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I. CONVENTIONS AND UNITS

This article adopts many of the conventions and nota-
tions of Misner, Thorne and Wheeler (1973)—hereafter
denoted MTW—including: metric signature (− + + +);
definitions of Christoffel symbols and curvature tensors
(up to index permutations permitted by standard sym-
metries of the tensors in a coordinate basis); the use of
Greek indices α, β, γ, . . ., ranging over the spacetime co-
ordinate values (0, 1, 2, 3) → (t, x1, x2, x3), to denote the
components of spacetime tensors such as gµν ; the similar
use of Latin indices i, j, k, . . ., ranging over the spatial co-
ordinate values (1, 2, 3) → (x1, x2, x3), for spatial tensors
such as γij ; the use of the Einstein summation convention
for both types of indices; the use of standard Kronecker
delta symbols (tensors), δµ

ν and δi
j ; the choice of geo-

metric units, G = c = 1; and, finally, the normalization
of the matter fields implicit in the choice of the constant
8π in (1).

The majority of the equations that appear in this arti-
cle are tensor equations, or specific components of tensor
equations, written in traditional index (not abstract in-
dex) form. Thus, these equations are generally valid in
any coordinate system, (t, xi), but, of course do require
the introduction of a coordinate basis and its dual. This
approach is also largely a matter of convention, since all
of what follows can be derived in a variety of fashions,
some of them purely geometrical, and there are also ap-
proaches to numerical relativity based, for example, on
frames rather than coordinate bases.

This article departs from MTW in its use of α, βi and
γij to denote the lapse, shift and spatial metric respec-

tively, rather than MTW’s N , N i and (3)gij .

Finally, the operations of partial differentiation with
respect to coordinates xµ, t and xi are denoted ∂µ, ∂t

and ∂i, respectively.

II. INTRODUCTION

The numerical analysis of general relativity, or numer-

ical relativity, is concerned with the use of computational
methods to derive approximate solutions to the Einstein
field equations

Gµν = 8πTµν . (1)

Here, Gµν is the Einstein tensor—that contracted piece
of the Riemmann curvature tensor that has vanishing
divergence—and Tµν is the stress tensor of the matter
content of the spacetime. Tµν likewise has vanishing di-

vergence, an expression of the principle of local conserva-
tion of stress-energy that general relativity embodies.

The elegant tensor formulation (1) belies the fact that,
ultimately, the field equations are generically a com-
plicated and nonlinear set of partial differential equa-
tions for the components of the spacetime metric ten-
sor, gµν(xα), in some coordinate system xα. Moreover,
implicit in a numerical solution of (1) is the numerical
solution of the equations of motion for any matter fields

that couple to the gravitational field—that is, that con-
tribute to Tµν . The reader is reminded that it is a hall-
mark of general relativity that, in principle, all matter
fields—including massless ones such as the electromag-
netic field—contribute to Tµν .

Now, in the 3 + 1 approach to general relativity that is
described below, the task of solving the field equations (1)
is formulated as an initial value or Cauchy problem.
Specifically the spacetime metric, gµν(xα) = gµν(t, xk),
which encodes all geometric information concerning the
spacetime, M, is viewed as the time history, or dynami-
cal evolution, of the spatial metric, γij(0, xk), of an initial
spacelike hypersurface, Σ(0). In any practical calcula-
tion, the degree to which the matter fields “backreact” on
the gravitational field, that is contribute to Tµν substan-
tially enough to cause perturbations in gµν at or above
the desired accuracy threshold, will thus depend on the
specifics of the initial configuration.

In astrophysics, there are relatively few well identified
environments in which it is generally thought to be cru-
cial to the faithful emulation of the physics that the mat-
ter fields be fully coupled to the gravitational field. How-
ever, both observationally and theoretically, the existence
of gravitationally compact objects is quite clear. Gravi-
tationally compact means that a star with mass, M , has
a radius, R, comparable to its Schwarzschild radius, RM ,
which is defined by

RM =
2G

c2
M ≈ 10−27 kgm−1 . (2)

Here, and only here, G and c—Newton’s gravitational
constant and the speed of light, respectively—have been
explicitly reintroduced. The fact that RM/R is about
10−6 and 10−9 at the surfaces of the sun and earth, re-
spectively, is a reminder of just how weak gravity is in
the locality of Earth. However, as befits anything of Ein-
steinian nature, the weakness of gravity is relative, so
that at the surface of a neutron star, one would find

