γ db Acd (1.31)

and ⊥ Aab is a purely spatial tensor.

One particular projection that characterizes the embedding of the hypersurfaces

Σt in the spacetime is the projection of the gradient of the normal vector: ∇cnd.
Specifically, the extrinsic curvature of the surface Σt is defined as the projection of

the negative gradient of its normal vector:

Kab ≡ −γ ca γ db ∇cnd = −
1

2
Lnγab , (1.32)

where L denotes the Lie derivative. Here the last equality is due to the identity

Lngab = ∇anb+∇bna and relation (1.28) between the 3 metric and 4 metric. Using

the last identity in (1.32) and the linearity of the Lie derivative:

∂t = Lt = Lαn+β = αLn + Lβ , (1.33)

one can see that the definition of the extrinsic curvature can be written as:

(∂t −Lβ)γab = −2αKab . (1.34)

Therefore the extrinsic curvature can be seen as generalization of the “time deriva-

tive” of the 3 metric γab. Using this definition, Einstein’s equations (1.4) can be

reduced to a set of first order equations where the time evolution of the 3 metric

is given by the extrinsic curvature (by definition) while the time evolution of the

extrinsic curvature is given by the field equation projected to the spatial hypersur-

faces12.

The energy-momentum tensor on the left hand side of (1.4) can be projected

12Combined with constraint equations.

18

1.6. 3+1 Formulations of Einstein’s Equations

into 3 parts:

ρ = nanbT
ab , (1.35)

Sa = −γabncTcb , (1.36)

Sab = γacγbdT
cd , (1.37)

and accordingly, Einstein’s equation relates these quantities to the dynamical quan-

tities of 3+1 decomposition: the 3-metric and the extrinsic curvature. The equa-

tions can be found by relating the 4 dimensional Riemann tensor Rabcd to the 3

dimensional Riemann tensor and the extrinsic curvature of the spatial slice Σt. The

process results in a set of identities known as Gauss-Codazzi equations. This rather

lengthy but straightforward calculation is now part of standard textbooks in numer-

ical relativity and we refer the reader to [28] for details of the derivation. Here, we

only describe the results. The Einstein tensor contraction, nanbGab (1.35) results in

scalar equation known as the Hamiltonian constraint,

H = R+K2 −KijK
ij − 16πρ = 0 , (1.38)

where R is the 3-Ricci scalar associated with the 3-metric γij and K is the trace of

the extrinsic curvature:

K ≡ γijKij . (1.39)

The contraction γabncGcb (1.36) results in a spatial vector equation, known as the

momentum constraint:

Mi = Dj

(

Kij − γijK
)

− 8πSi = 0 , (1.40)

in which Dj denotes the covariant derivative associated with the 3-metric, γij. The

19

1.6. 3+1 Formulations of Einstein’s Equations

equations (1.38,1.40) are referred to as constraint equations since they do not contain

any second time derivative and only relate the “positions” and “velocities”, i.e. gij

and Kij on each spatial slice Σt.

Finally the contraction γacγbdG
cd (1.37) provides the equation for the generalized

time derivative of the extrinsic curvature, (∂t−Lβ)Kij . Combined with (1.34), the

ADM evolution equations for the 3-metric and the extrinsic curvature are:

∂tγij = −2αKij +Diβj +Djβi , (1.41)

∂tKij = −DiDjα + α (Rij − 8πSij + 4π(S − ρ)γij) + α
(

KKij − 2KikK
k
j

)

+ βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k , (1.42)

in which we have explicitly expanded the Lie derivative terms. Again, Di denote

the covariant derivative associated with the 3-metric γij and similarly Rij is the

3-Ricci tensor associated with the 3-metric. This completes the process of casting

Einstein’s equations as a 3+1 Cauchy problem, where the initial data {gij ,Kij}
that satisfy the Hamiltonian and momentum constraints can be integrated forward

in time using (1.41,1.42) to find the geometry of spacetime. We note that a formal in-

depth derivation of 3+1 formulations of Eintein’s equation can be found in numerical

relativity textbooks such as Baumgarte et al. [28], Gourgoulhon [29] and Alcubierre

[30].

Finally, note that as expected, the ADM formulation does not provide any equa-

tions for the lapse function, α, or the shift vector, βi, as they represent the freedom

of coordinate choice in General Relativity and can be set arbitrarily. However, as

we will discuss further in Sec. 1.7, a stable and long term numerical integration

of any 3+1 formulation of Einsteins’ equation is highly sensitive to the choice of

coordinates.

20

1.6. 3+1 Formulations of Einstein’s Equations

1.6.2 Recasting of ADM Equations: BSSN Formulation

In principle, the standard ADM system, (1.41,1.42), can be used to evolve the 3-

metric γij and extrinsic curvature Kij . This method is known as a free evolution,

or an unconstrained evolution scheme since the Hamiltonian and momentum con-

straints are only solved at the initial time. Another approach is to combine some or

all of the constraint equations to determine some of the geometric variables at each

time. Such methods are known as partially or fully constrained evolution schemes.

It turns out that most unconstrained simulations using the ADM equations, es-

pecially simulations of gravitational waves, are unstable. In particular, as we will

discuss further in Chapter 4, in the case of gravitational waves it appears that the

ADM formulation is not even capable of evolving spacetime dynamics in the weak

field limit [28]. This can be traced back to the fact that the ADM equations are only

weakly hyperbolic (for an extensive discussion on the notion of hyperbolicity and

numerical relativity see: [28]) which makes them unsuitable for numerical simula-

tions. This observation provided the original motivation for Shibata and Nakamura

[31] to recast the ADM equations in a way that is more applicable for numerical

calculations. This recasting was later revisited by Baumgarte and Shapiro [32], and

is now known as the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation.

The BSSN equations have become immensely popular in the numerical relativity

community due to the fact that they are strongly hyperbolic (and are free evolu-

tion scheme). This property allows for successful long-time simulations of various

strong gravity scenarios, most notably the simulations of compact binaries, including

extraction of the gravitational wave-form [13, 14].

The BSSN formulation has 3 key features that differentiate it from the ADM

formalism. In the following, we outline the corresponding changes that are made to

the ADM formulation that make the resulting equations strongly hyperbolic. The

manipulations of the equations in each step is straightforward, if sometimes lengthy,

and we refer the reader to [28] for full details.

21

1.6. 3+1 Formulations of Einstein’s Equations

I) Conformal rescaling

In the BSSN formulation, we split the evolution equations (1.41,1.42) of the

ADM variables {γij ,Kij} into the evolution of their overall scale and the evolution

of their “scale free” part13. This is done by a conformal re-scaling of these variables.

First one defines the conformal factor, eφ, such that:

e12φ ≡ γ , (1.43)

in which γ is the determinant of the 3-metric γij . Then, the conformal metric γ̃ij

defined as:

γij ≡ e4φγ̃ij ⇒ γ̃ = 1 , (1.44)

has determinant 1. In addition, the conformally re-scaled extrinsic curvature Ãij

defined through:

Kij ≡ e4φÃij +
1

3
γijK ⇒ Trace(Ãij) = γ̃ijÃij = 0 , (1.45)

is trace-free, i.e. scale free14. By fixing the determinant of γ̃ij and the trace of Ãij ,

the evolution equation for the 3-metric γij (1.41) splits into two equations for the

overall scale of the metric, φ, and the conformal metric γ̃ij. Similarly the evolution

equation for the extrinsic curvature Kij (1.42) splits into two equations for the trace

of the extrinsic curvature, K, (i.e the overall scale of the tensor) and the trace-free

part Ãij . The equations for φ and K can be derived by contraction of the two

evolution equations (1.41,1.42):

(∂t −Lβ)(6φ) = (∂t −Lβ) ln γ
1/2 = −αK , (1.46)

13This is mainly motivated (heuristically) to separate the gravitational radiation part of the
dynamics, encoded in the scale free part of the metric, and the overall gravitational field strength
that is approximately determined by the overall scale of the metric, and its main contribution comes
from the matter distribution.

14Note that the trace, K, is the “conjugate” scale to the determinant, γ. This will become clear
shortly in the relation between the evolution of γ and K, i.e. Eq. 1.46.

22

1.6. 3+1 Formulations of Einstein’s Equations

(∂t −Lβ)K = −D2α+ α (R− 4π(3ρ− S)) , (1.47)

where we have used the definition of the conformal factor eφ (1.43). Here D2 denotes

the operator γijDiDj .

The evolution equation for the scale free parts γ̃ij and Ãij are then given by the

scale free parts of the right hand side of equations (1.41,1.42):

(∂t −Lβ)γ̃ij = −2αÃij , (1.48)

(∂t −Lβ)Ãij = e−4φ [−DiDjα+ α(Rij − 8πSij)]
TF

+ α(KÃij − 2ÃilÃ
l
j) , (1.49)

where the superscript TF denotes the trace-free part with respect to the 3-metric.

Specifically, for any rank-2 tensor Xij we have:

XTF
ij ≡ Xij −

1

3
(γklXkl)γij (1.50)

II) Absorbing the Mixed Derivatives

The next step is to eliminate the mixed spatial derivatives appearing in the

3-Ricci tensor in (1.49) by defining a conformal connection function:

Γ̃k = γ̃ijΓ̃kij , (1.51)

as a new dynamical variable. That is, Γ̃k, is to be evolved rather than being com-

puted in terms of γ̃ij . The evolution equation for the conformal connection can be

derived from its definition and the time evolution of the conformal metric (1.48),

23

1.6. 3+1 Formulations of Einstein’s Equations

yielding:

(∂t −Lβ)Γ̃
i = −2Ãij∂jα− 2α∂jÃ

ij +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i . (1.52)

Using the conformal re-scaling of the 3-metric, and the definition of the conformal

connection, Γ̃i, the 3-Ricci tensor is divided into two parts:

Rij = Rφij + R̃ij . (1.53)

The first term, Rφ, is associated with the overall conformal factor and is given by

Rφij = −2D̃iD̃jφ− 2γ̃ijD̃
kD̃kφ+ 4D̃iφD̃jφ− 4γ̃ijD̃

kφD̃kφ , (1.54)

where D̃i is the covariant derivative associated with the conformal metric γ̃ij. The

second term in (1.53), R̃ij, is the 3-Ricci tensor associated with the conformal metric

γ̃ij :

R̃ij = −
1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)

. (1.55)

where the conformal factor Γ̃k should be substituted by its evolved value via the

evolution equation (1.52). As can be seen in (1.55), this process eliminated the

mixed spatial derivative terms (which could spoil the hyperbolicity) in R̃ij By this

substitution, the principle part of the conformal 3-Ricci tensor is γ̃lm∂m∂lγ̃ij, which

is a wave-like spatial derivative operator.

III) Adding the Constraints to the Evolution Equations

Finally, in the BSSN formulation, both the Hamiltonian and momentum con-

straints are added to the evolution equations, creating a natural constraint damping

feature to the free evolution equations. The Hamiltonian constraint is added to

the evolution equation of the extrinsic curvature with coefficient −α, (the lapse

24

1.6. 3+1 Formulations of Einstein’s Equations

function):

(∂t −Lβ)K = −D2α+ α (R− 4π(3ρ− S))− αH , (1.56)

and the momentum constraint is added to the evolution of the conformal connection,

with a coefficient 2α 15:

(∂t −Lβ)Γ̃
i = −2Ãij∂jα− 2α∂jÃ

ij +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i + 2αMi . (1.57)

Adding the constraints 16 and expanding the Lie derivatives 17 results in the final

explicit form of the BSSN equations summarized as following:

Summary of BSSN equations:

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i , (1.58)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − 2

3
γ̃ij∂kβ

k , (1.59)

∂tK = −γijDjDiα+ α(ÃijÃij +
1

3
K2) + 4πα(ρ+ S) + βi∂iK , (1.60)

∂tÃij = e−4φ [−DiDjα+ α(Rij − 8πSij)]
TF

+ α(KÃij − 2ÃilÃ
l
j)

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − 2

3
Ãij∂kβ

k , (1.61)

15The choice can be ξα where ξ must be greater than 1/2, but otherwise arbitrary. Choosing
ξ = 2 leads to simpler equations.

16and some algebra to express constraints equations in terms of the BSSN variables.
17One should take into account that γ̃ij and Ãij are tensor densities, φ is not a true scalar, but

a scalar density related to the determinant of the metric, and similarly Γ̃i is a vector density. See
[28].

25

1.6. 3+1 Formulations of Einstein’s Equations

∂tΓ̃
i = −2Ãij∂jα+ 2α

(

Γ̃ijkÃ
kj − 2

3
γ̃ij∂jK + 6Ãij∂jφ− 8πγ̃ijSj

)

+ βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j +
1

3
γ̃li∂l∂jβ

j + γ̃lj∂j∂lβ
i . (1.62)

In terms of the BSSN variables, the constraint equations are given by:

H ≡ γ̃ijD̃iD̃je
φ − eφ

8
R̃+

e5φ

8
ÃijÃij −

e5φ

12
K2 + 2πe5φρ = 0 , (1.63)

Mi ≡ D̃j

(

e6φÃji
)

− 2

3
e6φD̃iK − 8πe6φSi = 0 . (1.64)

The above BSSN equations yield a well-posed Cauchy problem for Einstein’s equa-

tions. If the initial data:

(φ, γ̃ij ,K, Ãij , ρ, S
i, Sij)|t=0 , (1.65)

satisfies the Hamiltonian and momentum constraints18 (1.63,1.64), and Γ̃i is initial-

ized by (1.51), then experience has shown that the system can be evolved via the

BSSN evolution equations (1.58-1.62) stably and for a long time. The BSSN for-

mulation does not require use of the constraint equations (apart from determining

the initial data), and therefore is a fully evolutionary formulation of the Einstein’s

equations.

18Numerically, the initial data satisfies these equations only approximately. To have a consistent
set of initial data and evolution system, the error in the initial data is expected to be as small as the
truncation error (the error due to the finite difference approximation of the continuum equations)
of the evolution scheme.

26

1.7. Coordinate Choices

1.7 Coordinate Choices

The coordinate freedom in General Relativity is encoded in the choice of the lapse

function α and the shift vector βi. Intuitively, the lapse function defines the shape

of the embedding of the 3-dimensional hypersurfaces Σt within the spacetime, while

the shift vector—that is defined as the deviation of the spatial coordinate from the

normal direction to the hypersurfaces (Fig. 1.1)—determines the dynamics of the

spatial coordinates relative to normal propagation. Choosing good forms for these

functions has been a significant part of the research work in the field of numerical

relativity. In fact, finding a dynamical coordinate choice (a notion that will be intro-

duced shortly) that allows long-time and stable evolution of a strongly gravitating

system is not a trivial task.

Two scenarios that pose particular challenges for the coordinate choices are the

evolution of a spacetime that contains a black hole or the evolution of a spacetime

containing matter collapsing to a black hole. As can be seen from the Schwarzschild

solution (1.14), a specific coordinate choice can be singular (not necessarily only at

the event horizon) where the singularity is not physical and can be removed by a

coordinate transformation. A more challenging case is a physical singularity (point

of infinite curvature) that can form, for example, at the center of symmetry in a

collapse scenario. Obviously, a numerical code cannot continue execution if it en-

counters such a singular point during a simulation. A particular type of coordinate

choice is necessary to appropriately deal with this scenario and is known as singular-

ity avoiding. Intuitively, the lapse function is chosen so that it slows the evolution

in the vicinity of a singularity.

Even if the spacetime does not contain a black hole or is not evolving toward

the formation of one, the coordinate choice can still require special attention, since

a (non-physical) coordinate singularity can form. This can be demonstrated using

the simplest gauge choice:

α = 1 , βi = 0 , (1.66)

27

1.7. Coordinate Choices

which are known as Gaussian-normal coordinates, and which is a particular case of

a coordinate system that incorporates geodesic slicing. Due to the vanishing shift

vector, the coordinate time vector coincides with the normal vector, and due to the

choice α = 1, the observers moving along the direction normal to the hypersurfaces

measure coordinate time which is equal to proper time. The acceleration of the

normal observers is given by ab = Dbα = 0; hence xi = cons. trajectories are indeed

geodesics. In this gauge choice, a coordinate pathology can develop quickly as can

be seen from the evolution equations of the extrinsic curvature and the determinant

of the 3-metric. In the Gaussian-normal system the equations (1.46) and (1.60) in

vacuum are given by:

∂t ln γ
1/2 = −K , (1.67)

∂tK = ÃijÃij +
1

3
K2 > 0 . (1.68)

From the second equation (1.68) K grows monotonically in time, while from (1.67)

the volume element of the 3-surfaces decays as the extrinsic curvature becomes

unbounded (due to the K2 term in (1.68)). Intuitively, this behaviour can be seen

from the definition of the extrinsic curvature as the negative of the expansion of the

normal direction—which in geodesic slicing is equal to the convergence (negative

expansion) of the geodesics. The development of such coordinate singularities is

not surprising as the geodesics can focus toward each other—for example from a

gravitational radiation passing through a region of spacetime—and nothing prevents

them from crossing.

Motivated by this geometric observation, one well-known coordinate choice is

developed by imposing a condition that prevents the normals from converging. From

the definition of the extrinsic curvature, this can be achieved by requiring

K = 0 . (1.69)

28

1.7. Coordinate Choices

This coordinate choice is known as the maximal slicing condition. Provided K = 0

at t = 0, the evolution equation of the extrinsic curvature (1.60) requires

0 = −γijDjDiα+ α(KijK
ij + 4π(ρ+ s)) , (1.70)

for all subsequent t in order for the maximal slicing condition to hold. This last

equation can be solved as an elliptic equation for the lapse function.

Imposing a specific constraint, such as (1.69), on some of the variables of the

ADM formulation, is one of the common approaches to define coordinates, and will

typically create constraint-type equations for the gauge variables α and βi. For the

shift vector, one example of this type of conditions is the quasi-isotropic choice where

one requires the 3-metric to remain diagonal. Assuming the 3-metric is diagonal at

t = 0, this can be accomplished by requiring that the time derivative of the off-

diagonal 3-metric components be 0 for all t > 0. This demand then yields

0 = −2αKij +Diβj +Djβi , i 6= j , (1.71)

which can be solved as a boundary value problem for the shift vector. We note that

in general there are 3 degrees of freedom to choose the spatial coordinate on the

3-hypersurfaces, which can be used to fix the 3 free variables in the shift vector.

However, for certain symmetric metrics, conditions such as (1.71) may not result in

a sufficient number of equations, and extra algebraic condition may be needed in

conjunction with them to completely fix the shift vector [28].

Another approach to specify the coordinate system, which is the main choice

in Chapter 3 and 4 of this thesis, is by defining evolution equations for α and βi.

The constraint-type gauge choices, such as maximal slicing, usually result in a set of

complex elliptic equations that needs to be solved on every time slice. Implementing

an effective elliptic-solver for such equations is a challenging computational task. In

contrast, if one can prescribe evolution equations for the coordinate system, then it

29

1.7. Coordinate Choices

is quite straight-forward to integrate them forward in time along with the evolution

equations for the dynamical variables.

One particular dynamical slicing condition that has proven to be robust and

which has the singularity avoidance property is the following

∂tα = −2αK . (1.72)

This coordinate choice is known as the 1+log19 condition. It was implemented in

the original BSSN work and now is considered its standard lapse choice. The 1+log

condition can be viewed as a “K-damping” evolution equation, in the sense that the

evolution of the lapse effectively damps the growth of K in the coupled system of

PDEs for K and α. Overall, the 1+log gauge has been shown to mimic the maximal

slicing condition (but requires much less computational effort to implement) and in

particular has the singularity avoidance property20.

We now want to consider conditions for the shift vector that are similarly dy-

namical. First, looking at the BSSN equations (1.58-1.62), we see that the system

simplifies if the conformal connection Γ̃i can be set to zero. However such a condi-

tion, if implemented exactly, will lead to an elliptic type equation for the shift (known

as Gamma-freezing) and may in fact spoil the hyperbolicity of the BSSN system.

Taking a similar approach to 1+log slicing, which creates a natural K-damping sys-

tem, as opposed to exactly enforcing K = 0, one can impose the following evolution

equation for the shift vector:

∂tβ
i = µΓ̃i − ηβi . (1.73)

This is known as the Gamma-driver shift condition. Here, µ and η are adjustable

19The name “1+log” is due to the fact that equation (1.72) combined with (1.58) and zero shift
implies: ∂tα− 12∂tφ = 0 which can be solved by assuming α = 1+ 12φ and using the definition of
φ (1.43) this condition is equivalent to: α = 1 + ln(γ)—hence the name: 1+log.

20We also note that the maximal slicing condition cannot be used in the BSSN formulation, as it
spoils the hyperbolicity of the equations, making the resulting system ill-posed.

30

1.8. Overview of Numerical Techniques for Time Dependent Problems

numerical parameters. µ is usually chosen to be 3/4 21, while η has the unit of

inverse of time, and since the time scale of the system is usually set by the total

mass of the system, η is chosen to be of order 1/M where M is the total mass

of the spacetime (ADM mass). Again, as with the 1+log choice, the Gamma-

driver condition effectively creates a damping term and controls the value of the

conformal factor Γ̃i. Together, the 1+log and Gamma-drive conditions have proven

to be successful in dealing with challenging problems in numerical relativity, such

as binary black hole coalescence. These two coordinate choices are used in Chapter

3 and 4 of this thesis, where they are implemented to study type II critical collapse

scenarios.

1.8 Overview of Numerical Techniques for Time

Dependent Problems

When Einstein’s field equations are decomposed through a 3+1 formulation, they

become a set of time dependent PDEs. A standard approach to numerically solve

PDEs is the finite difference methods, where continuum functions are discretized:

f(t, ~X)→ f(tn, xi, yj, · · ·) ≡ fnij··· ≡ fnI , (1.74)

and differential operators are replaced with difference operators. For example:

∂

∂X
f(X)→

(

E + E−1

2∆X

)

(fI) ≡
fI+1 − fI−1

2∆X
. (1.75)

In (1.74) and (1.75) tn denotes discrete values of time tn = t0+n∆t, XI symbolizes

a mesh along one of the spatial coordinates: XI = Xmin + I∆X (for example: XI

can be xi = xmin + i∆x), ∆X and ∆t are the step sizes of the discretization in t

21This particular value has been found from purely numerical experiments and is known to
perform well.

31

1.8. Overview of Numerical Techniques for Time Dependent Problems

and X and E denotes the shift operator along X:

E(fI) ≡ fI+1 , (1.76)

E−1(fI) = fI−1 , (1.77)

and is the fundamental operator that creates all the difference operators. Operations

similar to (1.75) can be defined to replace time derivatives with finite difference

expressions. The key assumption here is the smoothness of the function that allows

Taylor expansion. For instance, the Taylor expansion of the RHS of (1.75) yields

fi+1 + fi−1

2∆x
=
df

dx
+
1

6

d3f

dx3
(∆x)2+

1

120

d5f

dx5
(∆x)4+· · · = df

dx
+O(∆x2) ≈ df

dx
, (1.78)

where we are using big-O notation—O(∆x2) is a function that converges to zero

as fast as ∆x2. Neglecting this term, the LHS of 1.78 becomes a Finite Difference

Approximation (FDA) to the differential operator d/dx. The O(∆x2) term is usually

referred as the truncation error of the FDA.

In a nutshell, the discretization process converts a PDE to a finite difference

equation which is an algebraic equation that can be solved numerically on a com-

puter. However, in practice, this process has several complications, including find-

ing the FDA operators for derivatives with the correct accuracy, handling boundary

points, initialization, developing testing facilities and generating solver routines. We

developed a Maple based toolkit called FD that simplifies these steps while allowing

full control over the entire process while helping the user to focus on the underlying

physical/mathematical phenomena described by the PDE. This toolkit is a set of

Maple procedures and definitions that provides a high level language to specify a

PDE over a discretized numerical domain and solve it. It can compute the finite

difference approximation (FDA) equivalent of a PDE and generate low level lan-

guage (Fortran) routines and C wrappers that evaluate the FDA expression or solve

it for the dynamical (unknown) field. FD also allows a rapid prototyping work-flow

32

1.9. Outline of the Thesis

to create the diagnostic facilities used in finite difference methods, and generates

routines that are parallel ready that can be used within a framework of a parallel

computing infrastructure such as PAMR [33].

The Appendix of this thesis, in large part, is the user manual for this software.

It also discusses the details and key concepts of the finite difference method as well

as the mathematical notion of convergence and independent residual evaluators that

are used throughout this thesis as diagnostic tools. At any point, the materials in

the Appendix can be consulted as a pedagogical reference.

1.9 Outline of the Thesis

As mentioned above, this thesis is concerned with both Type I and Type II criti-

cal collapse. In Chapter 2, we study the Einstein-Vlasov model which describes a

set of collision-less particles modeled as a phase-space distribution coupled to Ein-

stein’s equations. This study is to address some of the inconsistencies in the type

I critical collapse studies of Einstein-Vlasov system, and in particular to focus on

the massless22 system and understand the role of the angular momentum. We di-

rectly integrate the Vlasov equation in phase-space, i.e. we evolve the distribution

f(t, r, pr, l
2) where f is the density of the particles in phase-space, r is the radial

coordinate, pr is the radial momentum of the particles and l2 is the angular mo-

mentum of the particles. The geometry and phase-space distribution are restricted

to spherical symmetry, however the dynamics of f in the phase-space is indeed a 3

+ 1 computation, 3 phase-space dimensions (r, pr, l
2) and 1 time coordinate. The

main finding in this section is the observation of type I critical behaviour and the

universality of the time-scaling exponent in the massless system. In addition, we

find a family of static solutions to the massless system and show that they all can

play the role of type I critical solutions with similar time-scaling exponent when

they are perturbed. This chapter also explains the numerical techniques and the

22Particles are moving along the null geodesics of the spacetime.

33

1.9. Outline of the Thesis

new finite-volume code we developed to solve the Vlasov part of the problem. The

chapter is identical to its published version [1].

Chapter 3 and 4 are focused on type II critical collapse. In particular, we are

interested in applying a modified version of the BSSN formulation, known as Gener-

alized BSSN, to type II critical solutions and ultimately to develop an axisymmetric

code that can be used in various type II critical phenomena studies. The ultimate

goal is to extend the limited studies in the numerical relativity literature in type

II critical collapse and in particular to find an appropriate formulation and coordi-

nates choice that allow generic type II critical phenomena studies among which the

critical collapse of pure gravitational waves is yet an unresolved problem.

In Chapter 3, we begin with adopting the BSSN formulation in spherical sym-

metry and apply the technique to the well-known problem of critical collapse of a

massless scalar field. As will be discussed, the use of free evolution schemes and

dynamical coordinate choices has not been successful in the past in resolving the

discrete self similarity of type II threshold solutions. The main result of Chapter

3 is the first successful implementation of a hyperbolic formulation that is capable

of evolving the spacetime dynamics sufficiently close to the critical solution to al-

low observation of the characteristics of the DSS spacetime. Our results establish a

potential route to extend the type II critical phenomena studies in axial symmetry

using the G-BSSN formulation. This chapter is also identical to its published version

[2].

Chapter 4 extends techniques we implemented in spherical case to axial symme-

try. We describe the implementation of a new generalized BSSN axisymmetric code

that uses cylindrical coordinates and provide evidence confirming its robustness and

accuracy. The code can in principal be coupled to any matter sources. However,

we demonstrate the performance of the code in the strong pure gravitational waves

content, which has been historically the most challenging case. We evolve highly

non-linear gravitational waves in axial symmetry where the vacuum can collapse

34

1.9. Outline of the Thesis

to a black hole. Our primary calculations suggest that, again, generalized BSSN

appears to be promising, and an extension of the work can shed more insight, and

perhaps solve the as yet unresolved problem of critical collapse in pure gravitational

waves.

35

Chapter 2

Critical Collapse in the

Spherically Symmetric

Einstein - Vlasov Model

2.1 Introduction

In this paper23 we report results from an investigation of critical collapse in the

spherically symmetric Einstein-Vlasov system, which describes the interaction of

collisionless matter with a general relativistic gravitational field. After more than

two decades of study, the field of black hole critical phenomena has matured and

although we present a brief overview below, we assume that the reader is at least

somewhat familiar with the key concepts and results in the subject: those who are

not can consult comprehensive review articles [5, 23].

We recall that critical phenomena can be identified in a given model by consid-

ering dynamical evolution of initial data that is characterized by a parameter, p,

such that for sufficiently small p the gravitational interaction remains weak and the

matter (or gravitational energy in the vacuum case) typically disperses, while for

sufficiently large p a black hole forms. By tuning p between these limits we isolate

a critical parameter value p⋆ that generates a solution representing the threshold of

black hole formation for the particular family of initial data. The behaviour that

23This chapter is published in: Akbarian. A. and Choptuik M. W. “Critical collapse in the
spherically-symmetric Einstein-Vlasov model. Phys. Rev. D90, 104023 (2014).

36

2.1. Introduction

arises in the near-critical regime p→ p⋆ constitutes what is meant by black hole crit-

ical phenomena. Depending on the particulars of the model, these phenomena will

comprise one or more of the following: 1) existence of a special solution at criticality

with possible universality with respect to the parameterization of the initial data,

2) symmetry of the critical solution beyond any imposed in the model itself and

3) scaling of dimensionful physical quantities as a function of |p − p⋆|, with scaling

exponents which may also be universal in the sense given above. These properties

can largely be explained by observing that a critical solution has a single unstable

mode in perturbation theory, whose associated eigenvalue (Lyapunov exponent) can

be immediately related to the empirically measured scaling exponent.

For the most part, the critical transitions that have been observed to date fall

into two classes that are dubbed type I and type II in analogy with first and second

order phase transitions, respectively, in statistical mechanical systems, and where

the behaviour of the black hole mass plays the role of an order parameter. A type

I transition is characterized by a static or periodic critical solution, with a scaling

law

τ = −σ ln |p− p⋆| . (2.1)

Here, τ is the lifetime of the near-critical configuration—the amount of time that the

dynamical configuration is closely approximated by the precisely critical solution—

and the scaling exponent, σ, is the reciprocal of the Lyapunov exponent, λ, asso-

ciated with the solution’s single unstable mode. In this case the black hole mass

is finite at threshold since when the marginally stable static or periodic solution

collapses, most of its mass-energy will end up inside the horizon.

Previous studies [34–37] have strongly suggested that the critical behaviour in

the Einstein-Vlasov model is generically type I and our current results bear this out.

So far as we know, type II collapse, where the critical solution is self similar and the

black hole mass is infinitesimal at threshold, is not relevant to the model and will

not be considered here.

37

2.1. Introduction

In the Einstein-Vlasov system the matter content of spacetime is specified by a

density function f(t, xi, pj) in phase space whose evolution is given by the Vlasov

equation, while the geometry is governed by the Einstein equations. Numerical

studies of the model have a long history, dating back to the work by Shapiro and

Teukolsky, both in spherical symmetry [38–40] and axisymmetry [41, 42]. Investiga-

tion of critical collapse in the spherically symmetric sector was initiated by Rein et

al [34] who observed finite black hole masses at threshold for all families considered.

Subsequent work by Olabarrieta and Choptuik [35] corroborated these findings and

additionally provided evidence that the threshold solutions were static with lifetime

scaling of the form (2.1). Moreover, there were some indications in this latter study

that there might be a universal critical solution and associated scaling exponent.

More recently, Andréasson and Rein have carried out a comprehensive study of

precisely static solutions of the model, concentrating on their stability both generally

and in the context of critical phenomena [37, 43]. Many of their observations and

results are pertinent to our current investigation. First, they point out that static

solutions can be constructed via a specific ansatz for the distribution function that

is discussed in Sec. 2.3. Second, using this ansatz they construct parameterized

sequences of static solutions, and, following astrophysical practice, characterize the

solutions by their central redshifts and binding energies. Third, they present strong

evidence that a maximum in the binding energy along a sequence signals an onset

of instability and that at least some of the configurations that lie along an unstable

branch can act as type I solutions in the critical collapse context. This immediately

establishes that there can not be universality in the model. Fourth, and finally, they

show that dispersal is not the only stable end state of sub-critical collapse, but that

relaxation to a bound state is also possible, contingent on the sign of the binding

energy. Overall, the picture of critical behaviour that emerges very much parallels

that which is observed for type I transitions in the perfect-fluid and massive-scalar

cases [44–51].

38

2.1. Introduction

All of the work reviewed above used a non-zero particle mass. However, the

massless case can also be considered and the current research is largely aimed at

exploration of that sector. Additionally, we attempt to address some issues that

remained open following Andréasson and Rein’s work, including whether there is

any explanation for the indications of universality seen in [35]. We note that for the

massless model Martin-Garcia and Gundlach [52] considered the possibility of the

existence of one-mode unstable self similar configurations that could serve as type II

critical solutions. Interestingly, they concluded that since there are infinitely many

matter configurations that give rise to any given static spacetime, any unstable so-

lution must have an infinite number of unstable modes. Their argument also applies

to the static case, which then suggests that there should be no type I behaviour in

the model either.

In spherical symmetry the Vlasov equation is a PDE in time and three phase

space dimensions.24 Thus, direct numerical solution is costly and this fact motivated

the use of particle-based algorithms in all previous studies excepting [36]. However, a

key deficiency of particle approaches is that the results develop a stochastic character

on a short time scale. This leads to poor convergence properties relative to a direct

method, namely an error that is only O(1/
√
N), where N is the number of particles.

With the substantial increase in computational resources over time, direct solution

techniques have become feasible and about a decade ago Stevenson [36] implemented

a finite-volume solver for the Vlasov PDE for the case that all particles have the

same angular momentum. The code that we have developed is largely a continuation

of his effort and produces results that have well-behaved convergence properties as

a function of the mesh spacing.

Our numerical studies are based on two types of initial data. The first, which we

term generic, is characterized by a relatively arbitrary functional form for f(0, xi, pj).

The second, which we call near static, is based on perturbations about some precisely

24The 3 phase space dimensions are: radial direction r, radial momentum pr and the angular
momentum l (see Sec. 2.2.2).

39

2.2. Equations of Motion

static solution that is constructed from the ansatz described in Sec. 2.3. We perform

experiments using initial conditions of the first type for both massless and massive

particles, but restrict attention to the massless sector for our near-static studies.

Aiming to unearth as much phenomenology as possible, as well as to explore the

issue of universality, we have attempted to broadly survey the possibilities for the

specific form of the initial distribution function in all three sets of experiments.

The remainder of the paper is structured as follows. The next section describes

the equations of motion for the model while Sec. 2.3 discusses the construction of

static solutions from the ansatz mentioned previously. Sec. 2.4 details our numerical

approach, including code validation. Sec. 2.5 is devoted to the main results from

our study and we conclude with a summary and discussion in Sec. 2.6. We have

adopted units in which G = c = 1.

2.2 Equations of Motion

A configuration of a system of particles can be described by the phase space den-

sity, f(t, xi, pj), also known as the distribution function, where xi and pj are the

particles’ spatial positions and 3-momenta, respectively. In the Einstein-Vlasov sys-

tem particles interact only through gravity. Consequently, the particles move on

geodesics of the spacetime along which the density function is conserved25:

Df(t, xj, pj)

dτ
= 0 . (2.2)

Here, τ is the proper time of the particle and D/dτ is the Liouville operator:

D

dτ
≡ dxµ

dτ

∂

∂xµ
+
dpj
dτ

∂

∂pj
. (2.3)

25This can be viewed as the conservation of the particles number in the volume element of the
phase space (co-moving with the particles) since we assume no collision between the particles. An
introduction to Einstein-Vlasov is given in [53] and an extensive textbook in relativistic Boltzmann
equation is [54].

40

2.2. Equations of Motion

Using the geodesic equation

vµ∂µpν − vµΓλµνpλ = 0 , (2.4)

where vµ is the particle 4-velocity, the Vlasov equation can be written as

pµ
∂f

∂xµ
+ pνpλΓ

λ
νj

∂f

∂pj
= 0 . (2.5)

The energy momentum tensor of the system is given by integrating over the

momentum of the particles:

Tµν(t, x
i) =

∫

pµpν
m

f(t, xi, pj)dVpj , (2.6)

where m is the particle mass. Equations (2.5) and (2.6), together with Einstein’s

equations

Gµν = 8πTµν , (2.7)

govern the evolution of the Einstein-Vlasov system. These equations, restricted to

spherical symmetry by requiring f(t, xi, pj) = f(t, R(xi), R(pj)), R ∈ SO(3) is the

system we study numerically.

2.2.1 Coordinate Choice and Equations for Metric Components

We adopt polar-areal coordinates (t, r) in which the spherically-symmetric metric

takes the form

ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + r2dθ2 + r2 sin2 θdφ2 . (2.8)

The radial metric function a(t, r) can be determined from either the Hamiltonian

constraint,
a′

a
=

1− a2
2r

− ra2

2
8πT t t , (2.9)

41

2.2. Equations of Motion

where ′ ≡ ∂/∂r, or from the momentum constraint,

ȧ

a
=
ra2

2
8πT r t , (2.10)

with ˙ ≡ ∂/∂t. The lapse function α(t, r) is fixed by the polar slicing-condition

α′

α
=
a2 − 1

2r
+
ra2

2
8πT r r . (2.11)

Equation (2.9) is solved subject to the boundary condition,

a(t, 0) = 1 , (2.12)

which follows from the demand of elementary flatness at the origin. For the lapse

we set

α(t, rmax) =
1

a(t, rmax)
, (2.13)

where rmax is the location of the outer boundary of the computational domain, so

that coordinate and proper time coincide at infinity.

The θθ component of Einstein’s equation yields an additional redundant equa-

tion, and we use the degree to which it is satisfied as a check of our numerical

results.

2.2.2 The Energy Momentum Tensor

As noted above, for a given distribution function, f(t, xi, pj), the stress tensor is

computed from the momentum-space integral (2.6). With our choice of metric the

volume element is given by

dVpj =
md3pj

p0
√

|g|
=
mdprdpθdpφ
p0αar2 sin θ

. (2.14)

42

2.2. Equations of Motion

To impose spherical symmetry we require the distribution function to be uniform in

all possible angular directions. This condition can be conveniently implemented by

transforming to variables l2 and ψ given by

l2 ≡ p2θ +
p2φ

sin2 θ
, (2.15)

ψ ≡ tan−1

(

pθ sin θ

pφ

)

, (2.16)

where l is the angular momentum of the particles. Spherical symmetry is then

achieved by demanding that f(t, xi, pr, l
2, ψ) ≡ f(t, r, θ, φ, pr, l

2, ψ) = f(t, r, pr, l
2).

The volume element in the new variables is

dVpj =
mdprdl

2dψ

2ap̄tr2
, (2.17)

where

p̄t ≡ αp0 =
√

m2 +
p2r
a2

+
l2

r2
. (2.18)

Integrating over ψ, the components of the energy momentum tensor are given

by:

T t t =
−π
ar2

∫∫

p̄tfdprdl
2 , (2.19)

T r r =
π

a3r2

∫∫

p2r
p̄t
fdprdl

2 , (2.20)

T r t =
−πα
a3r2

∫∫

prfdprdl
2 , (2.21)

T θθ =
−π
2ar4

∫∫

l2f

p̄t
dprdl

2 . (2.22)

43

2.3. Static Solutions

2.2.3 Evolution of the Distribution Function

Having imposed spherical symmetry the Vlasov equation (2.5) can be written as

pt
∂f

∂t
+ pr

∂f

∂r
+

(

α′p2t
α3

+
a′p2r
a3pt

+
l2

r3

)

∂f

∂pr
= 0 . (2.23)

By defining

g ≡ αpr
α2p̄t

=
∂H

∂pr
, (2.24)

h ≡ −α′p̄t +
αa′p2r
a3p̄t

+
αl2

r3p̄t
= −∂H

∂r
, (2.25)

where H is the Hamiltonian,

H ≡ α
√

m2 + (pr/a)2 + (l/r)2 , (2.26)

equation (2.23) can be cast as a conservation law:

∂f

∂t
− {H, f} = ∂f

∂t
+
∂(gf)

∂r
+
∂(hf)

∂pr
= 0 . (2.27)

This form of the Vlasov equation facilitates the use of finite-volume techniques in

our numerical treatment of the problem.

2.3 Static Solutions

Spherically symmetric static solutions of the Vlasov equation can be generated by

simply requiring that the distribution function at the initial time take the form

f(0, r, pr, l
2) = Φ(E, l), where

E ≡ α
√

m2 + (pr/a)2 + (l/r)2 (2.28)

44

2.3. Static Solutions

is the energy of the particles and, again, l is the angular momentum parameter [55].

Indeed, since E and l are both conserved along particle geodesics in spherical sym-

metry, any distribution function of this form remains unchanged as the particles

move and the Vlasov equation is automatically satisfied.

Explicit construction of the static spacetime resulting from a given choice of

Φ(E, l) requires that the metric functions α and a be determined self-consistently.

To that end we can write (2.9) and (2.11) as

−2r∂r ln a+ 1

a2
− 1 = 8πr2T tt(r;α,Φ) , (2.29)

2r∂r lnα+ 1

a2
− 1 = 8πr2T rr(r;α,Φ) , (2.30)

where

T tt(r;α,Φ) = −
π

r2

∫∫

p̄tΦ(E(α, r, w, l), l)dw dl2 , (2.31)

T rr(r;α,Φ) =
π

r2

∫∫

w2

p̄t
Φ(E(α, r, w, l), l)dw dl2 , (2.32)

w =
pr
a
, (2.33)

p̄t =
√

m2 + w2 + (l/r)2 , (2.34)

E = α
√

m2 + w2 + (l/r)2 . (2.35)

Given a functional form for Φ(E, l), we can integrate the equations for α(r) and a(r)

from r = 0 outward, subject to the boundary conditions (2.12)-(2.13). Physically,

we also want the particle distribution resulting from a given Φ(E, l) to have compact

support in phase space and finite total mass. As shown in [56], these conditions can

45

2.4. Numerical Techniques

be satisfied by introducing a maximum (cut-off) energy, E0, so that

Φ(E, l) = φ(E/E0)Θ(E0 − E)F (l) , (2.36)

where Θ is the unit step function. In Sec. 2.5.2 we construct static solutions based

on this ansatz and then investigate their relationship to critical behaviour in the

model.