RM

R
∼ 0.4 , (3)
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while for black holes, one has

RM

R
= 1 . (4)

In such circumstances, gravity is anything but weak! Fur-
thermore, in situations where the matter-energy distribu-
tion has a highly time dependent quadrupole moment—
such as occurs naturally with a compact-binary system
(i.e. a gravitationally bound two-body system, in which
each of the bodies is either a black hole or a neutron
star)—the dynamics of the gravitational field, including,
crucially, the dynamics of the radiative components of
the gravitational field, can be expected to dominate the
dynamics of the overall system, matter included. For sce-
narios such as these, it should come as no surprise that
the solution of the combined gravito-hydrodynamical sys-
tem begs for numerical analysis.

In addition, both from the physical and mathematical
perspectives, it is also natural to study the strong, field
dynamic regimes (R → RM and/or v → c where v is the
typical speed characterizing internal bulk motion of the
matter) of general relativity within the context of a va-
riety of matter models. Typical processes addressed by
these theoretical studies include the process of black hole
formation, end-of-life-events for various types of model
stars, and, again, the interaction, including collisions,
of gravitationally compact objects. Note that it is an-
other hallmark of general relativity that highly dynami-
cal spacetimes need not contain any matter; indeed, the
interaction of two black holes—the natural analog of the
Kepler problem in relativity—is a vacuum problem; that
is, it is described by a solution of (1) with Tµν = 0.

Motivated in significant part by the large scale efforts
currently underway to directly detect gravitational radi-
ation (gravitational waves), much of the contemporary
work in numerical relativity is focused on precisely the
problem of the late phases of compact-binary inspiral and
merger. Such binaries are expected to be the most likely
candidates for early detection by existing instruments
such as TAMA, GEO, VIRGO, LIGO, and, more likely,
by planned detectors including LIGO II and LISA (see
for example Hough and Rowan (2000)). Detailed and
accurate predictions of expected waveforms from these
events—using the techniques of numerical relativity—
has the potential to substantially hasten the discovery
process, on the basis of the general principle that if one
knows what signal to look for, it is much easier to extract
that signal from the experimental noise.

The computational task facing numerical relativists
who study problems such as binary inspiral is formidable.
In particular such problems are intrinsically “3D”, to use
the CFD (computational fluid dynamics) nomenclature
in which time dependence is always assumed. That is, the
PDEs (partial differential equations) that must be solved
govern functions, F (t, xk), that depend on all three spa-
tial coordinates, xk, as well as on time, t. Unfortunately,
even a cursory description of 3D work in numerical rela-
tivity as it stands at this time is far beyond the scope of

this article.
What follows, then, is an outline of a traditional ap-

proach to numerical relativity that underpins many of the
calculations from the early years of the field (1970’s and
1980’s), most of which were carried out with simplifying
restrictions to either spherical symmetry or axisymmetry.
The mathematical development, which will hereafter be
called the 3+1 approach to general relativity, has the
advantage of using tensors and an associated tensor cal-
culus that are reasonably intuitive for the physicist. This
“standard” 3 + 1 approach is also sufficient in many in-
stances (particularly those with symmetry) in the sense
that it leads to well-posed sets of PDEs that can be dis-
cretized and then solved computationally in a convergent
(stable) fashion. In addition, a thorough understanding
of the 3 + 1 approach will be of significant help to the
reader wishing to study any of the current literature in
numerical relativity, including the 3D work.

However, the reader is strongly cautioned that the blind
application of any of the equations that follow, especially
in a 3D context, may well lead to ill posed systems, nu-
merical analysis of which is useless. Anyone specifically
interested in using the methods of numerical relativity to
generate discrete, approximate solutions to (1), particu-
larly in the generic 3D case, is thus urged to first consult
one of the comprehensive reviews of numerical relativity
that continue to appear at fairly regular intervals (see
for example, Lehner (2001), or Baumgarte and Shapiro
(2003)). Most such references will also provide a useful
overview of many of the most popular numerical tech-
niques that are currently being used to discretize (convert
to algebraic form) the Einstein equations, as well as the
main algorithms that are used to solve the resulting dis-
crete equations. These subjects are not described below,
not least since discussion of the available discretization
techniques only makes sense in the context of specific
systems PDEs with specific boundary conditions, while
there is only space here to describe the general mathe-
matical setting for 3 + 1 numerical relativity.