2.4 Numerical Techniques

In this section we summarize our numerical approach for constructing approximate

solutions of the equations of motion and the various tests we have performed to

establish the correctness and accuracy of our implementation.

2.4.1 Evolution Scheme

As previously mentioned, we treat the matter evolution by a direct discretization of

the multidimensional Vlasov equation. Relative to the particle methods adopted in

most previous studies of the Einstein-Vlasov system, this has the advantage that our

numerical solutions have superior convergence properties. In particular, in contrast

to the particle approach, there is no stochastic component of the solution error. This

in turn leads to improved confidence in our identification of key aspects of the critical

phenomena exhibited in the model, including 1) evidence that the threshold solutions

are static and 2) the scaling exponents associated with the critical configurations.

As also noted above, the Vlasov equation can be expressed in conservation form

and is thus amenable to solution using finite-volume methods. These techniques,

which are used extensively in fluid dynamics, for example, are well known for their

ability to accurately resolve sharp features—including discontinuities—that often

appear in the solution of conservation laws. In our case, evolutions of the distribu-

tion function generically exhibit significant mixing and steep gradients; moreover,

46

2.4. Numerical Techniques

some of our computations involve initial data which is not smooth in phase space.26

The finite-volume strategy is thus natural for our purposes. We sketch our specific

approach by considering the general form of a conservation equation for a quantity

q(t, x, y):
∂q(t, x, y)

∂t
+
∂Fx(q)

∂x
+
∂Fy(q)

∂y
= 0 , (2.37)

where Fx(q) and Fy(q) are the fluxes in the x and y directions. We follow the usual

finite volume approach (see [57] for example) by dividing the computational domain

into Nx × Ny cells of uniform size ∆x × ∆y as shown in Fig. 2.1, and define the

average value of the unknown q over the cell Cij by

Qnij =
1

∆x∆y

∫∫

Cij

q(tn, x, y)dxdy . (2.38)

Here the superscript n labels the discrete time, tn ≡ n∆t. We then rewrite (2.37)

in integral form:

∂Q

∂t
= − 1

∆x∆y

(∫

E
Fx(q)dy −

∫

W
Fx(q)dy

)

− 1

∆x∆y

(
∫

N
Fy(q)dx−

∫

S
Fy(q)dx

)

, (2.39)

where the subscripts E, W, N and S denote the east, west, north and south bound-

aries, respectively, of the cell Cij. Applying a time-discretization to this last expres-

sion yields an equation that can be used to advance the cell average in time:

Qn+1
ij = Qnij −

∆t

∆x

(

[Fx]
n
i+1/2 − [Fx]

n
i−1/2

)

−∆t

∆y

(

[Fy]
n
j+1/2 − [Fy]

n
j−1/2

)

. (2.40)

Here the average fluxes at the boundaries, [Fx]
n
i+1/2 etc. are calculated using a Roe

solver [57]. We note that our calculations are always performed on meshes that

26See for example the choice of b = 1 in Eq. (2.70). The radial density distribution of the particles
in this choice is not smooth as can be seen in the right panel in Fig. 2.10 (labeled as b = 1).

47

2.4. Numerical Techniques

x[]
−1/2

n
i

F

j
Fx

i

j−1

j+1

yF[]
j +1/2

[]
i +1/2

Q n
i j

n

n

n
−1/2jy]F[

i+1i−1

Figure 2.1: A portion of the discretized computation domain used in our finite
volume code. The dashed lines delineate one finite volume cell. The cell-centred
average value of the density, Qnij is defined on the grid points marked with filled
circles while the fluxes, [Fx]

n
i−1/2, [Fx]

n
i+1/2, etc. are computed at points denoted

with dashed circles and which lie on cell boundaries. As described in more detail
in the text, Qnij is updated using the difference of the outgoing and ingoing fluxes
through the cell boundaries.

48

2.4. Numerical Techniques

are uniform in each coordinate direction, and that when we change resolution—to

perform a convergence test for example—each mesh spacing is changed by the same

factor. Thus, our discretization is fundamentally characterized by a single scale, h.

Our specific finite volume approach is based on O(h2) approximations. However,

the nature of the flux calculations—which are designed to inhibit the development

of spurious oscillations—means that the scheme is only O(h) in the vicinity of any

local extrema in the solution.

The metric variables α and a, which need only be defined on a mesh in the r

direction, are computed from O(h2) finite difference approximations of the Hamil-

tonian and slicing equations, (2.9) and (2.11). Since the equations for the matter

and geometry are fully coupled—i.e. α and a appear in the flux computations,

and f is needed for the calculation of the source terms for α and a—some care is

needed to construct a scheme which is fully O(h2) accurate (modulo the degrada-

tion of convergence near extremal solution values just noted). In practice, we use

an O(∆t2) = O(h2) Runge-Kutta scheme for the time stepping, which necessitates

computation of auxiliary quantities at the half time step tn+1/2 = tn + ∆t/2. Our

overall scheme that advances the solution from tn to tn+1, and which does have

O(h2) truncation error, is:

1. Compute fn+1/2 from (2.40) using the fluxes Fn.

2. Compute ãn+1/2 from (2.10) with source [T rt]
n.

3. Compute
[

T tt
]n+1/2

and [T rr]
n+1/2 from (2.19)–(2.20) using ãn+1/2.

4. Compute an+1/2 and αn+1/2 from (2.9) and (2.11) with sources
[

T tt
]n+1/2

and

[T rr]
n+1/2.

5. Compute [T rt]
n+1/2 from (2.21).

6. Compute fluxes F
n+1/2
x and F

n+1/2
y using an+1/2 and αn+1/2.

7. Compute fn+1 from (2.40) and the half-step fluxes Fn+1/2.

49

2.4. Numerical Techniques

8. Compute ãn+1 from (2.10) with source [T rt]
n+1/2.

9. Compute
[

T tt
]n+1

and [T rr]
n+1 from (2.19) and (2.20) using ãn+1.

10. Compute an+1 and αn+1 from (2.9) and (2.11) using sources
[

T tt
]n+1

and

[T rr]
n+1.

11. Compute [T rt]
n+1 from (2.21).

12. Compute fluxes Fn+1
x and Fn+1

y using an+1 and αn+1.

13. One time step complete; start next time step.

To facilitate the use of large grid sizes, as well as to speed up the simulations,

we parallelize the computations for the evolution of the distribution function and

the calculation of the energy-momentum tensor components using the PAMR 27

package [33]. On the other hand, the calculation of the metric components, which

has negligible cost relative to the updates of f and T µν , is performed on a single

processor. The new values of the metric functions are then broadcast to the other

CPUs.

2.4.2 Initial Data

In spherical symmetry the gravitational field has no dynamics beyond that generated

by the matter content, so initial conditions for our model are completely fixed by the

specification of the initial-time particle distribution function, f(0, r, pr, l
2). However,

the Einstein equations (2.9)–(2.11) must also be satisfied at the initial time and,

through the definition (2.18) for p̄t, a appears within the integrands for the stress

tensor components. To determine all requisite initial values consistently we therefore

use the following iterative scheme:

27Parallel Adaptive Mesh Refinement: a software developed by Fran Pretorius for parallelizing
time dependent PDE solver codes and applying AMR algorithm.

50

2.4. Numerical Techniques

1. Initialize the distribution function, f(0, r, pr, l
2), to a localized function on

phase space.

2. Initialize the geometry to flat spacetime.

3. Calculate the energy momentum tensor using the current geometry.

4. Calculate the geometry using the current energy momentum tensor.

5. Iterate over the matter and geometry calculations until a certain tolerance is

achieved.

In practice we find that this algorithm converges in a few iterations.

As discussed in Sec. 2.5.2, when we study static initial data we first specify

Φ(E, l) and then integrate (2.29)–(2.30) outward. We note that the form of Φ(E, l)

that we choose,

Φ(E, l) = φ(E/E0)Θ(E0 − E)F (l) , (2.41)

results in equations that are invariant under the transformation:

α → kα , (2.42)

E0 → kE0 . (2.43)

We can thus first integrate the slicing condition (2.30) subject to the boundary

condition, α(0, 0) = Λ, with Λ < 1 but otherwise arbitrary, and then linearly rescale

α(0, r) so that α(0, rmax) = 1/a(0, rmax). The central redshift of the configuration,

Zc, which we use in our analysis below, is then given by

Zc ≡
1

α(0, 0)
− 1 , (2.44)

where α(0, 0) is now the rescaled value. It is important to emphasize that differ-

ent choices for Λ result in distinct solutions, so that irrespective of any adjustable

51

2.4. Numerical Techniques

parameters that may appear in the specification of φ, equation (2.41) will always

implicitly define an entire family of static configurations.

2.4.3 Diagnostic Quantities and Numerical Tests

We have validated our implementations of the algorithms described above using

a standard convergence testing methodology that examines the behaviour of the

numerical solutions as a function of the mesh spacing, h, keeping the initial data

fixed. This section summarizes the tests we perform—which involve derived quan-

tities that should be conserved in the continuum limit as well as the full solutions

themselves—and presents results from their application to a representative initial

data set using three scales of discretization, h, h/2 and h/4.

Conserved Quantities

The mass aspect function, m(t, r), is given by

m(t, r) =
r

2

(

1− 1

a2(t, r)

)

, (2.45)

and measures the amount of mass contained within radius r at time t. Its value at

spatial infinity

M ≡ m(t,∞) , (2.46)

is the conserved ADM mass. Alternatively, M can be computed using

M =

∫ ∞

0
ρ4πr2dr , (2.47)

ρ = nµnνTµν , (2.48)

where nµ is the unit timelike vector normal to the spatial slices. In developing our

code we computed mass estimates based on both of these expressions, but the results

presented here and in the remainder of the paper use (2.46) exclusively. Fig. 2.2(c)

52

2.4. Numerical Techniques

graphs deviations of M relative to its time-averaged mean value 〈M〉 for the three

computations performed with mesh scales h, h/2 and h/4. As noted in the caption,

the values ofM−〈M〉 have been rescaled such that the near coincidence of the plots

signals the expected O(h2) convergence to conservation.

The second conserved quantity that we monitor is the real-space particle flux,

Jµ, given by

Jµ(t, r) = gµν

∫∫

pν

m
fdVpj . (2.49)

In spherical symmetry, the only nonzero components of Jµ are

Jt = −
απ

ar2

∫∫

f(t, r, pr)dpr , (2.50)

Jr =
π

ar2

∫∫

pr
p̄t
f(t, r, pr)dpr . (2.51)

The divergence of the flux must remain zero as the system evolves—written explicitly

we have

∇µJµ =
1

α3a3r

(

− a3rJ̇tα+ a3rJtα̇+ arJrα
2α′

+ α3rJ ′
ra − αrJta

2ȧ− α3rJrα
′ + 2Jrα

3a
)

= 0 . (2.52)

Plots of the rescaled ℓ2 spatial norm of ∇µJµ as a function of time are shown in

Fig. 2.2(d)—again O(h2) convergence is observed.

Independent Residual Test

As noted in Sec. 2.2.1, the θθ component of Einstein’s equation is not used in our

evolution scheme but must be satisfied in the continuum limit if our numerical results

are valid. We thus define the residual

Eθθ ≡ Gθθ − 8πT θθ , (2.53)

53

2.4. Numerical Techniques

Figure 2.2: Results of various diagnostic tests used to test the numerical solver. The
initial data and mesh resolutions used here are typical of any of the 2D calculations
described in the paper. A standard convergence testing methodology, using three
calculations with fixed initial data and mesh spacings h, h/2 and h/4, is employed.
The coarsest mesh has nx × ny = nr × np = 128 × 128 grid points. Plots (a), (c)
and (d) all display quantities that are residual in nature, i.e. which should tend to
zero quadratically in the mesh spacing. Values from the h/2 and h/4 computations
have been rescaled by factors of 4 and 16, respectively, and the near-coincidence of
the rescaled values thus demonstrates that all three quantities are converging at the
expected O(h2) rate. (a) Convergence of the l2 norm of the independent residual,
‖Eθθ‖2, defined by (2.53). (b) Convergence factors (3.68) of the primary dynamical
unknowns. Here, convergence of the metric functions, α and a, is clearly second
order, while that for the distribution function is better than O(h) but is not O(h2).
This latter behaviour is to be expected since the finite volume method used to update
f is only first order in the vicinity of local extrema. (c) Convergence of the deviation
in computed total mass, calculated from (2.45) and (2.46). (d) Convergence of the
particle flux divergence (2.52).

54

2.4. Numerical Techniques

where

Gθθ = Gφφ

= − 1

rα3a3

(

−α2a
∂α

∂r
+ α3 ∂a

∂r
+ α2r

∂α

∂r

∂a

∂r

− α2ar
∂2α

∂r2
+ a2αr

∂2a

∂t2
− a2r∂α

∂t

∂a

∂t

)

, (2.54)

and T θθ is given by (2.22). Then, using second-order finite differences to approx-

imate all derivatives, we monitor the ℓ2 norm of Eθθ during the calculations. We

expect ‖Eθθ‖2 to be O(h2) and Fig 2.2(a) shows that this is the case.

Full-solution Convergence Test

The final check we perform is a basic convergence test of the primary dynamical

variables, α, a and f . Denoting the values computed at resolution h for any of

these by qh(t,X)—where X = r for α and a, and X = (r, pr) for f—we calculate

convergence factors, C(t; q), defined by

C(t; q) =
||qh(t,X)− qh/2(t,X)||l2
||qh/2(t,X) − qh/4(t,X)||l2

. (2.55)

If our scheme is O(h2) convergent then it is easy to argue that C(t; q) should ap-

proach 4 in the continuum limit. Plots of C(t; a), C(t, α) and C(t; f) are shown in

Fig. 2.2(b). Second order convergence of the geometric variables is apparent, while

the behaviour of C(t; f) reflects the fact that the finite volume method we use is

only first-order accurate in the vicinity of extrema of f . Interestingly, at least at

the resolutions used here, the deterioration of the convergence of f does not appear

to significantly impact that of the geometric quantities.28

28This can be traced back to the fact that the geometric quantities are only related to f via the
integral of the density function over the momentum direction in the phase space. Finite volume
methods lose their point-wise second order accuracy in the vicinity of extrema points, but they are
well preserving with respect to the quantities derived by integrating over the finite volume cells
such as the energy momentum tensor.

55

2.5. Results

Family D f(0, r, pr, l) p

G1 2 δ(l − l0)G(A, rc, pc) pc
G2 2 δ(l − l0)G(A, rc, pc) l0
G3 2 δ(l − l0)G(A, rc, 0) A

G4 2 δ(l − l0) (G(A, rc, pc) + G(A, rc +∆r, pc +∆p)) pc
G5 2 δ(l − l0)E(A,rc, pc) pc
G6 2 δ(l − l0)E(A,rc, 0) A

G7 2 δ(l − l1)G(A, r1, p1) + δ(l − l2)G(A, r2, p2) p1
G8 3 exp(−(l − l0)

2/∆l2)G(A, rc, pc) pc
G9 3 exp(−(l − l0)

2/∆l2)G(A, rc, 0) A

G10 3 Θ(l − 5)Θ(15− l)E(A, rc, 0) A

Table 2.1: Families of generic initial data used in the studies described in text. The
columns enumerate: (1) the label for the family, (2) the number, D, of phase-space
dimensions on which the distribution function depends (and therefore whether the
2D or 3D code was used to generate the results), (3) the form of the initial data,
f(0, r, pr, l) (see (2.57) and (2.58) for the definitions of G and E), and (4) the con-
trol parameter, p, that was varied to study the critical behaviour. The quantities
l0, l1, l2, rc, r1, r2, pc, p1, p2,∆r and ∆p that appear in the various specifications of
f(0, r, pr, l) are all parameters; i.e they have fixed scalar values in any given compu-
tation.

2.5 Results

In this section we describe the main results from our investigation of critical be-

haviour in the Einstein-Vlasov model. We have used many different families of

initial data in our studies and what we report below is based on a representative

sample of those. As mentioned in the introduction, the numerical experiments fall

into three broad classes. The first uses massless particles and initial data which

have some relatively arbitrary form in phase space. The second also uses mass-

less particles but with initial conditions that represent perturbed static solutions.

Finally, the third set is the same as the first but with massive particles. We will

refer to these classes as generic massless, near-static massless, and generic massive,

respectively. In addition, the calculations can be categorized according to whether

l is a single fixed value, l0, (2D) or if the distribution function has non-trivial l-

dependence (3D). The functional form of the various families considered, along with

the dimensionality of the corresponding PDEs and the parameter used for tuning

56

2.5. Results

to criticality are summarized in Table 2.1.

2.5.1 Generic Massless Case

Here we use initial distribution functions, f0 ≡ f(0, r, pr, l), that describe configura-
tions of particles localized in r, pr and l, and that include various parameters which

can be tuned to generate families of solutions that span the black hole threshold.

Specifically, we set

f(0, r, pr, l
2) = S(r, pr)F (l) , (2.56)

where S(r, pr) is given by either a gaussian function,

G(r, pr ; A, rc, pc) ≡ A exp

(

−(r − rc)2
∆2
r

− (pr − pc)2
∆2
p

)

, (2.57)

or the truncated bi-quadratic form

E(r, pr; A, rc, pc) ≡

Ar̄(1− r̄)p̄(1− p̄) 0 < r̄ < 1 ,

0 < p̄ < 1 ,

0 elsewhere,

(2.58)

where r̄ = (r−rc+∆r)/2∆r and p̄ = (pr−pc+∆p)/2∆p. Note that the dependence

of G and E on r and pr is suppressed in the abbreviated notation used in Table 2.1.

For the 3D calculations, we use two types of angular momentum distribution: the

first is a gaussian,

F (l) = exp

(−(l − l0)2
∆l2

)

, (2.59)

while the second is uniform in l with cutoffs at some prescribed minimum and

maximum values, lmin and lmax, respectively,

F (l) = Θ(l − lmin)Θ(lmax − l) . (2.60)

It is important to point out that since the massless Einstein-Vlasov system is

57

2.5. Results

r

T = 0

p
r

2 4 6 8 10
−5

0

5

1

2

3

4

5
x 10

−3

r

T = 40

p
r

2 4 6 8 10
−5

0

5

0

1

2

3

4

5
x 10

−3

r

p
r

T = 120

2 4 6 8 10
−5

0

5

0

1

2

3

4

x 10
−3

r̃

p
r

T=200

1.5 2 2.5
−4

−2

0

2

4

0

1

2

3

4

x 10
−3

Figure 2.3: Snapshots of the distribution function from a typical near-critical cal-
culation, with evolution proceeding left to right, top to bottom (note the reduction
in the range of radial coordinate in the last frame). The displayed results are from
family G8 (see Table 2.1) where pc—which is loosely the average momentum of the
initially imploding shell of particles—is the control parameter. As with all of the
calculations discussed in the results section, the control parameter has been tuned
to roughly machine precision. In the early stages of the evolution we observe phase
space mixing and the ejection of some particles (the latter particularly visible as
the “tail” in the second frame). At intermediate times the system approaches a
static state which persists for a period that is long compared to the infall/dispersal
timescale characterizing weak field dynamics. We note that this is a 3D calculation,
with f non-trivial in the l direction: for visualization purposes we have integrated
over l to produce a quantity depending only on r and pr. Additionally, the first three
frames are plotted using the computational coordinate, r, while for the purposes of
direct comparison with Fig. 2.4, the fourth uses the rescaled coordinate, r̃, defined
by (2.64). We emphasize that at criticality f retains non-trivial dependence on pr;
that is, although the geometry is static, the particle behaviour is still dynamic.

58

2.5. Results

r

p
r

T = 0

2 4 6 8 10
−4

−2

0

2

4

2

4

6

8

10

12

x 10
−3

r

p
r

T = 40

2 4 6 8 10
−4

−2

0

2

4

2

4

6

8

10

12

x 10
−3

r

p
r

T = 160

2 4 6 8 10
−4

−2

0

2

4

2

4

6

8

10

12

x 10
−3

r̃

p
r

T = 350

1.5 2 2.5
−4

−2

0

2

4

0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 2.4: Snapshots of the distribution function for a near-critical calculation us-
ing family G10. Here the tuning parameter is the overall amplitude, A, of the initial
particle distribution. As in the previous figure the sequence shows an approach to a
static state, but it is evident that the form of the distribution function at criticality
is significantly different in the two calculations. Due to the use of the rescaled radial
coordinate, r̃, the fourth frames of the two figures can be meaningfully compared.

59

2.5. Results

scale-free it has an additional symmetry relative to the massive case. Specifically,

the equations of motion are invariant under the transformation

t→ kt , (2.61)

r → kr , (2.62)

where k is an arbitrary positive constant. In order to meaningfully compare results

from different initial data choices we must therefore adopt unitless coordinates in

our analysis. We do this by rescaling t and r by the total mass, M⋆, of the puta-

tively static solution which arises at criticality for any of the families that we have

considered (that is, M⋆ includes only the mass associated with that portion of the

overall matter distribution which appears to be static at criticality). Moreover, it

is more natural and convenient to use central proper time, τ , rather than t itself

in the analysis. Thus, the results below are described using rescaled coordinates, τ̃

and r̃, defined by

τ̃ =
τ

M⋆
, (2.63)

r̃ =
r

M⋆
. (2.64)

We note that under the scaling (2.61)–(2.62) the angular momentum transforms as

l→ kl . (2.65)

The process we use to generate near-critical solutions is completely standard for

this type of work. All of the family definitions described above and summarized

in Table 2.1 contain multiple parameters that can be used to tune to the black

hole threshold and, consistent with what has been found in many other previous

studies of black hole critical phenomena, we find that which particular parameter is

actually varied is essentially irrelevant for the results. Having chosen some specific

60

2.5. Results

parameter, p, to vary, any critical search begins by determining an initial bracketing

interval, [pl, ph], in parameter space such that evolutions with pl and ph lead to

dispersal and black hole formation, respectively. We then narrow the bracketing

interval using a bisection search on p, predicating the update of pl or ph on whether

or not a black hole forms. The search is continued until (ph − pl)/ph ∼ 10−15, so

that p⋆ is computed to about machine precision (8-byte floating point arithmetic).

The value of pl at the end of this process corresponds to what we dub the marginally

sub-critical solution.

Quite generically, as we tune any family to a critical value p⋆, the phase space

distribution function appears to settle down to a static solution which, as p →
p⋆, persists for a time that is long compared to the characteristic timescale for

implosion and subsequent dispersal of the particles in the weakly-gravitating limit.

Representative illustrations of this behaviour are shown for marginally sub-critical

evolutions from two distinct initial data families in Fig. 2.3 (family G8 in Table 2.1)

and Fig. 2.4 (family G10). Similarly, the spacetime geometry–encapsulated in the

metric functions a and α—also becomes increasingly time-independent as criticality

is approached. Fig. 2.5 displays the evolution of the ℓ2-norm of the time derivative

of a during marginally sub-critical evolution for family G1. We thus have strong

evidence that the critical solutions that we are finding are static—characteristic of

type I critical behaviour—and consistent with what has been observed previously

for the case of the massive Einstein-Vlasov system.

Further evidence for generic type I transitions in the model is provided by ob-

servations of lifetime scaling of the form (2.1) near criticality, which is expected if

the critical solutions are one-mode unstable. Typical results from calculations using

families G1, G4, G8 and G10 are shown in Fig. 2.6: the linearity of the lifetime

of the static critical configuration as a function of ln |p − p⋆| is apparent. We have

observed such scaling for all of the families that we have studied (in both the 2D and

3D cases) and Table 2.2 provides a summary of the measured values of the scaling

61

2.5. Results

Figure 2.5: Time evolution of ‖∂ta(t, r)‖2 from a marginally sub-critical calcula-
tion using family G1. The plot provides strong evidence that the geometry of the
threshold solution is static, a characteristic feature of type I behaviour.

62

2.5. Results

Figure 2.6: Lifetime scaling of near-critical configurations for families G8, G1, G10
and G4 (top to bottom and noting that G10 and G8 are 3D calculations while
the others are 2D). Here the symbols plot estimates of the amount of time the
state of the system is well approximated by the static critical solution—measured
in units of the rescaled proper time defined by (2.63)—as a function of ln |p − p⋆|.
The lines are least squares fits to τ = −σ ln |p − p⋆| where σ is the reciprocal of
the eigenvalue (Lyapunov exponent) corresponding to the presumed single growing
mode of the critical solution. To the estimated level of accuracy in our calculations
the measured values of σ are the same for the four families. However, we cannot
state with certainty that there is precise universality in this regard.

63

2.5. Results

Figure 2.7: Radial metric function a(r̃) at criticality for families G8, G1, G10 and
G4. The results plotted here, together with those displayed in Fig. 2.8, show that
there is relatively little variation in the geometry of the static critical configuration
as a function of the specifics of the initial data. The inset plots the deviation in a
for families G1, G10 and G4 relative to G8.

64

2.5. Results

Figure 2.8: Lapse function α(r̃) at criticality for families G8, G1, G10 and G4. The
comments made in the caption of the previous figure apply here as well.

65

2.5. Results

exponent, σ.

We note that the specific form of the matter configuration at criticality exhibits

significant dependence on the family of initial data that is used to generate the

critical solution. This can be seen, for example, by comparing the last frames of

Figs. 2.3 and 2.4. On the other hand, as illustrated in Fig. 2.7 and Fig. 2.8, the

geometry of the critical state is relatively insensitive to the initial conditions.

The spacetime geometry can be characterized by the central red shift, Zc defined

by (2.44), and the unitless compactness parameter, Γ, defined by

Γ = maxr
2m

r
. (2.66)

For the families considered in this section the values of Γ and Zc fall in the ranges

0.79 . Γ . 0.81 , (2.67)

2.4 . Zc . 2.5 . (2.68)

As discussed in the next section, these ranges are relatively small in comparison to

those found in our investigation of critical behaviour using nearly-static initial data.

What is striking about the results assembled in Table 2.2 is that there appears

to be a small variation, at most, in the time scaling exponent associated with the

critical solutions produced from our generic initial conditions. Specifically, the data

is consistent with

σ = 1.4 ± 0.1 , (2.69)

and we emphasize that this concordance arises despite the significant observed vari-

ation in the phase-space distribution of the particles among the various critical

solutions.

66

2.5. Results

Family l0 σ Family l0 σ

G1 5 1.32 ± 0.08 G3 12 1.36 ± 0.06

G1 6 1.35 ± 0.07 G4 12 1.37 ± 0.05

G1 7 1.36 ± 0.06 G5 12 1.44 ± 0.06

G1 8 1.33 ± 0.06 G6 12 1.43 ± 0.04

G1 9 1.33 ± 0.06 G7 6 & 12 1.37 ± 0.07

G1 10 1.32 ± 0.06 G8 10 1.35 ± 0.05

G1 11 1.35 ± 0.05 G9 10 1.36 ± 0.05

G1 12 1.37 ± 0.05 G10 - 1.40 ± 0.05

G2 - 1.36 ± 0.07

Table 2.2: Summary of measured lifetime scaling exponents for the massless
Einstein-Vlasov model from experiments using the various initial data families enu-
merated in Table 2.1. In addition to the overall functional form of the initial dis-
tribution functions, a key parameter that varies among the sets of calculations is
l0, which is the angular momentum of any and all particles for families G1, G2–G6
(2D) and the center of the angular momentum distribution for families G8 and G9
(3D). (l0 is the tuning parameter for G6, and family G7 is another special case
where the initial data is comprised of a superposition of two shells of particles, each
having a distinct angular momentum parameter. Since angular momentum is a con-
served quantity there is no mixing of the two distributions during the evolution.)
For simplicity of presentation we have not listed the other parameters defining the
different initial configurations. Quoted uncertainties in the values of σ are based
on variations in the total mass of the system during the evolutions and comparison
with results computed at lower resolution. Typical grid sizes used for the listed
results are nr × np = 1024 × 1024 (2D) or nr × np × nl = 256 × 128 × 64 (3D). To
the level of accuracy in our calculations we find consistency with a single value of
the scaling exponent, σ = 1.4 ± 0.1.

67

2.5. Results

2.5.2 Near-static Massless Case

Our second approach to study critical solutions in the massless Einstein-Vlasov sys-

tem starts with the construction of static initial data using the procedure described

in Sec. 2.3. We specialize the general form (2.41) to

Φ(E, l) = C(1− E/E0)
bΘ(E0 − E)δ(l − l0) , (2.70)

where E0 is a given cutoff energy and C, b and l0 are additional adjustable pa-

rameters. Here we focus exclusively on the case of fixed angular momentum (2D

calculations) since the results of the previous section suggest that the essential fea-

tures of the critical solutions are not significantly dependent on whether or not f

has non-trivial dependence on l. In addition, from the scale free symmetry in the

system (see (2.61) and (2.65)), we can conclude that varying the value of angu-

lar momentum is equivalent to rescaling the radial coordinate. Therefore, without

loss of generality we can set l to an arbitrary fixed value, eliminating one of the

parameter-space dimensions in our surveys. Additionally, so that we can meaning-

fully compare results from different initial conditions, we again rescale the radial

coordinate by the total mass of the system (2.64). Furthermore, by virtue of the

transformation (2.43), the static profiles depend on E0 only through the ratio E0/α0

and, since it simplifies the numerical analysis, we actually use this ratio as one of

the control parameters.

For specified values of the free parameters C, b and E0/α0, we integrate equa-

tions (2.29)–(2.32) outward until we reach a radial location, rX , where the particle

density Φ(E, l) vanishes. We then extend the solution for a and α to the outer

boundary of the computational domain by attaching a Schwarzschild geometry with

the appropriate mass.

We note that not all choices of the three free parameters lead to distribution

functions with compact support—that is, with f(0, r, pr) ≡ 0 for r greater than

68

2.5. Results

some rX—so that the configuration represents a single shell of particles. Indeed, by

examining the expression for the particle energy in the massless case:

E(r, pr) = α(r)
√

(pr/a)2 + (l/r)2 , (2.71)

we see that, for pr sufficiently small, E(r, pr) can remain below the cutoff E0 for

large r. In practice this will yield solutions with multiple shells, where Φ vanishes

at rX , but then becomes non-zero on a infinite number of intervals in r (in general

these intervals can be disjoint or contiguous, as has previously been seen in [43]).

Although it might be interesting to consider the critical dynamics of multiple-shell

solutions, we do not do so here. We also note that for given values of b and E0/α0

we find solutions with a distinct shell (i.e. where Φ does vanish at some radius) only

for a certain range of C, but that range can span several orders of magnitude.

Fig. 2.9 shows the distribution function for four sample static configurations

constructed as described above, with the associated geometrical variables plotted in

Fig. 2.10. Relative to the apparently static solutions generated by tuning generic

initial data, the family-dependence of both the distribution function and metric

variables here is much more pronounced.

One interesting way of characterizing the static solutions is to plot the compact-

ness parameter, Γ, defined by (2.66), as a function of the central redshift, Zc. We

do this for a large number of configurations in Fig. 2.11 where, as described in more

detail in the caption, each set of points results from a two-dimensional parameter

space survey wherein both E0/α0 and C are varied. The fact that the solutions from

each of these surveys tend to “collapse” to one-dimensional curves in Zc–Γ space is

striking and we do not have any argument at this time for why this should be so.

All of the static solutions that we have found satisfy Buchdahl’s inequality,

Γ < 8/9, originally derived in the context of fluid matter [59], and the most compact

configurations are quite close to that limit. Here it is crucial to note that Andréasson

has proven rigorously that the Buchdahl inequality is satisfied by any static solution

69

2.5. Results

r̃

P
r

b = 1 Zc = 2.32 C = 0.1

1.8 2 2.2 2.4
−3

−2

−1

0

1

2

3

0

0.002

0.004

0.006

0.008

0.01

0.012

r̃

P
r

b = 2 Zc = 2.22 C = 0.1

1.6 1.8 2 2.2 2.4 2.6
−5

0

5

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

r̃

P
r

b = 2 Zc = 2.04 C = 103

2.16 2.18 2.2 2.22 2.24 2.26
−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

r̃

P
r

b = 4 Zc = 2.17 C = 10

1.9 2 2.1 2.2 2.3 2.4
−4

−2

0

2

4

0

2

4

6

8

10

x 10
−3

Figure 2.9: Sample static phase space configurations computed from the
ansatz (2.70) using different choices of adjustable parameters. Note that although
we use the rescaled radial coordinate r̃ in all of the plots, the ranges in r̃, pr and f
vary from frame to frame. Clearly, there is a strong dependence of f on the chosen
parameter values. As described in more detail in the text, for any given values of
b and Zc there is a finite range of C for which we find static solutions where f has
compact support.

70

2.5. Results

Figure 2.10: Plots of the radial metric function, a(r), and differential particle
number, dN(r)/dr, for the configurations shown in Fig. 2.9. The graphs of dN(r)/dr
highlight the fact that the critical solutions are shell-like, with a thicknesses and
effective densities that are strongly dependent on the choice of parameters in (2.70).

of the spherically symmetric Einstein-Vlasov system [58]. Further, he has demon-

strated that one can construct static shell-like configurations which, in the limit of

infinitesimal thickness in r, can have Γ arbitrarily close to 8/9. Although not explic-

itly mentioned in [58], it is clear that his proof is valid for m = 0. Given the nature

of Andréasson‘s result, the observation that our solutions satisfy the bound clearly

amounts to little more than additional evidence that our calculations are faithful to

the model under study. However it is interesting that the highest values of Γ seen in

Fig. 2.11—and which plausibly are approaching 8/9—are associated with very thin

shell-like solutions. Additionally, for the configurations we have studied (not all of

which are represented in Fig. 2.11) there is apparently also a lower bound on the

compactness, Γ ∼ 0.81. Finally, the ranges of Γ and Zc spanned by the explicitly

static solutions

0.80 . Γ . 0.89 , (2.72)

71

2.5. Results

Figure 2.11: The value of Γ = maxr(2m/r) versus central redshift, Zc, for various
static solutions. Each set of points comprises several thousand distinct solutions
and comes from a two-dimensional parameter space survey, in which both C and
E0/α0 are varied. Although for given b and E0/α0 we can only find acceptable static
solutions in certain ranges of C, those ranges can span several orders of magnitude.
However, for fixed b the solutions tend to collapse to near-linear loci in Zc–Γ space,
and the inset graph, which plots the deviation of the data from a linear least squares
fit, is intended to emphasize this behaviour. More detailed examination of the
data suggests that the configurations do not lie precisely along one-dimensional
curves, but additional study would be required to determine whether this is really
the case. The solutions apparently satisfy the Buchdahl inequality Γ < 8/9 (also
seen in the calculations reported in [43] for the massive case), as is expected from
Andréasson‘s rigorous results [58]. Moreover, there also seems to be a lower bound
on the compactness, Γ ∼ 0.81.

72

2.5. Results

b Zc C δf σ

1 2.32 0.1 δf1 1.45 ± 0.05

1 2.23 0.3 δf1 1.45 ± 0.04

2 2.22 0.1 δf1 1.43 ± 0.04

4 2.17 10 δf1 1.43 ± 0.04

2 2.35 0.1 δf1 1.40 ± 0.05

2 2.35 0.1 δf2 1.40 ± 0.05

2 2.35 0.1 δf3 1.40 ± 0.05

Table 2.3: Measured lifetime scaling exponent for explicitly static solutions con-
structed from ansatz (2.70) with various choices of the adjustable parameters b,
E0/α0 and C (Zc is effectively controlled by E0/α0, but is determined a poste-
riori), and the different types of perturbations, δf , enumerated in (2.75)–(2.77).
Proceeding from the assumption that the static solutions are characterized by a
single unstable mode, we anticipate that the computed value of σ associated with a
specific configuration (i.e. for given b, Zc and C) should be independent of the form
of δf , and this is precisely what we observe (compare rows 1 and 2, and 5, 6 and 7).
However, we also see once again that there is little, if any, variation in the scaling
exponent with respect to the underlying critical solution: the results in the table
are consistent with σ = 1.43 ± 0.07

2.0 . Zc . 2.4 , (2.73)

are larger than those seen for the tuned generic data, consistent with the comment

above concerning the relatively large variations in the metric variables as well as the

distribution function.

Using our evolution code, we investigate the relation of the explicitly-static so-

lutions to critical behaviour in the model as follows. For initial conditions we set

f(0, r, pr, l
2) = f0(r, pr, l

2) + (A− 1)δf(r, pr , l
2) , (2.74)

where f0 is a static configuration, δf(r, pr, l
2) is some given perturbation function

with at least roughly the same support as f0, and A is a tunable parameter which

controls the amplitude of the perturbation. Clearly, A = 1 results in initialization

73

2.5. Results

with the static solution itself. We have experimented with the following three choices

for the perturbation function:

δf1(r, pr, l
2) = f0(r, pr, l

2) , (2.75)

δf2(r, pr, l
2) = sin

(

2πf0(r, pr, l
2)

fmax

)

, (2.76)

δf3(r, pr, l
2) = f0(r, pr, l

2)(fmax − f0(r, pr, l2))pr , (2.77)

where fmax is the maximum of f0 over the computational domain. We then perform

standard tuning experiments in which we vary A to isolate a threshold solution.

Interestingly, we find strong evidence that all of the static solutions based on (2.70)

that we have found sit at the threshold of black hole formation, so that setting A > 1

results in black hole formation while taking A < 1 results in complete dispersal of

the matter (or vice versa, dependent on the precise form of δf). As should be sus-

pected then, and as is shown for four families in Fig. 2.12, the solutions generated by

dynamically evolving the perturbed static configurations exhibit time scaling—this

strongly suggests that the time-independent solutions are all one-mode unstable.

Table 2.3 provides a summary of the time-scaling exponents we have measured for

a set of experiments based on four distinct static solutions and the three different

types of perturbation defined by (2.75)–(2.77).

As was the case for the generic families, the measurements here indicate that

although the static solutions display significant variation in both the distribution

function and geometric variables, there is little variation in the scaling exponent.

Here we find

σ = 1.43 ± 0.07 . (2.78)

Recalling (2.69), and given the estimated uncertainty in our calculations, we can not

74

2.5. Results

Figure 2.12: Lifetime scaling computed from families of initial data based on the
static configurations plotted in Figs. 2.9 and 2.10. The tuning parameter in this
instance controls the amplitude of a perturbation that is added to the base solution
(here we used the form δf1 (2.75)) and, in all cases, the sign of the perturbation
determines whether the evolution leads to dispersal or black hole formation. The
results shown here provide evidence that the static configurations calculated from the
ansatz (2.70) act as type I critical solutions. Additionally, we see that there is very
little variation in the measured scaling exponents, σ, which are again determined
via least squares fits to (2.1).

75

2.5. Results

exclude the possibility that σ is truly universal for the massless-sector critical solu-

tions which we have constructed. Particularly given the variation in the spacetime

geometries involved, constancy of the eigenvalue of the unstable mode associated

with criticality would be truly remarkable. However, even if σ does span some finite

range, the apparent tightness of that range is an aspect of critical behaviour in the

massless system that begs understanding.

Finally, we note that the static critical solutions from the generic calculations are

characterized by compactness, Γ ∼ 0.8, which is at the low end of the range spanned

by the explicitly static solutions. We do not yet know whether a more extensive

parameter space survey of generic data could produce critical configurations with

larger Γ, and it would be interesting to further investigate this issue.

2.5.3 Generic Massive Case

Following previous studies [34–36], we have also examined the case where the par-

ticles have rest mass and find results that are in general agreement with the earlier

work, including strong evidence for the existence of static solutions at the black hole

threshold that exhibit lifetime scaling. However, we note that in both [35] and [36]

the initial data configurations were kinetic energy dominated. For example, a typ-

ical calculation in [35] used unit particle mass and f(0, r, pr, l) which was gaussian

in the three coordinates with characteristic values r ∼ 3, pr ∼ 1 and l ∼ 3. From

expression (2.35) for the particle energy we can thus infer that the initial data sets

had kinetic energy about an order of magnitude larger than rest mass energy. Thus

we expect that those previous results should be similar to what we see for massless

particles. Indeed, taking into account the different time parameterization used (t

normalized to coincide with property time at infinity), the scaling exponents quoted

in [35] are consistent with our results.

Table 2.4 lists the values of the time scaling exponent we have determined in the

massive case for the various types of initial data defined in Table 2.1. We note that

76

2.5. Results

the initial data families that are used include ones that are very similar to those

adopted in [35] and [36]. We see that the time scaling exponents are in fact close

to those measured in the massless calculations, although the spread in the values is

noticeably larger here (as it was in [35] and [36]). This increased spread is almost

certainly due to the particle mass—i.e. the evolutions are not completely kinetic

energy dominated.