III. THE 3 + 1 SPACETIME SPLIT

At least at the current time, computations in numer-
ical relativity are restricted to the case of globally hy-

perbolic spacetimes. A spacetime (4-dimensional pseudo-
Riemannian manifold), MΣ, endowed with a metric, gµν ,
is globally hyperbolic if there is at least one edgeless,
spacelike hypersurface, Σ(0), that serves as a Cauchy sur-
face. That is, provided that the initial data for the grav-
itational field is set consistently on Σ(0)—so that the
four constraint equations are satisfied (see below)—the
entire metric gµν(t, xi) can be determined from the field
equations (1) (with appropriate boundary conditions),
and thus so can the complete geometric structure of the
spacetime manifold.

To be sure, global hyperbolicity is restrictive. It ex-
cludes, for example, the highly interesting Gödel uni-
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verse. However, particularly from the point of view
of studying asymptotically flat solutions (or solutions
asymptotic to any of the currently popular cosmologies),
as is usually the case in astrophysics, the requirement of
global hyperbolicity is natural.

The 3 + 1 split is based on the complete foliation of
MΣ based on level surfaces of a scalar function, t—the
time function. That is, the t = const. slices, are three-
dimensional spacelike (Riemannian) hypersurfaces, and,
as t ranges from −∞ to +∞, completely fill the spacetime
manifold, MΣ. In order for the Σ(t) to be everywhere
spacelike, t must be everywhere timelike;

gµν∇
µt∇νt < 0 . (5)

Here ∇µ is the spacetime covariant derivative operator
compatible with the four metric, gµν , thus satisfying
∇αgµν = 0, and gµν is the inverse metric tensor, which
satisfies gµαgαν = δµ

ν . The reader is reminded that δµ
ν

is a Kronecker delta symbol; that is, δµ
ν has the value 1

if µ = ν, and the value 0 otherwise.

Furthermore, the scalar function t is now adopted as
the temporal coordinate, so that xµ = (t, xi), where the
xi are the three spatial coordinates. As noted implicitly
above, since the problem under consideration is a pure
Cauchy evolution, the range of t should nominally be
infinite, both to the future as well as to the past; that is,
the solution domain is

−∞ < t < ∞ , (6)

|X | ≡
(

γijx
ixj

)
1

2 < ∞ . (7)

However, this assumes that one has global existence
for arbitrarily strong initial data, which is decidedly not

always the case in general relativity. Indeed “contin-
ued” or “catastrophic” gravitational collapse—that is,
the process of black hole formation—signaled, in mod-
ern language, by the appearance of a trapped surface,
inexorably leads to a physical singularity, which—the
somewhat vague nature of the singularity theorems of
Penrose, Hakwing and others notwithstanding—in ac-
tual numerical computations invariably turns out to be
“catastrophic” in terms of Cauchy evolution.

Such behaviour in time-dependent nonlinear PDEs is
quite familiar in the mathematical community at large,
where it is frequently known as finite time blow up (or
finite time singularity). However, despite the fact that
such behaviour is one of the most fascinating aspects of
solutions of the Einstein equations, the following discus-
sion will be, implicitly at least, restricted to the case of
weak initial data, that is to initial data for which there
is global existence.

With the manifold MΣ sliced into an infinite stack
of spacelike hypersurfaces, Σ(t), attention shifts to any
single surface, as well as to the manner in which such a
generic surface is embedded in the spacetime.

First, each spacelike hypersurface, Σ(t), is itself a
3-dimensional Riemannian differential manifold with a
metric γij(t, x

k). (Note that in this discussion, the sym-
bol t is to be understood to represent any specific value
of coordinate time.) From this metric, one can construct
an inverse metric, γij(t, xk), defined, as usual, so that

γikγkj = δi
j . (8)

Associated with the spatial metric, γij , is a natural spa-
tial covariant derivative operator, Di that is compatible
with γij :

Dkγij = 0 . (9)

With the spatial metric, γij , and its inverse, γij , in
hand, the standard formulae of tensor analysis can be
applied to compute the usual suite of geometrical tensors.
All tensors thus computed, and indeed, all tensors defined
intrinsically to the hypersurfaces Σ(t) are called spatial

tensors, and have their indices (if any) raised and lowered
with γij and γij , respectively.