Paralleling what was done in Sec.2.5.2, as well as in [43], we can use perturba-

tions of our explicitly static solutions in the massive sector to investigate critical

behaviour. Here there is a larger function space of static configurations, especially

since we can construct solutions with positive binding energy, Eb, defined by

Eb ≡M0 −M , (2.79)

where M0 is the total rest mass and M is the ADM mass. Moreover, we can build

parameterized sequences of solutions that transition between positive and negative

Eb, completely analogously to what can be done for perfect fluid models of general

relativistic stars. As in the perfect fluid case, we anticipate that: 1) solutions

with Eb > 0 will be perturbatively stable, 2) there will be a change of stability at

Eb = 0, and 3) for at least some range of Eb < 0, the static configurations will be

one-mode unstable, and thus should constitute type I critical solutions. We have

performed additional calculations that confirm these expectations. In particular, we

were able to build a static solution with Eb negative, but relatively close to 0, which

did lie at the black hole threshold and which had an associated scaling exponent

σ = 3.0±0.1. This value of σ is clearly distinct from those listed in Table 2.4. Thus,

in contrast to the massless case where we can not conclusively state anything about

possible variations in σ for type I critical solutions, we are confident that σ is is not

universal in the massive case. In fact, were we able to construct static configurations

with Eb → 0−, we assume that we would find σ → ∞. Again, these observations

and conjectures are entirely consistent with previous studies of the Einstein-Vlasov

77

2.6. Summary and Discussion

Family l0 Zc σ Family l0 Zc σ

G1 5 2.47 1.32± 0.14 G1 12 2.28 1.46 ± 0.07

G1 6 2.39 1.47± 0.13 G2 - 2.39 1.44 ± 0.09

G1 7 2.31 1.44± 0.08 G3 9 2.29 1.54 ± 0.07

G1 8 2.37 1.49± 0.08 G4 9 2.43 1.49 ± 0.08

G1 9 2.41 1.49± 0.08 G8 10 2.24 1.38 ± 0.14

G1 10 2.34 1.48± 0.07 G9 10 2.41 1.59 ± 0.15

G1 11 2.23 1.54± 0.07

Table 2.4: Summary of measured lifetime scaling exponents for the massive Einstein-
Vlasov model from experiments using the various initial data families enumerated
in Table 2.1. The results quoted here derive from calculations that parallel those
described in Table 2.2 for the massless system. In contrast to the massless case, the
observed variation in σ is significant.

system, as well as work with gravitationally compact stars modelled with perfect

fluids or bosonic matter.

2.6 Summary and Discussion

We have constructed a new numerical code to evolve the Einstein-Vlasov system in

spherical symmetry using an algorithm where the distribution function f(t, r, pr, l
2)

is directly integrated using finite volume methods. This approach eliminates the

statistical uncertainty inherent in the particle-based techniques that have been used

in previous studies. To reduce computational demands at a given discretization or,

more importantly, to allow for higher resolution, we can also run the code in a 2D

mode where l2 is some fixed scalar constant so that f depends on only r and pr.

We have used the code to perform extensive and detailed surveys of the critical

behaviour in the model with a particular focus on the case where the particles

are massless. We note that we are unaware of any previous dynamical numerical

calculations pertaining to the massless sector.

Our results derive from two classes of initial configurations. In the first the

initial states represent imploding shells of particles well removed from the origin,

while the second involves perturbations of configurations that are precisely static

78

2.6. Summary and Discussion

by construction. Although time-independent solutions of the massive system have

been constructed and analyzed previously, to our knowledge the static states we

have found in the massless sector are the first of their kind. Within each class we

have studied numerous specific forms for the initial data and, for the near-static cal-

culations, the perturbations that are applied to generate the threshold behaviour.

In all cases we find strong evidence for a Type I critical transition including: 1) a

finite black hole mass at threshold and 2) lifetime scaling of the form (2.1). The ob-

servations are all consistent with the standard picture for Type I behaviour, namely

a static critical solution with one unstable perturbative mode. Here we emphasize

that—as is the case for any numerical study of critical behaviour—it is very diffi-

cult to preclude the existence of additional unstable modes. However, the degree to

which the scaling laws are satisfied suggests that if such modes do exist they have

growth rates significantly smaller than the dominant one.

For generic initial data with massless particles, we have found that there is a

considerable variation in the morphology of f among the different critical solutions

we have computed and, to a lesser extent, in the details of the spacetime geometries

encoded in a(t, r) and α(t, r). Interestingly though, there is relatively little variation

in the time scaling exponents that we have measured: all seem to be in the range

1.3 . σ . 1.5.

In the case of near-static initial conditions with m = 0 the key results are quite

similar. Again, there is a large variation in the functional form of the distribution

function at threshold. In this instance this can be seen as a direct reflection of

the freedom inherent in the ansatz (2.70) which involves the specification of two

essentially arbitrary functions. Not surprisingly, there is thus a more noticeable

range in the geometries at criticality relative to the generic calculations, as can be

clearly seen, for example, through examination of quantities such as the compactness

and central redshift. Once again, however, we observe only a small dispersion in

the measured scaling exponents. Specifically, across all near-static families that we

79

2.6. Summary and Discussion

have examined we find σ = 1.43 ± 0.07.

Thus, considering all of the calculations that we have performed, we have indi-

cations of at least a weak form of universality of the time-scaling exponent in the

massless Einstein-Vlasov model. Here we note that as mentioned in the introduc-

tion, the calculations reported in [35] were also suggestive of a universal value of

σ and perhaps of the critical geometry. Those computations used a non-zero mass

and, as also discussed previously, the work of [37, 43] established that the spacetime

structure at criticality could not be universal in the massive model. However, as

noted in Sec. 2.5.3 the initial data families used in [35] were kinetic energy domi-

nated (effectively massless), and so there is no contradiction between what was seen

there (and here) and [37, 43].

In all of our calculations, and in accord with Andréasson’s proof of the Buchdahl

inequality in the model [58], we observe that the gravitational compactness satisfies

Γ < 8/9 , with thin shell-like solutions coming closest to saturating the bound.

We also want to emphasize an additional feature of the massless model that

is apparent from our calculations: the particle angular momentum does not have

a significant impact on the features of the critical solution (apart from the obvi-

ous fact that the particles do have angular momentum in all of our computations).

Heuristically, this can be at least partly ascribed to the scaling symmetry (2.61)–

(2.62). The symmetry effectively reduces the number of free parameters—relative to

a naive analysis—available for variation in the search for critical solutions. Specifi-

cally, given any distribution of the form f(r, pr)δ(l−l1), where l1 is fixed, we can map

to a distribution f ′(r, pr)δ(l − l2), with l1 6= l2, which has an associated geometry

that is diffeomorphic to the original.

Given that there is clearly no universality of the fundamental dynamical variables

at threshold, the fact that the variation in σ is, at most, small is a feature of the

calculations for which we currently have no explanation. Additionally, as discussed

in the introduction, the argument advanced in [52] suggests that there should be no

80

2.6. Summary and Discussion

type I behaviour in the Einstein-Vlasov system for either the massless or massive

models. At this time, we do not understand how—if at all—this argument can be

reconciled with our current results and those from previous numerical studies.

A direct analysis of the perturbations of the critical solutions—especially the

precisely static ones—would be very helpful at this point. Starting with the perfect-

fluid work of Koike et al [25], perturbation analyses of the critical configurations in

many different models have been extremely effective in advancing our understanding

of black-hole critical phenomena. In particular, relative to measurements made

through direct solution of PDEs and tuning experiments, perturbative methods

can provide highly accurate values for the eigenvalues of the unstable modes (or,

equivalently, for the scaling exponents). However, in our case the task of explicitly

constructing perturbations is significantly complicated by the fact that there is no

one-to-one correspondence between the geometry and the phase-space distribution

of the particles. So far we have been unable to formulate a well-defined approach to

computation of the perturbations and will have to leave that for future work.

Finally, it would be interesting to extend this work to the Einstein-Boltzmann

system, where the introduction of explicit interactions between particles would pro-

vide the means to investigate the connection between criticality in phase-space-based

models and hydrodynamical systems. This in turn might lead to a more fundamental

understanding of critical collapse in fluid models.

81

Chapter 3

Black Hole Critical Behaviour

with the Generalized BSSN

Formulation

3.1 Introduction

In this paper29 we investigate the application of the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation of Einstein’s equations [31, 32], as well as the dy-

namical coordinate choices typically associated with it, within the context of critical

gravitational collapse. The BSSN formulation is a recasting of the standard 3+1

Arnowitt-Deser-Misner (ADM) [27] equations that is known to be strongly hyper-

bolic [60, 61] and suitable for numerical studies. It has been widely used in numerical

relativity and provides a robust and stable evolution for the spacetime geometry.

Most notably, various implementations of this formulation have allowed successful

computation of dynamical spacetimes describing binaries of gravitationally-compact

objects [3, 13, 14]. The standard gauge choices in BSSN—namely the 1+log slicing

condition [62] and the Gamma-driver shift condition [63]—are partial differential

equations (PDEs) of evolutionary type. Furthermore, the BSSN approach results in

a set of so-called free evolution equations, meaning that the Hamiltonian and mo-

mentum constraints are only solved at the initial time. Thus, once initial data has

29This chapter is published in: Akbarian A. and Choptuik M. W. “Black hole critical behavior
with the generalized BSSN formulation”. Phys. Rev. D92, 084037 (2015).

82

3.1. Introduction

been determined, one only has to solve time-dependent PDEs in order to compute

the geometric variables in the BSSN scheme. In particular, during the evolution

there is no need to solve any elliptic equations, which in general could arise either

from the constraints or from coordinate conditions. This is advantageous since it

can be quite challenging to implement efficient numerical elliptic solvers.

In addition to the BSSN approach, the numerical relativity community has

adopted the generalized harmonic (GH) [64] formulation of Einstein’s equations,

which is also strongly hyperbolic and has performed very well in simulations of

compact binaries [3, 12]. Like BSSN, the GH formulation is of evolutionary type

so that all of the metric components satisfy time-dependent PDEs. It too uses dy-

namical coordinate choices: in this case one needs to provide a prescription for the

evolution of the harmonic functions defined by Hµ ≡ �xµ.

Despite the tremendous success of these hyperbolic formulations in evolving

strongly gravitating spacetimes containing black holes and neutron stars, they have

not seen widespread use in another area of strong gravity physics typically stud-

ied via numerical relativity, namely critical phenomena in gravitational collapse.

First reported in [4] and briefly reviewed below, critical phenomena emerge at the

threshold of black hole formation and present significant challenges for thorough and

accurate computational treatment. The original observation of critical behaviour as

well as many of the subsequent studies were restricted to spherical symmetry (for

a review, see [5, 23]) and there is a clear need to extend the work to more generic

cases. In this respect the BSSN and GH formulations would appear to be attrac-

tive frameworks. However, it is not yet clear if these hyperbolic formulations, in

conjunction with the standard dynamical gauge choices that have been developed,

will allow the critical regime to be probed without the development of coordinate

pathologies. Particularly notable in this regard is an implementation of the GH

formulation that was employed by Sorkin and Choptuik [65] to study the critical

collapse of a massless scalar field in spherical symmetry. Despite extensive exper-

83

3.1. Introduction

imentation with a variety of coordinate conditions, the code that was developed

was not able to calculate near-critical spacetimes: coordinate singularities invari-

ably formed once the critical regime was approached. A natural question that then

arises is whether the BSSN formulation (including the standard dynamical gauge

choices used with it) is similarly problematic or if it provides an effective framework

to study critical phenomena.

Here we begin the task of addressing this question by revisiting the model of

spherically symmetric massless scalar collapse. We use a generalization of the BSSN

formulation due to Brown [66] that is well suited for use with curvilinear coordinates.

The choice of a massless scalar field as the matter source has the great advantage

that the nature of the critical solution is very well known [67–72], making it straight-

forward for us to determine if and when our approach has been successful. We note

that although the calculations described below are restricted to spherical symmetry

our ultimate goal is to develop an evolutionary scheme—including gauge choices—

that can be applied to a variety of critical phenomena studies in axial symmetry

and ultimately generic cases.

We now briefly review the main concepts and features of black hole critical

phenomena that are most pertinent to the work in this paper. Full details and

pointers to the extensive literature on the subject may be found in review articles

[5, 23].

Critical phenomena in gravitational collapse can be described as a phase transi-

tion, analogous to that in a thermodynamical system. Under certain assumptions,

a matter source coupled to the Einstein gravitational field will evolve to one of two

distinct final phases. On the one hand, weak initial data will eventually disperse to

infinity leaving flat spacetime as the end state. On the other hand, sufficiently strong

data will develop significant self gravitation and then collapse, resulting in a final

phase which contains a black hole. Quite generically, remarkable behaviour emerges

at and near the transition between these phases, and this behaviour is precisely

84

3.1. Introduction

what we mean by the critical phenomena in the system under consideration.

It transpires that there are two broad classes of critical phenomena that can

be distinguished by the behaviour of the black hole mass at threshold. The class

of interest here, known as type II, is characterized by infinitesimal mass at the

transition. Further, the black hole mass, MBH , satisfies a scaling law:

MBH ∼ |p− p⋆|γ , (3.1)

where p is an arbitrary parameter that controls the strength of the matter source

at the initial time, p⋆ is the parameter value at threshold and the mass scaling

exponent, γ, is a constant that is independent of the choice of the initial data. Type

II behaviour is also characterized by the emergence of a unique solution at threshold

which is generically self-similar. In some cases, including the massless scalar field,

the self-similarity is discrete. Specifically, in spherically symmetric critical collapse

with discrete self-similarity (DSS), as p→ p⋆ we find

Z⋆(ρ+∆, τ +∆) ∼ Z⋆(ρ, τ) , (3.2)

where Z⋆ represents some scale-invariant component (function) of the critical solu-

tion. Here ρ ≡ ln(rS) and τ ≡ ln(TS − T ⋆S) are logarithmically rescaled values of

the areal radius, rS, and polar time, TS, respectively, and T ⋆S is the accumulation

time at which the central singularity associated with the DSS solution forms. TS

has been normalized so that it measures proper time at the origin. As with γ, the

echoing (rescaling) exponent, ∆, is a universal constant for a specific matter source;

i.e. it is independent of the form of the initial data.

Another feature of type II collapse, intimately related to the self-similarity of

the critical solution, is that the curvature can become arbitrarily large: in the limit

of infinite fine-tuning, p→ p⋆, a naked singularity forms. Furthermore, the echoing

behaviour (3.2) results in the development of fine structure in the solution around the

85

3.1. Introduction

center of the scaling symmetry. Observing this structure and measuring the echoing

exponent ∆ associated with it requires a code that can reliably evolve solutions very

close to the critical spacetime and that provides sufficient numerical resolution in

the vicinity of the accumulation point (rS, TS) = (0, T ⋆S).

As mentioned above, most studies of critical phenomena have assumed spheri-

cal symmetry. This is particularly so for the case of type II behaviour where the

resolution demands dictated by the self-similarity of the critical solutions makes

multi-dimensional work extremely computationally intensive. As far as we know,

the only work in spherical symmetry to have used a purely evolutionary approach

based on the BSSN or GH forms of the Einstein equations is [65] which, as we have

noted, was not successful in isolating the critical solution.30 In axisymmetry there

have been two investigations of type II collapse of massless scalar fields [74, 75],

and several of type II collapse of pure gravitational waves (vacuum) [76–80]. Of

these, only Alcubierre et al.’s [77] and Sorkin’s [80] calculations of vacuum collapse

adopted hyperbolic formalisms, and only the scalar field calculations—which em-

ployed a modified ADM formulation and partially constrained evolution—were able

to completely resolve the critical behaviour, including the discrete self-similarity of

the critical solutions. In the fully three-space dimension (3D) context there have

also been a few studies of type II collapse to date. Perhaps most notable is the recent

work of Healy and Laguna [81] which used a massless scalar field as a matter source

and the BSSN formulation with standard dynamical gauge choices. The authors

were able to observe the mass scaling (3.1) with a measured γ ≈ 0.37 consistent

with calculations in spherical symmetry. However, they were not able to conclu-

sively see the discrete self-similarity of the critical solution; in particular they could

not accurately measure the echoing exponent, ∆. This shortcoming was attributed

to a lack of computational resources rather than a breakdown of the underlying

methodology, including the coordinate conditions that were adopted. Finally, there

30However, see [73] for an investigation of type II behaviour in the collapse of a scalar field in
2+1 AdS spacetime that employs an ad hoc free evolution scheme.

86

3.1. Introduction

have been two attempts to probe the black hole threshold for the collapse of pure

gravitational waves in 3D [82, 83]. Both employed a BSSN approach with, for the

most part, standard dynamical gauge choices. In both cases problems with the

gauge apparently precluded calculation near the critical point (although resolution

limitations may also have been an issue) and neither the mass scaling nor the echoing

exponent could be be estimated in either study.

We can thus summarize the state of the art in the use of hyperbolic formulations

for the study of type II critical collapse as follows: to our knowledge there has been

no implementation of a fully evolutionary scheme, based on either BSSN or GH,

that has allowed for evolution sufficiently close to a precisely critical solution to

allow the unambiguous identification of discrete self-similarity (or continuous self-

symmetry for that matter). Again, and particularly in light of the experience of [65],

the key aim of this paper is to investigate the extent to which it is possible to use

a BSSN scheme to fully resolve type II solutions. A major concern here is the

appropriate choice of coordinate conditions, not least since dynamical gauge choices

can be prone to the development of gauge shocks and other types of coordinate

singularities [84, 85]. Such pathologies could, in principle, prevent a numerical

solver from evolving the spacetime in or near the critical regime.

Now, as Garfinkle and Gundlach have discussed in detail [86], an ideal coordi-

nate system for numerical studies of type II collapse is one which adapts itself to

the self-similarity: for the DSS case this means that the metric coefficients and rel-

evant matter variables are exactly periodic in the coordinates in the fashion given

by (3.2). Clearly, if the coordinate system is adapted, then other than at the naked

singularity—which is inaccessible via finite-precision calculations—it should remain

non-singular during a numerical evolution. One can then argue that ensuring that

the numerical scheme has adequate resolution will be the key to successful simula-

tion of the critical behaviour. At the same time, it is also clear that there will be

coordinate systems which do not necessarily adapt but which nonetheless remain

87

3.1. Introduction

non-singular during critical collapse, at least over some range of scales, and which

are therefore potentially useful for numerical calculations. We will see below that

there is strong evidence that the coordinate systems we have used belong to the

latter class, and weaker evidence that they do adapt to the self-similarity.

Another potential source of problems, which is not specific to hyperbolic for-

mulations, relates to our restriction to spherical symmetry. As is well known, the

singular points of curvilinear coordinate systems, r = 0 in our case, can sometimes

require special treatment to ensure that numerical solutions remain regular there.

In critical collapse the highly dynamical nature of the solution near r = 0 might

naturally be expected to exacerbate problems with regularity. In the work described

below we have paid special attention to the ability of our approach to both fully

resolve the near-critical configuration and maintain regularity of the solution at the

origin.

The remainder of this paper is organized as follows: in Sec. 3.2 we review the

generalized BSSN formulation and display the equations of motion for our model

system. Sec. 3.3 expands the discussion of the issue of regularity at the coordinate

singularity point, describes the numerical approach we have adopted, and provides

details concerning the various tests and diagnostics we have used to validate our

implementation. In Sec. 3.4 we present results computed using two distinct choices

for the shift vector and provide conclusive evidence that the generalized BSSN for-

mulation is capable of evolving in the critical regime in both cases. Sec. 3.5 contains

some brief concluding remarks, and further details concerning the BSSN formal-

ism in spherical symmetry and the scalar field equations of motion are included

in App. 3.6 and App. 3.7, respectively. We adopt units where the gravitational

constant and the speed of light are both unity: G = c = 1.

88

3.2. Equations of Motion

3.2 Equations of Motion

The dynamical system we intend to study in the critical collapse regime is a real,

massless scalar field, Ψ, self gravitating via Einstein’s equations,

Gµν = 8πTµν . (3.3)

Here, Tµν is the energy-momentum tensor associated with the minimally coupled Ψ:

Tµν = ∇µ∇νΨ−
1

2
gµν∇ηΨ∇ηΨ , (3.4)

and the evolution of the scalar field is given by

∇µ∇µΨ = 0 . (3.5)

The time-development of the geometry is then given by recasting Einstein’s equa-

tions as an evolution system based on the usual 3+1 expression for the spacetime

metric:

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (3.6)

Here, the 3-metric components, γij, are viewed as the fundamental dynamical geo-

metrical variables and the lapse function, α, and shift vector, βi, which encode the

coordinate freedom of general relativity, must in general be prescribed independently

of the equations of motion.

3.2.1 Generalized BSSN

We now summarize the BSSN formulation of Einstein’s equations and describe how

it can be adapted to curvilinear coordinates. Readers interested in additional details

are directed to [28] for a more pedagogical discussion.

In the standard ADM formulation [27, 87], the dynamical Einstein equations

89

3.2. Equations of Motion

are rewritten as evolution equations for the 3-metric and the extrinsic curvature

{γij ,Kij}. The first difference between the BSSN formulation and the ADM de-

composition is the conformal re-scaling of the ADM dynamical variables:

γij = e4φγ̃ij , (3.7)

Kij = e4φÃij +
1

3
γijK , (3.8)

where eφ is the conformal factor, γ̃ij is the conformal metric, Ãij is the conformally

rescaled trace-free part of the extrinsic curvature and K = γijKij is the trace of

the extrinsic curvature. Here by fixing the trace of Ãij, and the determinant of the

conformal metric, the set of primary ADM dynamical variables transforms to the

new set:

{γij ,Kij} → {φ, γ̃ij ,K, Ãij} , (3.9)

in the BSSN formulation.

In the original BSSN approach, the conformal metric γ̃ij is taken to have deter-

minant γ̃ = 1. However this choice is only suitable when we adopt coordinates in

which the determinant of the flat-space metric reduces to unity. This is the case, of

course, for Cartesian coordinates but is not so for general curvilinear systems. For

instance, the flat 3-metric in spherical coordinates:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 , (3.10)

has determinant γ̊ = r4 sin2 θ. Recently, Brown [66] has resolved this issue by intro-

ducing a covariant version of the BSSN equations—the so-called generalized BSSN

formulation, which we will hereafter refer to as G-BSSN—in which the primary

dynamical variables are tensors so that the formulation can be adapted to non-

Cartesian coordinate systems. In G-BSSN we no longer assume that the conformal

90

3.2. Equations of Motion

3-metric has determinant one. Rather, φ becomes a true scalar and for its dynamics

to be determined a prescription for the time evolution of the determinant of γ̃ij must

be given. In the following this will be done by requiring that the determinant be

constant in time.

Another main difference between the ADM decomposition and BSSN is that the

mixed spatial derivative terms occurring in the 3-Ricci tensor are eliminated through

the definition of a new quantity, Γ̃k:

Γ̃k ≡ γ̃ijΓ̃kij , (3.11)

which becomes an additional, independent dynamical variable. Note that Γ̃i is not

a vector as it is coordinate dependent. To extend this redefinition so that it is well

suited for all coordinate choices, in G-BSSN we define

Λ̃k ≡ γ̃ij(Γ̃kij − Γ̊kij) = Γ̃k − Γ̊kij γ̃
ij , (3.12)

where Γ̊kij denotes the Christoffel symbols associated with the flat metric. This

definition makes this so-called conformal connection, Λ̃i, a true vector and it becomes

a primary dynamical variable in G-BSSN.

We now summarize the G-BSSN equations, referring the reader to [88] for more

details, including a full derivation. We begin by defining ∂⊥, the time derivative

operator acting normally to the t = const. slices:

∂⊥ ≡ ∂t −L~β
, (3.13)

where L~β
denotes the Lie derivative along ~β. We then have

∂⊥φ = −1

6
αK + σ

1

6
D̃kβ

k , (3.14)

91

3.2. Equations of Motion

∂⊥γ̃ij = −2αÃij − σ
2

3
ÃijD̃kβ

k , (3.15)

∂⊥K = −γijDjDiα+ α(ÃijÃ
ij +

1

3
K2) + 4π(ρ+ S) , (3.16)

∂⊥Ãij = e−4φ [−DiDjα+ α(Rij − 8πSij)]
TF

+ α(KÃij − 2ÃilÃ
l
j)− σ

2

3
ÃijD̃kβ

k , (3.17)

∂⊥Γ̃
i = −2Ãij∂jα+ γ̃lj∂j∂lβ

i

+ 2α

(

Γ̃ijkÃ
kj − 2

3
γ̃ij∂jK + 6Ãij∂jφ− 8πγ̃ijSj

)

+
σ

3

[

2Γ̃iD̃kβ
k + γ̃li∂l(D̃kβ

k)
]

. (3.18)

Here, a superscript TF denotes the trace-free part (with respect to the 3-metric

γij) of a tensor, and D̃i is the covariant derivative associated with the conformal

metric γ̃ij. Additionally, the quantity σ is an adjustable parameter that is discussed

below and typically is either 0 or 1. Note that all the Lie derivatives in the G-BSSN

equations operate on true tensors and vectors of weight 0. For instance,

L~β
Ãij = βk∂kÃij + Ãik∂jβ

k + Ãkj∂iβ
k . (3.19)

Furthermore, in G-BSSN, rather than evolving (3.18), the redefined conformal con-

nection, Λ̃i, is evolved via

∂tΛ̃
k = ∂tΓ̃

k − Γ̊kij∂tγ̃
ij , (3.20)

where the time derivative ∂tγ̃
ij is eliminated using (3.15). In equation (3.17), Rij

92

3.2. Equations of Motion

denotes the 3-Ricci tensor associated with γij and can be written as the sum

Rij = Rφij + R̃ij , (3.21)

where Rφij is given by

Rφij = −2D̃iD̃jφ− 2γ̃ijD̃
kD̃kφ+ 4D̃iφD̃jφ− 4γ̃ijD̃

kφD̃kφ , (3.22)

and R̃ij is the 3-Ricci tensor associated with the conformal metric:

R̃ij = − 1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k

+ γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)

. (3.23)

The matter fields ρ, S, Si and Sij are defined by

ρ = nµnνT
µν , (3.24)

S = γijSij , (3.25)

Si = −γijnµTµj , (3.26)

Sij = γiµγiνT
µν , (3.27)

where nµ is the unit normal vector to the t = const. slices.

As mentioned previously, we need to prescribe dynamics for the determinant

of γ̃ij to have a complete set of equations of motion for the G-BSSN dynamical

variables. One approach is to fix the determinant to its initial value by demanding

93

3.2. Equations of Motion

that

∂tγ̃ = 0 . (3.28)

This is the so-called Lagrangian option and is associated with the choice σ = 1 in

the equations. Another option is to define the determinant to be constant along the

normal direction to the time slices, which can be implemented by requiring ∂⊥γ̃ = 0.

This is usually referred to as the Lorentzian option, and is associated with the choice

σ = 0. Here we choose (3.28), i. e. σ = 1.

Note that in the G-BSSN equations the divergence of the shift vector,

D̃kβ
k =

1√
γ̃
∂k(
√

γ̃βk) , (3.29)

no longer reduces to ∂kβ
k since the determinant of the conformal metric γ̃ij is

not necessarily 1, but by virtue of the choice (3.28) is equal to that of the initial

background flat metric in the chosen curvilinear coordinates.

As usual, when setting initial data for any given evolution of the coupled Einstein-

matter equations we must solve the Hamiltonian and momentum constraints. In

terms of the G-BSSN variables these are

H ≡ γ̃ijD̃iD̃je
φ − eφ

8
R̃+

e5φ

8
ÃijÃij

− e5φ

12
K2 + 2πe5φρ = 0 , (3.30)

M
i ≡ D̃j

(

e6φÃji
)

− 2

3
e6φD̃iK − 8πe6φSi = 0 . (3.31)

94

3.2. Equations of Motion

3.2.2 G-BSSN in Spherical Symmetry and Gauge Choices

In spherical symmetry a generic form of the conformal metric γ̃ij is given by

γ̃ij =

γ̃rr(t, r) 0 0

0 r2γ̃θθ(t, r) 0

0 0 r2γ̃θθ(t, r) sin
2 θ

. (3.32)

Similarly, a suitable ansatz for the traceless extrinsic curvature is

Ãij =

Ãrr(t, r) 0 0

0 r2Ãθθ(t, r) 0

0 0 r2Ãθθ(t, r) sin
2 θ

. (3.33)

The shift vector and Λ̃i have only radial components:

βi = [β(t, r), 0, 0] , (3.34)

Λ̃i =
[

Λ̃(t, r), 0, 0
]

. (3.35)

Given (3.32-3.35), the G-BSSN equations become a set of first order evolution equa-

tions for the 7 primary variables

{

φ(t, r), γ̃rr(t, r), γ̃θθ(t, r),K(t, r),

Ãrr(t, r), Ãθθ(t, r), Λ̃(t, r)
}

.

These are coupled to the evolution equation (3.5) for the scalar field and constrained

by the initial conditions (3.30–3.31). The explicit expressions for the full set of

equations of motion are given in App. 3.6.

To fix the time slicing we implement a non-advective31 version of the 1+log

31The terminology non-advective derives from the absence of an “advective” term, βj∂j , on the

95

3.2. Equations of Motion

slicing condition:32

∂tα = −2αk . (3.36)

for the spatial coordinates we either choose a zero shift:

βi = 0 , (3.37)

or use what we will term the gamma-driver condition:

∂tβ
i = µΛ̃i − ηβi . (3.38)

Here, µ and η are adjustable parameters which we set to µ = 3/4 and η ≃
1/(2MADM), where MADM is the total mass of the system measured at infinity

(see Sec. 3.3.4). We emphasize that (3.38) is not the usual Gamma-driver equation

used in the standard BSSN approach:

∂tβ
i = µΓ̃i − ηβi , (3.39)

but since it is a natural extension of the above to the G-BSSN case we have opted

to use the same nomenclature. In the rest of this paper, we frequently refer to

the shift vector evolved via (3.38) as βG. Explicitly, in spherical symmetry βG is

defined by

∂tβ
G(t, r) = µΛ̃(t, r)− ηβG(t, r) . (3.40)

left hand side of equations (3.36,3.38). we note that we also experimented with the advective
versions of the equations. the results were very similar to those for the non-advective case; in
particular, near-critical solutions exhibiting echoing and scaling could also be obtained.

32The reader can easily check that in the case of zero shift, the lapse choice given by (3.36)
combined with (3.14) implies ∂t(α − 12φ) = 0. In Cartesian coordinates 12φ = ln γ, so this last
equation gives α − ln γ = c(~x), where the function c(~x) is time independent. the choice c(~x) = 1
then yields an algebraic expression for the lapse, α = 1+ln γ, which is the origin of the terminology
“1+log slicing”.

96

3.3. Numerics

3.3 Numerics

We use a second order finite differencing method to discretize equations (3.14-3.17)

and (3.20). Further, the equations of motion are transformed to a compactified

radial coordinate that we denote by r̃ and which is defined in terms of the original

coordinate r by

r = er̃ − eδ + R∞

R∞ − r̃
− R∞

R∞ − δ
, (3.41)

where δ and R∞ are parameters with typical values δ ≃ −12 and R∞ ≃ 3. It is

straightforward to verify the following:

1) the radial domain r = (0,∞) maps to the computational domain r̃ = (δ,R∞),

2) the derivative dr/dr̃ decreases toward the origin (r̃ ≃ δ), so that a uniform grid

on r̃ is a non-uniform grid on r with approximately 103 times more resolution close

to the origin relative to the outer portion of the solution domain, r̃ ≃ 2 (r ≃ 10),

where the support of the scalar field is initially concentrated,

3) the parameter δ can be used to adjust the resolution near the origin; specifically,

decreasing δ increases the resolution near r = 0. For notational simplicity, however,

in the following we omit the explicit dependence of the fields on r̃ and denote the

spacetime dependence of any dynamical variable X as previously: X (t, r(r̃)) ≡
X(t, r).

We use a finite difference grid that is uniform in r̃ and analytically transform

all r-derivative terms in the equations of motion to their r̃-coordinate counterparts

prior to finite-differencing.

We also developed a Maple-based toolkit [89] that automates the process of

discretizing an arbitrary derivative expression. This toolkit handles boundary con-

ditions and generates a point-wise Newton-Gauss-Seidel solver in the form of Fortran

routines for a given set of time dependent or elliptic PDEs . The calculations in this

paper were all carried out using this infrastructure.

97

3.3. Numerics

3.3.1 Initialization

The matter content is set by initializing the scalar field to a localized Gaussian shell:

Ψ(0, r) = p exp

(

−(r − r0)2
σ2r

)

, (3.42)

where p, r0 and σr are parameters. Note that here r is the non-compactified radial

coordinate which is related to the compactified coordinate r̃ via (3.41). A typical

initial profile for the scalar field in our calculations has σr ≃ 1, r0 ≃ 10, and p of

order 10−1. We use the overall amplitude factor p as the tuning parameter to find

critical solutions. We initialize the conformal metric (3.32) to the flat metric in

spherical symmetry,

γ̃rr(0, r) = γ̃θθ(0, r) = 1 , (3.43)

and initialize the lapse function to unity,

α(0, r) = 1 . (3.44)

We also demand that the initial data be time-symmetric,

Ãrr(0, r) = Ãθθ(0, r) = K(0, r) = 0 , (3.45)

β(0, r) = Λ̃(0, r) = 0 , (3.46)

∂tΨ(t, r)|t=0 = 0 , (3.47)

which means that the momentum constraint (3.31) is trivially satisfied. This leaves

the Hamiltonian constraint (3.30) which is solved as a two-point boundary value

98

3.3. Numerics

problem for the conformal factor at the initial time,

ψ(r) ≡ eφ(0,r) . (3.48)

The outer boundary condition for ψ,

ψ(r)|r=∞ = 1 , (3.49)

follows from asymptotic flatness, while at r = 0 we have

∂rψ(r)|r=0 = 0 (3.50)

since ψ(r) must be an even function in r for regularity at the origin.

3.3.2 Boundary Conditions

Due to the fact that the metric has to be conformally flat at the origin we have

γ̃rr(t, 0) = γ̃θθ(t, 0) . (3.51)

Further, since we are using the Lagrangian choice, σ = 1, the determinant of γ̃ij

must at all times be equal to its value at the initial time, so

γ̃rrγ̃
2
θθ = 1 . (3.52)

From these two results we have

γ̃rr(t, 0) = γ̃θθ(t, 0) = 1 . (3.53)

Using (3.53) and (3.15) it is then easy to see that we must also have

Ãrr(t, 0) = Ãθθ(t, 0) = 0 . (3.54)

99

3.3. Numerics

As is usual when working in spherical coordinates, many of the boundary con-

ditions that must be applied at r = 0 follow from the demand that the solution be

regular there. Essentially, the various dynamical variables must have either even or

odd “parity” with respect to expansion in r as r → 0. Variables with even parity,

typically scalars or diagonal components of rank-2 tensors, must have vanishing ra-

dial derivative at r = 0, while odd parity functions, typically radial components of

vectors, will themselves vanish at the origin.

Applying these considerations to our set of unknowns we find

∂rγ̃rr(t, r)|r=0 = ∂rγ̃θθ(t, r)|r=0 = 0 , (3.55)

∂rÃrr(t, r)|r=0 = ∂rÃθθ(t, r)|r=0 = 0 , (3.56)

β(t, 0) = Λ̃(t, 0) = 0 , (3.57)

∂rK(t, r)|r=0 = ∂rφ(t, r)|r=0 = ∂rΨ(t, r)|r=0 = 0 . (3.58)

We use equations (3.53,3.54,3.57) to fix the values of the functions at the origin and

a forward finite-differencing of (3.58) to update K, φ and Ψ at r = 0. Further, we

apply a forward finite-differencing of (3.55,3.56) to update the values of the function

at the grid point next to the origin. The 1+log condition (3.36) can be used directly

at r = 0. Again, we emphasize that all of the r-derivative terms of the boundary

conditions described above are analytically transformed to the numerical coordinate,

r̃, before the equations are finite-differenced.

Since we are using compactified coordinates, all the variables are set to their flat

100

3.3. Numerics

spacetime values at the outer boundary r =∞:

γ̃rr = γ̃θθ = eφ = α = 1 at : (t,∞) , (3.59)

Ãrr = Ãθθ = K = Λ̃ = β = Ψ = 0 at : (t,∞) . (3.60)

Here, we emphasize that spatial infinity, r =∞, corresponds to the finite compact-

ified (computational) coordinate point r̃ = R∞.

3.3.3 Evolution Scheme and Regularity

We implemented a fully implicit, Crank-Nicolson [90] finite differencing scheme to

evolve the system of G-BSSN equations. The precise form of the continuum equa-

tions used is given in App. 3.6 and all derivatives, both temporal and spatial, were

approximated using second-order-accurate finite difference expressions.

During an evolution the correct limiting behaviour of the spatial metric compo-

nents must be maintained near r = 0 to ensure a regular solution. For example, the

limiting values of the conformal metric components γ̃rr and γ̃θθ are given by

γ̃rr(t, r) = 1 +O(r2) , (3.61)

γ̃θθ(t, r) = 1 +O(r2) . (3.62)

If the discrete approximations of the metric functions do not satisfy these conditions,

then irregularity will manifest itself in the divergence of various expressions such as

the Ricci tensor component (3.95)

Rrr = 2
γ̃rr − γ̃θθ
r2γ̃θθ

+ · · · , (3.63)

which should converge to a finite value at the origin if conditions (3.61,3.62) hold.

101

3.3. Numerics

One approach to resolve potential regularity issues is to regularize the equations

[65, 88, 91], by redefining the primary evolution variables, so that the equations

become manifestly regular at the origin. Another approach is to use implicit or

partially implicit methods [92]. As recently shown by Montero and Cordeo-Carrion

[93], such schemes can yield stable evolution without need for explicit regularization.

Baumgarte et al. [94] also adopted a similar approach—using a partially implicit

scheme without regularization—in an implementation of the G-BSSN formulation

in spherical polar coordinates.

As mentioned, our implementation is fully implicit and we have also found that

our generalized BSSN equations can be evolved without any need for regulariza-

tion at the origin, even in strong gravity scenarios where the spacetime metric has

significant deviations from flatness near the origin.

That said, we also experimented with other techniques aimed at improving reg-

ularity. For example, using the constraint equation (3.52) and the fact that Ãij is

trace-free,
Ãrr
γ̃rr

+ 2
Ãθθ
γ̃θθ

= 0 , (3.64)

we can compute γ̃θθ and Ãθθ in terms of γ̃rr and Ãrr, respectively, rather than

evolving them. However, when we did this we found no significant improvement in

regularity relative to the original scheme.

Finally, to ensure our solutions remain smooth on the scale of the mesh we use

fourth order Kreiss-Oliger dissipation [95] in the numerical solution updates.

3.3.4 Tests

This section documents various tests we have made to validate the correctness of

our numerical solver as well as the consistency of the finite-differencing method

used to evolve the system of G-BSSN equations. We use a variety of diagnostic

tools, including monitoring of the constraint equations, convergence tests of the

primary dynamical variables, and a direct computation to check if the metric and

102

3.3. Numerics

Figure 3.1: Results from various tests that verify the accuracy and consistency of our
numerical solver and the finite differencing method used to integrate the equations.
(a) The evolution of the l2-norm (RMS value) of the Hamiltonian constraint. The
norm is plotted for 3 different resolutions h, h/2 and h/4 corresponding to Nr = 512,
1024 and 2048, respectively. The data for the Nr = 1024 and Nr = 2048 curves
have been rescaled by factors of 4 and 16, respectively, and the overlap of the three
lines thus signals the expected second order convergence to zero of the constraint
deviation. We observe similar convergence properties for the momentum constraint
as well as the constraint equation (3.12) for Λ̃i, and the constraint (3.64) for the
trace of Ãij . Additionally, since the operator used to evaluate the residual of the
Hamiltonian constraint is distinct from that used in the determination of the initial
data, the test also validates the initial data solver. (b) Conservation of the ADM
mass during the evolution of strong initial data. Here the deviation of the mass from
its time average is plotted for 3 different resolutions. Higher resolution values have
again been rescaled so that overlap of the curves demonstrates O(h2) convergence
to 0 of the deviation of the total mass.

103

3.3. Numerics

Figure 3.1: (c) The convergence factor defined in (3.68) for three of the primary
BSSN variables: γ̃rr, K, and Ãθθ. In the limit h → 0 we expect all curves to tend
to the constant 4. The plot thus provides evidence for second order convergence of
all of the values throughout the evolution. All of the other primary BSSN variables
as well as the dynamical scalar field quantities demonstrate the same convergence.
(d) Direct verification that the metric found by numerically solving the BSSN equa-
tions satisfies Einstein’s equations in their covariant form. Here the tr component
of the residual Eµν defined in (3.72) is plotted for 3 different resolutions. Once more,
higher resolution values have been rescaled so that overlap of the curves signals the
expected O(h2) convergence of the residuals to 0. All of the plots correspond to
evolution of strong subcritical initial data with 1+log slicing. For (a) and (b) the
shift vector was set to 0, while in (c) and (d) it was evolved using the Gamma-driver
condition (i.e. β = βG).

matter fields calculated via the G-BSSN formulation satisfy the covariant form of

Einstein’s equations. All of the calculations were performed using the 1+log slicing

condition (3.36) and either β = 0 or β = βG where βG satisfies the Gamma-driver

condition (3.40).

Constraints and Conserved Quantities

We monitor the evolution of the constraint equations (3.30,3.31) during a strongly-

gravitating evolution where the nonlinearities of the equations are most pronounced.

As demonstrated in Fig. 3.1 (a), at resolutions typical of those used in our study,

the Hamiltonian constraint is well preserved during such an evolution and, impor-

tantly, the deviations from conservation converge to zero at second order in the mesh

spacing as expected.

The total mass-content of the spacetime seen at spatial infinity (the ADM mass)

is a conserved quantity. Here, using the G-BSSN variables the Misner-Sharp mass

function is given by

M(r) =
rγ̃

1/2
θθ e

2φ

2

[

1− γ̃θθ
γ̃rr

(

1 + r
∂r γ̃θθ
2γ̃θθ

+ 2r
∂re

φ

eφ

)2
]

. (3.65)

104

3.3. Numerics

The total mass, MADM, can be evaluated at the outer boundary,

MADM ≡M(r =∞) . (3.66)

The deviation of the total mass from its time average is plotted in Fig. 3.1(b); as

the resolution of the numerical grid increases the variations converge to zero in a

second order fashion.

Convergence Test

As mentioned in Sec. 3.3.1 and Sec. 3.3.3, we implemented our code using second

order finite differencing of all spatial and temporal derivatives. Denoting any con-

tinuum solution component by q(t,X), where X is the spatial coordinate, and a

discrete approximation to it computed at finite difference resolution, h, by qh(t,X),

to leading order in h we expect

qh(t,X) = q(t,X) + h2e2[q](t,X) + (3.67)

Fixing initial data, we perform a sequence of calculations with resolutions h, h/2

and h/4 and then compute a convergence factor, C(t; q), defined by

C(t; q) =
||qh(t,X) − qh/2(t,X)||2
||qh/2(t,X) − qh/4(t,X)||2

, (3.68)

where || · ||2 is the l2 norm, i.e. the root mean square (RMS) value. It is straightfor-

ward to argue from (3.67) that, for sufficiently small h, C(t, q) should approach 4 if

the solution is converging at second order. The values of the convergence factor for a

selection of dynamical variables are plotted for a strong-data evolution in Fig. 3.1(c)

and provide clear evidence that the solution is second-order convergent throughout

the time evolution.

105

3.3. Numerics

Direct Validation via Einstein’s Equations

A direct method to test the fidelity of our numerical solver involves the evaluation

of a residual based on the covariant form of Einstein’s equations. We start with a

reconstruction of the four-dimensional metric in spherical symmetry,

ds2 = (−α2 + β2a2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2 , (3.69)

using the primary G-BSSN variables, γ̃ij and φ. In particular, a and b are simply

given by

a(t, r) = e4φ(t,r)γ̃rr(t, r) , (3.70)

b(t, r) = e4φ(t,r)γ̃θθ(t, r) . (3.71)

We then check to see if the metric (3.69) satisfies the covariant Einstein equa-

tions (3.3) to the expected level of truncation error. Specifically, defining the residual

Eµν ≡ Gµν − 8πT µν , (3.72)

and replacing all derivatives in Gµν with second order finite differences, we expect

Eµν to converge to zero as O(h2) as h → 0.33 Precisely this behaviour is shown

in Fig. 3.1(d). This is a particularly robust test of our implementation since the

non-trivial components of the covariant Einstein equations are quite complicated

and, superficially at least, algebraically independent of the BSSN equations. For

33Although it is not crucial for the usefulness of this test, we discretize the Eµ
ν using a difference

scheme that is distinct from the one used in the main code.

106

3.3. Numerics

instance, the tr component of the residual (3.72) is given by

Etr =
2β

rα2

(

∂ra

a
− 2

∂rb

b
+
∂rα

α

)

+
2β

α2

(

−∂
2
r b

b
+
∂ra∂rb

ab
− (∂rΨ)2

2
+
∂rα∂rb

αb

)

+
2

α2

(

∂t∂rb

b
+
∂rΨ∂tΨ

2
− ∂ta∂rb

ab
− ∂tb∂rα

αb

)

+
2

rα2

(

−∂ta
a

+
∂tb

b

)

(3.73)

and depends on all of the dynamical variables of the system. The observed conver-

gence of the residual is only plausible if 1) our G-BSSN equations (3.14-3.18) have

been correctly derived from the covariant Einstein equations, 2) we have discretized

the geometric and matter equations properly, and 3) we have solved the full set of

discretized equations correctly.

3.3.5 Finding Black Hole Threshold Solutions

The strength of the initial data can be set by adjusting the amplitude of the scalar

field, p, in (3.42). For weak enough initial data (small enough p), the matter shell

will reach the origin and then disperse, with the final state being a flat spacetime

geometry. Sufficiently strong initial data, on the other hand (large enough p), results

in a matter concentration in the vicinity of the origin which is sufficiently self-

gravitating that a black hole forms. Using a binary search, we can find the threshold

initial data, defined by p = p⋆, for which p < p⋆ results in dispersal while p > p⋆

yields black hole formation. At any stage of the calculation, the binary search is

defined by two “bracketing” values, pl and ph, such that evolutions with p = pl and

p = ph result in dispersal and black hole formation, respectively. It is convenient

to define the amount of parameter tuning that has occurred by the dimensionless

quantity

δp ≡ ph − pl
pl

. (3.74)

107

3.4. Results

The dispersal case can be detected easily as the scalar field leaves the vicinity

of the origin and the geometry approaches flat spacetime. To detect black hole

formation, we use an apparent horizon finder to locate a surface r = const. on which

the divergence of the outgoing null rays vanishes. We first define the divergence

function

Θ = qµν∇µkν , (3.75)

where qµν is the induced metric on the constant r surface. In spherical symmetry

with metric (3.69) we have

qµν = diag
(

0, 0, r2b2, r2b2 sin2 θ
)

, (3.76)

where kµ is the null outgoing vector given by

kµ =
1√
2
[aβ − α, a, 0, 0] . (3.77)

Therefore, (3.75) becomes

Θ =

√
2

rb

(

r

α
∂t(b) +

(

1

a
− β

α

)

∂r(rb)

)

. (3.78)

The formation of an apparent horizon34 is signaled by the value of the function Θ

crossing zero at some radius implying that the spacetime contains a black hole. We

note that since the focus of our work was on the critical (threshold) solution we

made no effort to continue evolutions beyond the detection of trapped surfaces.

3.4 Results

In this section we describe results from two sets of numerical experiments to study

the efficacy of the G-BSSN formulation in the context of critical collapse. Again,

34Technically a marginally trapped surface—the apparent horizon being the outermost of these.

108

3.4. Results

our calculations use the standard 1+log slicing condition for the lapse, and a shift

which is either zero or determined from the Gamma-driver condition.

3.4.1 Zero Shift

We first perform a collection of numerical experiments where the shift vector is set

to zero. As described in Sec. 3.3.5, in principle we can find the black hole threshold

solution p ≃ p⋆ using a binary search algorithm which at any stage is defined by

two values pl and ph, with pl < p < ph, and where pl corresponds to dispersal (weak

data) while ph corresponds to black hole formation (strong data).

As discussed in the introduction, the massless scalar collapse model has a very

well-known critical solution, and we summarize the features most relevant to our

study here. The threshold configuration is discretely self-similar with an echoing

exponent measured from the first calculations to be ∆ ≈ 3.44 [4]. Following the

original studies, Gundlach [67] showed that the construction of the precisely dis-

cretely self-similar spacetime could be posed as an eigenvalue problem, the solution

of which led to the more accurate value ∆ = 3.4439 ± 0.0004. This estimate was

subsequently improved by Martin-Garcia and Gundlach to ∆ = 3.445452402(3) [72].

The original calculations determined a value γ ≈ 0.37 for the mass-scaling ex-

ponent [4]; further work based on perturbation theory gave γ ≈ 0.374 [68, 71]. Here

it is important to note that, as pointed out independently by Gundlach [68] and

Hod and Piran [69], the simple power law scaling (3.1) gets modified for discretely

self-similar critical solutions to

lnM = γ ln |p− p⋆|+ c+ f (γ ln |p− p⋆|+ c) , (3.79)

where f is a universal function with period ∆ and c is a constant depending on the

initial data. This results in the superposition of a periodic “wiggle” in the otherwise

linear scaling of lnM as a function of ln |p− p⋆|.
Finally, Garfinkle and Duncan [70] pointed out that near-critical scaling is seen

109

3.4. Results

Figure 3.2: Echoing behaviour in the scalar field for a marginally subcritical evo-
lution with δp ≈ 10−12. The main plot displays the central value of the scalar field
versus a logarithmically scaled time parameter, ln(Tf−T), where T is central proper
time and Tf is the approximate value of that time when near-critical evolution ceases
and the total dispersal of the pulse to infinity begins. This particular scaling is cho-
sen solely to more clearly demonstrate the evolution of the central value of Ψ during
the critical phase through to dispersal. Note that our choice of abscissa means that
evolution proceeds from right to left. The inset also plots Ψ at r = 0 but now in
the “natural” logarithmic time coordinate τ ≡ ln(T ⋆−T) where T ⋆ is the “accumu-
lation time” at which the solution becomes singular and which has been estimated
based on the positions of the extrema in Ψ. The amplitude of the scalar field at
the origin oscillates between (−0.61, 0.61), consistent with the calculations reported
in [4]. The data yield an echoing exponent of ∆ = 3.43± 0.02 which is in agreement
with the value ∆ = 3.445452402(3) Martin-Garcia and Gundlach have computed by
treating the computation of the precisely-critical solution as an eigenvalue problem
[72].

110

3.4. Results

Figure 3.3: The maximum central value, Rmax, of the four-dimensional Ricci scalar,
R, attained during subcritical evolution as a function of the logarithmic distance
ln |p−p⋆| of the tuning parameter from the critical value. As first observed in [70] the
Ricci scalar scales as R ∼ |p−p⋆|−2γ , where γ is the universal mass-scaling exponent
in (3.1). The value γ = 0.38± 0.01 computed via a least squares fit is in agreement
with the original calculations [4] as well as many other subsequent computations.
We note that the oscillations of the data about the linear fit are almost certainly
genuine, at least in part. As discussed in the text, we expect a periodic wiggle in
the data with period ∆/(2γ) ≈ 4.61. Performing a Fourier analysis of the residuals
to the linear fit we find a peak at about 4 with a bandwidth of approximately 1,
consistent with that expectation. As described in more detail in the text, although
we have data from computations with ln |p− p⋆| < −25, we do not include it in the
fit. The naive method we use to estimate p⋆ means that the relative uncertainty in
p − p⋆ grows substantially as p → p⋆ so that inclusion of the data from the most
nearly-critical calculations will corrupt the overall fit.

111

3.4. Results

in physical quantities other than the mass and, dependent on the quantity, in the

subcritical as well as supercritical regime. In particular they argued that in sub-

critical evolutions the maximum central value, Rmax, of the four-dimensional Ricci

scalar, R, defined by

Rmax ≡ max
t
R(0, t) , (3.80)

should satisfy the scaling

Rmax ∼ |p− p⋆|−2γ , (3.81)

where the factor −2 in the scaling exponent can be deduced from the fact that the

curvature has units of length−2. For the discretely self-similar case this scaling law

is also modulated by a wiggle with period ∆/(2γ), which for the massless scalar

field is about 4.61.

Using initial data given by (3.42) we tune p so that it is close to the critical

value: typically this involves reducing the value of δp defined by (3.74) so that it is

about 10−12, which is a few orders of magnitude larger than machine precision. Our

implementation includes code that actively monitors the dynamical variables for

any indications of coordinate singularities or other pathologies which could cause

the numerical solver to fail. Provided that such pathologies do not develop, we

expect to observe features characteristic of critical collapse—discrete self-similarity

and mass scaling in particular—to emerge as p→ p⋆.

One way the discrete self-similarity of the critical solution is manifested is as a

sequence of “echoes”—oscillations of the scalar field near the origin such that after

each oscillation the profile of the scalar field is repeated but on a scale exp(∆) smaller

than that of the preceding echo (see Eq. (3.2)). The oscillations are similarly periodic

in the logarithmic time scale ln(T ⋆ − T), where T is the proper time measured at

the origin,

T (t) ≡
∫ t

0
α(t̂, 0) dt̂ , (3.82)

and T ⋆ is the accumulation time at which the singularity forms (always at r = 0).

112

3.4. Results

Figure 3.4: Discrete self-similarity of the geometry of spacetime in the black hole
threshold evolution previously discussed in Fig. 3.2. Here, the G-BSSN variable φ is
plotted as a function of the computational radial coordinate r̃ at the accumulation
time t⋆. Note that from (3.83) φ measures the deviation of the determinant of the 3-
metric from that of a flat metric. The inset graph is the radial derivative of φ scaled
by
√
r to highlight the formation of fine structure in the geometry of the critical

solution. The approximate periodicity of
√
rφ′ in ln(r) (modulo an overall varying

scale) provides weak evidence that the coordinate system used in the calculation
adapts to the self-similarity of the critical solution.

113

3.4. Results

Figure 3.5: Snapshots of radial mass density for a marginally subcritical calculation
(δp ≈ 10−12, Nr = 2048). Plotted is dm/dr = r2ρ(t, r) where ρ is defined by (3.24).
In this calculation β = 0 so we also have dm/dr = T tt. As the solution evolves,
development of echos is clearly seen. In the final frame, which is at an instant
t = 15.8 that is close to the accumulation time t⋆, we observe 4 echos. Note that
we do not count the tall thin peak at the extreme left nor the first two peaks on
the right as echos. The skinny peak will develop into an echo as p is tuned closer
to p⋆. The two peaks on the right account for the bulk of the matter and represent
the part of the initial pulse that implodes through the origin and then disperses
“promptly”, i.e. without participating in the strongly self-gravitating dynamics. A
corresponding plot for an evolution far from criticality would contain only those
two peaks. Note that the first three plots use the computational coordinate r̃ to
provide a sense of the actual numerical calculation, while the last plot uses ln(r)
in order to best highlight the discrete self-similarity of the threshold solution. As
is the case for the data plotted in the inset of the previous figure, the approximate
periodicity of the mass density in ln(r) suggests that the coordinates are adapting
to the self-symmetry of the critical spacetime.

114

3.4. Results

Furthermore, viewed at the origin, the oscillations of the scalar field occur at a

fixed amplitude of about 0.61 (with our units and conventions for the Einstein’s

equations). As shown in Fig. 3.2, when we tune the initial data to the critical value,

the central value of scalar field exhibits oscillatory behaviour and the amplitude is

close to the expected value. The anticipated periodicity in logarithmic time is also

apparent with a measured ∆ = 3.43 ± 0.02, in agreement with previous results.

We thus have strong evidence that the evolution has indeed approached the critical

regime and that the measured oscillations are true echos rather than numerical

artifacts.

Evidence that our code correctly captures the expected critical scaling behaviour (3.81)

of Rmax is presented in Fig. 3.3. We find γ = 0.38 ± 0.01, consistent with previous

calculations. We note that we can measure scaling from our computations up to

ln |p − p⋆| = −29 (or |p − p⋆| ≈ 10−13). However, in Fig. 3.3 we have excluded the

last few values closest to the critical point from both the plot and the linear fit:

specifically, we truncate the fit at ln |p − p⋆| = −25. The rationale for this is that

we use the largest subcritical value of p as an approximation to the critical value

p⋆ rather than, for example, implementing a multi-parameter fit that includes p⋆ as

one of the parameters. Our estimate of p⋆ thus has an intrinsic error of e−29 ≈ 10−13

and by fitting to data with ln |p− p⋆| ≥ −25 we render the error in the p⋆ estimate

essentially irrelevant. We note that consistent with the early observations of the ro-

bustness of mass scaling in the model [4], measuring the exponent γ can be achieved

by moderate tuning, in this case ln |p − p⋆| ≈ −9, (i.e. δp ≈ 10−3). However, to

be able to observe the echoing exponent (the oscillations around the fitting line, for

example) we need to tune much closer to the critical value.

The echoing behaviour of the critical solution is also reflected in the geometry

of spacetime and the matter variables other than the scalar field. Fig. 3.4 shows the

radial profile of the G-BSSN variable φ at an instant close to the accumulation time

T ⋆. As seen in this plot, fine structure develops in the function in the near-critical

115

3.4. Results

regime. Observe that from the definition (3.7) and the choice (3.28), the scalar φ is

the ratio of the determinant of the 3-metric, γ, to the determinant of the flat metric,

γ̊:

φ =
1

12
ln(γ/̊γ) . (3.83)

The radial matter density, dm/dr = r2ρ, is a convenient diagnostic quantity for

viewing near-critical evolution. Snapshots of this function from a typical marginally

subcritical calculation are shown in Fig. 3.5: the echoing behavior is clearly evident

in the sequence. The number of echos is dependent on the degree to which the

solution has been tuned to criticality. In this case, where δp = 10−12, we expect and

see about 4 echos (last frame of the figure). Here we note that each of the echos in

dm/dr corresponds to half of one of the scalar field oscillations shown in Fig. 3.2

(where the inset shows about 21
2 full cycles).

Fig. 3.6(a) plots the central matter density ρ(t, 0) for a marginally supercritical

calculation. In accord with the self-similar nature of the near-critical solution, the

central density grows exponentially with time. Fig. 3.6(b) is a snapshot of the

extrinsic curvature at the critical time t ≈ t⋆ while Fig. 3.6(c) shows the dynamics

of the central value of the lapse function and compares it with α from the calculations

performed with β = βG described in the next section. Fig. 3.6(d) displays the profile

of the lapse at the critical time.

We note that we have not fully resolved the critical behaviour in the sense of

having tuned p to the limit of machine precision, δp ≈ 10−16, which would capture

roughly 2 additional echos in the threshold solution (one full echo in the scalar field).

In principle, by setting Nr sufficiently large we could almost certainly do so since

there are no indications that our method would break down at higher resolution

and closer to criticality. However, we estimate that the required compute time

for a complete critical search would increase from weeks to several months and we

have thus not done this. Ultimately, a more effective approach to enhancing the

resolution would be to incorporate a technique such as adaptive mesh refinement

116

3.4. Results

Figure 3.6: Profiles of matter and geometry variables from strongly gravitating,
near-critical evolutions where the echoing behaviour emerges. Results were com-
puted using 1+log slicing and zero shift, except for the dashed curve in (c) where
β = βG. (a) Central energy density, ρ(T, 0), as a function of proper central time,
T , and in logarithmic scale for a supercritical evolution. The density oscillates and
grows exponentially as the system approaches the critical solution and then eventu-
ally collapses to form a black hole. (b) Profile of the extrinsic curvature, K(t⋆, r)—
scaled by r1/2 in order to make the echoing behaviour more visible—where t⋆ denotes
a time very close to the accumulation time. The evolution is marginally subcritical
in this case.

117

3.4. Results

Figure 3.6: (c) Central value of the lapse function, α, during subcritical evolutions
with β = 0 (solid) and β = βG (dashed). The plots use a logarithmically transformed
proper time variable, − ln(Tf − T), where Tf is the approximate time at which the
final dispersal of the pulse from the origin begins. In both cases α exhibits echoing
and there is no evidence of pathological behaviour, such as the lapse collapsing or
becoming negative. The close agreement of α for the two choices of β indicates that
the time slicing varies little between the two coordinate systems. Note that there are
three extra oscillations for the β = βG case, in the time interval − ln(Tf −T) & 4.5.
These are spurious and due to a lack of finite-difference resolution; there are only
6 time steps in each oscillation. (d) Radial profile α(t⋆, r) at a time t = t⋆ which
is close to the accumulation time and when the self-similarity and echoing in the
spacetime geometry is apparent.

into our solver.

The results displayed in Figs. 3.2–3.6 provide strong evidence that the coordinate

system consisting of 1+log lapse and zero shift remains non-singular in the critical

regime, at least for the range of scales probed for δp ≈ 10−12. Additionally, the

approximate periodicity in ln(r) that can be seen, for example, in
√
rφ′ (Fig. 3.4)

and dm/dr (Fig. 3.5) suggests that the coordinates may be adapting to the self-

similarity. Whether or not this is actually the case is a matter requiring further

study.

3.4.2 Gamma-driver Shift

We now briefly report on experiments similar to those of the previous section but

where the shift was evolved with the Gamma-driver condition (3.38). A principal

observation is that this gauge also facilitates near-critical evolutions with results

similar to the β = 0 choice. In particular, we are again able to observe all of the

characteristics of the black hole threshold solution.

The gauge condition (3.38) acts as a damping factor for the conformal connec-

tion, Λ̃i, and we would therefore expect to observe a significant change in the profile

of Λ̃i at threshold relative to the zero-shift case. This expectation is borne out by

the comparison illustrated in Figs. 4.1 (a) and (b). When β = 0, Λ̃i diverges as

118

3.4. Results

Figure 3.7: Profiles of various G-BSSN variables from marginally subcritical evo-
lutions. (a) Profile of the conformal connection Λ̃ as computed with β = 0 and at
a time t⋆ close to the accumulation time. Note that the function has been scaled
by r and in fact diverges like 1/r. (b) Profile of Λ̃ as computed with β = βG, again
at a moment close to the accumulation time. Here the 1/r growth seen when the
condition β = 0 is adopted is absent. (c) Profile of the central spatial derivative
of the shift vector, β′(t, 0), as computed with β = βG. As the echos develop closer
to the origin, β′ increases and presumably will diverge in the continuum, precisely-
critical limit. (d) Time development of the l2-norm of the extrinsic curvature during
subcritical evolutions for both the β = 0 and β = βG calculations. In both cases
the extrinsic curvature develops a divergent profile near r = 0 in the critical regime.

119

3.5. Conclusion

1/r close to the origin while it appears to have finite amplitude for β = βG. We

find that the shift develops very sharp oscillations near the origin; some typical be-

haviour can be seen in the plot of β′(t, 0) shown in Fig. 4.1(c). We believe that

these oscillations are genuine and our expectation is that β′(t, 0) will diverge in the

precise critical limit. Further, we observe that the oscillations can create numerical

artifacts and generally require higher resolution relative to the β = 0 case, as well

as dissipation, to be controlled. Indeed, when using the Gamma-driver condition we

find that Kreiss/Oliger dissipation is crucial to suppress unresolved high frequency

oscillations close to the origin. Fig. 4.1 (d) shows the growth in the norm of the

extrinsic curvature during a subcritical evolution. The norm of K does not exhibit

any significant difference for the two choices of the shift.

As was the case for the β = 0 calculations, the results shown in Figs. 3.6 and

3.7 strongly suggest that the combination of 1+log slicing and Gamma driver shift

provides a coordinate system which is adequate for computing the near-critical so-

lution. In addition, the approximate periodicity seen in Figs. 3.6(b), 3.6(c), 3.7(a)

and 3.7(b) suggest that this gauge may also be adapting to the self-symmetry.

3.5 Conclusion

We have described a numerical code that implements a generalized BSSN formula-

tion adapted to spherical symmetry. Using standard dynamical coordinate choices,

including 1+log slicing and a shift which either vanished or satisfied a Gamma-

driver condition, we focused specifically on the applicability of the formulation and

the gauge choices to studies of type II critical phenomena. As a test of the approach

we revisited the model of massless scalar collapse, where the properties of the critical

solution are very well known from previous work. For both choices of the shift, we

found that our code was able to generate evolutions that were very close to criti-

cality so that, in particular, we could observe the expected discrete self-similarity

of the critical solution. To our knowledge, this is the first fully evolutionary imple-

120

3.5. Conclusion

mentation of a hyperbolic formulation of Einstein’s equations that has been able to

unequivocally resolve discrete self-similarity in type II collapse. Furthermore, mea-

sured properties from near-critical solutions, including the mass-scaling and echoing

exponents, are in agreement with previous work. Our results strongly suggest that

the G-BSSN formulation, in conjunction with standard dynamical coordinate condi-

tions, is capable of evolving the spacetime near criticality without the development

of coordinate pathologies. There is also some evidence that both gauges adapt to

the self-similarity, but we have not yet studied this issue in any detail.

We found that certain of the primary G-BSSN variables diverge as the critical

solution is approached: this is only to be expected since the precisely critical solution

contains a naked singularity. Dealing with such solution features in a stable and

accurate manner presents a challenge for any code and in our case we found that a

combination of a non-uniform grid and Kreiss/Oliger dissipation was crucial. Our

use of a time-implicit evolution scheme may have also been important although we

did not experiment with that aspect of our implementation. However, we suspect

that the implicit time-stepping helped maintain regularity of the solutions near

r = 0, as other researchers have found.

Given the success of the G-BSSN approach, it is natural to consider its gen-

eralization and application to settings with less symmetry, but where curvilinear

coordinates are still adopted. In particular, one axisymmetric problem that has yet

to be resolved is the collapse of pure gravity waves. This scenario arguably pro-

vides the most fundamental critical phenomena in gravity as the behaviour must

be intrinsic to the Einstein equations, rather than being dependent on some matter

source. Critical collapse of gravitational waves–with mass scaling and echoing—was

observed by Abrahams and Evans over 20 years ago [76]. However, their original

results have proven very difficult to reproduce (or refute) [77–80, 83]. We refer

the reader to the recent paper by Hilditch et al. [83] for detailed discussions con-

cerning some apparent inconsistencies among the follow-up studies, as well as the

121

3.6. BSSN in Spherical Symmetry

challenges and complications involved in evolving various types of nonlinear gravi-

tational waves. We are currently extending the methodology described above to the

axisymmetric case with plans to use the resulting code to study vacuum collapse.

Results from this undertaking will be reported in a future paper.

3.6 BSSN in Spherical Symmetry

In this appendix, we provide the explicit expressions of the G-BSSN evolution equa-

tions in spherical symmetry.

The evolution equations (3.14-3.15) for φ and the components of the conformal

metric γ̃ij simplify to

∂tφ =
1

6
αK + β∂rφ+ σ

1

6
B , (3.84)

∂tγ̃rr = −2αÃrr + β∂rγ̃rr + 2γ̃rr∂rβ − σ
2

3
γ̃rrB , (3.85)

∂tγ̃θθ = −2αÃθθ + β∂rγ̃θθ + 2
β

r
γ̃θθ − σ

2

3
γ̃θθB , (3.86)

where B is the divergence of the shift vector,

B(t, r) = Diβ
i = ∂rβ +

2β

r
+ β

(

∂r γ̃rr
2γ̃rr

+
∂r γ̃θθ
γ̃θθ

)

. (3.87)

To display the equation of motion for the trace of the extrinsic curvature K and Ãij

we first define

Dij ≡ DiDjα , (3.88)

which has 2 independent components,

Drr = ∂2rα− ∂rα
(

∂rγ̃rr
γ̃rr

+ 4∂rφ

)

, (3.89)

122

3.6. BSSN in Spherical Symmetry

Dθθ = r∂rα
γ̃θθ
γ̃rr

+
r2

2
∂rα

(

∂rγ̃θθ
γ̃rr

+ 4∂rφ
γ̃θθ
γ̃rr

)

. (3.90)

The trace of Dij is

D ≡ γijDij = e−4φ

(

Drr

γ̃rr
+ 2

Dθθ

r2γ̃θθ

)

. (3.91)

Then the evolution of K is given by

∂tK = −D + α

(

1

3
K2 +

Ã2
rr

γ̃2rr
+ 2

Ã2
θθ

γ̃2θθ

)

+ β∂rK + 4πα(ρ+ S) (3.92)

and the evolution equations for the traceless part of the extrinsic curvature are

∂tÃrr = e−4φ
[

−D
TF
rr + α

(

RTF
rr + 8πSTF

rr

)]

+ α

(

ÃrrK −
2Ã2

rr

γ̃rr

)

+ 2Ãrr∂rβ + β∂rÃrr − σ
2

3
BÃrr , (3.93)

∂tÃθθ =
e−4φ

r2
[

−D
TF
θθ + α

(

RTF
θθ + 8πSTF

θθ

)]

+ α

(

ÃθθK − 2
Ã2
θθ

γ̃θθ

)

+ 2
β

r
Ãθθ + β∂rÃθθ − σ

2

3
ÃθθB , (3.94)

123

3.6. BSSN in Spherical Symmetry

where R denotes the 3-Ricci tensor with non-vanishing components

Rrr =
3(∂r γ̃rr)

2

4γ̃2rr
− (∂r γ̃θθ)

2

2γ̃2θθ
+ γ̃rr∂rΛ̃ +

1

2
∂rγ̃rrΛ̃

+
1

r

(

4∂rφ−
∂rγ̃rr − 2∂r γ̃θθ

γ̃θθ
− 2γ̃rr∂rγ̃θθ

γ̃2θθ

)

− 4∂2rφ+ 2∂rφ

(

∂rγ̃rr
γ̃rr

− ∂rγ̃θθ
γ̃θθ

)

− ∂2r γ̃rr
2γ̃rr

+
2(γ̃rr − γ̃θθ)

r2γ̃θθ
, (3.95)

Rθθ =
r2γ̃θθ
γ̃rr

(

∂rφ
∂rγ̃rr
γ̃rr

− 2∂2rφ− 4(∂rφ)
2

)

+
r2

γ̃rr

(

(∂r γ̃θθ)
2

2γ̃θθ
− 3∂rφ∂r γ̃θθ −

1

2
∂2r γ̃θθ

)

+ r

(

Λγ̃θθ −
∂r γ̃θθ
γ̃θθ

− 6∂rφγ̃θθ
γ̃rr

)

+
γ̃θθ
γ̃rr
− 1 . (3.96)

In the above expressions the superscript TF denotes application of the trace-free-

part operator, whose action can be written explicitly as

XTF
rr = Xrr −

1

3
γrrX =

2

3

(

Xrr −
AXθθ

Br2

)

, (3.97)

XTF
θθ = Xθθ −

1

3
γθθX =

1

3

(

Xθθ −
BXrr

A

)

. (3.98)

Here X represents any of the tensors D , R or S.

124

3.7. Scalar Field Synamics and Energy-Momentum Tensor in Spherical Symmetry

Finally, the evolution of Λ̃i reduces to

∂tΛ̃ = β∂rΛ̃− ∂rβΛ̃ +
2α

γ̃rr

(

6Ãθθ∂rφ

γ̃rr
− 8πSr −

2

3
∂rK

)

+
α

γ̃rr

(

∂rγ̃rrÃrr
γ̃2rr

− 2∂rγ̃θθÃθθ
γ̃2θθ

+ 4Ãθθ
γ̃rr − γ̃θθ
rγ̃2θθ

)

+ σ

(

2

3
Λ̃B +

∂rB

3γ̃rr

)

+
2

rγ̃θθ

(

∂rβ −
β

r

)

− 2
∂rαÃrr
γ̃2rr

. (3.99)

3.7 Scalar Field Synamics and Energy-Momentum

Tensor in Spherical Symmetry

Here we present the evolution equations of a complex scalar field, with an arbitrary

potential V , minimally coupled to gravity. The governing equations for a massless

real scalar field follow as a special case where the potential and the imaginary part

of the field are both set to zero.

The geometry of spacetime is given by a generic metric in spherical symmetry:

ds2 = (−α2 + β2a2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2, (3.100)

where a, b, α and β are all functions of t and r and where a and b are related to the

primary BSSN variables via a = γ̃rr exp(4φ) and b = γ̃θθ exp(4φ).

The complex scalar field is given in terms of real and imaginary parts, ΨR and

ΨI , respectively,

Ψ = ΨR(t, r) + iΨI(t, r) , (3.101)

125

3.7. Scalar Field Synamics and Energy-Momentum Tensor in Spherical Symmetry

and has an associated energy-momentum tensor

Tµν = ∇µ∇νΨR −
1

2
gµν∇ηΨR∇ηΨR

+ ∇µ∇νΨI −
1

2
gµν∇ηΨI∇ηΨI

− 1

2
gµνV (|Ψ|) . (3.102)

The evolution of the real part of the scalar field can be reduced to a pair of first-

order-in-time equations via the definition

ΞR ≡
b2a

α
(∂tΨR − β∂rΨR) . (3.103)

We then find the following evolution equations for ΨR and ΞR:

∂tΨR =
α

b2a
ΞR + β∂rΨR , (3.104)

∂tΞR =
αb2

a

(

∂2rΨR + 2
∂rΨR

r

)

+ ∂rΨR∂r

(

αb2

a

)

+ β∂rΞR + ΞR∂rβ + ΞR
2β

r

− aαb2∂2|Ψ|V (|Ψ|) . (3.105)

The evolution equations for ΨI and ΞI follow from the index substitutions R ↔ I

in the right hand sides of (3.104) and (3.105), respectively.

The matter source terms in the G-BSSN equations, namely ρ, S, Si, Sij, can be

simplified by defining Π and Φ as

Π ≡ a

α
(∂tΨ− β∂rΨ) ≡ ΠR(t, r) + iΠI(t, r) , (3.106)

ΠR =
a

α
(∂tΨR − β∂rΨR) =

ΞR
b2

, (3.107)

126

3.7. Scalar Field Synamics and Energy-Momentum Tensor in Spherical Symmetry

ΠI =
a

α
(∂tΨI − β∂rΨI) =

ΞI
b2
, (3.108)

Φ ≡ ∂rΨ ≡ ΦR(t, r) + iΦI(t, r) , (3.109)

ΦR = ∂rΨR , (3.110)

ΦI = ∂rΨI . (3.111)

Using these definitions, the variables ρ and S are given by

ρ(t, r) =
|Π|2 + |Φ|2

2a2
+
V (|Ψ|)

2
, (3.112)

S(t, r) =
3|Π|2 − |Φ|2

2a2
− 3

2
V (|Ψ|) . (3.113)

In spherical symmetry, Si has only a radial component,

Si = [Sr(t, r), 0, 0] , (3.114)

with

Sr = −ΠRΦR +ΠIΦI
a

. (3.115)

Similarly, the spatial stress tensor, Sij , has only two independent components,

Sij =

Srr(t, r) 0 0

0 r2Sθθ 0

0 0 r2 sin2 θSθθ

, (3.116)

127

3.7. Scalar Field Synamics and Energy-Momentum Tensor in Spherical Symmetry

with

Srr =
|Π|2 + |Φ|2

2
− a2V (|Ψ|)

2
, (3.117)

Sθθ = b2
(|Π|2 − |Φ|2

2a2
− V (|Ψ|)

2

)

. (3.118)

128

Chapter 4

Non-linear Gravity Wave

Evolutions with the G-BSSN

Formulation

4.1 Introduction

As first discussed in the introduction, the General Relativistic theory of gravity has

a radiative component to it, whereby the waves in the metric of pure vacuum carry

information and energy. In Cartesian coordinates the linearized Einstein’s equation

(1.13), i.e. perturbation near the flat spacetime, has a simple planar wave solution

(choosing z to be the direction of propagation):

h̄ij = Hije
i(kz±ωt) , (4.1)

where Hij can be written as a linear combination of two basis tensors, e+ and e×:

Hij = ae+ij + be×ij . (4.2)

Here e+ is a tensor with only nonzero components: e+xx = −e+yy = 1 and e× is a

tensors for which the nonzero components are: e×xy = e×yx = 1.

The solutions to the linearized tensorial wave equation in spherical-polar coor-

dinates with axial symmetry are known as Teukolsky waves [96]. Another vacuum

129

4.1. Introduction

axisymmetric ansatz to Einstein’s equations was proposed by Brill [97]—which can

be considered both in linear and non-linear regime. Both of these solutions are

commonly used in gravitational waves evolutions, and we will introduce them in our

discussion of the non-linear regime in Sec. 4.2.4.

The very first study of pure vacuum solutions of Einstein’s equation using Brill

data is due to Eppley [98] who demonstrated that a sufficiently strong pure vacuum

Brill configuration contains a black hole. The first dynamical study of pure vacuum

using a numerical approach was [99] and also adopted the Brill initial data (in axial

symmetry). This study was the first simulation where pure vacuum dynamically

collapses to a black hole. The first axisymmetric numerical evolutions of Teukolsky

waves was due to Abrahams and Evans [100] who showed the formation of a black

hole from an imploding Teukolsky wave packet.

The first full 3-dimensional simulations of gravity waves was by Shibata and

Nakamura [31], who were the first to propose the rescaling of the BSSN formulation

and perform successful long term evolutions of small amplitude waves. Follow up

work by Baumgarte and Shapiro [32] completed the BSSN formulation by introduc-

ing the conformal connection functions and showed the much improved performance

of BSSN formulation in comparison to the free ADM evolutions of small amplitude

gravitational waves.

The 3D near-linear regime was first explored in [101, 102] with reports of nu-

merical difficulties in achieving long-time dynamics. Strong gravity dynamics of 3D

pure vacuum Brill data was first performed in [103] and [104] with the primary goal

of finding black hole critical solutions. The evolution of Brill initial data in axial

symmetry was revisited later in [105], again in search of critical behaviour. However

as we discuss in the following, the critical phenomena in gravitational waves collapse

is as yet an unsolved problem.

Critical Phenomena in Pure Gravity Waves Collapse

The follow up work to [100] by Abrahams and Evans [106] is the first report on

130

4.2. Equations of Motion for Strong Gravity Waves Dynamics

the observation of type II critical behaviour in the collapse of Teukolsky waves. In

addition, in [107], they found evidence for universality of the solution with a mass-

scaling exponent γ ≈ 0.38, surprisingly close to Choptuik’s finding for the massless

scalar field, and an echoing exponent ∆ ≈ 0.5. However, there are 5 studies [77–

80, 83] which further investigate the universality of the solution, all of which report

unsuccessful attempts to reproduce the original results. Among these, Sorkin’s work

[80] stands out. He finds evidence for scaling in agreement with γ ≈ 0.38 and hints

of a DSS structure. However, the measured echoing exponent differs from [106]

(∆ ≈ 1.1) for his choice of Brill initial data. In addition, Sorkin reports observation

of a “ring of singularity” forming in the near-critical regime, which is somewhat

unexpected and peculiar. These inconsistencies motivate a revisit of the problem,

with a new axisymmetric code which implements the G-BSSN formulation and that

appeared to be promising based on the spherical case we studied in the previous

chapter.

In the rest of this chapter we discuss the development of a G-BSSN axisymmet-

ric code and its application to non-linear gravity waves dynamics. The numerical

techniques and the implementation of a new G-BSSN-based code in cylindrical coor-

dinate is presented in Sec. 4.3 as is the initialization process using two types of Brill

and Teukolsky-type initial data. In Sec. 4.4 we present the primary calculations

performed using the code to evolve the pure vacuum in the strong gravity regime.

Discussions of the future steps that are required to optimize and bring the code to

production for type II critical phenomena studies are given in 4.5.

4.2 Equations of Motion for Strong Gravity Waves

Dynamics

In this section, we summarize the G-BSSN equations and present their form in axial

symmetry using cylindrical coordinates. As mentioned in the previous chapter, G-

131

4.2. Equations of Motion for Strong Gravity Waves Dynamics

BSSN is a generalization of the BSSN formulation to curvilinear coordinates where

the flat 3-metric is not the unity matrix (see the discussion in Sec. 3.2.1). For

example, in cylindrical coordinates, the flat 3-metric is given by:

ds2 = dρ2 + dz2 + ρ2dϕ2 , (4.3)

which we denote as γ̊ij and has determinant γ̊ = ρ2. Here, we will not derive the G-

BSSN equations in any detail, but rather refer the reader to [88] for a full derivation

(also see the discussion in the previous chapter). In summary, then, the G-BSSN

equations in vacuum are given by:

∂tφ = −1

6
αK + βi∂iφ+ σ

1

6
D̃kβ

k , (4.4)

∂tγ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃kj∂iβ

k − σ2
3
ÃijD̃kβ

k , (4.5)

∂tK = −γijDjDiα+ α(ÃijÃ
ij +

1

3
K2) + βi∂iK , (4.6)

∂tÃij = e−4φ (−DiDjα+ αRij)
TF + α(KÃij − 2ÃilÃ

l
j)

+ βk∂kÃij + Ãik∂jβ
k + Ãkj∂iβ

k − σ2
3
ÃijD̃kβ

k , (4.7)

∂tΛ̃
i = ∂tΓ̃

i − Γ̊ijk∂tγ̃
jk , (4.8)

in which we have set the matter sources to zero and written out the Lie derivatives

explicitly. Here Γ̊ijk denotes the Christoffel symbols associated with flat metric γ̊ij .

As in the previous chapter, σ is a parameter that determines the two standard

choices of G-BSSN for the evolution of the determinant of the 3-conformal-metric,

132

4.2. Equations of Motion for Strong Gravity Waves Dynamics

γ̃:

σ = 1 ⇒ ∂tγ̃ = 0 , (Lagrangian choice) , (4.9)

σ = 0 ⇒ (∂t −L~β
)γ̃ = 0 , (Lorentzian choice) . (4.10)

All of the simulations in this chapter use the Lagrangian option.

In (4.8) the first term, ∂tΓ̃
i, is given by:

∂tΓ̃
i = −2Ãij∂jα+ 2α

(

Γ̃ijkÃ
kj − 2

3
γ̃ij∂jK + 6Ãij∂jφ

)

+ γ̃lj∂j∂lβ
i

+ βj∂jΓ̃
i − Γ̃j∂jβ

i +
σ

3

[

2Γ̃iD̃kβ
k + γ̃li∂l(D̃kβ

k)
]

, (4.11)

and in the second term, Γ̊ijk∂tγ̃
jk, the time evolution of the inverse of the confor-

mal metric, ∂tγ̃
jk, can be evaluated using the time evolution of γ̃ij , (4.5) by the

consideration:

γ̃ikγ̃kj = δij ⇒ ∂t(γ̃
ikγ̃kj) = 0

⇒ (∂tγ̃
ik)γ̃kj + γ̃ik∂tγ̃kj = 0

⇒ (∂tγ̃
ik)γ̃kj γ̃

jl + γ̃ik(∂tγ̃kj)γ̃
jl = 0

⇒ ∂t(γ̃
ik)δkl + γ̃ik(∂tγ̃kj)γ̃

jl = 0

⇒ ∂t(γ̃
il) = −γ̃ik(∂tγ̃kj)γ̃jl , (4.12)

in which ∂tγ̃kj should be replaced by the right hand side (RHS) of (4.5). In addition,

in (4.11), Γ̃i is substituted by the re-defined conformal connection, Λ̃i, in G-BSSN

via its definition (3.12):

Λ̃k ≡ γ̃ij
(

Γ̃kij − Γ̊kij

)

≡ Γ̃k − Γ̊kij γ̃
ij ⇒ Γ̃k = Λ̃k + γ̃ijΓ̊kij . (4.13)

We remind the reader that the 3-Ricci tensor, Rij, in (4.7) is computed using the

133

4.2. Equations of Motion for Strong Gravity Waves Dynamics

G-BSSN primary variables as:

Rij = Rφij + R̃ij , (4.14)

in which:

Rφij = −2D̃iD̃jφ− 2γ̃ijD̃
kD̃kφ+ 4D̃iφD̃jφ− 4γ̃ijD̃

kφD̃kφ , (4.15)

R̃ij = −
1

2
γ̃lm∂m∂lγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k + γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)

. (4.16)

In the expression for the conformal Ricci tensor, R̃ij, we again use (4.13) to eliminate

Γ̃k since in G-BSSN, Λ̃k is the primary dynamical variable, rather than Γ̃k.