Thus, the Christoffel symbols of the second kind, Γi
jk,

are given by

Γi
jk =

1

2
γil (∂kγlj + ∂jγlk − ∂lγjk) . (10)

Note that these quantities are symmetric in their last

two indices

Γi
jk = Γi

kj , (11)

and that they can be used, as usual, in explicit calculation
of the action of the spatial covariant derivative operator
on an arbitrary tensor. In particular, for the special cases
of a spatial vector, V i, and a co-vector (one-form), Wi,
one has

DiV
j = ∂iV

j + Γj
ikV k , (12)

and

DiWj = ∂iWj − Γk
ijWk , (13)

respectively.

Given the Christoffel symbols, the components of the
spatial Riemmann tensor, denoted here Rijk

l, are com-
puted using

Rijk
l = ∂jΓ

l
ik − ∂iΓ

l
jk + Γm

ikΓl
mj − Γm

jkΓl
mi . (14)

Finally, the Ricci tensor, Ri
j , and Ricci scalar, R, are

defined in the usual fashion

Ri
j = γikRkj = γikRklj

l , (15)

R = γijRij . (16)
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dt

Σ

α

(t+dt)

Σ(t)
P

Qβ i
dt dx i

dx
µ

FIG. 1: Spacetime displacement in the 3 + 1 approach, follow-
ing Misner, Thorne and Wheeler (1973). Solid lines represent
surfaces of constant time, t; that is, each solid line represents
a single spacelike hypersurface, Σ(t). Dotted lines denote tra-
jectories of constant spatial coordinate, that is, trajectories
with xk = const. The lapse function, α(t, xk), encodes the
(local) ratio between elapsed coordinate time, dt, and elapsed
proper time, dτ = αdt, for an observer moving normal to the
slices (i.e. for an observer with a four velocity, uµ, identical
to the hypersurface normal, nµ). Similarly, the shift vec-
tor, βi(t, xk), describes the shift, βi(t, xi)dt, in trajectories of
constant spatial coordinate—the dotted lines in the figure—
relative to motion perpendicular to the slices. The 3 + 1
form of the line element (18) then follows immediately from
an application of the spacetime version of the Pythagorean
theorem.

The reader should again note that all of the tensors
just defined “live” on each and every single spacelike hy-
persurface, Σ(t), and are thus known as hypersurface-
intrinsic quantities. In particular, the spatial Riemann
tensor, Rijk

l, which encodes all intrinsic geometric infor-
mation about Σ(t), in no way depends on how the slice

is embedded in the spacetime MΣ.

The next step in the 3 + 1 approach involves rewriting
the fundamental spacetime line element for the squared
proper distance, ds2, between two spacetime events, P
and Q, having coordinates xµ and xµ + dxµ respectively,

ds2 = gµνdxµdxν . (17)

As Fig. 1 illustrates, a quick route to the 3+1 decompo-
sition of the above expression, and thus of the tensor gµν

itself, is based on an application of the “4-dimensional
Pythagorean theorem”. In setting up the calculation,
one naturally identifies four functions, the scalar lapse,
α(t, xk), and the vector shift, βi(t, xk), that encode the
full coordinate (gauge) freedom of the theory. That is
complete specification of the lapse and shift is equivalent
to completely fixing the spacetime coordinate system.

In light of the above discussion, and again referring to
Fig. 1, one readily deduces the 3+1 decomposition of the
spacetime line element:

ds2 = −α2dt2 + γij

(

dxi + βidt
) (

dxj + βjdt
)

. (18)

A rearranged form of this last expression is also often

seen in the literature:

ds2 =
(

−α2 + βkβk
)

dt2 + 2βkdxkdt + γijdxidxj . (19)

The following useful identifications of the “time-time”,
“time-space”, and “space-space” pieces of the spacetime
metric, gµν , follow immediately from (19):

g00 = −α2 + βiβi (20)

g0i = gi0 = βi = γikβk (21)

gij = γij (22)

This last relation is an example of a useful general re-
sult; the purely spatial components, Qijk···, of a com-
pletely covariant, but otherwise arbitrary, spacetime ten-
sor, Qαβγ···, constitute the components of a completely
covariant spatial tensor.