The Hamiltonian and momentum constraints for pure vacuum are given by:

H ≡ γ̃ijD̃iD̃je
φ − eφ

8
R̃+

e5φ

8
ÃijÃij −

e5φ

12
K2 = 0 , (4.17)

M
i ≡ D̃j

(

e6φÃji
)

− 2

3
e6φD̃iK = 0 , (4.18)

and are only used at the initial time in the G-BSSN formulation. As we will discuss,

we monitor the constraints as a diagnostic tool.

4.2.1 G-BSSN in Cylindrical Coordinate with Axial Symmetry

We now proceed by imposing the axial symmetry in cylindrical coordinates. As-

suming that ∂ϕ is a Killing vector, we consider the following form for the conformal

3-metric in cylindrical coordinates:

γ̃ij =

γ̃ρρ(t, ρ, z) γ̃ρz(t, ρ, z) 0

γ̃ρz(t, ρ, z) γ̃zz(t, ρ, z) 0

0 0 ρ2γ̃ϕϕ(t, ρ, z)

. (4.19)

134

4.2. Equations of Motion for Strong Gravity Waves Dynamics

This reduces to the flat 3-metric (4.3) when the off-diagonal component, γ̃ρz vanishes

and the diagonal terms are unity. The traceless part of the extrinsic curvature has

similar non-zero components:

Ãij =

Ãρρ(t, ρ, z) Ãρz(t, ρ, z) 0

Ãρz(t, ρ, z) Ãzz(t, ρ, z) 0

0 0 ρ2Ãϕϕ(t, ρ, z)

, (4.20)

and all of the other terms on the right hand side of the G-BSSN equations (4.4,4.8)

such as Rij , DiDjα and the Lie derivative terms, have similar non-zero components,

consistent with these ansatzes.

Furthermore, due to the axial symmetry, the shift vector and conformal connec-

tion function can only have non-zero components in the ρ and z directions:

βi = [βρ(t, ρ, z), βz(t, ρ, z), 0] , (4.21)

Λ̃i = [Λ̃ρ(t, ρ, z), Λ̃z(t, ρ, z), 0] . (4.22)

4.2.2 Coordinate Choices

For this study, we use the standard 1+log and Gamma-driver35 conditions to evolve

the lapse and shift36,

∂tα(t, ρ, z) = −2αK , (4.23)

∂tβ
i = µΛ̃i − ηβi , (4.24)

35The choice of β = 0, which worked fine in the spherical case in the previous chapter, is not
an effective coordinate choice here. In particular, using β = 0 the off-diagonal component of the
conformal 3-metric grows and causes the metric to become singular (non-invertable).

36We note that the code implements an advective version of these equations with the βi∂i term
on the LHS and a more general expression on the RHS, aαK + bα2K, for experimental purposes.
However the simulations shown in the results section use only the standard choice.

135

4.2. Equations of Motion for Strong Gravity Waves Dynamics

where µ and η are adjustable parameters. For most of the calculations presented

here we use µ = 3/4 and η ≈ 1/(10M), where M is the total mass of the system

(ADM mass). As will be discussed in Sec. 4.3.2, we choose an initialization such

that the mass is of order 1, therefore η ≈ 1/(10M) will be of order 10−1.

4.2.3 Note on Complexity and Regularity of the Equations

We note that the G-BSSN equations (4.4,4.8), even limited to axial symmetry, con-

tain tens of thousands of terms if the right hand side of the equations are expressed

in terms of the conformal metric γ̃ij and the rest of the primary variables of G-

BSSN. To reduce this complexity, and avoid potentially repetitive calculations, we

introduce the inverse of the conformal metric γ̃ij as a new set of “work” variables in

the numerical solver. Further, we compute the various covariant derivatives using

some of the components of the conformal Christoffel symbols defined as additional

work variables:

Γ̃ρρρ(t, ρ, z) =
1

2
γ̃ρρ∂ργ̃ρρ + γ̃ρz∂ργ̃ρz −

1

2
γ̃ρz∂z γ̃ρρ , (4.25)

Γ̃ρzρ(t, ρ, z) =
1

2
γ̃ρz∂ργ̃ρρ + γ̃zz∂ργ̃ρz −

1

2
γ̃zz∂z γ̃ρρ , (4.26)

Γ̃ρzz(t, ρ, z) = γ̃ρρ∂z γ̃ρz −
1

2
γ̃ρρ∂ργ̃zz +

1

2
γ̃ρz∂z γ̃zz , (4.27)

Γ̃zρρ(t, ρ, z) =
1

2
γ̃ρz∂ργ̃ρρ + γ̃zz∂ργ̃ρz −

1

2
γ̃zz∂z γ̃ρρ , (4.28)

Γ̃zzρ(t, ρ, z) =
1

2
γ̃ρz∂z γ̃ρρ +

1

2
γ̃zz∂ργ̃zz , (4.29)

Γ̃zzz(t, ρ, z) = γ̃ρz∂z γ̃ρz −
1

2
γ̃ρz∂ργ̃zz +

1

2
γ̃zz∂z γ̃zz , (4.30)

Γ̃ϕϕz(t, ρ, z) =
1

2

∂z γ̃ϕϕ
γ̃ϕϕ

. (4.31)

Specifically, we use the left hand side (LHS) symbols in in the G-BSSN equations,

while their values are given by the RHS and stored in separate work variables. For

136

4.2. Equations of Motion for Strong Gravity Waves Dynamics

the remaining components of the conformal Christoffel symbols:

Γ̃ϕϕρ(t, ρ, z) =
1

ρ
+

1

2

∂ργ̃ϕϕ
γ̃ϕϕ

, (4.32)

Γ̃zϕϕ(t, ρ, z) = −ργ̃ρz γ̃ϕϕ −
1

2
ρ2γ̃ρz∂ργ̃ϕϕ −

1

2
ρ2γ̃zz∂z γ̃ϕϕ , (4.33)

Γ̃ρϕϕ(t, ρ, z) = −ργ̃ρργ̃ϕϕ −
1

2
ρ2γ̃ρρ∂ργ̃ϕϕ −

1

2
ρ2γ̃ρz∂z γ̃ϕϕ , (4.34)

we explicitly use the RHS expressions in the G-BSSN equations. This is important,

as they contain powers of ρ and similarly our ansatz for the conformal metric (4.19)

has explicit ρ2 dependency and its inverse has explicit 1/ρ2 term. Therefore, at

several places in the symbolic calculations, the powers of ρ appear and can cancel

and simplify to regular terms. An example of such a cancellation is in the term

γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)

in the Ricci tensor (4.16). In addition, Γ̃ϕϕρ contains a

singular 1/ρ term, which will be appropriately eliminated by the subtraction of the

flat background Christoffel symbols (̊Γϕϕρ = 1/ρ) in the re-definition of the conformal

connection (4.13).

Even with the use of the Christoffel symbols as intermediate variables, the LHS

of G-BSSN equations are rather lengthy and of course need to be derived using a

tensor manipulation software. For example , the ρρ component of the 3-Ricci tensor

137

4.2. Equations of Motion for Strong Gravity Waves Dynamics

that appears in the RHS of the ρρ component of Eq. (4.7) is given by:

Rρρ = R̃ρρ +Rφρρ =

− 1

2
γ̃ρρ∂2ρ γ̃ρρ −

1

2
γ̃zz∂2z γ̃ρρ − γ̃ρz∂z∂ργ̃ρρ + γ̃ρz∂ρΛ̃

z + γ̃ρρ∂ρΛ̃
ρ

+
1

2
Λ̃z∂z γ̃ρρ +

1

2
Λ̃ρ∂ργ̃ρρ + ∂z γ̃ρρ

(

3

2
γ̃ρzΓ̃ρρρ +

3

2
γ̃zzΓ̃ρzρ +

1

2
γ̃ρzΓ̃zzρ +

1

2
γ̃ρρΓ̃zρρ

)

+ ∂ργ̃ρρ

(

3

2
γ̃ρρΓ̃ρρρ +

3

2
γ̃ρzΓ̃ρzρ

)

+ ∂ργ̃zz

(

−1

2
γ̃zzΓ̃zzρ −

1

2
γ̃ρzΓ̃zρρ

)

+ ∂ργ̃ρz

(

γ̃ρρΓ̃zρρ + γ̃ρzΓ̃zzρ

)

+ ∂z γ̃ρz

(

2γ̃ρzΓ̃zρρ + 2γ̃zzΓ̃zzρ

)

+
1

4

∂ργ̃
2
ϕϕ

γ̃2ϕϕ

+
1

ρ

(

−1

2

∂ργ̃ρρ
γ̃ϕϕ

− ∂ργ̃ϕϕ
γ̃ϕϕ

+ γ̃ρρ
∂ργ̃ϕϕ
γ̃2ϕϕ

)

+
1

ρ2

(

γ̃ρρ
γ̃ϕϕ
− 1

)

⋆

+ ∂ρφ
(

2Γ̃ρρρ + 2γ̃ρργ̃
ρρΓ̃ρρρ + 4γ̃ρργ̃

ρzΓ̃ρzρ + 2γ̃ρργ̃
zzΓ̃ρzz

)

+ ∂zφ
(

2Γ̃zρρ + 2γ̃ρργ̃
ρρΓ̃zρρ + 4γ̃ρργ̃

ρzΓ̃zzρ + 2γ̃ρργ̃
zzΓ̃zzz

)

+ ∂ρφ

(

−γ̃ρργ̃ρρ
∂ργ̃ϕϕ
γ̃ϕϕ

− γ̃ρz γ̃ρρ
∂z γ̃ϕϕ
γ̃ϕϕ

)

+ ∂zφ

(

−γ̃ρργ̃ρz
∂ργ̃ϕϕ
γ̃ϕϕ

− γ̃ρργ̃zz
∂z γ̃ϕϕ
γ̃ϕϕ

)

+ (∂ρφ)
2 (4− 4γ̃ρργ̃

ρρ)− 4(∂zφ)
2γ̃ρργ̃

zz + 4γ̃ρργ̃
ρz∂ρ∂zφ

− 2∂2ρφ− 2γ̃ρργ̃
ρρ∂2ρφ− 2γ̃ρργ̃

zz∂2zφ

+
1

ρ
(−2γ̃ρργ̃ρρ∂ρφ− 2γ̃ρργ̃

ρz∂zφ) ⋆ , (4.35)

in which we highlighted the potentially irregular terms containing negative powers

of ρ. We note that these terms are indeed regular in the limit ρ → 0 as we will

discuss shortly, but it is nonetheless crucial to collect the powers of ρ and compute

these terms in an appropriate way to prevent round-off errors. For instance, if the

term containing 1/ρ2 is computed as two separate terms: γ̃ρρ/(ρ
2γ̃ϕϕ) and −1/ρ2,

both these terms are large (in fact diverging) floating point numbers at the vicinity

of the origin, and if added to any other regular term, before being summed together,

can create a significant round-off error. However, if the subtraction γ̃ρρ/γ̃ϕϕ − 1 is

performed first, the value is a small floating point number, (behaving as ρ2 in the

limit ρ→ 0 as we will discuss in Sec. 4.3.4) and the division by ρ2 creates a number

138

4.2. Equations of Motion for Strong Gravity Waves Dynamics

that is of the same order as the rest of the terms in the expression.

4.2.4 Axisymmetric Initial Data

The initialization of a pure gravity wave is done by specifying a non-trivial form for

the conformal 3-metric, γ̃ij , and then solving the Hamiltonian constraint (4.17) for

the conformal factor eφ. The momentum constraint (4.18) is satisfied trivially by

requiring that the initial data be time symmetric:

Ãij = K = 0 . (4.36)

Furthermore, without loss of generality, one can assume that at the initial time the

ρ and z coordinates are orthogonal, i.e. the off-diagonal term in (4.19) is zero:

γ̃ij(t = 0, ρ, z) =

A(ρ, z) 0 0

0 B(ρ, z) 0

0 0 ρ2C(ρ, z)

, (4.37)

in which the functions A, B and C can be chosen arbitrarily. In addition it is easy

to perform a coordinate transformation z → z′ (at initial time slice) to make the

zz and ρρ components of γ̃ij equal (any two-metric can be written in a conformally

flat form). Therefore, a suitably generic axisymmetric initial conformal 3-metric is

given by:

γ̃ij(t = 0, ρ, z) =

eV (ρ,z) 0 0

0 eV (ρ,z) 0

0 0 ρ2W (ρ, z)

. (4.38)

Here we use eV for the first two diagonal components of the conformal metric to be

consistent with the literature. Note that this form for γ̃ij holds only at the initial

time; during the evolution the metric evolves to a form given by (4.19). In this

139

4.2. Equations of Motion for Strong Gravity Waves Dynamics

chapter, we particularly focus on two different types of initial data:

W (ρ, z) = 1 , (4.39)

and

W (ρ, z) = e−2V (ρ,z) . (4.40)

4.2.5 Brill Initial Data

The first choice (4.39), known as Brill initial data, yields the conformal metric:

γ̃
(B)
ij (t = 0, ρ, z) ≡

eV (ρ,z) 0 0

0 eV (ρ,z) 0

0 0 ρ2

, (4.41)

for which the Hamiltonian constraint simplifies to:

0 = H =

(

∂2ρ + ∂2z +
1

ρ
∂ρ

)

ψ(ρ, z) +
1

8
ψ(ρ, z)

(

∂2ρ + ∂2z
)

V (ρ, z) . (4.42)

Here ψ = eφ is the conformal factor, V (ρ, z) will be chosen to a localized function,

with proper behaviour in the limit ρ→ 0.

4.2.6 Teukolsky-type Initial Data

The second option (4.40) creates a conformal 3-metric with the following form:

γ̃
(T)
ij (t = 0, ρ, z) ≡

eV (ρ,z) 0 0

0 eV (ρ,z) 0

0 0 ρ2e−2V (ρ,z)

, (4.43)

140

4.2. Equations of Motion for Strong Gravity Waves Dynamics

and the Hamiltonian constraint simplifies to:

0 = H =

(

∂2ρ + ∂2z +
1

ρ
∂ρ − ∂ρV ∂ρ − ∂zV ∂z

)

ψ(ρ, z)

− 1

8
ψ(ρ, z)

[(

∂2ρ + ∂2z +
4

ρ
∂ρ

)

V (ρ, z)− 2(∂ρV)2 − 2(∂zV)2
]

.(4.44)

We refer to this initialization as Teukolsky-type initial data as it somewhat mimics

the Teukolsky wave [96] in the weak field limit, V (ρ, z) ≪ 1. However, Teukolsky’s

solution is not time symmetric, while our choose (4.36) is time symmetric.

The main difference between the Brill initialization (4.41) and Teukolsky-type

data is the fact that the Teukolsky-type initial data has determinant equal to that of

the flat cylindrical metric, while that is not the case for Brill data. In the weak field

limit, V (ρ, z) << 1, this translates to a difference in the trace of the two linearized

metrics. The Teukolsky-type initial metric can be written as:

γ̃
(T)
ij ≈ γ̊ij + η

(T)
ij , (4.45)

in which γ̊ij is the flat cylindrical metric, and η
(T)
ij is the linearized deviation and is

traceless:

η
(T)
ij =

V (ρ, z) 0 0

0 V (ρ, z) 0

0 0 −2ρ2V (ρ, z)

⇒ Tr(η
(T)
ij) = γ̊ijη

(T)
ij = 0 , (4.46)

which parallels the traceless property of the linearized solution to the Einstein’s

equations in cylindrical coordinate. This solution, as will be seen, propagates simi-

larly to a wave packet. However, in a similar linearization of the Brill initial data,

141

4.2. Equations of Motion for Strong Gravity Waves Dynamics

the perturbation metric, η
(B)
ij , is not traceless:

η
(B)
ij =

V (ρ, z) 0 0

0 V (ρ, z) 0

0 0 0

⇒ Tr(η
(B)
ij) = γ̊ijη

(B)
ij = 2V (ρ, z) , (4.47)

and as we will show in Sec. 4.4, the Brill data does not propagate like a wave packet,

even in the weak field limit.

4.2.7 Computing the ADM Mass of the Gravitational Pulse

The ADM mass[15] is defined as:

MADM ≡
1

16π

∫

∂Σ∞

√
γγjnγim (∂jγmn − ∂mγjn) dSi , (4.48)

where ∂Σ∞ denotes the boundary surface at spatial infinity, dSi = Ni

√

γ|∂Σ∞dX
2,

is the surface element vector, dX2 = dX1dX2, where X1 and X2 are the coordinates

on the boundary surface, γ|∂Σ∞ is the determinant of the reduced metric on ∂Σ∞,

and finally, Ni is the unit normal vector to ∂Σ∞ (N iNi = 1). As described in

[28], for a metric that is asymptotically conformally flat, (4.48) can be written as a

volume integral:

MADM = − 1

2π

∫

Σ
dx3
√

γ̃D̃2ψ . (4.49)

Further, substituting D̃2ψ from the Hamiltonian constraint we have,

MADM =
1

16π

∫

Σ
dx3
√

γ̃

(

ψ−7ÃijÃ
ij − ψR̃− 2

3
ψ5K2

)

. (4.50)

Finally, since Ãij = K = 0 at the initial time the ADM mass simplifies to:

MADM = − 1

16π

∫

Σ
dx3
√

γ̃ψR̃ , (4.51)

142

4.3. Numerics

which is a convenient expression for computing the ADMmass using BSSN variables.

4.3 Numerics

In this section, we summarize the numerical techniques used to initialize and evolve

the G-BSSN system of equations. We also describe the diagnostic tools we imple-

mented to validate the results and test the correctness of the numerical solver as

well as the equations themselves.

4.3.1 Numerical Grid

Before discretizing the PDEs of the G-BSSN formulation, we first transform to non-

uniform spatial coordinates denoted by ρ̃ and z̃ (their definition will follow shortly).

This coordinate transformation has two purposes: 1) to compactify the coordinate

by mapping the domain of the cylindrical coordinate to a numerical domain that

contains spatial infinity:

D(ρ,z) = [0,+∞]× [−∞,+∞]→ [ρ̃min, ρ̃max]× [z̃min, z̃max] = D(ρ̃,z̃) , (4.52)

2) increasing resolution toward the origin, (ρ, z) = (0, 0). Choosing a non-linear

transformation, a uniform mesh in the compactified coordinate (ρ̃, z̃) is effectively a

non-uniform grid in the cylindrical coordinate. The mesh step sizes in each direction

of the coordinates are related by (approximately):

∆ρ =
∂ρ(ρ̃)

∂ρ̃
∆ρ̃ , (4.53)

∆z =
∂z(z̃)

∂z̃
∆z̃ , (4.54)

Therefore, by defining the functions ρ̃(ρ) and z̃(z) such that their derivatives de-

crease toward the origin we can achieve the desired non-uniform grid. Specifically,

143

4.3. Numerics

we choose the following two functions:

ρ = exp(ρ̃)− exp(δ) +
1

1− ρ̃/R∞
− 1

1− δ/R∞
, (4.55)

z =
1

2

(

exp(z̃ + δ)− exp(−z̃ + δ) +
1

1− (z̃ + δ)/R∞
− 1

1− (−z̃ + δ)/R∞

)

.

(4.56)

The reader may easily check that the cylindrical coordinate domain, [0,+∞]ρ ×
[−∞,+∞]z, is mapped to the numerical domain [δ,R∞]ρ̃× [−(R∞−δ),+(R∞−δ)]z̃ .
We also define the notations ∂Σ̃:

∂Σ̃ ≡ ∂Σ̃zρ=∞ ∪ ∂Σ̃z=−∞
ρ ∪ ∂Σ̃z=+∞

ρ (4.57)

in which:

∂Σ̃zρ=∞ ≡ [R∞]ρ̃ × [−(R∞ − δ),+(R∞ − δ)]z̃ (4.58)

∂Σ̃z=−∞
ρ ≡ [δ,R∞]ρ̃ × [−(R∞ − δ)]z̃ (4.59)

∂Σ̃z=+∞
ρ ≡ [δ,R∞]ρ̃ × [+(R∞ − δ)]z̃ (4.60)

to denote the outer numerical boundaries that correspond to asymptotically flat

spatial infinity. The inner boundary, which is the symmetric axis, is simply denoted

by (ρ = 0, z) and corresponds to (ρ̃ = −δ, z̃) on the numerical grid.

The parameters R∞ and δ can be adjusted to change the numerical location of

spatial infinity and the origin, therefore effectively changing the distribution of grid

points across the spatial domain. For the choice (4.55,4.56) a uniform grid on the

compactified coordinates creates an approximately uniform grid on a logarithmic

scale, ln(ρ) and ln(z), at the vicinity of the origin. Such behaviour is presented in

Fig. 4.1 in a rather coarse grid with 64 points (to better demonstrate the distribution

144

4.3. Numerics

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

ln(x)

x̃

x = z, x̃ = z̃ − δ
x = ρ, x̃ = ρ̃
x = ρ, x̃ = ρ̃l

Figure 4.1: Distribution of grid points on a non-uniform grid with 64 points for
the choice of (4.55,4.56) for ρ and z coordinates (green and blue curve respectively)
using the parameters: δ = −4 and R∞ = 4. Points are distributed uniformly across
the compactified coordinate (vertical axis, x̃). As it is clear from both curves, the
points are also approximately distributed uniformly in the logarithm of the spatial
coordinate (horizontal axis lnx) for a range that expands up to ln(x) ≈ −3. Note
that the blue curve that corresponds to the z coordinate is shifted by constant
δ to have the same range as ρ̃. For comparison, we also plotted a uniform grid
structure (the red curve), in which the 64 points are distributed uniformly in a linear
coordinate ρ = aρ̃l + b that maps (−4, 4) to the range ρ ∈ (0, 54) (to match the last
points of the other two graphs: ln(54) ≈ 4). As is clear, the choices (4.55,4.56)
provides much more resolution in the vicinity of the origin, x = 0, compared to the
red curve. Approximately half of the grid points are in the region ln(x) < 0 for our
logarithmic coordinate choice, while a uniform grid has only 1 grid point next to
the origin in that region, while the rest of the points are located in a region that is
not of interest when the gravitational wave is focused in the vicinity of the origin.

145

4.3. Numerics

of the points).

4.3.2 Initialization

We use three different types of profile to initialize the function V in (4.39,4.40) that

defines the conformal metric. The standard choice of a localized function is often a

Gaussian profile:

V (ρ, z) = Aρ2 exp

(

−(ρ− ρ0)2
∆2
ρ

− (z − z0)2
∆2
z

)

. (4.61)

We also use the following seed functions (choice of F is similar to [107]) to create

wave packets:

F (r) := Aκλ5
[

1−
(r

λ

)2
]6

, (4.62)

G(r) := Aκλ
(

1− (
r

λ
)2
)4

. (4.63)

These seed functions are used as following to initialize V :

V (ρ, z) =

(

F (4)(r − r0)
r

− 2
F (3)(r − r0)

r2

)

sin2 θ , (4.64)

V (ρ, z) =

(

G(1)(r − r0)
r

− 2
G(r − r0)

r2

)

sin2 θ . (4.65)

where F (n) denotes the n-th derivative of F . Specifically, we use a Gaussian profile

and G for Brill-type initial data, and F and G for a Teukolsky-type initial wave

packet. Here κ is a normalization factor (different for the two functions) chosen

such that when the amplitude A is set to a value of order 1—along with the typical

choices of λ in this study—the ADM mass of the gravity wave pulse is also of order

1. In particular we have chosen κ ≈ 3.7× 10−4 for F , and for G, κ is approximately

1. The parameter λ determines the typical length of the wave packet. r is the radial

146

4.3. Numerics

0 5 10 15 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ

γ̃
ρ
ρ
(t

=
0
,ρ
,z

=
0
)
=

eV
=

γ̃
z
z
(0
,ρ
,0

)

V = V (F), High

V = V (F), Low

V = V (G), High

V = V (G), Low

Figure 4.2: Initial profile of the conformal metric component γ̃zz or γ̃ρρ along the
radial direction (θ = π/2, or z = 0) in cylindrical coordinates for two choices of F
and G in (4.64,4.65). Here the solid lines are the strong initial data that collapses
and are associated with amplitudes A = 3.0 and A = 2.0 in Eq. (4.65) and Eq. (4.64)
respectively. The dashed lines are still in a non-linear regime but will disperse after
reflecting back from the center. They are associated with amplitudes A = 1.0 and
A = 0.6 in (4.65) and (4.64) respectively. For the seed function F the rest of the
parameters are set to: r0 = 15 and λ = 5.0. For G as a seed function, the parameters
are: r0 = 10 and λ = 3. As one can see, F creates a wave packet with 5 extrema
while G has a simpler form with 2 extrema.

147

4.3. Numerics

distance from the center:

r2 ≡ ρ2 + z2 , (4.66)

and sin(θ) is the polar angle defined as:

sin θ ≡ ρ

r
. (4.67)

The typical shapes of the initial conformal metric constructed from the seed func-

tions F and G are given in Fig. 4.2 for strong (black hole formation) and weak

(dispersal) initial data.

The lapse function is set to unity at the initial time:

α(t = 0, ρ, z) = 1 , (4.68)

and since we choose time symmetric initial data, we have:

βρ(t = 0, ρ, z) = βz(t = 0, ρ, z) = 0 , (4.69)

Ãij(t = 0, ρ, z) = K(t = 0, ρ, z) = 0 , (4.70)

at the initial time. The conformal connection function, Λ̃k, is initialized using its

definition and the given initial conformal metric:

Λ̃k(t = 0, ρ, z) = γ̃ij(t = 0, ρ, z)
(

Γ̃kij(t = 0, ρ, z) − Γ̊kij

)

. (4.71)

Finally, the G-BSSN variable φ is initialized from its relation to the conformal factor:

φ(t = 0, ρ, z) = ln(ψ(ρ, z))|H(ψ)=0 (4.72)

in which |H(ψ)=0 denotes that ψ solves the Hamiltonian constraint, (4.42) or (4.44)

148

4.3. Numerics

depending on the choice of Brill or Teukolsky-type initialization. In both case, ψ

satisfies the boundary conditions:

∂ρψ(ρ, z)|(ρ=0,z) = 0 (4.73)

ψ|∂Σ̃ = 1 (4.74)

where ∂Σ̃ is defined in (4.57), and denotes the 3 outer boundaries of the numerical

domain corresponding to spatial infinity.

We note that the multigrid solver that we use (PAMR’s default MG solver) is

sensitive to imposing inner boundary conditions such as (4.73). Therefore we use

a regularized version of the Hamiltonian constraint equations (4.42,4.44) where we

use L’Hospital’s rule to replace the irregular term on the axis by:

1

ρ
∂ρψ|ρ→0 =

∂2ψ

∂ρ2
(4.75)

In addition, to evaluate the finite difference equivalent of the term ∂2ρψ on the

axis, we use the fact that ψ is an even function in ρ due to the symmetry. The

detailed description of dealing with such boundaries and the ghost-cell-equivalent

implementation of boundary conditions in our finite differencing toolkit (FD) is

described in the Appendix.

4.3.3 Boundary Conditions

Axial symmetry demands that the diagonal metric components be even functions

in ρ while the off-diagonal term is an odd function:

∂ργ̃ρρ(t, ρ, z)|(ρ=0,z) = ∂ργ̃zz(t, ρ, z)|(ρ=0,z) = ∂ργ̃ϕϕ(t, ρ, z)|(ρ=0,z) = 0 , (4.76)

149

4.3. Numerics

γ̃ρz(t, ρ = 0, z) = 0 . (4.77)

The trace-free extrinsic curvature obeys analogous conditions to the conformal 3-

metric:

∂ρÃρρ(t, ρ, z)|(ρ=0,z) = ∂ρÃzz(t, ρ, z)|(ρ=0,z) = ∂ρÃϕϕ(t, ρ, z)|(ρ=0,z) = 0 , (4.78)

Ãρz(t, ρ = 0, z) = 0 . (4.79)

The extrinsic curvature and φ are scalars, and are therefore even functions in ρ

(invariant under ρ→ −ρ symmetry):

∂ρK(t, ρ, z)|(ρ=0,z) = ∂ρφ(t, ρ, z)|(ρ=0,z) = 0 . (4.80)

The reflection of the ρ components of the conformal connection vector, Λ̃ρ, and the

shift vector, βρ, under ρ→ −ρ symmetry result in a negative sign. Therefore they

are odd functions in ρ:

Λ̃ρ(t, ρ = 0, z) = βρ(t, ρ = 0, z) = 0 . (4.81)

Their z components, on the other hand, remain unchanged under ρ→ −ρ symmetry,

therefore they are even functions:

∂ρΛ̃
z(t, ρ, z)|(ρ=0,z) = ∂ρβ

z(t, ρ, z)|(ρ=0,z) = 0 . (4.82)

Forward (one-sided stencil) finite difference approximations of these boundary con-

ditions are used to update the value of the functions on the axis.

Note that for the odd functions described above, beside the value of the function,

150

4.3. Numerics

the second derivative along ρ also vanishes on the axis:

∂2ρΛ̃
ρ(t, ρ, z)|(ρ=0,z) = ∂2ρβ

ρ(t, ρ, z)|(ρ=0,z) = 0 . (4.83)

∂2ρ γ̃ρz(t, ρ, z)|(ρ=0,z) = ∂2ρÃρz(t, ρ, z)|(ρ=0,z) = 0 . (4.84)

We impose a forward (one-sided) finite difference equivalent of these conditions

to update values at the point next to the axis to improve the smoothness of the

functions.

At infinity, the boundary conditions are rather simple, since we are working in

a compactified coordinate, and are given by the asymptotically flat values:

γ̃ij(t, ρ, z) =

1 0 0

0 1 0

0 0 1

at : (ρ, z) ∈ ∂Σ̃ , (4.85)

Ãij = K = φ = βi = Λ̃i = 0 at : (ρ, z) ∈ ∂Σ̃ , (4.86)

α = 1 at : (ρ, z) ∈ ∂Σ̃ . (4.87)

4.3.4 Evolution Scheme

To evolve the G-BSSN system we implemented a Crank-Nicholson implicit scheme.

As discussed in the previous chapter, this implicit scheme appears to be essential to

deal with the coordinate singularity ρ = 0. There is an extra boundary condition

that is implicit in the system (due to the symmetry)—the ρ→ 0 limiting behavior

of the two components:

γ̃ρρ = C +O(ρ2) , (4.88)

151

4.3. Numerics

γ̃ϕϕ = C +O(ρ2) , (4.89)

where the constant C is the same for both. Equivalently, their difference should

behave as:

γ̃ρρ − γ̃ϕϕ = O(ρ2) , (4.90)

and a violation of this condition will manifest itself, for example, in a diverging term

in the Ricci component previously shown in (4.35):

Rρρ =
1

γ̃ϕϕ

(

γ̃ρρ − γ̃ϕϕ
ρ2

)

+ · · · (4.91)

Our implementation of a implicit scheme appears to be sufficient to keep the system

of equations regular on the axis with no need to explicitly regularize the equations

at the analytic level. However, similar to the spherical case of the previous chapter,

Kreiss-Oliger dissipation is crucial to suppress numerical noise which can particularly

affect the near-origin evolution.

4.3.5 Note on G-BSSN’s Additional Constraints

We emphasize that we were only able to achieve stable evolution using the so called

Lagrangian choice (4.10) for the evolution of the determinant of the conformal met-

ric. In this choice, the determinant of the conformal metric is given by:

γ̃ = ρ2(γ̃ρργ̃zz − γ̃2ρz)γ̃ϕϕ =

ρ2 for Teukolsky-type

ρ2e2V (ρ,z) for Brill data

(4.92)

and is equal to its initial time value as given above for both the Teukolsky-type and

Brill data. This constraint can be monitored or can be imposed to fix one of the

components of the γ̃ij metric. Our numerical experiments suggest that imposing

this equation improves the performance of the code. In particular, we have applied

152

4.3. Numerics

this constraint to compute the γ̃zz component of the 3-conformal-metric. Similarly,

the tensor Ãij is expected to remain traceless during the evolution—which we have

monitored as an accuracy gauge. However, this equation can also be imposed to

improve the accuracy, and we use it to fix the same component as the component

fixed in 3-conformal metric, i.e. Ãzz.

4.3.6 Tests: Convergence of Primary Variables

As discussed in previous chapters, the first diagnostic test is to perform a conver-

gence test. This test validates the consistency of the finite difference approximation

and determines whether the finite difference numerical solution is converging to an

underlying continuum function well-resolved in the discretized mesh. The conver-

gence factor,

Q(t; q) =
||qh(t,X) − qh/2(t,X)||2
||qh/2(t,X)− qh/4(t,X)||2

, (4.93)

has been plotted for three of the primary variables of the G-BSSN equations,

g̃rr,K, Λ̃
z and the RHS of the evolution equation for Ãρz for a strongly gravitating

evolution in Fig. 4.3. As can be seen from this plot, all variables exhibit at least

first order convergence and some second order convergence—values of log2(Q) be-

tween 2 and 1. We particularly chose to measure the convergence factor for the

RHS of ∂tÃρz, since it is one of the computationally most complex expressions to

discretize and evaluate, and contains several “irregular”, 1/ρ and 1/ρ2 terms, which

can potentially be sources of further numerical error. This function appears to have

the smallest convergence factor, yet it is at least first order convergent and at best

second order convergent as demonstrated in the figure. Note that the convergence

curves are plotted for three resolutions: 128× 256, 256× 512 and 512× 1024 which

are not particularly high resolutions and one might expect to observe better conver-

gence at higher resolutions. We note that we performed a similar test for all of the

other primary G-BSSN variables, and they are all about second order convergent.

153

4.3. Numerics

Figure 4.3: Convergence factor for the G-BSSN variables: g̃rr,K and Λ̃z. The con-
vergence factor (4.93) for these functions is plotted during the evolution of a strong
pure gravity wave. As presented in the plot, they all converge in a second order
to first order fashion corresponding to the values 2 and 1 in log2(Q) respectively.
The last curve is the convergence factor for the RHS of the evolution equation for
Ãρz which is a rather complicated function of 3-metric and the rest of the G-BSSN
variables and contains several “irregular” terms (containing 1/ρ and 1/ρ2). Again,
we observe at least first order convergence for this function.

154

4.3. Numerics

4.3.7 Tests: Conservation of Constraints During Evolution

We also monitor the momentum constraint (4.18), which has only ρ and z compo-

nents, and the Hamiltonian constraint (4.17). Since the G-BSSN formulation is a

free evolution system, these constraints are not imposed during the evolution of the

geometry and can be used as an effective diagnostic tool to gauge the accuracy of

the numerical time integration of the equations.

Fig 4.4(a) and Fig 4.4(b) demonstrate the second order convergence to zero of the

two components of the momentum constraint as the resolution improves. Results for

the Hamiltonian constraint are presented in Fig 4.4(c) for 4 consecutively decreasing

resolutions and similarly show second order convergence to zero. Furthermore, since

the evaluator of the Hamiltonian constraint in this plot uses a different form of the

equation and a different finite differencing scheme, the convergence of the its value

at t = 0 is also an independent test for the multi-grid initial value solver that we

have used to solve the Hamiltonian constraint at the initial time.

Beside the Hamiltonian and momentum constraints, here we also present another

constraint that naturally arises from the definition of the conformal connection Λ̃i

(4.13). Since Λ̃i is evolved via a time dependent equation (4.8), the difference

between its evolved value and its computed value, Λ̃kc from the conformal metric,

Λ̃kc = γ̃ij
(

Γ̃kij − Γ̊kij

)

, (4.94)

forms a residual: Λ̃i− Λ̃ic, that should converge to zero as h→ 0. Fig 4.4(d) presents

the value of the ρ component of this residual, ||Λ̃ρ − Λ̃ρc ||l2, in a log2 scale, where

a factor of 2 decrease for the resolution refinement h → h/2 signals a second order

convergence to zero. Such behaviour is clearly present in the plot.

Note that we also monitored all of the other constraints that occur in the G-

BSSN formulation, including: the trace of Ãij , which by definition should remain

zero and the determinant of the conformal 3-metric, γ̃, which should stay equal to

155

4.3. Numerics

Figure 4.4: Evolution of the conserved variables: (a): The time evolution of the
norm of the ρ component of the momentum constraint (4.18), Mρ, for 4 different
resolutions h, h/2, h/4, h/8, plotted in a log2 scale. Each step of resolution improve-
ment by a factor of 2 results in the decrease of the value of the function by a factor
of about 4, (2 in the scale of the plot) which demonstrates second order convergence
to zero. (b): Similar to (a) for the z component of the momentum constraint. (c):
The norm of the Hamiltonian constraint (4.17) at 4 different resolutions similar to
(a). Again, we observe second order convergence to zero. The convergence of the
value of the curve at t = 0 is an independent test for the validity of the initial value
solver implemented to solve the Hamiltonian constraint. (d): The norm of the ρ
component of the residual, Λ̃i− Λ̃ic which exhibits second order convergence to zero
as the resolution improves. This suggests that the free evolution of the conformal
connection, Λ̃i via (4.8) in G-BSSN formulation is consistent with its definition in
(4.13).

156

4.3. Numerics

its value at initial time for the Lagrangian choice (4.10). Of course, these tests are

only meaningful if we do not enforce these constraints during the test runs. As

mentioned before, after the test runs, we do impose these constraints during the

evolution of the results presented below.

4.3.8 Tests: Direct Validation via Einstein’s Equations

Finally, the most robust test we developed involves a direct evaluation of the com-

ponents of the Einstein’s equations for a given 4-metric, gµν , reconstructed from the

3-metric, γij , and the coordinate variables:

gµν =

−α2 + βlβ
l βi

βj γij

 (4.95)

where the 3-metric and coordinate functions are given by the solutions the G-BSSN

solver produces. We define the residual for the Einstein’s equation:

Eµν ≡ Gµν − 8πT µν . (4.96)

For the case of pure gravity waves, since the energy-momentum and the Ricci scalar

are zero37, the residual can be defined equal to the Ricci tensor:

Eµν ≡ Rµν , (4.97)

and is zero if and only if the Einstein’s equation is solved correctly in vacuum.

The norm of various components of the residual (4.97) are plotted in Fig. 4.5,

and the plots suggest that the residual converges to zero in a second order fashion,

providing strong evidence that the computed metric does indeed satisfy the Ein-

stein’s equations. We also note that this is not only a validation of the correctness

37Taking the trace of the Einstein’s equation: Rµν − 1

2
Rgµν = 8πTµν we get: −R = 8πT where

T is the trace of the energy-momentum tensor. Therefore, in vacuum, Tµν = 0, the Ricci scalar is
zero.

157

4.3. Numerics

Figure 4.5: Convergence of the Einstein equations residuals defined in (4.97) for
a strong gravity evolution. The curves present 4 different consecutively improving
(by factor of 2) mesh sizes, and various components of the residual are plotted here.
As it is clear on the log2 scale of the graph, the value of the residual decreases
by a factor of about 4 at each step of resolution refinement. This convergence to
zero in second order fashion suggests that the numerical solver that provides the
4-metric to the independent residual evaluator code is indeed computing a metric
that satisfies the Einstein’s equation. This direct validation further suggests that
the set of equations (G-BSSN) used in the numerical solver are equivalent to the
Einstein’s equations.

158

4.4. Results

of our numerical solver, but also proves that the derivation of G-BSSN equations was

done correctly, and that the equations are equivalent to Einstein’s equations. We

note that we developed the testing facilities independently of the numerical solver.

In particular, we derived the residual (4.97) using a different tensor manipulation

package than the one used to derive the G-BSSN equations. We also used a different

finite difference scheme than the one adopted to discretize the G-BSSN evolution

equations.

4.4 Results

In this section we provide examples of the performance of the code for evolving

pure gravity initial data that is set to be in the non-linear regime, slightly above or

below the threshold of black hole formation. We note that the code is developed

for a generic axisymmetric system with matter content and can be used with other

numerical solvers to evolve the coupled matter-gravity systems.

4.4.1 Evolution of Teukolsky-type Initial Data

First we present a typical evolution of the Teukolsky-type initial data using the seed

function F (4.62,4.64) that creates the initial wave packet plotted in Fig. 4.2. The

zz component of the conformal metric γ̃ij is plotted in Fig. 4.6. The amplitude is

set to about 10% less than the critical value. Even though the waves eventually

completely disperse, this is still a strong field evolution. As can be seen from the

plots, the system exhibits an intermediate confined state where the gravitational

wave packet is held together by its own gravity. The system at the initial time is

only slightly away from the linear regime—the amplitude of the conformal metric

differs from 1 by only ≈ 0.05—however as the wave focuses toward the origin, the

self-gravitation amplifies and the system exhibits non-linear dynamics.

An evolution of a similar configuration but where the amplitude is now about

10% higher than the critical value is presented in Fig. 4.7. Here, the wave packet

159

4.4. Results

gets trapped by its own self gravitation and collapses to form a black hole. As

demonstrated in the last snapshots of the evolution in Fig. 4.7 the conformal metric

shows large deviations from the flat metric. The wave packet is confined in the

vicinity of the origin where the lapse function starts to collapse as a black hole

forms. Comparing Fig. 4.7 and Fig. 4.6 one can observe the two distinct end states

of the evolution of the system: black hole and dispersal.

Another initialization that we implemented uses the seed function G, which

creates a wave packet with 2 extrema and a simpler overall structure. Fig. 4.8 and

4.9 demonstrate the two distinct end state of the evolution, dispersal and black hole

formation. Again, the dispersal data is set to a non-linear regime and is close to the

critical value, therefore as the wave packet experiences a non-linear evolution near

the origin, the reflected wave develops a different wave front structure as shown in

the last snapshot in Fig. 4.8.

Finally, in Fig. 4.10 we plot the central value of the lapse function for the collaps-

ing and dispersing Teukolsky-type wave shown in Fig. 4.8 and 4.9. The two distinct

end states are apparent from the fact that the dispersal data has an intermediate

time where the lapse function decreases to small value, while for the large initial

amplitude, the lapse collapses and a black hole forms.

4.4.2 Evolution of Brill Initial Data

In this section, we demonstrate some of the simulations that we performed using

Brill initial data. As discussed, one important difference between Teukolsky-type

and Brill initial data is in the trace of the conformal metric in the linearized regime

where a Teukolsky-type wave packet satisfies the traceless condition, while the Brill

data does not. We have experimented with the Gaussian initialization (4.61), that

is commonly used for Brill initial data in the literature, but for comparison here

we demonstrate the simulations of Brill initial data that are initialized using a seed

function G similar to Fig. 4.8-4.9.

160

4.4. Results

Figure 4.6: Evolution of a non-linear Teukolsky-type wave packet: Here the grav-
itational wave is initialized by the seed function F , and as can be seen from the
snapshot t = 0, has 5 extrema. All of the snapshots plot the γ̃zz component of the
conformal metric. The initial data is time symmetric, therefore part of the wave
packet moves inward while the other part disperses toward infinity as seen in th
thee t = 9.72 snapshot. During the intermediate time, 12.96 < t < 21.60, the wave
packet forms a gravitational geon confined to the vicinity of the origin. Eventually,
the wave starts to disperse to infinity at t > 23.76. The system is in a strong gravity
regime and as can be seen from the last snapshot at t = 32.40 the non-linear effects
changes the outgoing shape of the wave packet relative to t = 0. This calculation,
as well as the other simulations presented in this chapter, are performed on a non-
uniform grid with resolution 512 × 1024. Here, we have transformed the functions
back to the spatial (ρ, z) coordinates for demonstration purposes.

161

4.4. Results

Figure 4.7: Collapse of Teukolsky-type wave initial data: Here the amplitude of
the initial pulse is large enough to cause the system to collapse. The wave packet is
initialized using the seed function F and similar to Fig. 4.6 we are plotting the γ̃zz
component of the conformal metric. As one can observe, in the later snapshots, the
pulses accumulate and become confined within a very small region close to the origin
and eventually system collapses to a black hole. The simulations take about 100
hours using 32 CPUs. The non-uniform structure of the numerical grid is observable
in the first snapshot.

162

4.4. Results

Figure 4.8: Non-linear evolution of a Teukolsky-type wave packet: Various snap-
shots of the zz component of the conformal metric for a Teukolsky-type data ini-
tialized using the seed function G (4.63) are shown. Compared to Fig. 4.6, the wave
packet has a simpler structure. Again, the time symmetric initial data has both an
ingoing and an outgoing part (seen at t = 4.80 snapshot). After an intermediate
non-linear phase where the metric components deviate strongly from 1, the wave
packet disperses as seen in t = 27.60, where the outgoing form of the wave is some-
what different than the initial time. The central value of the lapse function for this
evolution is shown in Fig. 4.10.

163

4.4. Results

Figure 4.9: Typical evolution of collapsing Teukolsky-type data using the seed
function G. Here, similar to Fig. 4.7, we the γ̃zz component of the conformal metric.
The wave packet focuses toward the origin and eventually the system collapses to
a black hole. The collapse of the lapse function (singularity avoidance property) at
the vicinity of the origin slows down the evolution. The central value of the lapse
function for this evolution is plotted in Fig. 4.10.

164

4.4. Results

Figure 4.10: Time evolution of central lapse: The logarithm of the lapse function
at the origin α(t, ρ = 0, z = 0) is plotted versus the time coordinate. Here “high”
denotes the collapse scenario and “low” is the dispersal case that are illustrated
in Fig. 4.9 and 4.8 respectively. As one can see, the central value of the lapse for
dispersal data exhibits an intermediate time with significantly large central red-shift,
but eventually rises back to 1 as the wave packet leaves the origin. However, in a
collapse scenario, the central lapse collapses, as shown by the solid curve.

165

4.4. Results

Figure 4.11: Dispersal evolution of Brill initial data: Plotted is the γ̃zz component
of the conformal metric at different times during a dispersal Brill data initialized
using the seed function G, (4.63,4.65). Note the large difference between the inital
amplitude here and the initial amplitude of Teukolsky data in Fig. 4.8. As is appar-
ent in the second snapshot (t = 6.93) the Brill “wave” has pure gauge content, that
does not propagate. The ingoing part of the wave in the second snapshot (t = 6.93)
is located at ρ ≈ 2.5 while the outgoing part is at ρ = 13, however in between there
is a third pulse at ρ = 8 (same radius as the initial data) that does not propagate.
The ingoing wave eventually reflects back from the center and in snapshots t = 20.79
and t = 23.73 starts to move outward. Note that in most of the diagrams the gauge
content is clearly observable and is located at about ρ ≈ 8 without moving. In fact,
in the last snapshot the reflected wave has passed through the gauge pulse and is
located at ρ ≈ 15.

166

4.4. Results

Figure 4.12: Collapse of Brill data: Evolution of strong initial data that eventually
collapse to a black hole. Again, similar to Fig. 4.11, the wave packet contains a pure
gauge component, which does not propagate. The ingoing pulse eventually focuses
to a very small region and collapses to a black hole. The central value of the lapse
for this evolution is given in Fig. 4.13.

167

4.4. Results

Figure 4.13: Central lapse for the Brill data evolution: α(t, ρ = 0, z = 0) as a
function of time in a logarithmic scale. Similar to the Teukolsky-type data (Fig. 4.10)
the dispersal case exhibits an intermediate high red-shift while eventually rising back
to the unity, while during a collapse process the lapse function at the center collapses
and slows down the evolution which is expected from the singularity avoidance
property of the 1+log slicing.

168

4.5. Further Remarks and Conclusion

The dispersal scenario is shown in Fig. 4.11 where the initial wave packet has a

simpler shape to Teukolsky-type evolution shown in Fig. 4.8. However, first note the

large difference in the amplitude in the first snapshots of the two figures. Secondly,

as described in the caption of Fig. 4.11 the wave packet has a pure gauge content

that simply remains at a fixed point as the radiative part of the wave moves inward

and outward. This evolution eventually disperses and the gravitational radiation

propagates toward infinity. However, the pure gauge content remains in the nu-

merical domain and the final state of the conformal metric is not unity. A collapse

scenario is plotted in Fig. 4.12. As one can see, similar to the dispersal case, the

wave packet contains a pure gauge component that remains at a fixed radius. The

in-going part of the time symmetric data eventually collapses and a black hole forms.

For both dispersal and collapse cases, the central value of the lapse is plotted

in Fig. 4.13. As seen from the dashed curve, the dispersal data experiences a large

central red-shift while eventually the wave packet disperses. However, the collapse is

distinct and the lapse function collapses as the black hole forms. One can compare

this to Fig. 4.10.

4.5 Further Remarks and Conclusion

In this chapter, we described a new G-BSSN axisymmetric code. The code is im-

plemented such that it can be coupled to arbitrary matter content. However, we

measured the performance of the code in the most challenging scenario: pure non-

linear gravity waves evolution. We demonstrated both Teukolsky-type and Brill

initial data evolution and discussed their difference. In particular, the Teukolsky-

type wave packet appears to be a better choice since it mimics the linearized regime

wave-type propagation better than Brill initial data. Our results suggest that G-

BSSN is a promising formulation to evolve pure gravity waves and further extension

of this work can shed more insight into the expected type II critical solution in pure

gravity waves.

169

4.5. Further Remarks and Conclusion

However, there are several other steps required to bring the code to production.

Specifically, resolution higher than 512 × 1024 is needed to capture discrete self

similarity. This can be achieved by further optimizing the code, as well as by using

larger number of CPUs. At the moment, our numerical Hamiltonian constraint

solver for the initialization is rather slow and has limited our work to this resolution.

In addition, the number of grid functions can be decreased by carefully examining

the dependencies of fields which in turn will reduce the CPU communication time

and improve the scaling of the code to higher number of CPUs and higher resolution.

170

Chapter 5

Conclusion

In this thesis we presented three projects in critical phenomena studies in gravi-

tational collapse. Chapter 2 focused on the Einstein-Vlasov system and the ob-

servation of type I behaviour and weak universality in the system. Chapter 3

demonstrated a possibility for using G-BSSN formulation in type II critical phe-

nomena studies where, for the first time, we presented an implementation of a fully

evolutionary system that can successfully derive the spacetime evolution close to

the critical regime and find a type II threshold solution. Chapter 4 described the

G-BSSN formulation in axial symmetry and outlined the new numerical code we

developed and used to evolve pure gravity wave content. The primary results seem

very promising to be extended to find the expected, but as yet unresolved, type II

critical behaviour in pure gravity wave collapse.

171

Bibliography

[1] Arman Akbarian and Matthew W. Choptuik. Critical collapse in the

spherically-symmetric Einstein-Vlasov model. Phys. Rev., D90(10):104023,

2014.

[2] Arman Akbarian and Matthew W. Choptuik. Black hole critical behavior with

the generalized bssn formulation. Phys. Rev. D, 92:084037, Oct 2015.

[3] M.W. Choptuik, L. Lehner, and F. Pretorius. Probing strong-field gravity

through numerical simulations. In A. Ashtekar, B.K. Berger, J. Isenberg, and

M. MacCallum, editors, General Relativity and Gravitation: A Centennial

Perspective. Cambridge, Cambridge University Press, (2015).

[4] Matthew W. Choptuik. Universality and scaling in gravitational collapse of a

massless scalar field. Phys. Rev. Lett., 70:9–12, 1993.

[5] Carsten Gundlach and Jose M. Martin-Garcia. Critical phenomena in gravi-

tational collapse. Living Rev. Relativ., 10(5), 2007.

[6] Carsten Gundlach. Critical phenomena in gravitational collapse. Phys. Rept.,

376:339–405, 2003.

[7] Emanuele Berti, Vitor Cardoso, and Clifford M. Will. On gravitational-wave

spectroscopy of massive black holes with the space interferometer LISA. Phys.

Rev., D73:064030, 2006.

[8] A. Giazotto. The Virgo Project: A Wide Band Antenna for Gravitational

Wave Detection. Nucl. Instrum. Meth., A289:518–525, 1990.

172

Bibliography

[9] B. P. Abbott et al. LIGO: The Laser interferometer gravitational-wave obser-

vatory. Rept. Prog. Phys., 72:076901, 2009.

[10] Gregory M. Harry. Advanced LIGO: The next generation of gravitational

wave detectors. Class. Quant. Grav., 27:084006, 2010.

[11] B. Willke et al. The GEO 600 gravitational wave detector. Class. Quant.

Grav., 19:1377–1387, 2002.

[12] Frans Pretorius. Evolution of binary black hole spacetimes. Phys.Rev.Lett.,

95:121101, 2005.

[13] Manuela Campanelli, C.O. Lousto, P. Marronetti, and Y. Zlochower. Accurate

evolutions of orbiting black-hole binaries without excision. Phys.Rev.Lett.,

96:111101, 2006.

[14] John G. Baker, Joan Centrella, Dae-Il Choi, Michael Koppitz, and James

van Meter. Gravitational wave extraction from an inspiraling configuration of

merging black holes. Phys. Rev. Lett., 96:111102, 2006.

[15] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W.H. Freeman

and Company, New York, (1973).

[16] R. M. Wald. General Relativity. University of Chicago Press, Chicago IL,

(1984).

[17] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of

the General Theory of Relativity. New York,Wiley, 1972.

[18] Sean M. Carroll. Lecture notes on general relativity. 1997.

[19] John Kormendy and Douglas Richstone. Inward bound: The Search for super-

massive black holes in galactic nuclei. Ann. Rev. Astron. Astrophys., 33:581,

1995.

173

Bibliography

[20] John Kormendy and Karl Gebhardt. Supermassive black holes in nuclei of

galaxies. AIP Conf. Proc., 586:363–381, 2001.

[21] D. Arnett. Supernovae and nucleosynthesis: An investigation of the history of

matter, from the big bang to the present. 1996.

[22] R. Penrose. Gravitational collapse: The role of general relativity. Riv. Nuovo

Cim., 1:252–276, 1969. [Gen. Rel. Grav.34,1141(2002)].

[23] Carsten Gundlach. Critical phenomena in gravitational collapse. Adv. Theor.

Math. Phys, 2:1–49, 1998.

[24] Charles R. Evans and Jason S. Coleman. Observation of critical phenomena

and selfsimilarity in the gravitational collapse of radiation fluid. Phys. Rev.

Lett., 72:1782–1785, 1994.

[25] Tatsuhiko Koike, Takashi Hara, and Satoshi Adachi. Critical behavior in

gravitational collapse of radiation fluid: A Renormalization group (linear per-

turbation) analysis. Phys. Rev. Lett., 74:5170–5173, 1995.

[26] Dieter Maison. Nonuniversality of critical behavior in spherically symmetric

gravitational collapse. Phys. Lett., B366:82–84, 1996.

[27] R. Arnowitt, S. Deser, and C. W. Misner. The dynamics of general relativity.

In L. Witten, editor, Gravitation: An Introduction to Current Research. New

York, Wiley, (1962).

[28] T. Baumgarte and S. Shapiro. Numerical Relativity: Solving Einstein’s Equa-

tions on the Computer. Cambridge University Press,, Cambridge, (2010).

[29] Eric Gourgoulhon. 3+1 formalism and bases of numerical relativity. 2007.

[30] Miguel Alcubierre. Introduction to 3+1 Numerical Relativity. Usa, Oxfort

University Press, 2012.

174

Bibliography

[31] Masaru Shibata and Takashi Nakamura. Evolution of three-dimensional grav-

itational waves: Harmonic slicing case. Phys.Rev., D52:5428–5444, 1995.

[32] Thomas W. Baumgarte and Stuart L. Shapiro. On the numerical integration

of Einstein’s field equations. Phys.Rev., D59:024007, 1999.

[33] Frans Pretorius. PAMR Reference Manual,

http://bh0.phas.ubc.ca/Doc/PAMR ref.pdf, 2002.

[34] Gerhard Rein, Alan D. Rendall, and Jack Schaeffer. Critical collapse of col-

lisionless matter: A numerical investigation. Phys. Rev. D, 58:044007, Jul

1998.

[35] Ignacio Olabarrieta and Matthew W. Choptuik. Critical phenomena at the

threshold of black hole formation for collisionless matter in spherical symme-

try. Phys. Rev. D, 65:024007, 2001.

[36] Roland Stevenson. The spherically symmetric collapse of collisionless matter.

M. Sc. thesis, University of British Columbia,

http://bh0.phas.ubc.ca/Theses/stevenson.pdf, 2005.

[37] Hakan Andréasson and Gerhard Rein. A numerical investigation of the sta-

bility of steady states and critical phenomena for the spherically symmetric

einstein-vlasov system. Class. Quant. Grav., 23(11):3659, 2006.

[38] S. L. Shapiro and S. A. Teukolsky. Relativistic stellar dynamics on the com-

puter. I - Motivation and numerical method. Astrophys. J., 298:34–79, Novem-

ber 1985.

[39] S. L. Shapiro and S. A. Teukolsky. Relativistic Stellar Dynamics on the Com-

puter - Part Two - Physical Applications. Astrophys. J., 298:58, November

1985.

175

Bibliography

[40] S. L. Shapiro and S. A. Teukolsky. Relativistic stellar dynamics on the com-

puter. IV - Collapse of a star cluster to a black hole. Astrophys. J., 307:575–

592, August 1986.

[41] Stuart L. Shapiro and Saul A. Teukolsky. Formation of naked singularities:

The violation of cosmic censorship. 66:994–997, 1991.

[42] Stuart L. Shapiro and Saul A. Teukolsky. Collision of relativistic clusters and

the formation of black holes. 45:2739–2750, 1992.

[43] Hakan Andréasson and Gerhard Rein. On the steady states of the spherically

symmetric einstein-vlasov system. Class. Quant. Grav., 24(7):1809, 2007.

[44] Patrick R. Brady, Chris M. Chambers, and Sergio M.C.V. Goncalves. Phases

of massive scalar field collapse. Phys. Rev., D 56:6057–6061, 1997.

[45] Scott H. Hawley and Matthew W. Choptuik. Boson stars driven to the brink

of black hole formation. 62:104024, 2000.

[46] Scott Charles Noble. Ph. D. thesis, University of Texas at Austin,

http://bh0.phas.ubc.ca/Theses/noble.pdf, 2003.

[47] Ke-Jian Jin and Wai-Mo Suen. Critical phenomena in head-on collisions of

neutron stars. Phys. Rev. Lett., 98:131101, 2007.

[48] Thorsten Kellermann, Luciano Rezzolla, and David Radice. Critical Phenom-

ena in Neutron Stars II: Head-on Collisions. Class. Quant. Grav., 27:235016,

2010.

[49] David Radice, Luciano Rezzolla, and Thorsten Kellermann. Critical Phenom-

ena in Neutron Stars I: Linearly Unstable Nonrotating Models. Class. Quant.

Grav., 27:235015, 2010.

[50] Mew-Bing Wan. Universality and properties of neutron star type I critical

collapses. Class. Quant. Grav., 28:155002, 2011.

176

Bibliography

[51] Steven L. Liebling et al. Evolutions of magnetized and rotating neutron stars.

81:124023, 2010.

[52] Jose M. Martin-Garcia and Carsten Gundlach. Self-similar spherically sym-

metric solutions of the massless einstein-vlasov system. Phys. Rev. D,

65:084026, 2002.

[53] Alan Rendall. An introduction to the einstein-vlasov system. Banach Center

Publications, 41(1):35–68, 1997.

[54] C. Cercignani and G.M. Kremer. The Relativistic Boltzmann Equation: The-

ory and Applications. Progress in Mathematical Physics. Birkhäuser Basel,

2002.

[55] Gerhard Rein. Static solutions of the spherically symmetric vlasov-einstein

system. Math. Proc. Cambridge, 115:559–570, 5 1994.

[56] G. Rein and A.D. Rendall. Global existence of solutions of the spherically

symmetric vlasov-einstein system with small initial data. Commun. Math.

Phys., 150(3):561–583, 1992.

[57] R. J. Leveque. Finite volume methods for hyperbolic problems. Cambridge

University Press, 2002.

[58] Hakan Andréasson. An investigation of the buchdahl inequality for spherically

symmetric static shells. J. Phys. Conf. Ser., 66(1):012008, 2007.

[59] H. A. Buchdahl. General relativistic fluid spheres. Phys. Rev., 116:1027–1034,

Nov 1959.

[60] Olivier Sarbach, Gioel Calabrese, Jorge Pullin, and Manuel Tiglio. Hyper-

bolicity of the BSSN system of Einstein evolution equations. Phys.Rev.,

D66:064002, 2002.

177

Bibliography

[61] Gen Yoneda and Hisaaki Shinkai. Advantages of modified ADM formulation:

Constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura

system. Phys.Rev., D66:124003, 2002.

[62] C. Bona, J. Massó, E. Seidel, and J. Stela. First order hyperbolic formalism

for numerical relativity. Phys.Rev., D56:3405–3415, 1997.

[63] Miguel Alcubierre, Bernd Brügmann, Peter Diener, Michael Koppitz, Denis

Pollney, et al. Gauge conditions for long term numerical black hole evolutions

without excision. Phys.Rev., D67:084023, 2003.

[64] Frans Pretorius. Numerical relativity using a generalized harmonic decompo-

sition. Class.Quant.Grav., 22:425–452, 2005.

[65] Evgeny Sorkin and Matthew W. Choptuik. Generalized harmonic formulation

in spherical symmetry. Gen.Rel.Grav., 42:1239–1286, 2010.

[66] J. David Brown. Covariant formulations of BSSN and the standard gauge.

Phys.Rev., D79:104029, 2009.

[67] Carsten Gundlach. The Choptuik space-time as an eigenvalue problem.

Phys.Rev.Lett., 75:3214–3217, 1995.

[68] Carsten Gundlach. Understanding critical collapse of a scalar field. Phys. Rev.

D, 55:695–713, Jan 1997.

[69] Shahar Hod and Tsvi Piran. Fine structure of choptuik’s mass-scaling relation.

Phys. Rev. D, 55:R440–R442, Jan 1997.

[70] David Garfinkle and G. Comer Duncan. Scaling of curvature in subcritical

gravitational collapse. Phys.Rev., D58:064024, 1998.

[71] José M. Mart́ın-Garćıa and Carsten Gundlach. All nonspherical perturbations

of the choptuik spacetime decay. Phys. Rev. D, 59:064031, Feb 1999.

178

Bibliography

[72] José M. Mart́ın-Garćıa and Carsten Gundlach. Global structure of Choptuik’s

critical solution in scalar field collapse. Phys. Rev. D, 68:024011, 2003.

[73] Frans Pretorius and Matthew W. Choptuik. Gravitational collapse in (2+1)-

dimensional AdS space-time. Phys. Rev., D62:124012, 2000.

[74] Matthew W. Choptuik, Eric W. Hirschmann, Steven L. Liebling, and Frans

Pretorius. Critical collapse of the massless scalar field in axisymmetry.

Phys.Rev., D68:044007, 2003.

[75] Matthew W. Choptuik, Eric W. Hirschmann, Steven L. Liebling, and Frans

Pretorius. Critical collapse of a complex scalar field with angular momentum.

Phys.Rev.Lett., 93:131101, 2004.

[76] A.M. Abrahams and C.R. Evans. Critical behavior and scaling in vacuum

axisymmetric gravitational collapse. Phys.Rev.Lett., 70:2980–2983, 1993.

[77] Miguel Alcubierre, Gabrielle Allen, Bernd Brügmann, Gerd Lanfermann, Ed-

ward Seidel, et al. Gravitational collapse of gravitational waves in 3-D numer-

ical relativity. Phys.Rev., D61:041501, 2000.

[78] David Garfinkle and G. Comer Duncan. Numerical evolution of Brill waves.

Phys.Rev., D63:044011, 2001.

[79] Oliver Rinne. Constrained evolution in axisymmetry and the gravitational

collapse of prolate Brill waves. Class.Quant.Grav., 25:135009, 2008.

[80] Evgeny Sorkin. On critical collapse of gravitational waves. Class.Quant.Grav.,

28:025011, 2011.

[81] James Healy and Pablo Laguna. Critical Collapse of Scalar Fields Beyond

Axisymmetry. Gen.Rel.Grav., 46:1722, 2014.

[82] Lućıa Santamaŕıa Lara. Nonlinear 3d evolutions of brillwave spacetimes and

critical phenomena. M. Sc. thesis, Friedrich-Schiller-Universität Jena, 2006.

179

Bibliography

[83] David Hilditch, Thomas W. Baumgarte, Andreas Weyhausen, Tim Dietrich,

Bernd Brügmann, et al. Collapse of Nonlinear Gravitational Waves in Moving-

Puncture Coordinates. Phys.Rev., D88(10):103009, 2013.

[84] Miguel Alcubierre. The Appearance of coordinate shocks in hyperbolic for-

malisms of general relativity. Phys.Rev., D55:5981–5991, 1997.

[85] Miguel Alcubierre. Hyperbolic slicings of space-time: Singularity avoidance

and gauge shocks. Class.Quant.Grav., 20:607–624, 2003.

[86] David Garfinkle and Carsten Gundlach. Symmetry seeking space-time coor-

dinates. Class. Quant. Grav., 16:4111–4123, 1999.

[87] J. W. York, Jr. Kinematics and dynamics of general relativity. In L. Smarr, ed-

itor, Sources of Gravitational Radiation. Seattle, Cambridge University Press,

(1979).

[88] Miguel Alcubierre and Martha D. Mendez. Formulations of the 3+1 evolution

equations in curvilinear coordinates. Gen.Rel.Grav., 43:2769–2806, 2011.

[89] Arman Akbarian. FD: finite differencing toolkit in Maple,

http://laplace.phas.ubc.ca/People/arman/FD, 2014.

[90] J. Crank and P. Nicolson. A practical method for numerical evaluation of so-

lutions of partial differential equations of the heat-conduction type. Advances

in Computational Mathematics, 6(1):207–226, 1996.

[91] Milton Ruiz, Miguel Alcubierre, and Dario Nunez. Regularization of spheri-

cal and axisymmetric evolution codes in numerical relativity. Gen.Rel.Grav.,

40:159–182, 2008.

[92] Isabel Cordero-Carrión and Pablo Cerda-Duran. Partially implicit Runge-

Kutta methods for wave-like equations in spherical-type coordinates. 2012.

180

Bibliography

[93] Pedro J. Montero and Isabel Cordero-Carrión. BSSN equations in spheri-

cal coordinates without regularization: vacuum and non-vacuum spherically

symmetric spacetimes. Phys.Rev., D85:124037, 2012.

[94] Thomas W. Baumgarte, Pedro J. Montero, Isabel Cordero-Carrión, and Ewald

Müller. Numerical Relativity in Spherical Polar Coordinates: Evolution Cal-

culations with the BSSN Formulation. Phys.Rev., D87(4):044026, 2013.

[95] H.-O. Kreiss and J. Oliger. Methods for the approximate solution of time

dependent problems. GARP Publications Series No. 10, (1973).

[96] S. A. Teukolsky. LINEARIZED QUADRUPOLE WAVES IN GENERAL

RELATIVITY AND THE MOTION OF TEST PARTICLES. Phys. Rev.,

D26:745–750, 1982.

[97] Dieter R. Brill. On the positive definite mass of the Bondi-Weber-Wheeler

time-symmetric gravitational waves. Annals Phys., 7:466–483, 1959.

[98] K. Eppley. Evolution of Time Symmetric Gravitational Waves: Initial Data

and Apparent Horizons. Phys. Rev., D16:1609–1614, 1977.

[99] Shoken M. Miyama. Time Evolution of Pure Gravitational Waves. Prog.

Theor. Phys., 65:894, 1981.

[100] A. M. Abrahams and C. R. Evans. Trapping a geon: Black hole formation by

an imploding gravitational wave. Phys. Rev., D46:4117–4121, 1992.

[101] Peter Anninos, Joan Masso, Edward Seidel, Wai-mo Suen, and Malcolm To-

bias. The Near linear regime of gravitational waves in numerical relativity.

Phys. Rev., D54:6544–6547, 1996.

[102] Peter Anninos, Joan Masso, Edward Seidel, Wai-Mo Suen, and Malcolm To-

bias. Dynamics of gravitational waves in 3-D: Formulations, methods, and

tests. Phys. Rev., D56:842–858, 1997.

181

Bibliography

[103] Miguel Alcubierre, Gabrielle Allen, Bernd Bruegmann, Gerd Lanfermann, Ed-

ward Seidel, Wai-Mo Suen, and Malcolm Tobias. Gravitational collapse of

gravitational waves in 3-D numerical relativity. Phys. Rev., D61:041501, 2000.

[104] David Garfinkle and G. Comer Duncan. Numerical evolution of Brill waves.

Phys. Rev., D63:044011, 2001.

[105] Oliver Rinne. Constrained evolution in axisymmetry and the gravitational

collapse of prolate Brill waves. Class. Quant. Grav., 25:135009, 2008.

[106] A. M. Abrahams and C. R. Evans. Critical behavior and scaling in vacuum

axisymmetric gravitational collapse. Phys. Rev. Lett., 70:2980–2983, 1993.

[107] Andrew M. Abrahams and Charles R. Evans. Universality in axisymmetric

vacuum collapse. Phys. Rev. D, 49:3998–4003, Apr 1994.

[108] D. E. Holz, W. A. Miller, M. Wakano, and J. A. Wheeler. Coalescence of

primal gravity waves to make cosmological mass without matter. In Direc-

tions in General Relativity: An International Symposium in Honor of the 60th

Birthdays of Dieter Brill and Charles Misner College Park, Maryland, May

27-29, 1993, 1993.

[109] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoet-

ter, J. McCarron, and P. DeMarco. Maple Introductory Programming Guide.

Maplesoft, (2005).

[110] L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal,

G. Labahn, J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M.

Vorkoetter. Maple Programming Guide. Maplesoft, (2011).

[111] P. Musgrave, D. Pollney, and K. Lake. GRTensor II,

http://grtensor.phy.queensu.ca/, (1994).

182

[112] A. R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial

Differential Equations. New York: Wiley, (1980).

[113] H. Kreiss Gustatsson, B. and J. Oliger. Time-Dependent Problems and Dif-

ference Methods. New York: Wiley, (1995).

[114] R. L. Marsa and M. Choptuik. RNPL Reference Manual,

http://laplace.physics.ubc.ca/People/matt/Rnpl/index.html, (1995).

183

Appendix A

Appendix: FD, Finite

Difference Toolkit

A.1 Introduction

FD is a set of Maple [109, 110] routines and definitions designed to handle various

tasks in applying finite difference techniques in solving partial differential equations

(PDEs). Particularly, it is developed to provide a methodology and a syntactic

language to solve time dependent or boundary value PDEs arising in physics. Solving

a PDE involves various complications, including finding the correct finite difference

approximation (FDA) to a specific accuracy, dealing with boundary points on the

discretized numerical domain, initialization, developing testing facilities for insuring

accuracy, and finally creating routines to solve the FDA equations over the numerical

domain. FD is designed to simplify these steps while providing full control over the

entire process, allowing the user to focus on the underlying physical phenomena.

Specifically, FD is not created to be a “blackbox” PDE solver, rather it provides a

mixed level of automation and user controlled definitions.

FD is still under development and was originally designed to be used in the

numerical relativity research where the computational task to numerically solve the

Einstein’s equations 38, is rather challenging. Keeping that in mind, FD was devel-

oped to deal with PDEs and differential expressions that are lengthy (in some case

38A set of 10 highly complex and non-linear coupled PDEs that govern the dynamics of the curved
spacetime in strongly gravitating objects like black holes or neutron stars.

184

A.1. Introduction

thousands or tens of thousands of expressions) and are usually machine generated to

avoid human error. Therefore, FD is written in the Maple language, which provides

a powerful symbolic manipulation environment and unifies the process of deriving

the continuum form of the PDEs, and applying finite difference methods to create

a discretized form. Furthermore, FD is built to directly parse a given differential

expression39 in its canonical continuous form 40 in Maple. This eliminates the need

for having another high-level specification to define a PDE which can be a cumber-

some task for the user, especially if the PDEs are derived from tensorial equations –

such as PDEs arising in general relativity. This prevents potential human errors in

transferring the equations from the symbolic calculation environment to the target

“PDE solver” environment. In addition, FD inherits all of the capabilities of Maple

language to deal with PDEs and algebraic expressions. In particular, the user can

manage their working environment using Maple’s built-in data and control struc-

tures and use PDEtools package to implement various other tasks such as coordinate

transformation and checking for the consistency of the equations.41

After posing a PDE as a set of FDA equations over a discretized domain, these

equations can be solved using FD’s default point-wise Newton-Gauss-Sidel relax-

ation algorithm (see Sec. A.2.2) – which is a common method in solving nonlinear

time dependent PDEs. FD generates Fortran subroutines (and C wrappers) to

perform the relaxation and may be used as a rapid prototyping tool to implement

various finite difference schemes to solve a PDE. It also provides a rapid development

work-flow to create routines to evaluate the residual of the given FDA expression as

a diagnostic tool.

FD is capable of dealing with the boundaries of the numerical domain by provid-

ing a syntax to specify the PDE or boundary conditions differently at different parts

39PDE, written in the from: D(f) = 0, where D is a differential operator and f is the unknown
function, would be a special case of a differential expression that is equal to zero.

40An expression in which derivatives are presented using Maple’s diff operator. An example of
such expression is: diff(f(t,x),t,t) - diff(f(t,x),x,x)

41We note that GRTensor [111] Maple package is available for dealing with tensorial partial
differential equations and tensor manipulation.

185

A.1. Introduction

of the discretized domain. This allows the user to impose various boundary condi-

tions such periodic boundary conditions, asymptotic behaviour boundary conditions

or inner boundary conditions. This, particularly, is achieved in FD by implementing

an equivalent method to the ghost cell technique used in finite difference methods,

and can be used to create inner boundary conditions that arise from the symmetries

in the system – such as requesting particular functions to be even or odd in specific

coordinate direction.

In FD’s environment, specifying the finite difference scheme by the user is as

simple as merely providing the order of accuracy and limitation on the allowed

grid points in the Finite Difference Molecule (FDM). FD has a simple internal

algorithm to determine the number of points required to do “forward”, “backward”

and “centered” finite differencing of a given partial differential expression with the

given accuracy. It ensures that the generated stencil expression has accuracy that is

equal to the user specified value or better. The computed stencils are all stored in

an internal table and are user accessible to be monitored for their order of accuracy

and form.

Finally, FD produces Fortran routines (and C wrappers) that are parallel-ready

and can be used in the framework of a high performance computing infrastructure.

This is achieved by passing boundary flags to the routines which specify if the

boundaries of the grid are between CPUs or are real physical boundaries. FD adopts

PAMR’s [33] standard in this matter, but any other parallelization framework should

also have a similar method to deal with the inner CPU boundaries. We note that the

Fortran routines generated by FD use only the basic data types of Fortran language

and creating wrappers to communicate with them from a different language should

be a straightforward task. By default, FD generates the C language wrappers which

is one of the most common languages in high performance computing.

This user manual describes all of the features mentioned above and introduces

the syntax of FD for posing a PDE as a finite difference equation with the given

186

A.2. Overview of Finite Difference Method

boundary conditions. First, two algebraic types are defined which are the fundamen-

tal objects that FD uses to identify a finite difference expression. These types are

the building blocks that FD uses to directly translate a PDE to a discretized equa-

tion and eventually to Fortran routines. Then, a derived Maple table is introduced

that specifies the PDE and the boundary conditions over the discretized numerical

domain. Finally, we present the utilities FD provides to choose a finite difference

scheme, compute the FDA equivalent of a given PDE and create Fortran codes to

solve it. We assume that the reader has a working knowledge of Maple programming

and is familiar with the basic concepts of finite difference methods. Some of these

concepts are reviewed in Sec. A.2. An experienced user may skip this section, while

those who are not are encouraged to consult the references [109, 110, 112, 113].

A.2 Overview of Finite Difference Method

Finite difference methods are numerical techniques to express continuum differen-

tial expressions/equations as (approximate) algebraic expressions/equations. The

resulting expression is known as the Finite Difference Approximation (FDA). An

FDA for a derivative term, such as df(x)/dx, at a given point x, is a combination

of the values of the function at certain points in the vicinity of x. For instance,

values at the points {f(x), f(x+∆x), f(x+2∆x)} (discretized values) can be used

to approximate the first derivative of the function as:

df(x)

dx
≈ −3f(x) + 4f(x+∆x)− f(x+ 2∆x)

2∆x
, (A.1)

where ∆x is the step size of the discretization. This “scheme” is called forward finite

differencing, as the discrete values are extended in positive(forward) x direction.

Similarly, one can use the points {f(x), f(x − ∆x), f(x + ∆x)} to compute the

187

A.2. Overview of Finite Difference Method

second derivative of the function,

d2f(x)

dx2
≈ f(x−∆x)− 2f(x) + f(x+∆x)

∆x2
. (A.2)

Here the point x is at the center, and thus the scheme is named centered finite differ-

encing. The discretized points, (· · · , x−∆x, x, x+∆x, · · ·), construct a domain for

an Ordinary Differential Equation (ODE) or a Partial Differential Equation (PDE).

The following diagram illustrates this concept of discretized numerical domain for a

1+1 (1 spatial, 1 time) dimensional spacetime:

✉ ✉ ✉

✉ ✉ ✉

✉ ✉ ✉

xixi−1 xi+1

fnifni−1 fni+1

fn−1
i

fn+1
i

tn−1

tn

tn+1

A discretization method transforms a function from a continuum form to a dis-

crete form symbolized as:

f(t, x)→ f(tn, xi) ≡ fni . (A.3)

Here, we denote the time indexing with the superscript n and the spatial indexing

using the subscript symbols (i, j, k). The grid structure, ∪xi × ∪tn, (and similarly

in higher dimensions add yj and zk) is usually considered to be uniform:

tn = t0 + n∆t ≡ t0 + nht , (A.4)

188

A.2. Overview of Finite Difference Method

xi = xmin + i∆x ≡ xmin + ihx , (A.5)

yj = ymin + j∆y ≡ ymin + jhy . (A.6)

Using these symbols, a partial differential expression such as ∂xf(t, x) can be written

as:

∂f(t, x)

∂x
=
f(t, x+ hx)− f(t, x− hx)

2hx
+O(h2x) =

fni+1 − fni−1

2hx
+O(h2x) , (A.7)

and the wording “approximation” is due to the neglecting of the O(h2x) term. Here

the function O(h2x) has explicit dependency of the from h2x on the step size, and

represents the error of the approximation (or equivalently can be interpreted as the

“accuracy” of the FDA). Replacing all of the derivatives with FDA expressions, a

PDE becomes an algebraic equation for the discrete values of the function. For

example, consider performing the following FDA on the heat equation,

∂f(t, x)

∂t
+ α

∂2f(t, x)

∂x2
= 0 → fn+1

i − fni
ht

+ α
fni+1 − 2fni + fni−1

h2x
= 0 , (A.8)

where in the discretized version of the equation, the unknown is the vector:

Fn+1 = fn+1
i , (A.9)

and is to be solved numerically for a given Fn. Obviously knowing the values F1,

i.e the initial time profile of the function f , the process of solving Fn+1 in terms of

Fn means, by induction, finding the entire solution on the time domain indexed by

n.

189

A.2. Overview of Finite Difference Method

A.2.1 Computing the FDA Expression

There is a systematic method to find the FDA of the l’th derivative of a function,

dlf(x)/dxl. Consider L points, in the vicinity of x as:

{x+ q1∆x, x+ q2∆x, · · · , x+ qL∆x} , (A.10)

where qi’s are L distinct integers usually chosen in a minimalistic fashion such that

x+ qi∆x is close to x. For example, the forward and centered finite differencing in

Eq. (A.1) and Eq. (A.2) are associated with:

{q1, q2, q3}forward = {0, 1, 2} , {q1, q2, q3}center = {−1, 0, 1} . (A.11)

Using these L points, and L unknown coefficients {β1, β2, β3, · · · , βL} one can create

L Taylor expansions upto truncation error O(∆xL),

β1f(x+q1∆x) = β1F
(0)+β1q1F

(1)+β1q
2
1F

(2)+· · ·+β1ql1F (l)+· · ·+β1q(L−1)
1 F (L−1) ,

(A.12)

β2f(x+q2∆x) = β2F
(0)+β2q2F

(1)+β2q
2
2F

(2)+· · ·+β2ql2F (l)+· · ·+β2q(L−1)
2 F (L−1) ,

(A.13)

...

βLf(x+qL∆x) = βLF
(0)+βLqLF

(1)+βLq
2
LF

(2)+· · ·+βLqlLF (l)+· · ·+βLq(L−1)
L F (L−1) ,

(A.14)

where we defined:

F (r) =
drf(x)

dxr
(∆x)r

r!
, (A.15)

190

A.2. Overview of Finite Difference Method

and F (0) = f(x). Then we can find the coefficients {β1, β2, β3, · · · , βL} such that

summing over the entire right hand sides of the equations, all of the F (r) terms have

coefficients zero, except F (l) which can be set to have coefficient 1. This process

leads to the following set of L linear equations for βi’s:

L
∑

m=1

βmf(x+ qm∆x) = F (0)
∑

m

βm + F (1)
∑

m

qmβm + F (2)
∑

m

q2mβm

+ · · ·+ F (l)
∑

m

qlmβm + · · ·+ F (L−1)
∑

m

q(L−1)
m βm = F (l)

⇒
∑

m

βm = 0

∑

m

q1mβm = 0

∑

m

q2mβm = 0

...
∑

m

ql−1
m βm = 0

∑

m

qlmβm = 1

∑

m

ql+1
m βm = 0

...
∑

m

q(L−1)
m βm = 0

For L distinct given qi’s, this linear system has a unique solution vector which we

denote by β⋆i . Note that the left hand side of the summation is a finite difference

191

A.2. Overview of Finite Difference Method

expression:

L
∑

m=1

β⋆mf(x+qm∆x) = F (l) =
dlf(x)

dxl
(∆x)l

l!
⇒ dlf(x)

dxl
=

l!

(∆x)l

L
∑

m=1

β⋆mf(x+qm∆x) ,

(A.16)

and therefore we find the desired FDA expression for the l’th derivative using L

neighboring points. In this calculation, clearly one should assume,

L ≥ l + 1 , (A.17)

which simply indicates that finding the FDA of a l’th derivative term requires at least

l+1 points. The truncation error in the Taylor expansions is O(∆xL) and since the

finite difference sum is divided by ∆xl in Eq. (A.16) the accuracy of the final finite

difference expression is at least O
(

∆x(L−l)
)

. However in certain cases (for example

in centered scheme) the finite difference expression can have higher accuracy as the

coefficient in the next leading O(∆xL) term in the summation happens to simplify

to zero. The reader may verify this for the FDA given in Eq. (A.2)

This calculation is internally performed by FD as it encounters derivative terms

in a PDE and returns the FDA equivalent of them.42 There is a simple front-end

function (mostly for demonstration purposes) in FD:

Sten(diffexpr,[points])

which calls the internal FDA operator on the given differential expression, diffexpr,

and computes the stencil using the points, [points], (denoted by {qi} in the sys-

tematic derivation above). For example in the following we demonstrate the com-

putation of the forward and centered FDA in Eq. (A.1) and Eq. (A.2) for the first

and second derivatives respectively:

42We note that FD does not use any of Maple’s substitution/replacement procedures, rather it
performs recursively to parse a PDE and return FDA equivalents of its differential expressions.

192

A.2. Overview of Finite Difference Method

> Sten(diff(f(x),x),[0,1,2]);

-3 f(x) + 4 f(x + h) - f(x + 2 h)

1/2 ---------------------------------

h

> Sten(diff(f(x),x,x),[-1,0,1,2,3]);

11 f(x - h) - 20 f(x) + 4 f(x + 2 h) + 6 f(x + h) - f(x + 3 h)

1/12 --

2

h

Example 1: Simple FDA of derivatives using FD

We emphasize that this procedure is solely for demonstration purposes, and acts only

on a single derivative term. In practice, FD uses a different procedure, Gen Sten,

that performs the FDA operation according to an FDA scheme specification provided

by the user, and it performs on arbitrary length PDEs.