A straightforward calculation, which provides a good
exercise in the use of the 3+1 calculus, yields the follow-
ing equally useful identifications for various pieces of the
inverse spacetime metric: gαβ

g00 = −α−2 (23)

g0i = gi0 = α−2βi (24)

gij = γij − α−2βiβj (25)

Since the Einstein field equations are equations with,
loosely speaking, geometry on one side and matter on
the other, tensors built from matter fields must also be
decomposed. In particular, it is conventional to define
tensors, ρ, ji and Sij that result from various projec-
tions of the spacetime stress energy tensor, Tµν , onto the
hypersurface:

ρ ≡ nµnνT µν , (26)

ji ≡ −nµT µ
i , (27)

Sij ≡ Tij . (28)

For observers with four velocities uµ equal to nµ, and only

for those observers with uµ = nµ, the above quantities
have the interpretation of the locally and instantaneously
measured energy density, momentum density and spatial
stresses respectively. As with the geometric quantities,
all of the matter variables, ρ, ji, and Sij defined in (26–
28) are spatial tensors and thus have their indices (if
any) raised and lowered with the 3-metric. Note that
the identification Sij = Tij is another illustration of the
general result mentioned in the context of the previous
identification of γij and gij .

Finally, observing that time parameters are naturally
defined in terms of level surfaces (equipotential surfaces),
it should be no surprise that the covariant components,
nµ, of the hypersurface normal field,

nµ = (−α, 0, 0, 0) , (29)
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are simpler than the components, nµ of the normal itself,

nµ =
(

α−1, α−1βi
)

, (30)

and, in fact, equation (29) can also be deduced from a
quick study of Fig. 1.

In the 3+1 approach, in addition to the 3-metric,
γij(t, x

k), and coordinate functions, α(t, xi) and β(t, xi),
it is convenient to introduce an additional rank-2 sym-
metric spatial tensor, Kij(t, x

k), known as the extrinsic
curvature (or second fundamental form). This additional
tensor is analogous to a time derivative of γij(t, x

k), or,
from a Hamiltonian perspective, to a variable that is dy-
namically conjugate to γij(t, x

k).
As the name suggests, the extrinsic curvature describes

the manner in which the slice Σ(t) is embedded in the
manifold (to be contrasted with Rijk

l defined by (14)
which is, as mentioned previously, completely insensitive
to the manner in which the hypersurface is embedded in
MΣ).

Geometrically, Kij is computed by calculating the
spacetime gradient of the normal covector field, nµ, and
projecting the result on to the hypersurface,

Kij = −
1

2
∇inj , (31)

where it must be stressed that ∇µ is the spacetime co-
variant derivative operator compatible with the 4-metric,
gαβ ; that is, ∇µgαβ = 0. A straightforward tensor cal-
culus calculation then yields the following, which can be
viewed as a definition of the Kij :

Kij =
1

2α
(∂tγij + Diβj + Djβi) . (32)

Here, Di is the spatial covariant metric, compatible with
γij (Dkγij = 0), that was defined previously. Observe
that this equation can be easily solved for ∂tγij (this will
be done below), and thus, in the 3+1 approach it is (32)
that is the origin of the evolution equations for the 3-
metric components, γij .

IV. EINSTEIN’S EQUATIONS IN 3 + 1 FORM

A. The Constraint Equations

As is well known, as a result of the coordinate (gauge)
invariance of the theory, general relativity is overdeter-
mined in a sense completely analogous to the situation in
electrodynamics with the Maxwell equations. One of the
ways that this situation is manifested is via the existence
of the constraint equations of general relativity. Briefly,
starting from the naive view that the ten metric func-
tions, gµν(t, xi), that completely determine the space-
time geometry are all dynamical—that is that they sat-
isfy second-order-in-time equations of motion—one finds
that the Einstein equations do not provide dynamical

equations of motion for the lapse, α, or the shift, βi.
Rather, four of the field equations (1) are equations of
constraint for the “true” dynamical variables of the the-
ory, {γij , ∂tγij}, or, equivalently, {γij , K

i
j}. Note that

in the following, the mixed form, Ki
j , is at times used—

again by convention—as the principal representation of
the extrinsic curvature tensor (instead of Kij as previ-
ously, or Kij).

Thus, four of the components of (1) can be written in
the form

Cµ
(

γij , K
i
j , ∂kγij , ∂l∂kγij , ∂kKi

j

)

= T µ , (33)

where T µ depends only on the matter content in the
spacetime. Note that in addition to having no depen-
dence on ∂2

t γij , the constraints are also independent of α
and βi.