A.2.2 Iterative Schemes for Non-Linear PDEs

Solving a time dependent PDE for a function f(t, ~x) involves integrating the equation

forward in time, given the initial value f(0, ~x). In the discrete language of finite

differencing, this process reduces to finding the advanced time level value of the

function, fn+1
ijk , for the given current value, fnijk. Starting with the “initial data”,

f0ijk, the time integration can be performed by applying this process consecutively

for Nt time levels:

Initial Data fn=0
i,j,k → fn=1

i,j,k → . . . → fn=Nt

i,j,k Final State (A.18)

To demonstrate this update process, let’s revisit the 1-D heat equation, with a

different discretization scheme (known as leap-frog):

∂f(t, x)

∂t
+ α

∂2f(t, x)

∂x2
= 0 → fn+1

i − fn−1
i

2ht
+ α

fni+1 − 2fni + fni−1

h2x
= 0 . (A.19)

193

A.2. Overview of Finite Difference Method

This finite difference equation (FDE), is a second order approximation to the PDE

at the point (tn, xi), and it involves values of the function at that point, and the

points in the vicinity of it. The FDE includes the following points:

{(n+ 1, i), (n − 1, i), (n, i − 1), (n, i), (n, i − 1)} . (A.20)

and the“unknown” in this set, as highlighted in (A.19), is fn+1
i . This set of points

is called the Finite Difference Molecule (FDM) and is illustrated in the following

diagram for the FDA of heat equation (A.19):

✈ ✈ ✈

✈ ✈ ✈

✈ ✈ ✈

xixi−1 xi+1

fnifni−1 fni+1

fn−1
i

fn+1
i

tn−1

tn

tn+1

FDM depends on the finite difference scheme. For example, consider a different

(also second order accurate) FDA of the heat equation at the point (tn+1/2, xi),

where tn+1/2 denotes the point tn + ht/2:

∂f(t, x)

∂t
+α

∂2f(t, x)

∂x2
= 0 → fn+1

i − fni
ht

+
1

2
α

(

fni+1 − 2fni + fni−1

h2x
+
fn+1
i+1 − 2fn+1

i + fn+1
i−1

h2x

)

= 0 .

(A.21)

The FDM of this equation is illustrated in the following diagram:

194

A.2. Overview of Finite Difference Method

✈ ✈ ✈

✈ ✈ ✈

× tn+1/2

xixi−1 xi+1

fn+1
ifn+1

i−1 fn+1
i+1

fni

tn

tn+1

and again the unknown is highlighted both in the diagram and the equation. The

main difference between this discretization and the previous one is in the fact that,

this FDM requires 2 time level, whereas FDE (A.19) has 3 time levels. More im-

portantly, in this scheme there are 3 unknowns in the FDA: {fn+1
i−1 , f

n+1
i , fn+1

i+1 } and
therefore there is an implicit dependency of advanced time level unknowns. This

type of FD schemes are known as implicit schemes. The FD schemes such as the

leap-frog scheme used in (A.19) – where the dependency of the FDM on the advanced

time level is explicitly a single point – are known as explicit schemes.

After converting a PDE to a FDE, the next step is solving this algebraic equation.

We can write an FDE in a compact form:

Lhi
(

fn+1
i , fni , · · ·

)

≡ Lh
(

Fn+1,Fn, · · ·
)

= ~0 , (A.22)

where Lh is the FDA operator, the most advanced time level values, fn+1
i , is con-

sidered as the unknown, and the superscript h denotes the typical step size of the

discretization. Here we defined the vector:

Fn+1 ≡ [fn+1
i] . (A.23)

Depending on the PDE and the chosen FDA scheme, this equation can be solved

numerically using various methods. For a linear PDE and an explicit scheme,

195

A.2. Overview of Finite Difference Method

Eq. (A.22) is indeed a linear equation:

AFn+1 = b (A.24)

where A is a diagonal matrix and b is a vector that depends on previous time level

values of the function, Fn,Fn−1, · · · . In this case, solving the FDE simply reduces

to inverting a diagonal matrix, i.e. inverting the diagonal terms – which can be

done in a single (trivial) matrix operation. But in general, if the PDE is linear and

FD scheme is implicit, the FDE reduces to the same linear equation as (A.24), but

the matrix A is no longer diagonal. In even more general case, where the PDE is

non-linear, and the FD scheme is implicit, one needs to solve a non-linear algebraic

equation for a vector of unknowns. Such systems are perhaps the most interesting

and are the subject of study with the FD toolkit.

In this scenario, one can solve the non-linear FDE using the multivariable iter-

ative Newton method:

Fn+1
l+1 = Fn+1

l − J−1(Rl) (A.25)

in which the sub-subscript l index’s the number of Newton method iterations, i.e.

Fn+1
l+1 is the new approximate solution after a single iteration, and Fn+1

l is the old

solution. In recursive Eq. (A.25), J−1 is the inverse of the Jacobian matrix of the FD

operator Lh as a function of Fn+1. More explicitly, it is the multivariable derivative

of the nonlinear FDA operator L:

Jji ≡
∂Lj

∂fn+1
i

. (A.26)

Finally, in Eq. (A.25), lR denotes the “residual” of the FDE for the previous ap-

proximate solution generated from the Newton iteration:

Rl ≡ L
(

Fn+1
l

)

. (A.27)

196

A.2. Overview of Finite Difference Method

Note that this iterative method requires an initial guess that is usually taken to be

the previous time step solution:

Fn+1
0 = Fn . (A.28)

Here the logic is simple: if the PDE evolves the function slowly in time, Fn+1 is close

to Fn and thus Fn should be a good initial guess for it. Note that in this method,

each time level update demonstrated in (A.18) has another layer of Newton iteration

presented in (A.25). This internal iteration usually converges very quickly (in few

steps).

So far, we have only provided a formal description of solving a non-linear FDE.

Practically, the numerical inversion of J is a non-trivial task. One can use the Gauss-

Seidel or Jacobi methods to find the inverse matrix iteratively, however, since this

Jacobian is going to be used in the Newton iteration (A.25) rather than performing

two independent iterative schemes, one can simply find an approximate inverse

Jacobian by only taking the diagonal part of this matrix and use that in the Newton

solver. 43 This approach is called point-wise Newton Gauss-Seidel method and is

equivalent to assuming that the only unknown in FDE is fn+1
i (fixing the rest of

advanced time level values that occur in an implicit FDA scheme) and solve for it

using a single variable Newton method:

[fn+1
i]l+1 = [fn+1

i]l − [Rii]l/Jii (A.29)

where:

[Rii]l = Li
(

[fn+1
i]l

)

(A.30)

43The convergence of such method is guaranteed if the Jacobi matrix is diagonally dominant, i.e.∑
i=j

|Aij | >
∑

i6=j
|Aij |

197

A.2. Overview of Finite Difference Method

is the residual of the FDA equation at the point i and:

Jii =
∂Li

(

fn+1
i , fni , · · ·

)

∂fn+1
i

(A.31)

is the diagonal element of the Jacobian matrix. Note that there are two iterations

involved here, one over index i, the numerical grid, and one on the Newton iteration

index l. It is ineffective to perform the l iteration first, since a highly accurate

solution to the point-wise Newton problem will become completely disrupted as soon

as the value of the next neighboring point fn+1
i+1 is changed via the next Newton

iteration. Therefore, it is much more effective to perform the iterating over the

numerical grid first. This is known as a single point-wise Newton Gauss-Seidel

relaxation sweep and if it converges, it usually only takes few iteration. Performing

this relaxation, for few times, a single time step evolution is complete and the

algorithm (A.18) can proceed to the next step.

This algorithm is the first approach to solve a non-linear PDE and is the default

(and at the moment only) method that is built into FD toolkit for solving the PDEs.

As we will discuss in detail, invoking the procedure:

A Gen Solve Code(DDS,{solve for var},input="d/c*",proc name="my proc")

will create a low level (Fortran) routine that performs the relaxation sweep. Having

this routine, a PDE can be solved by a driver routine that applies the relaxation as

needed (depending on some stopping criteria). Of course, solving a PDE involves

several other steps, such as dealing with boundary points where rather than FDA

equivalent of PDE, a boundary condition needs to be imposed. This is done by

defining and passing the DDS variable which is a Maple data type to specify a PDE

and its boundary conditions over a discretized domain. It is the description of the

DDS and other tools and objects that are needed before applying this procedure that

constitutes the majority of this documentation.

We note that a similar discussion to what we described about the time depen-

198

A.2. Overview of Finite Difference Method

dent PDEs also applies to the boundary value problem PDE’s (elliptic PDEs). For

example, consider the following second order discretization of the Laplace equation:

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
= 0 → fi+1,j − 2fi,j + fi−1,j

h2x
+
fi,j+1 − 2fi,j + fi,j−1

h2y
= 0 .

(A.32)

The finite difference molecule for this FDA is illustrated in the following diagram:

✈ ✈ ✈

✈ ✈ ✈

✈ ✈ ✈

xixi−1 xi+1

fi,jfi−1,j fi+1,j

fi,j−1

fi,j+1

yj−1

yj

yj+1

In this case, one needs to provide the discrete values of the function at the

boundary points, and the unknowns are all of the values in the interior points fij:

(BVP) {f1,j fNx,j fi,1 fi,Ny
} → fi,j (unknown) (A.33)

Again, a simple approach to solve this PDE is to use iterative schemes. For example,

one can solve the FDA equation (A.32) for the mid-point value fij, assuming the

values at the neighboring points are fixed. Then performing this point-wise solver

process over all of the interior points (a relaxation sweep) iteratively will decrease

the residual to the desired tolerance (if it converges). However we note that relax-

ation schemes for boundary value problems (BVP) converge very slowly and other

algorithms such as multigrid [33] are essential to efficiently solve elliptic-type PDEs.

199

A.2. Overview of Finite Difference Method

A.2.3 Testing Facilities: Convergence and IRE

Finding a solution to a PDE or an ODE can be a complex task. However, if the

solution is given as a discrete function, checking that it satisfies the equation is

somewhat a straightforward process. Consider the equation:

L(f) = 0 , (A.34)

where L is a differential operator and f is the unknown function. One can use an

FDA scheme to discretize the differential operator:

L→ Lh (A.35)

where h denotes the typical “size” of the discretization. Then for a given solution

function, f̃ , one can evaluate the residual:

Rh = Lh(f̃) (A.36)

to confirm if the function f̃ satisfies the discretized version of the equation. A

solid testing facility for a numerical solver is to independently develop this residual

evaluator, which we refer as Independent Residual Evaluator (IRE). Of course, the

residual (A.36) will not be exactly zero since Lh is an approximation to L and

perhaps f̃ is also a numerical solution to (A.34) that differs from the exact solution

f . However, one would expect if the solution f̃ is well resolved, is “close enough”

to the exact solution, and FDA operator Lh is a “good” approximation of L, then

the norm of this residual should be orders of magnitude smaller than the actual

norm of the function f̃ . A more rigorous definition of all these concepts and how

to validate the numerical solution using an IRE test will follow. However, before

that we momentarily dive into FD toolkit and how it provides a rapid work-flow to

creating IRE routines.

200

A.2. Overview of Finite Difference Method

Consider the following ODE for a(x) on a given time t:

da(x)

dx
− 1− a(x)2

2x
− 1

2
x

[

(

∂φ(t, x)

∂x

)2

+

(

∂φ(t, x)

∂t

)2
]

= 0 (A.37)

where φ(t, x) is a time dependent field which can have its own dynamical PDE. Here

we want to evaluate the left hand side of the equation for the given discrete solutions

ai and φ
n
i and verify that it is zero (numerically). The process involves creating an

FDA of this ODE, evaluating the residual over the numerical domain, summing up

the point-wise residuals and returning a norm of it. FD toolkit provides an almost

fully automated mechanism to do so. For example, if we use FD’s default FDA

scheme (second order accurate and centered), the Maple code to generate the IRE

Fortran routine in this case is:

> read "FD.mpl": Make_FD():

> grid_functions:={a,phi}:

> res_a := diff(a(x),x)/a(x) - (1 - a(x)^2)/(2*x) -

1/2*x*(diff(phi(t,x),x)^2+diff(phi(t,x),t)^2):

> Gen_Res_Code(res_a,input="c",proc_name="ire_a");

Fortran Code is written to ire_a.f

C header is written to ire_a.h

C call is written to ire_a_call

Example 2: Creating testing (IRE) routines with FD is fully automated.

The steps in this examples are: loading the FD package, initializing the internal

variables of FD, defining symbols ’a’ and ’phi’ as grid functions, writing down the

ODE, and passing the equation in its continuum form to the procedure:

Gen Res Code(expr,input="c*/d",proc name="myproc");

This call creates 3 source code files:

• ire a.f: is the Fortran subroutine that evaluates the residual (A.37). This

subroutine has the following header:

201

A.2. Overview of Finite Difference Method

subroutine ire_a(a,n_phi,nm1_phi,np1_phi,x,Nx,ht,hx,res)

and as you can see, it requires passing in the function a and 3 time levels of

function φ, denoted by n phi (current time), nm1 phi (retarded time), and

np1 phi (advanced time) since these values are required to compute the time

derivative expression in the residual (in centered scheme). The last parameter

res is a generic name, that always stores and returns the result of the com-

putation (it will correspond to the updated value of the dynamical function

when solver routines are generated).

• ire a.h is the C header (wrapper) file that needs to be included in a C driver

routine to use the subroutine, the content of this file is:

void ire_a_(double *a,double *n_phi,double *nm1_phi, double *np1_phi,

double *x,int *Nx,double *ht,double *hx,double *res);

• ire a call: is a plain text file containing a typical C call of the routine. call

files can be copied to a C driver code. For example, here the content of the

file is:

ire_a_(a,n_phi,nm1_phi,np1_phi,x,&Nx,&ht,&hx,res);

which as you can see, is a C call with the last parameter, again, labeled as

res. After copying the content of call to the driver code, the user needs to

appropriately change the name of the last parameter to the allocated vector

(pointer) or the single variable defined in the C driver to store the result. 44

In this example, the result, res, is a number (a double precision floating point

number) containing the norm of the residual. FD also assumes that in the C

driver, the user will define the name of the allocated vectors and parameters

for the PDE similar to what they are defined in the Maple expression.

44Of course, a good strategy is to avoid naming any variables in the C driver code as res. The
name res does not need any modification in the Fortran routine or C header file.

202

A.2. Overview of Finite Difference Method

We will discuss this procedure and similar other code generator procedures in more

details through Sec. A.3 to Sec. A.6. Following note is a mathematical discussion

on the notion of convergence and independent residual evaluators. Even though,

these concepts are crucial to validate the consistency and accuracy of the numerical

solver, the following is somewhat independent of the FD toolkit and applies to any

finite difference method. This manual should be accessible without expertise in the

mathematical discussion in the following note.

· · ·

Note on convergence and IRE tests

Consider that the solution in Eq.(A.34) is produced by solving a finite difference

approximation for the PDE. To preface this section, we first review our notation:

L(f) = 0 (A.38)

Sh(fh) = 0 (A.39)

Lh(fh) = Rh (A.40)

i.e. L is the PDE operator in continuum form, and f is the continuum solution,

fh is the numerical solution and Sh is the solver FDA (the FDA of the original

PDE that is used in the numerical solver). Finally, Lh is another FDA to L that

is different than Sh, and due to this difference the RHS is nonzero and symbolized

by the residual Rh. Note that previously we used Lh to denote the FDA used in

the numerical solver, but here we are mostly interested in testing the solver using a

different FDA operator which is the main focus of this section and thus denoted by

Lh.

If the numerical solution fh is convergent at the continuum limit – where the

203

A.2. Overview of Finite Difference Method

discretization size h approaches zero– we denote the continuum limit by u:

∃u = lim
h→0

fh (A.41)

therefore one can assume the following Richardson expansion:

fh = u+ ehf = u+ e1h+ e2h
2 + · · · (A.42)

where the coefficients e1, e2 are functions independent of h. As one might expect,

the error in the solution ehf depends on the accuracy of FDA Sh that is used in the

numerical solver. The first non-zero coefficient ep that appears in the expansion

defines the accuracy of the solution, and is the dominant part of the error in the

limit h→ 0. For example, a second order convergent solution has the form:

fh = u+ e2h
2 + · · · (A.43)

and using this expansion it is easy to show that for the 3 consecutively refined

convergent solutions: fh, fh/2 and fh/4 the limit of the following ratio:

lim
h→0

Q =
||fh − fh/2||
||fh/2 − fh/4|| = 4 , (A.44)

is 4. Here ||.|| is some norm of a discretized functions. Measuring the factor Q is

referred as standard convergence test in the literature.

For a convergent numerical solution fh, it is not clear that the limiting continuum

function u (A.41) is indeed the solution to the continuum problem L(f) = 0, i.e. we

want to know if:

u
?
= f . (A.45)

To further emphasize this: the numerical solution fh might be convergent but we

need some sort of proof to show that it is in fact converging to the correct solution.

204

A.2. Overview of Finite Difference Method

One might speculate that this should be the case if

1) Sh approximates L correctly, or more rigorously:

lim
h→0

Sh = L (A.46)

known as consistency condition condition for the finite difference scheme.

2) The method used to solve the finite difference equation is stable. We refer the

reader to [95] for mathematical definition and discussion on the notion of stability.

In certain cases (for linear PDEs) it can be proven that stability and consistency are

sufficient conditions for convergence. However, to our knowledge, there is no such

proof for non-linear cases which most of the interesting physical systems exhibit.

We also note that from a practical point of view there is no simple prescription or

condition that can be checked off to ensure the stability of the method for non-linear

systems.

Here we rather take a practical approach: the independent residual evaluation

test. The IRE test provides a stronger test than the standard convergence test,

and validates (or rejects) the equality A.45. Suppose that fh is O(hp) convergent,

meaning:

fh = u+ ehf

ehf = eph
p + o(hp) (A.47)

where ep is a function, independent of h and o(hp) is an h dependent function that

converges to zero faster than hp:

lim
h→0

||o(hp)||
hp

= 0 (A.48)

Now suppose, as defined in the beginning of this discussion in Eq. A.40, Lh is

another FDA of the original continuum operator L (created with a different FD

205

A.2. Overview of Finite Difference Method

scheme than Sh and is also created independently). Lh is what we refer as inde-

pendent residual evaluator. We assume that this operator is consistent with the

continuum operator L upto accuracy O(hq), meaning:

Lh(g) = L(g) + ehL(g)

ehL(g) = hqEL(g) + oL(g;h
q) (A.49)

where EL is an h independent operator, and oL(.;h
q) is an h dependent operator

with a norm that converges to zero faster than hq:

lim
h→0

||oL(g, hq)||
hq

= 0 (A.50)

Note that here we are assuming that the operator expansion (A.49) is possible for

the function g. Intuitively, one would expect this assumption to hold for functions

that are well resolved over the discretized domain. Particularly in the case of g = fh,

this is a plausible assumption, as we expect the numerical solver to produce a well-

resolved discrete solution.

Now the claim is that if the conditions (A.47) and (A.49) hold then the residual

defined as:

Rh ≡ Lh(fh) (A.51)

converges to zero if and only if fh is indeed converging to f , the continuum solution,

i.e.:

u = f (A.52)

Furthermore the convergence behaviour of the residual is dominated by the two

errors: the solution fh error, which we assumed to be O(hp) and the error of the Lh

operator which we assumed to be O(hq) and is explicitly of the form:

||Rh|| = O(hp) +O(hq) = O(hmin(p,q)) (A.53)

206

A.2. Overview of Finite Difference Method

Therefore, for example if both the solution and the IRE are second order convergent

then, one would expect to observe a second order convergence in the residual Rh as

well.

Linear case:

We first prove the claim for the linear operators L and Lh:

Lh(fh) = Lh(u+ ehf) = Lh(u) + Lh(ehf) = L(u) + ehL(u) + L(ehf) + ehL(e
h
f)

= L(u) + hqEL(u) + hpL(ep) + hqhpEL(eq) + · · · = L(u) +O(hq) +O(hp) + · · ·(A.54)

where · · · are higher order terms. We used the fact that L, Lh and ehL are linear

operators (the linearity of ehL follows from its definition (A.49)). Note that in the

expansion of the term Lh(ehf), we are assuming that the error function ehf is also

well resolved function on the mesh such that the expansion (A.49) is meaningful.

Nonlinear case:

In the non-liner case, a similar analysis can be performed by linearizing the FDA

operator Lh. We assume that Lh is differentiable around g, meaning there exist a

linear operator DhL[g] such that:

Lh(g + q) = Lh(g) +DhL[g](q) + ohL[g](q) (A.55)

and ohL[g] is an operator with a norm converging to zero faster than ||q||:

lim
||q||→0

||ohL[g](q)||
||q|| = 0 (A.56)

The differential operator DhL[g] can be naively defined as the limit:

DhL[g](q) ≡ lim
ǫ→0

Lh(g + ǫq)− Lh(g)
ǫ

(A.57)

Note that the differentiability of Lh is simply guaranteed if all of the partial deriva-

tives ∂Li(g)/∂g
ĩ exist where Li is the FDA equation at the point indexed by i and gĩ

207

A.2. Overview of Finite Difference Method

is the discrete value of the function at the point indexed by ĩ. 45 These derivatives

obviously exist for normal FDA operators used in finite difference methods. We

also note that the abstract DhL[g] operator in a matrix representation is simply the

∂Li(g)/∂g
j matrix. Furthermore, not surprisingly, it is equal to the FDA operator

Lh itself, when Lh is linear:

DhL[g](q) =
Lh(g + ǫ q)− Lh(g)

ǫ
=
ǫLh(q)

ǫ
= Lh(q)

⇒ DhL[g] = DhL = Lh (A.58)

Note that in linear case, DhL indeed does not depend on g anymore, as the operator

Lh. Assuming the differentiability of Lh around u, we have:

Lh(fh) = Lh(u+ ehf) = Lh(u) +DhL[u](ehf) + ohL[u](e
h
f)

= L(u) + ehL(u) +DhL[u](ehf) + ohL[u](e
h
f)

= L(u) + hqEL(u) + oL(u;h
q) +DhL[u](ephp + o(hp)) + ohL[u](eph

p + o(hp))

= L(u) + hqEL(u) + hpDhL[u](ep) + o(hp) + o(hp) (A.59)

where in the last step we used the linearity of DhL[u] and the property of ohL[u]

operator (A.56). This result again translates to:

Lh(fh) = L(u) +O(hp) +O(hq) = L(u) +O(hmin(p,q)) (A.60)

and the residual Lh(fh) will converge to zero, if and only if L(u) = 0, or u the

continuum function that the numerical solution fh is converging to, is indeed the

underlying continuum solution f .

Now using this result we have a stronger test: The convergence of the IRE

Lh(fh) is only possible if the solution is convergent and is converging to the correct

45Note that here i and ĩ can be any of the discrete domain indices, here we are simply using i as
a symbol of discretization

208

A.3. Semantics of FD

solution. Therefore if one can create a solid IRE operator Lh that is consistent with

L, checking the convergence of the IRE will guarantee the accuracy of the solution.

Of course, one can ask: what if Lh also has an error in its implementation ? Here

the keyword independent development becomes crucial. If the independent residual

is converging, it is extremely unlikely that Sh and Lh that should be developed

completely independently will both have an internal error, and both of the errors

agree, i.e both Sh and Lh happen to be identical to an FDA for another PDE that

is not the original PDE. Often it is best to create the IRE operator Lh using an

automated process to reduce possible human errors. This, in part, was the original

motivation to develop FD and as it will be discussed further, generating IRE routines

is been fully automated in FD toolkit.

A.3 Semantics of FD

In this section, we describe some of the internal variables of FD and two derived

algebraic data types that FD uses to work with finite difference expressions.

A.3.1 Parsing a PDE: Fundamental Data Type

As mentioned in the introduction, FD is developed with the philosophy that user’s

involvement in the straightforward tasks should remain minimal. Consider the fol-

lowing PDE for f :

∂tf(t, x, z) + β(t, x, z)∂xf(t, x, z)

+γ(x)∂zf(t, x, z) + a∂2xf(t, x, z) + b∂2zf(t, x, z) + g(x, z) = 0 (A.61)

The LHS written in canonical Maple form (without use of aliases) is:

PDE:=diff(f(t,x,z),t) + beta(t,x,z)*diff(f(t,x,z),x)+

gamma(x)*diff(f(t,x,z),z) + a*diff(f(t,x,z),x,x)+b*diff(f(t,x,z),z,z)

+ g(x,z);

209

A.3. Semantics of FD

One can easily observe that this expression, by itself, contains enough information

regarding the dimensionality of the problem, functions and their dependencies, pa-

rameters, and of course derivatives. By looking at the expression, we can conclude

that:

• f is a time dependent function, defined on a 2 dimensional spatial domain

labeled by (x, z).

• β is also time dependent with same spatial domain as f .

• g is a time independent function only defined on the (x, z) domain.

• γ has only 1 dimensional dependency on x coordinate.

• a and b are parameters (assuming that all dependencies are explicitly pre-

sented)

• the order and direction of derivatives of f are clear.

There is no need for further specification to implement this PDE on a computer. The

first step to reducing potential human errors is to eliminate another intermediate

syntactic language to write a PDE. Rather, FD uses Maple’s powerful symbolic

manipulation capabilities and has a built-in parser which allows directly passing a

PDE to its routines. This puts the entire complexity of the fundamental data type

on the expression, and frees the user from providing any further specification. As

soon as an error-proof PDE is written down, (which is easily possible as the working

environment of FD is Maple with all its symbolic tools) the task of identifying

the parameters, functions, dimensionalities, derivatives, and required time levels to

perform FDA in time dimension is left to the software. This is one of the advantages

of FD, over previously developed software such as RNPL [114]. This also makes FD

an efficient prototyping language, particularly for developing testing facilities as we

demonstrated in Example 2.

210

A.3. Semantics of FD

A.3.2 Coordinates

FD reserves the variables (t,x,y,z) for the name of the time and spatial coor-

dinates that define the domain of a PDE. They are protected variables after FD

is loaded. Similarly, FD reserves the symbols (n,i,j,k) for indexing the corre-

sponding coordinate points (t(n),x(i),y(j),z(k)). It uses (ht,hx,hy,hz) as

the name for the step-size of the discretization along these coordinates, respectively.

The names (Nt,Nx,Ny,Nz) are reserved for the size of the discretized domain, and

(xmin,xmax), (ymin,ymax), (zmin,zmax) are reserved for flags to specify the in-

ner CPU boundary points of the coordinates (their applicable is in the context of

parallelization).

This association can be demonstrated as:

t↔ n↔ ht ↔ Nt

x↔ i↔ hx ↔ Nx ↔ (xmin, xmax)

y ↔ j ↔ hy ↔ Ny ↔ (ymin, ymax)

z ↔ k ↔ hz ↔ Nz ↔ (zmin, zmax) (A.62)

and is built into FD. The coordinate names, and this association table are neces-

sary to identify functions, differential expressions, and perform finite differencing.

For example, FD recognizes that an expression such as f(x+hx,y-2*hy) should be

discretized as f(i+1,j-2), or an expression such as f(x+hy) is invalid and can-

not be discretized, since hy is not an stepping size in x direction. Ultimately, this

association table allows FD to discretize a differential expression such as ∂xf(x, y)

(in Maple notation: diff(f(x,y),x)), directly to (f(i+1,j)-f(i-1,j))/(2*hx)

without any need for further specification. (See the example in Sec. A.3.4).

211

A.3. Semantics of FD

A.3.3 Initializing FD, Make FD, Clean FD

As the reader may have noticed from the previous examples, FD is in a Maple script

format, and can be imported to a Maple worksheet/script by executing:

read("/your/fd/directory/FD.mpl");

FD’s internal variables are initialized by calling the procedure:

Make FD();

which has a short alias, MFD(), and creates the table for the coordinate association

described in Eq. A.62) and initializes the default finite difference table that specifies

the finite difference scheme. We will further discuss this table in Sec A.4.2. To clean

the initialized variables, user can execute:

Clean FD();

or use the alias CFD().

A.3.4 Grid Functions Set: grid functions

FD uses a global variable named grid functions (of type set in Maple) as its

reference for all of the function names that are expected to be discretized as:

f(t, x, y, z)→ f(tn, xi, yj, zk) ≡ fni,j,k . (A.63)

In Maple language, if symbol f is in the grid functions, then the function f(t,x,y,z)

(in its most generic 1+3 dimensional case) will be converted to f(n,i,j,k) during

the process of discretization. The following example demonstrates how FD uses the

coordinate names, the coordinate association table, and the symbols defined in grid

functions to produce FDA expressions:

212

A.3. Semantics of FD

> read "FD.mpl": MFD():

> grid_functions:={f}:

> Gen_Sten(f(t,x,y,z));

f(n, i, j, k)

> Gen_Sten(diff(f(x,y),x));

f(i - 1, j) - f(i + 1, j)

-1/2 -------------------------

hx

> Gen_Sten(x+g(y,z));

x(i) + g(y(j), z(k))

Example 3: Discretization of grid functions vs non-grid functions

Here, Gen Sten is the main routine that performs the finite differencing and will

be discussed extensively. However, user can easily guess its functionality from the

example. As it can be seen, beside the names that are included in the grid function

set, the coordinate variables (t,x,y,z) are by definition grid functions and are

discretized as (t(n),x(i),y(j),z(k)). Furthermore, if a symbol with coordinate

dependency (such as g(y,z) above) is not included in the grid functions set, it will

be considered as an external function that user will provide to the Fortran routines.

FD discretizes its coordinate functions rather than the function. For example, here

it is discretized as: g(y(j),z(k)) rather than g(j,k).

Time Level Reduction:

We shall emphasize that the discrete expression f(n,i,j,k) will be eventually (at

the point of code generation) replaced by: n f(i,j,k). This process is done in-

ternally, and is referred as time level reduction (See Sec. ??). The time level n is

usually referred as current time level, n-1 is referred as retarded time level and n+1 is

called advanced time level. When FD performs the time level reduction, it uses the

prefix np1 and nm1 in the names of the advance and retarded time levels functions

respectively:

f(n,i,j,k)→ n f(i,j,k)

f(n+1,i,j,k) → np1 f(i,j,k)

213

A.3. Semantics of FD

f(n-1,i,j,k) → nm1 f(i,j,k)

The higher time level f(n+2,i,...) will be renamed to np2 f(i,...) and the

syntax for the other cases should be clear. This replacement is simply because in

time dependent finite difference algorithms only a finite number of time levels are

needed and stored in the memory during the time evolution. The user can define

the time levels in the C driver code according to this standard, or can define “alias”

pointers (that adopts these names) to the underlying data structure to be able to

use the FD generated routines.

A.3.5 Known Functions

FD has a set of “known” functions, which is basically a set of floating point functions

that are known to the low level language (Fortran here). These functions in FD are:

{ln,log,exp,sin,cos,tan,cot,tanh,coth,sinh,cosh,exp,sqrt,‘∧‘,‘*‘,‘+‘,‘-‘,‘/‘}

and during a discretization process, FD does not convert their arguments to a

discrete version, rather it discretizes the arguments accordingly. For example,

sin(z)*f(x)+exp(y) will be discretized as:

> Gen_Sten(sin(z)*f(x)+exp(y));

sin(z(k)) f(i) + exp(y(j))

assuming that f is in grid functions.

A.3.6 Valid Continuous Expression, VCE

Valid Continuous Expression (VCE) is an algebraic function of the continuous co-

ordinate variables, (t, x, y, z), in which the dependencies of grid functions on the

coordinates are only of the form:

f(t+ lht, x+mhx, y + qhy, z + phz) , (A.64)

214

A.3. Semantics of FD

where (l,m, q, p) are known integers (not variable), and (ht, hx, hy, hz) are the as-

sociated stepsize variables. Furthermore, a VCE does not have explicit dependency

on the discretization indices (n, i, j, k). For example, if functions f and g are grid

functions, then all of the expressions:

f(t,x,y) + (g(x+hx)-g(x-hx))/(2*hx)

r(x*y)

u(sin(x*y),g(z))

f(x+2*hx,y-3*hy)/hz + x*z^2 + g(z,x,t,y)

are VCE, and

f(t,x+hy)

g(x,y+2)

f(x(i),y(j))

cos(j)

f(u(x),y)

g(x*y)

diff(f(x),x)

are all invalid continuous expressions. Particularly, compare g(x*y) and r(x*y),

former is not VCE, since g is defined as a grid function, while later is a VCE as r is

considered an external function. Note that FD does not check for the consistency

in the order of the variables, i. e. f(x,y) + f(y,x) is considered a VCE.

A.3.7 Valid Discrete Expression, VDE

Valid Discrete Expression (VDE) is an expression in which the explicit dependencies

of functions on the discretization indices (n,i,j,k) is only via the grid functions or

coordinates. Furthermore, this dependency is of the form: f(n+ q, i+m, j+p, . . .),

where q,m, p, · · · are known integers, and f is either a grid function or is one of the

215

A.3. Semantics of FD

coordinates (t, x, y, z). In the case of coordinate, indexing must be done according to

the coordinate-index association (A.62). For example, for grid functions:={f,g}:

g(i+1,j-2)

x(i)

u(x(i),f(j,k),a)

f(j,k+2,i)

are all VDE and,

y(i)

x(i)+k

sin(i)

f(i*j)

u(i)

f(i,y(j))

are invalid discrete expression.

A.3.8 Conversion Between VDE and VCE

The definition of VDE and VCE allows a one-to-one mapping between these two

types. FD provides two functions for the conversion:

A:=DtoC(B::VDE);

B:=CtoD(A::VCE);

Even though VCE’s are not practically useful for numerical implementations, the

conversion of a VDE to VCE can be used for demonstration and testing purposes.

For example, a finite difference expression in VDE form, can be converted to a VCE,

and then a Taylor expansion of it can reveal its equivalent continuum differential

operator. The following demonstrates the process for Kreiss-Oliger dissipation op-

erator [95] that is commonly used in finite difference methods:

216

A.4. Discretizing a PDE

> read "FD.mpl": Make_FD():

> grid_functions:={f}:

> A:= -epsdis/(16*ht)*(6*f(n,i) + f(n,i+2) + f(n,i-2)

-4*(f(n,i+1) + f(n,i-1))):

> B:=DtoC(A):

> E:=convert(series(B,hx),polynom);

4

epsdis D[2, 2, 2, 2](f)(t, x) hx

E := -1/16 ---------------------------------

ht

Example 4: Conversion between VDE and VCE

which gives:

E =
−ǫ
16

(
∂4f(t, x)

∂x4
)
h4x
ht

(A.65)

A.4 Discretizing a PDE

In this section we discuss how to perform a finite differencing on a PDE using the

facilities of FD, how to choose a specific discretization scheme and and how to access

the results of a lengthy finite difference operation.

A.4.1 Performing the Finite Differencing, Gen Sten

The main routine that performs FDA is:

VDE/VCE::Gen Sten(expr)

(with an alias: GS) where the expr is an arbitrary mixed differential/algebraic Maple

expression. As mentioned before, this routine performs the discretization on the grid

functions and coordinates, leaving parameters and other functions unchanged (the

coordinate of the functions however will be discretized). The result is by default a

VDE type. To return a the finite difference expression in VCE form, the optional

input discretized should be disabled:

217

A.4. Discretizing a PDE

VCE::Gen Sten(expr,discretized=false)

Note: In the examples in the rest of this manual, we assume that the FD initial-

ization is invoked and f and g are grid functions:

> read "FD.mpl": MFD():

Warning, grid_functions is not assigned

FD table updated, see the content using SFDT() command

> grid_functions:={f,g}:

Here is an example of discretizing differential expressions:

> A:=diff(f(x,y),x,y):

> B:=Gen_Sten(A);

-f(i - 1, j - 1) + f(i - 1, j + 1) + f(i + 1, j - 1) - f(i + 1, j + 1)

B := -1/4 --

hy hx

> Gen_Sten(diff(f(x),x)+g(y)+cos(f(x))+r(x)+z);

f(i - 1) - f(i + 1)

-1/2 ------------------- + g(j) + cos(f(i)) + r(x(i)) + z(k)

hx

> Gen_Sten(A,discretized=false);

-f(x - hx, y - hy) + f(x - hx, y + hy) + f(x + hx, y - hy) - f(x + hx, y + hy)

-1/4 --

hy hx

Example 5: Discretizing a PDE

As one can see, the default discretization scheme in FD is centered (and second

order accurate). In the next section, we describe how to change the finite difference

scheme.

A.4.2 Discretization Scheme, FD table

FD uses an internal table, FD table, to perform the finite difference operations such

as ones in Example 5. This table, simply is a list of the points that can be used

218

A.4. Discretizing a PDE

for the n’th derivative computation for each of the coordinates (t,x,y,z). For

example, the x component of this table is:

> FD_table[x];

[[0], [-1, 0, 1], [-1, 0, 1], [-2, -1, 0, 1, 2], [-2, -1, 0, 1, 2], ...

where n’th element (counting from zero), is a list of points specifying the finite

differencing scheme for the n’th derivative along x. The numbers present the list of

neighboring points to x(i) that are allowed to be used for FDA. For instance, the

third element, [-2,-1,0,1,2], presents the 5 points: central point x(i), 2 to left

and 2 to right, that are allowed for FDA of the third derivatives in x coordinate.

This is demonstrated in the following diagram.

×❡ ❡ ❡ ✉ ❡ ❡ ❡×
0

↓
x(i-2) x(i-1) x(i) x(i+1) x(i+2)

→ → . . .←←. . .

1 2−1−2

[-2,-1,0,1,2]

Figure A.1: Five points specifying the FDA scheme for the third derivatives in
FD table in x direction.

FD initializes the finite difference table when Make FD() is invoked. By default,

the table is upto the 5’th derivatives (adjustable by the global variable MAX DERIVATIVE NUMBER=5)

in all dimensions, and the points expand symmetrically around the central point

(centered finite differencing).

A.4.3 Changing the FDA Scheme: FDS, Update FD Table

The FD scheme can be chosen by adjusting the content of FD table. FD provides

a convenient routine for this purpose:

Update FD Table(order::integer,fds::FDS);

219

A.4. Discretizing a PDE

in which the user specifies the desired order of accuracy, order, and the scheme

via the second argument fds. This argument is a table with a particular format

which we refer as a Finite Difference Specifier (FDS). A FDS is a table for the 4

coordinates, (t,x,y,z),

fds:=table([t=... , x=..., y=... , z=...]);

and each element has the following format:

X = [p_left,-1] or [-1,-1] or [-1,p_right]

in which X denotes one of the coordinates, and the values p left and p right are

known integers. p left specifies how many points to left of the central point is

allowed, and similarly p right specifies the number of points to the right that can

be used in an FDA for coordinate X. If these values are set to -1 it allows FD to

expand in that direction to as many point as needed to achieve the desired accuracy.

At least one of the p-values must be set to -1. Particularly, the p left and p right

need to be adjusted for creating FDAs that can be applied in the vicinity of the

boundaries of the numerical grid. This is demonstrated in the following diagram:

✉ ❡ ❡ ❡ ❡ . . . fds:=table([t=[-1,-1],x=[0,-1],y=[-1,-1],z=[-1,-1]]):

❡ ✉ ❡ ❡ ❡ . . . fds:=table([t=[-1,-1],x=[1,-1],y=[-1,-1],z=[-1,-1]]):

❡ ❡ ✉ ❡ ❡ . . . fds:=table([t=[-1,-1],x=[2,-1],y=[-1,-1],z=[-1,-1]]):

. . . ❡ ❡ ✉ ❡ ❡ . . . fds:=table([t=[-1,-1],x=[-1,-1],y=[-1,-1],z=[-1,-1]]):

. . . ❡ ❡ ✉ ❡ ❡ fds:=table([t=[-1,-1],x=[-1,2],y=[-1,-1],z=[-1,-1]]):

. . . ❡ ❡ ❡ ✉ ❡ fds:=table([t=[-1,-1],x=[-1,1],y=[-1,-1],z=[-1,-1]]):

. . . ❡ ❡ ❡ ❡ ✉ fds:=table([t=[-1,-1],x=[-1,0],y=[-1,-1],z=[-1,-1]]):

Figure A.2: Specifying different types of FD schemes: note the values in the high-
lighted color and how it associates with each case at the vicinity of the boundary in
x direction.

220

A.4. Discretizing a PDE

We remind the reader that higher derivatives require more points. In addition,

increasing the accuracy order also adds to the number of the points used in FDAs.

The routine Update FD Table has a built-in function P (n,m)

∂m

∂Xm
with O(hn) accuracy→ P (n,m) (A.66)

for each of the forward, backward and centered schemes that estimates the minimum

number of points required to achieve the desired accuracy (or better).

For example the following code updates the FD table use FD scheme forward in

time, centered in x, backward in y and asymmetric backward in z, with 4’th order

accuracy. The resulting FD table is demonstrated by inspecting each element of it:

> fds:=table([t=[0,-1],x=[-1,-1],y=[-1,0],z=[-1,2]]):

> Update_FD_Table(4,fds):

FD table updated, see the content using SFDT() command

> FD_table[t];

[[0], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4, 5, 6],...]

> FD_table[y];

[[0], [-4, -3, -2, -1, 0], [-6, -5, -4, -3, -2, -1, 0], ...]

> FD_table[z];

[[0], [-2, -1, 0, 1, 2], [-4, -3, -2, -1, 0, 1, 2], [-4, -3, -2, -1, 0, 1, 2],...]

Example 6: Changing the Finite Difference Scheme

We note that FD table can be updated manually by overwriting the elements, how-

ever this method is error-prone, and higher derivatives in particular might not have

a sufficient number of points to be evaluated as a FDA. For example, in the follow-

ing, we specify only 2 points for the second derivative in time, and the Gen Sten

procedure outputs an error as it is impossible to compute the FDA equivalent of the

input according to the FD table:

221

A.4. Discretizing a PDE

> FD_table[t]:=[[0],[0,1,2],[0,1]]:

> Gen_Sten(diff(f(t,x),t));

-f(n, i) + f(n + 1, i)

ht

> Gen_Sten(diff(f(t,x),t,t));

Error, (in Calc_Stencil_L) Failed to find FDA coefficients, check FD_table content!

Finally, we note that the entire content of FD table (rather lengthy sequence of

integers!) can be viewed using the procedure:

Show FD Table();

A.4.4 Accessing the FD Results: Show FD

If the Gen Sten procedure is used to perform finite differencing on a lengthy differ-

ential expression, the resulting FDA is not human readable. To better present what

Gen Sten has performed, the routine stores the differential expressions it finds in

the input and their FDA equivalent that it replaces them with, in an internal table

named FD results. The content of this table can be accessed using the procedure:

Show FD();

For example, consider the following finite differencing operation:

> A:=diff(y*f(x,y)*diff(sin(x*y)*g(x),x),x,y):

> B:=Gen_Sten(A):

memory used=11.4MB, alloc=5.4MB, time=0.59

> lprint(B);

1/2*(-f(i-1,j)+f(i+1,j))/hx*(cos(x(i)*y(j))*y(j)*g(i)-1/2*sin(x(i)*y(j))*(g(i-1)-g(i+1))

/hx)+1/4*y(j)*(f(i-1,j-1)-f(i-1,j+1)-f(i+1,j-1)+f(i+1,j+1))/hy/hx*(cos(x(i)*y(j))*y(j)*g

(i)-1/2*sin(x(i)*y(j))*(g(i-1)-g(i+1))/hx)+1/2*y(j)*(-f(i-1,j)+f(i+1,j))/hx*(-sin(x(i)*y

(j))*x(i)*y(j)*g(i)+cos(x(i)*y(j))*g(i)-1/2*cos(x(i)*y(j))*x(i)*(g(i-1)-g(i+1))/hx)+f(i,

j)*(-sin(x(i)*y(j))*y(j)^2*g(i)-cos(x(i)*y(j))*y(j)*(g(i-1)-g(i+1))/hx+sin(x(i)*y(j))*(g

(i-1)-2*g(i)+g(i+1))/hx^2)+1/2*y(j)*(-f(i,j-1)+f(i,j+1))/hy*(-sin(x(i)*y(j))*y(j)^2*g(i)

-cos(x(i)*y(j))*y(j)*(g(i-1)-g(i+1))/hx+sin(x(i)*y(j))*(g(i-1)-2*g(i)+g(i+1))/hx^2)+y(j)

222

A.4. Discretizing a PDE

f(i,j)(-cos(x(i)*y(j))*x(i)*y(j)^2*g(i)-2*sin(x(i)*y(j))*y(j)*g(i)-sin(x(i)*y(j))*x(i)

y(j)(-g(i-1)+g(i+1))/hx+cos(x(i)*y(j))*(-g(i-1)+g(i+1))/hx+cos(x(i)*y(j))*x(i)*(g(i-1)

-2*g(i)+g(i+1))/hx^2)

Checking if B is indeed an FDA for A:

> E:=DtoC(B):

> E:=convert(series(E,hx,4),polynom):

> E:=convert(series(E,hy,4),polynom):

> residual:=simplify(eval(A-E,hx=0,hy=0));

residual := 0

Expression A has several derivatives of the functions f and g that are replaced with

FDA expressions. Now by invoking Show FD() we can see what replacements have

been done:

> Show_FD();

d -f(i - 1, j) + f(i + 1, j)

{-- f(x, y) = [1/2 --------------------------, [[x, 2], [y, -1]]],

dx hx

d f(i, j - 1) - f(i, j + 1)

-- f(x, y) = [-1/2 -------------------------, [[y, 2], [x, -1]]],

dy hy

d -g(i - 1) + g(i + 1)

-- g(x) = [1/2 --------------------, [[x, 2]]],

dx hx

2

d g(i - 1) - 2 g(i) + g(i + 1)

--- g(x) = [----------------------------, [[x, 2]]],

2 2

dx hx

d g(j - 1) - g(j + 1) d

-- g(y) = [-1/2 -------------------, [[y, 2]]], ----- f(x, y) = [

dy hy dy dx

223

A.4. Discretizing a PDE

-f(i - 1, j - 1) + f(i - 1, j + 1) + f(i + 1, j - 1) - f(i + 1, j + 1)

-1/4 --,

hy hx

[[x, 2], [y, 2]]] }

Here the numbers next to the coordinate variables x,y denotes the order of accuracy

of the replacement, and as expected they are all second order accurate. -1 represents

exact FDA, i.e. there is no differentiation with respect to that coordinate. Note

that this accuracy is not what user specifies when updating FD scheme (in previous

section). It is indeed the computed value of the actual accuracy of FDA which

should be equal or higher to the user specified value.

A.4.5 Defining Manual Finite Difference Operators: FD

FD provides a way to define an arbitrary FDA operator. In principal, any finite

difference operator can be created from the shifting operator (See [95]) defined (in

1 dimension) as:

E(fi) = fi+1 (A.67)

and its inverse is simply: E−1(fi) = fi−1. The generalization of this operator is

defined in the FD toolkit, and is named FD with the following format:

VDE::FD(dexpr::VDE, [[t shift] ,[x shift,y shift,z shift]])

in which FD takes an input dexpr of type VDE, and returns a VDE that is shifted

by the given integers (t shift, x shift,y shift,z shift). If there is no time

index dependency in the expression, the first argument, [t shift], can be dropped

and the routine accepts a shorter format:

FD(VDE,[x shift,y shift,z shift])

Similarly if z index k does not occur in the VDE, the routine accepts shorter list

[x shift,y shift] and so on. For example, the following demonstrates the defi-

nition of 3 manual FDA operators: 1) a forward time derivative FDA (DT) that is

224

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

equivalent to ∂t upto first order accuracy, 2) centered in x derivative FDA (DXC),

which is equivalent to ∂x upto second order accuracy, and 3) the time averaging

operator AVGT that is not an FDA. This operator is usually used in Crank-Nicolson

method to create a implicit FD scheme.

> DT := f -> (FD(f,[[1],[0]]) - FD(f,[[0],[0]]))/ht:

> df:= DT(f(n,i));

f(n + 1, i) - f(n, i)

df := ---------------------

ht

> DXC:= f -> (FD(f,[1,0]) - FD(f,[-1,0])) /(2*hx):

> DXC(f(i)*x(i)^2*g(j)+y(j));

2 2

f(i + 1) x(i + 1) g(j) - f(i - 1) x(i - 1) g(j)

1/2 ---

hx

> AVGT := f -> (FD(f,[[1],[0]]) + FD(f,[[0],[0]]))/2:

> AVGT(Gen_Sten(diff(f(t,x),x)));

f(n + 1, i - 1) - f(n + 1, i + 1) f(n, i - 1) - f(n, i + 1)

-1/4 --------------------------------- - 1/4 -------------------------

hx hx

Example 7: Defining manual difference operators

A.5 Posing a PDE & Boundary Conditions Over a

Discrete Domain

In solving PDEs, it often occurs that some part of the discretized domain needs

special treatment. By its nature, boundary points require different equations than

the original PDE. In addition, if the discretization scheme results in large finite

difference molecules, the points next to the boundaries also require special handling.

For example consider 4’th order accurate FDA of the derivative of a function, ∂xf(x):

225

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

f(i - 2) - 8 f(i - 1) + 8 f(i + 1) - f(i + 2)

1/12 ---

hx

This expression cannot be evaluated where i < 3 or i > Nx−2, as the finite difference
molecule (-2,-1,0,1,2) require points that do not exist in the discretized domain

at these limits. In this section, we describe the methodology to create different

equations for each part of the numerical domain, and the facilities FD provides to

impose boundary conditions and implement techniques such as ghost cells.

A.5.1 Discrete Domain Specifier: DDS

To specify each portion of the discrete domain, {i ∈ (1, Nx)} × {j ∈ (1, Ny)} · · · ,
FD uses a syntax similar to RNPL [114], via a derived data type that we refer as

Discrete Domain Specifier (DDS). A DDS is a list of equations:

DDS = [equation1, equation2, ...]

where each equation specifies part of the discrete domain and has the following LHS

and RHS:

each equation: { indexeq1, indexeq2, ... } = expression

in which each expression can be a VDE, or a continuous PDE, and each indexeq

describes the indexing for one of the spatial dimensions:

each indexeq: I = [start,NI-stop,step]

Here, the variable I denotes one of the indexing labels, (i,j,k), NI is the associated

domain size Nx,Ny,Nz, and step is a known integer that determines the stepping

size. The indexeq symbolizes a portion of the domain in which index I takes

the values: (start,start+step,start+2*step,...) and ends at value smaller or

equal to NI-stop. The reader may notice that this is exactly equivalent to a for

loop structure. For example

226

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

{ i = [1,Nx,1] , j =[2,Ny-1,2] } = ...

is equivalent to (in Fortran syntax):

DO i=1,Nx,1

DO j=2,Ny-1,2

...

ENDDO

ENDDO

The following example clarifies this syntax, and demonstrates a DDS for heat equa-

tion where the boundary points are fixed to values T0 and T1 and interior points are

specified by the heat equation.

HeatEq:= diff(f(t,x),t) - diff(f(t,x),x,x);

HeatDDS := [

{ i=[1,1,1] } = f(n+1,i) - T0 + myzero*x(i) ,

{ i=[2,Nx-1,1] } = Gen_Sten(HeatEq) ,

{ i=[Nx,Nx,1] } = f(n+1,i) - T1 +myzero*x(i)

];

Example 8: 1-D discrete domain specifier for the heat equation

The necessity of myzero*x(i) expression will become clear later when we use this

DDS as an input to FD’s solver routine generator.

Note that heat equation and its boundary conditions are simple and compact

enough to be discretized inside the DDS. For a more complex case, it is better

to create the discrete version of the equations for the boundaries separately, and

pass them into the DDS using human readable names. For example, the following

demonstrates a 2 dimensional DDS where each boundary uses a specific discrete

equation priorly created by the user:

227

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

mydds2d := [

Interior points:

{ i=[2,Nx-1,1] , j = [2,Ny-1,1] } = EQD_interior ,

Boundaries:

{ i=[1,1,1] , j = [1,Ny,1] } = EQD_left ,

{ i=[Nx,Nx,1] , j=[1,Ny,1] } = EQD_right ,

{ i=[1,Nx,1] , j=[1,1,1] } = EQD_bottom ,

{ i=[1,Nx,1] , j=[Ny,Ny,1] } = EQD_top

];

Example 9: Two dimensional DDS

For a set of coupled PDEs, the user can create the FDAs and DDS’s using a Maple for

loop. Note that FD will check for consistency of the LHS and RHS of each element

of DDS as well as the consistency between all the elements. It will raise errors if the

finite difference expression on the RHS does not have the same dimensionality as

the LHS. However at the moment FD does not check if the finite difference molecule

on the RHS fits into the domain specified on the LHS. The user need to be careful

with the manual discretization of the equations, and to avoid out of range errors, it

is best to use finite difference specifiers (FDS) discussed in Sec A.4.3.

A.5.2 Imposing Outer Boundary Conditions

The next step is to create the appropriate FDA expressions (the RHS expressions

in the DDS) that are compatible with specific boundary conditions and also are

created under consideration that there are limitations on the allowed points in the

vicinity of the boundary points. The case of fixing the value of the function or

Dirichlet boundary condition is quite simple and demonstrated in the example for

heat equation. Often other types of boundary conditions appear in physical systems.

One of particular interest is the “out-going” type or Neumann boundary condition.

For a 1-D wave equation the out-going boundary condition is given by:

∂tf(t, x) = −∂xf(t, x) (A.68)

228

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

for the right side boundary i=Nx that corresponds to the approximate positive “in-

finity” of the numerical domain x = +L∞. The out-going boundary condition at

the the left side of the numerical domain is given by:

∂tf(t, x) = +∂xf(t, x) (A.69)

for the point i=1 or x = −L∞. To implement such boundary conditions, one

needs to use FDA expressions that can be evaluated at the point of boundary that

does not allow symmetric FD scheme. As described in Sec. A.4.3, this is achieved

by changing the FDA scheme in FD using finite difference specifiers (FDS). For

example, the following demonstrates an implementation of a mixed boundary for

wave equation in which left boundary is fixed while the right boundary is outgoing.

Note the change of FDA scheme using the FDS: fds backwardx.

WaveEq := diff(f(t,x),t,t) - diff(f(t,x),x,x):

WaveEqBdy := diff(f(t,x),t) + diff(f(t,x),x):

WaveEqD := Gen_Sten(WaveEq):

fds_backwardx:=table([t=[-1,-1],x=[-1,0],y=[-1,-1],z=[-1,-1]]):

Update_FD_Table(2,fds_backwardx):

WaveEqBdyD := Gen_Sten(WaveEqBdy):

ddsWAVE:= [

i=[1,1,1] = f(n+1,i) - myzero*x(i) ,

i=[2,Nx-1,1] = WaveEqD,

i=[Nx,Nx,1] = WaveEqBdyD

];

Example 10: Specifying outgoing/mixed boundary condition for wave equation

229

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

A.5.3 Periodic Boundary Condition: FD Periodic

Another common boundary specification is periodic boundary condition (PBC). FD

provides a facility to implement PBCs by making a VDE periodic. The procedure:

FD Periodic(exprd::VDE,{I=1/NI})

takes an input, exprd, of type VDE and creates a periodic version of it. This location

is specified by the second argument, in which I is one of the indices (i,j,k) and the

RHS is either 1 or NI where NI is one of the associated grid size (Nx,Ny,Nz). For

example i=1 denotes that a periodic version of VDE is needed at the left boundary

and i=Nx denotes the same for the right boundary point. The replacements done

on FDA is illustrated in the following graph:

........

i=1

i=Nx

F(i−1) (at i=1) replaced wtih F(i+Nx−2)

F(i+2) (at i=Nx) replaced with F(i−Nx+3)

The following example, demonstrates the effect of the FD Periodic procedure

on a VDE:

> FD_table[x]:=[[0], [-1,0,1] ,[-2,-1,0,1,2]]:

> A:= Gen_Sten(diff(f(x),x,x));

f(i - 2) - 16 f(i - 1) + 30 f(i) - 16 f(i + 1) + f(i + 2)

A := -1/12 ---

230

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

2

hx

> FD_Periodic(A,{i=1});

f(i - 3 + Nx) - 16 f(i - 2 + Nx) + 30 f(i) - 16 f(i + 1) + f(i + 2)

-1/12 ---

2

hx

> FD_Periodic(A,{i=Nx});

f(i - 2) - 16 f(i - 1) + 30 f(i) - 16 f(i + 2 - Nx) + f(i + 3 - Nx)

-1/12 ---

2

hx

Finally, using this procedure, the implementation of a periodic DDS for wave equa-

tion can be achieved as following:

ddsWAVE_Periodic:= [

{ i=[1,1,1] } = FD_Periodic(WaveEqD,{i=1}) ,

{ i=[2,Nx-1,1] } = WaveEqD,

{ i=[Nx,Nx,1] } = FD_Periodic(WaveEqD,{i=Nx})

];

Example 11: Implementation of a periodic boundary condition

in which WaveEqD is the same as Example 10.

A.5.4 Implementing Ghost Cells for Odd and Even Functions:

A FD Odd, A FD Even

The boundaries of the numerical domain often correspond to the spatial infinity.

However, a different coordinate system than Cartesian coordinate can be chosen,

particularly to impose a certain symmetry. For example, one can work in a spherical

coordinate and assume that the function’s spatial dependency is only of the form:

f(t, x, y, z) = f(t, r) , r =
√

x2 + y2 + z2 . (A.70)

231

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

In this case, the domain of the PDE (and the function f) is r ∈ (0,∞). The

point r = 0 is superficially a boundary of the numerical domain in this coordinate

system, while in fact there is no physical boundary. These types of boundaries are

often referred as inner boundaries and usually are treated by imposing a specific

behaviour for the functions derived from the underlying symmetry.

One common scenario that occurs in the point (or axis) of symmetry is that

functions (depending on what they represent: scalar, vector, component of a tensor

etc) become even or odd. For example, a scalar function with spherical symmetry,

ψ(t, r), is an even function at r = 0, i.e:

ψ(t,−r) = ψ(t, r) (A.71)

Note that here, −r is neither a physical location, nor is part of the numerical domain.

However, one can simply consider the function along the x axis (where r = |x|) and
the refection symmetry x→ −x implies that the function is even in x. This means,

equivalently, function is even in r if we consider an extension of it to r < 0 that

represents the value of the function at −x. More rigorously, the functions at the

limit of r→ 0 take one of the two forms:

f(t, r) = C0(t) + C2(t)r
2 + C4(t)r

4 + . . . → function is even (A.72)

f(t, r) = C1(t)r + C3(t)r
3 + C5(t)r

5 + . . . → function is odd (A.73)

where the first case is for “scalar” functions and the second case is for “vector”

functions.

This property of the functions at inner boundaries allows a discretization tech-

nique known as “ghost cells” in finite difference method. For example, consider the

second and first derivative of the function with 4’th order accuracy:

232

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

FD Updated to 4’th order before...

> A:=Gen_Sten(diff(f(x),x,x));

f(i - 2) - 16 f(i - 1) + 30 f(i) - 16 f(i + 1) + f(i + 2)

A := -1/12 ---

2

hx

> B:=Gen_Sten(diff(f(x),x));

f(i - 2) - 8 f(i - 1) + 8 f(i + 1) - f(i + 2)

B := 1/12 ---

hx

Obviously, these terms cannot be used at i = 1, the left boundary point, and also

the point next to it i = 2. However, if we impose the even or odd behaviour on

the function, the values f(i-1) and f(i-2) are known from the symmetry. For

example, assuming that i is the point of symmetry, i.e the FDA will be used at i=1,

then for an even function: f(i-1) = f(i+1). This condition is illustrated in the

following diagram (a). Similarly, for an odd function we have: f(i-2) = -f(i+2).

Consider another example where f is odd, and the FDA will be used at i=2, the

point next to the inner boundary point. The out-of-bound term in the FDA in this

case is only f(i-2) and from the symmetry we must have: f(i-2) = -f(i). The

following diagram (b) clarifies this condition:

233

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

i+1

i

i+2i−1 i+3i+1i−2
FF F F

=

(a):

(b):
F FF F i

i−1
i−2i−3 i+1

= FiFi−2 −

= i−1F F

One standard method to implement this symmetry is to actually extend the

numerical domain to have extra points outside the physical domain. These points,

namely ghost cells, are updated via the symmetry, and allow FDA operations at the

boundary point.

FD provides a tool equivalent to the ghost cell technique. One can directly

manipulate the FDA expression according to the symmetry such that the out of

bound terms are replaced appropriately and the FDA can be used at the boundary

points. FD provides two procedures to perform this task:

A FD Even(exprd::VDE,coord,set of even funcs,symm loc,"forward/backward")

A FD Odd(exprd::VDE,coord,set of odd funcs,symm loc,"forward/backward")

where exprd is an FDA expression of type VDE, coord is the name of the coordinate

which we are imposing the symmetry on (one of the (x,y,z)), the two variables

set of even funcs and set of odd funcs are of type set and include the name

of the functions that are even and odd respectively. symm loc is an integer that

234

A.5. Posing a PDE & Boundary Conditions Over a Discrete Domain

determines the location of the inner boundary relative to the point where FDA

will be evaluated. For example the diagram (a) above corresponds to: symm loc

= 0 and the diagram (b) can be imposed by setting: symm loc = -1. The last

argument is of type string, and determines if the replacement should be ”forward” –

when the smaller index values are the out-of-bound ones and must be replaced – or

”backward”, i.e the larger index values are the out-of-bound and require replacement

with indexed terms inside the physical domain. Normally, if the inner boundary is

chosen to be the index i = 1 or (j = 1, k = 1 in higher dimensions), these procedures

will only be use in ”forward” mode.

The following demonstrates the usage of these two procedures and their output:

> A:=Gen_Sten(diff(f(x),x,x));

f(i - 2) - 16 f(i - 1) + 30 f(i) - 16 f(i + 1) + f(i + 2)

A := -1/12 ---

2

hx

Diagram (a) above:

> A_FD_Even(A,x,{f},0,"forward");

2 f(i + 2) - 32 f(i + 1) + 30 f(i)

-1/12 ----------------------------------

2

hx

Diagram (b) above:

> A_FD_Even(A,x,{f},-1,"forward");

31 f(i) - 16 f(i - 1) - 16 f(i + 1) + f(i + 2)

-1/12 --

2

hx

> B:= Gen_Sten(diff(f(x),x));

f(i - 2) - 8 f(i - 1) + 8 f(i + 1) - f(i + 2)

B := 1/12 ---

hx

235

A.6. Solving a PDEs

> A_FD_Odd(B,x,{f},0,"forward");

-2 f(i + 2) + 16 f(i + 1)

1/12 -------------------------

hx

> A_FD_Even(B,x,{f},0,"forward");

0

Example 12: Imposing even and odd symmetry at inner boundary point

Note that in the last execution, the result is identical to zero since the first derivative

of an even function is zero at the point of symmetry. We also note that if the FDA

involves several functions of mixed even and odd type, both of the routines need to

be applied consecutively to the FDA to achieve a proper discretized version, usable

at the inner boundary point.

A.6 Solving a PDEs

This section demonstrates how to incorporate all of FD’s procedures and structures

to solve a PDE.

A.6.1 Creating Initializer Routines: Gen Eval Code

The first step is to create routines that initialize the function f(t = 0, x, y, z). If this

initialization has an explicit function form depending on the coordinate and can be

evaluated on every point of the numerical grid (x(i),y(j),z(k)) then it can be

simply created using the procedure:

Gen Eval Code(expr,input="c*/d",proc name="my init proc");

where expr is either a continuous expression (setting input="c", this is the default

setting) or it is a VDE (by setting input="d"). The next option proc name is the

236

A.6. Solving a PDEs

name of the Fortran procedure we want to create and it denotes both the name of

the file (without the suffix .f) and the name of the procedure.

For example, consider the case where we want to set the initial profile of the

wave package to a Gaussian function:

f(t = 0, x, y) = A exp

(

−(x− xc)2
δ2x

− (y − yc)2
δ2y

)

(A.74)

the following FD code performs the desired task:

> read "../FD.mpl": MFD():

Warning, grid_functions is not assigned

FD table updated, see the content using SFDT() command

> grid_functions:={f}:

> init_f:=A*exp(-(x-xc)^2/delx^2 - (y-yc)^2/dely^2):

> Gen_Eval_Code(init_f,input="c",proc_name="init_to_gauss");

Fortran Code is written to init_to_gauss.f

C header is written to init_to_gauss.h

C call is written to init_to_gauss_call

Example 13: Creating Initializer Fortran routines

Similar to the very first example of creating IRE routines, all of FD’s code generator

routines create 3 files, X.f, X.h and X call, where the Fortran file X.f is the body

of the Fortran procedure that performs the desired task. All of the procedures

generated by FD have a last argument named res. For example the routine created

by the execution above, init to gauss.f has the following header:

subroutine init_to_gauss(x,y,Nx,Ny,A,delx,dely,xc,yc, res)

in which the highlighted res is the pointer to the vector that stores the returned

value of the procedure. In this case it is the function. Therefore user should pass

in the pointer that stores f at initial time in the driver code. The header file .h is

a wrapper that can be included in a C driver program to use this routine. In the

example above, the content of the file, init to gauss.h is:

void init_to_gauss_(double *x,double *y,int *Nx,int *Ny,double *A,double *delx,

double *dely,double *xc,double *yc,double *res);

237

A.6. Solving a PDEs

and finally the X call files are typical C calls that can be copied to the C driver

and after changing the last argument res to the appropriate pointer, can be used to

call the Fortran routine. In the example above, the content of init to gauss call

is:

init_to_gauss_(x,y,&Nx,&Ny,&A,&delx,&dely,&xc,&yc,res);

We note that if the expression that is passed to the procedure contains deriva-

tives, (or FDA expressions in discrete form) then this procedure only evaluates/ini-

tializes the expression at the points where the evaluation is possible i. e. allowed by

the size of the finite difference molecule (FDM). This usually results in a Fortran

routine that ignores the evaluation of the function on the boundary points (and per-

haps in its vicinity depending on how large the resulting FDM is). If the evaluation

is required at the boundary points, then the procedure described in the next section

should be used.

A.6.2 Point-wise Evaluator Routines with DDS: A Gen Eval Code

If the initialization is needed to vary at different portions of the discrete domain,

the Fortran routine can be generated using the “evaluator” routine generator:

A Gen Eval Code(dds:DDS,input="c*/d",proc name="my eval proc");

where the only difference between this procedure and Gen Eval Code is in the first

argument, where this procedure accepts DDS type to allow specific calculations at

different parts of the domain. This procedure can also be used to evaluate a specific

function that depends on the primary dynamical fields and their derivatives. It can

also be used to evaluate the point-wise residuals of PDEs if needed.

For example, consider the problem where we want to evaluate the function f that

is the Laplacian of the function φ in cylindrical coordinate with axial symmetry:

f(ρ, z) = ∇2φ =
1

ρ
∂ρ(ρ∂ρφ(ρ, z)) + ∂2zφ(ρ, z) = ∂2ρφ+

∂ρφ

ρ
+ ∂2zφ (A.75)

238

A.6. Solving a PDEs

Note that we would like to evaluate this Laplacian value on the axis ρ = 0 (which is

an inner boundary) as well as the interior points. To do so, we need to deal with the

irregular term 1
ρ and also impose an inner boundary condition at ρ = 0. As discussed

previously, these types of inner boundary conditions are dealt by looking into the

behaviour of the function at the limit of approaching the boundary, here: ρ → 0.

We know that the function φ is a scalar and its first derivative ∂ρφ approaches zero

on the axis as O(ρ). Using the L’Hospital’s rule:

lim
ρ→0

∂ρφ

ρ
=
∂2φ

∂ρ2
(A.76)

Therefore, two versions of the expression are used to evaluate f :

f = ∇2φ =

∂2ρφ+
∂ρφ
ρ + ∂2zφ if ρ 6= 0

2∂2ρφ+ ∂2zφ if ρ = 0

(A.77)

In addition, the evaluation of the derivative as an FDA at ρ = requires implemen-

tation of boundary condition as described in Sec. A.5.4. Here the inner boundary

condition is created using the fact that φ is an even function in ρ. The following

example demonstrates all of the steps described to achieve this evaluation:

read "../FD.mpl": CFD(): MFD():

grid_functions:={phi}:

Laplace_Interiour:= diff(phi(x,z),x,x) + diff(phi(x,z),x)/x + diff(phi(x,z),z,z):

Laplace_Boundary_D:= Gen_Sten(2*diff(phi(x,z),x,x) + diff(phi(x,z),z,z)):

dds_2Dlaplace:= [

{ i=[2,Nx-1,1] , k=[2,Nz-1,1] } = Gen_Sten(Laplace_Interiour),

{ i=[1,1,1], k = [2,Nz-1,1] } = A_FD_Even(Laplace_Boundary_D,x,{phi},0,"forward"),

{ i=[Nx,Nx,1] , k=[1,Nz,1] } = myzero*x(i)*z(k),

{ i=[1,Nx,1] , k =[1,1,1] } = myzero*x(i)*z(k),

{ i=[1,Nx,1] , k =[Nz,Nz,1] } = myzero*x(i)*z(k)

]:

239

A.6. Solving a PDEs

A_Gen_Eval_Code(dds_2Dlaplace,input="c",proc_name="eval_laplace");

Fortran Code is written to eval_laplace.f

C header is written to eval_laplace.h

C call is written to eval_laplace_call

Example 14: Point-wise Evaluator Routine Generator Using a DDS

A.6.3 Creating IRE Testing Routines: Gen Res Code

If the function that needs to be evaluated is indeed a residual, i.e. expected to

be zero in the continuum limit, then often the user is interested in monitoring the

l2-norm of this residual. FD provides a procedure that creates a Fortran routine for

such an evaluation:

Gen Res Code(expr,input="c*/d",proc name="my res proc");

where expr can be a PDE residual in a continuous form or a VDE. The only differ-

ence between this procedure and Gen Eval Code is that the Fortran routine gener-

ated here will perform a l2-norm (root mean square to be specific) on the function

and returns a single real number. This routine can be used as a fast prototyping tool

to create Independent Residual Evaluator routines. The following demonstrates an

example of creating IRE for wave equation:

read "../FD.mpl": Clean_FD(): Make_FD():

grid_functions := {f}:

WaveEq := diff(f(t,x),t,t) = diff(f(t,x),x,x):

Gen_Res_Code(lhs(WaveEq)-rhs(WaveEq),input="c",proc_name="ire_wave");

Example 15: Fast Prototyping IRE Routines

A.6.4 Creating Piece-wise Residual Evaluator Routines

Similar to the generalization of Gen Eval Code to A Gen Eval Code such that the

procedure accepts a DDS such that the function can be evaluated on each portion

240

A.6. Solving a PDEs

of the discrete domain, here A Gen Res Code extends the capability of previous pro-

cedure Gen Res Code to evaluate the l2-norm of the residual that is specified by a

DDS:

A Gen Res Code(dds:DDS,input="d/c*",proc name="my res proc");

This procedure is perhaps most useful to evaluate the norm of the residual of the

PDE under study. The returned norm of the residual can be compared to a threshold

value to determine if the PDE is numerically solved after applying the solver rou-

tine (or after certain number of iterations of the solver routines are applied). Note

that this routine can also be used as an IRE generator. Example 14 can be used

to demonstrate the use of this procedure, the difference is that the Fortran routine

created by this procedure will return the l2-norm of the laplace equation, and there-

fore can be useful if we are monitoring the norm of the residual and convergence of

our numerical solver.

A.6.5 Creating Solver Routine: A Gen Solve Code

As we discussed in Sec. A.2.2, for a given FDA of a PDE written in canonical form:

PDE = L(f) = 0 = Lh(fh) (A.78)

the solving process involves finding the unknowns fijk (for a boundary value prob-

lem) or fn+1
ijk for initial value problem using fnijk. As introduced in Sec. A.2.2, a

standard approach for a nonlinear system is to use Newton-Gauss-Seidel iterative

method. FD provides a procedure that generates routines which implement single

iteration of this method:

A Gen Solve Code(dds:DDS,{solve for var},input="d/c*",proc name="my solver proc");

where the first argument is of type DDS, and the second argument is a set of unknowns

for which the FDA must be solved. At the moment this set must contain only a single

241

A.6. Solving a PDEs

term, such as f(n+1,i,j,k) as the unknown. The created Fortran routine performs

a single iteration of Newton-Gauss-Seidel and returns the “updated” function in the

last argument, namely res which shall be adjusted by the user. This completes

all the necessary tools to create a set of solver routines for a PDE, and in the

next section we put together all of the features of FD discussed to demonstrate an

implementation of a solver system for 1-D wave equation using an implicit scheme.

This example also demonstrates the use of this solver procedure.

Note on myzero Expression

As it has been seen at several points in this document, the user needs to im-

plement constant functions or residual equations by adding a trivial VDE such as

myzero*x(i)*y(j). This is due to the fact that FD uses VDE’s to figure out the

dimensionality and dependencies of the PDEs, therefore if a single expression such

as a constant number is given to FD’s discretization routines, it has no way of find-

ing the dimensionality of the problem. In particular, the common scenario that

the use of myzero is essential is when in the equation that needs to be solved the

solution simplifies to a single constant or zero. For instance, in Example 10 we are

imposing fixed boundary condition f = 0 at x = 0, therefore the residual of the

equation (LHS of equation in canonical form: L(f) = 0) is simply: f . However, the

implementation of this residual has to be f −myzero ∗ x, since if f is passed in as

the residual, the solver VDE simplifies to 0, which has no valid dependency on any

discrete index, {i,j,k,n}, to be understood by FD.

A.6.6 Communicating with Parallel Computing Infrastructure

Here we present a simple communication method with a parallelization infrastruc-

ture (FD adopts PAMR’s [33] standard). To achieve this goal a vector of integer

flags, phys bdy is passed to the solver/evaluator routines in which the value 1 de-

notes that the boundary is a real physical boundary, therefore the boundary condi-

tion should be imposed, and the value 0 denotes that it is a boundary between CPUs

242

A.6. Solving a PDEs

and usually no calculation is required as the parallel frameworks often implement

between CPU ghost cells for the distributed sub-domains. These flags are invoked

by setting the variable b to their associated names xmin,xmax,... as noted in ta-

ble .(A.62) The following example demonstrates a DDS that implements boundary

flags:

ddsfWave := [

{ i=[2,Nx-1,1] , j=[2,Ny-1,1] } = PDEWave_D,

{ i=[1,1,1] , j=[1,Ny,1] , b=xmin } = f(n+1,i,j) - myzero*x(i)*y(j),

{ i=[Nx,Nx,1] , j=[1,Ny,1] , b=xmax } = f(n+1,i,j) - myzero*x(i)*y(j),

{ i=[1,Nx,1] , j=[1,1,1] , b=ymin } = f(n+1,i,j) - myzero*x(i)*y(j),

{ i=[1,Nx,1] , j=[Ny,Ny,1] , b=ymax } = f(n+1,i,j) - myzero*x(i)*y(j)

];

We encourage the reader to look into the Fortran files that are created using this

type of DDS to inspect how the phys bdy flags are positioned in the file.

The tutorial: FD/tutorials/wave2d pamr fixed boundary in the distribution

package is an implementation of a parallel 2 dimensional wave equation solver.

A.6.7 Example: Crank-Nicolson Implementation of Wave

Equation

We complete this section by combining all of the tools we discussed to a single Maple

script that creates a solver routine, residual evaluator and an independent residual

evaluator as well as an initializer routine for the 1 dimensional wave equation. The

wave equation is given by:

∂2t f(t, x) = ∂2xf(t, x) , (A.79)

243

A.6. Solving a PDEs

and can be reduced to a first order system by defining ft as:

ft(t, x) ≡ ∂tf(t, x) (A.80)

⇒

∂tf(t, x) = ft(t, x) (A.81)

∂tft(t, x) = ∂2xf(t, x) (A.82)

Here we assume periodic boundary conditions Note that the example, first imple-

ments an IRE for the system using the original form of the wave equation and FD’s

default second order leap-frog scheme. After that, the FD scheme is updated to

forwards in time, and by virtue of time averaging we achieve second order accuracy.

It also demonstrate how to create initializer routines as well as residual evaluator

routines to measure how accurate the PDE is solved.

read "../FD.mpl": Clean_FD(); Make_FD();

grid_functions := {f,f_t};

eq1 := diff(f(t,x),t) = f_t(t,x);

eq2 := diff(f_t(t,x),t) = diff(f(t,x),x,x);

eq3 := diff(f(t,x),t,t) = diff(f(t,x),x,x);

Gen_Res_Code(lhs(eq3)-rhs(eq3),input="c",proc_name="ire_f");

FD_table[t] := [[0],[0,1]];

AVGT := a -> (FD(a,[[1],[0]]) + FD(a,[[0],[0]]))/2;

eq1_D := Gen_Sten(lhs(eq1)) - AVGT(Gen_Sten(rhs(eq1)));

eq2_D := Gen_Sten(lhs(eq2)) - AVGT(Gen_Sten(rhs(eq2)));

init_f:=A*exp(-(x-x0)^2/delx^2);

init_f_t:=idsignum*diff(init_f,x);

Gen_Eval_Code(init_f,input="c",proc_name="init_f");

Gen_Eval_Code(init_f_t,input="c",proc_name="init_f_t");

244

A.7. List of Abbreviations

dss_f:= [

{ i=[1,1,1] } = FD_Periodic(eq1_D,{i=1}) ,

{ i=[2,Nx-1,1] } = eq1_D,

{ i=[Nx,Nx,1] } = FD_Periodic(eq1_D,{i=Nx})

];

dss_f_t:= [

{ i=[1,1,1] } = FD_Periodic(eq2_D,{i=1}) ,

{ i=[2,Nx-1,1] } = eq2_D,

{ i=[Nx,Nx,1] } = FD_Periodic(eq2_D,{i=Nx})

];

A_Gen_Res_Code(dss_f,input="d",proc_name="res_f",is_periodic=true);

A_Gen_Res_Code(dss_f_t,input="d",proc_name="res_f_t",is_periodic=true);

A_Gen_Solve_Code(dss_f,{f(n+1,i)},input="d",proc_name="u_f",is_periodic=true);

A_Gen_Solve_Code(dss_f_t,{f_t(n+1,i)},input="d",proc_name="u_f_t",is_periodic=true);

Example 15: Implementation of Crank-Nicolson Scheme to Solve 1D Wave

Eq. (A.79)

Note that several other complete examples are included in FD’s distribution

package in the directory tutorials, including: 2D wave equation in parallel, non-

linear mixed boundary 1D wave equation, heat equation, and 2D wave equation in

cylindrical coordinate with axial symmetry. All of the examples in this manual are

also included in the distribution under examples directory.

Also see: http://laplace.phas.ubc.ca/People/arman/FD doc/tutorials.html

for detailed tutorials on how to use FD.

A.7 List of Abbreviations

BVE: Boundary Value Problem

DDS: Discrete Domain Specifier

FD: Finite Difference, also the name of the toolkit

245

A.7. List of Abbreviations

FDA: Finite Difference Approximation

FDE: Finite Difference Equation

FDM: Finite Difference Molecule

FDS: Finite Difference Specifier

IVE: Initial Value Problem

LHS: Left Hand Side

ODE: Ordinary Differential Equation

PBC: Periodic Boundary Condition PDE: Partial Differential Equation

RHS: Right Hand Side

VCE: Valid Continuous Expression

VDE: Valid Discrete Expression

246

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Introduction
	Notation
	Einstein's Gravitational Field Equations
	Gravitational Waves
	Gravitational Collapse: Black Hole Solution
	Critical Phenomena in Gravitational Collapse
	3+1 Formulations of Einstein's Equations
	ADM Decomposition
	Recasting of ADM Equations: BSSN Formulation

	Coordinate Choices
	Overview of Numerical Techniques for Time Dependent Problems
	Outline of the Thesis

	Critical Collapse in the Spherically Symmetric Einstein - Vlasov Model
	Introduction
	Equations of Motion
	Coordinate Choice and Equations for Metric Components
	The Energy Momentum Tensor
	Evolution of the Distribution Function

	Static Solutions
	Numerical Techniques
	Evolution Scheme
	Initial Data
	 Diagnostic Quantities and Numerical Tests

	Results
	Generic Massless Case
	Near-static Massless Case
	Generic Massive Case

	Summary and Discussion

	Black Hole Critical Behaviour with the Generalized BSSN Formulation
	Introduction
	Equations of Motion
	Generalized BSSN
	G-BSSN in Spherical Symmetry and Gauge Choices

	Numerics
	Initialization
	Boundary Conditions
	Evolution Scheme and Regularity
	Tests
	Finding Black Hole Threshold Solutions

	Results
	Zero Shift
	Gamma-driver Shift

	Conclusion
	BSSN in Spherical Symmetry
	Scalar Field Synamics and Energy-Momentum Tensor in Spherical Symmetry

	Non-linear Gravity Wave Evolutions with the G-BSSN Formulation
	Introduction
	Equations of Motion for Strong Gravity Waves Dynamics
	G-BSSN in Cylindrical Coordinate with Axial Symmetry
	Coordinate Choices
	Note on Complexity and Regularity of the Equations
	Axisymmetric Initial Data
	Brill Initial Data
	Teukolsky-type Initial Data
	Computing the ADM Mass of the Gravitational Pulse

	Numerics
	Numerical Grid
	Initialization
	Boundary Conditions
	Evolution Scheme
	Note on G-BSSN's Additional Constraints
	Tests: Convergence of Primary Variables
	Tests: Conservation of Constraints During Evolution
	Tests: Direct Validation via Einstein's Equations

	Results
	Evolution of Teukolsky-type Initial Data
	Evolution of Brill Initial Data

	Further Remarks and Conclusion

	Conclusion
	Bibliography
	Appendix: FD, Finite Difference Toolkit
	Introduction
	Overview of Finite Difference Method
	Computing the FDA Expression
	Iterative Schemes for Non-Linear PDEs
	Testing Facilities: Convergence and IRE

	Semantics of FD
	Parsing a PDE: Fundamental Data Type
	Coordinates
	Initializing FD, Make_FD, Clean_FD
	Grid Functions Set: grid_functions
	Known Functions
	Valid Continuous Expression, VCE
	Valid Discrete Expression, VDE
	Conversion Between VDE and VCE

	Discretizing a PDE
	Performing the Finite Differencing, Gen_Sten
	Discretization Scheme, FD_table
	Changing the FDA Scheme: FDS, Update_FD_Table
	Accessing the FD Results: Show_FD
	Defining Manual Finite Difference Operators: FD

	Posing a PDE & Boundary Conditions Over a Discrete Domain
	Discrete Domain Specifier: DDS
	Imposing Outer Boundary Conditions
	Periodic Boundary Condition: FD_Periodic
	Implementing Ghost Cells for Odd and Even Functions: A_FD_Odd, A_FD_Even

	Solving a PDEs
	Creating Initializer Routines: Gen_Eval_Code
	Point-wise Evaluator Routines with DDS: A_Gen_Eval_Code
	Creating IRE Testing Routines: Gen_Res_Code
	Creating Piece-wise Residual Evaluator Routines
	Creating Solver Routine: A_Gen_Solve_Code
	Communicating with Parallel Computing Infrastructure
	Example: Crank-Nicolson Implementation of Wave Equation

	List of Abbreviations