If the Einstein equations (1) are to hold throughout the
spacetime, then the constraints (33) must hold on each
and every spacelike hypersurface, Σ(t), including, cru-
cially, the initial hypersurface, Σ(0). From the point of
view of Cauchy evolution, this means that the 12 func-
tions, {γij(0, xk), Ki

j(0, xk)}, constituting the gravita-
tional part of the initial data, are not completely freely
specifiable, but must satisfy the 4 constraints

Cµ
(

γij(0, xk), Ki
j(0, xk), · · ·

)

= T µ(0, xk) . (34)

However, provided initial data that does satisfy the
equations is chosen, then—as consistency of the the-
ory demands—the dynamical equations of motion for the
{γij , K

i
j} (equations (37-38) below) guarantee that the

constraints will be satisfied on all future (or past) hy-
persurfaces, Σ(t). In this internal self-consistency, the
geometrical Bianchi identities, ∇µGµν = 0, and the local
conservation of stress energy, ∇µT µν = 0, play crucial
roles.

In the 3+1 approach, as one would expect, the con-
straint equations further naturally subdivide into a scalar
equation

R− KijK
ij + K2 = 16πρ , (35)

and a (spatial) vector equation

DjK
ij − DiK = 8πji , (36)

where the energy and momentum densities, ρ and ji =
γikjk, are given by (26–28). Equations (35) and (36)
are often known as the Hamiltonian and momentum con-
straint, respectively, not least since the behaviour of their
solutions as X ≡

√

γijxixj → ∞ encodes the conserved
mass and linear momentum (4 numbers) that can be de-
fined in asymptotically flat spacetimes.

In a general 3 + 1 coordinate system, and with an ap-
propriate choice of variables, the constraints can be writ-
ten as a set of quasi-linear elliptic equations for four of the
{γij , K

i
j} (or, more properly, for certain algebraic com-

binations of the {γij , K
i
j}). Thus, especially for 2D and
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3D calculations, the setting of initial data for the Cauchy
problem in general relativity is itself a highly non-trivial
mathematical and computational exercise. Those read-
ers wishing more detail on this subject are directed to
the comprehensive review by Cook (2000).

B. The Evolution Equations

As discussed above, in the 3 + 1 form of the Einstein
equations (1), the spatial metric, γij , and the extrinsic
curvature, Ki

j , are viewed as the dynamical variables for
the gravitational field. The remainder of the 3 + 1 equa-
tions are thus two sets of 6 first-order-in-time evolution
equations; one set for γij ,

∂tγij = −2αγikKk
j +βk∂kγij +γik∂jβ

k +γkj∂iβ
k , (37)

and the other set for Ki
j ,

∂tK
i
j = βk∂kKi

j − ∂kβiKk
j + ∂jβ

kKi
k − DiDjα +

α

(

Ri
j + KKi

j + 8π

(

1

2
δi

j (S − ρ) − Si
j

))

. (38)

As also noted previously, the evolution equations (37) for
the spatial metric components, γij , follow from the defini-
tion of the extrinsic curvature (31). The derivation of the
equations for the extrinsic curvature, on the other hand,
require lengthy, but well documented, manipulations of
the spatial components of the field equations (1).

C. The (Naive) Cauchy Problem

A naive statement of the Cauchy problem for 3 + 1
numerical relativity is thus as follows: Fix a specified
number, N , of matter fields ξA(t, xk), A = 1, 2, · · ·N , all
minimally coupled to the gravitational field, with a total
stress tensor, Tµν , given by

Tµν =
N

∑

A=1

T A
µν , (39)

where T A
µν is the stress tensor corresponding to the matter

field ξA. Choose a topology for Σ(0) (for example, R3

with asymptotically flat boundary conditions; T 3, with
no boundaries etc.) This also fixes the topology of MΣ

to be R× the topology of Σ(0).
Next, freely specify 8 of the 12 {γij(0, xk), Ki

j(0, xk)},
as well as initial values, ξA(0, xk), for the matter fields.
Then determine the remaining 4 dynamical gravitational
fields from the constraints (35) and (36). This completes
the initial data specification.

One must now choose a prescription for the kinematical
(coordinate) functions, α and βi, so that either explicitly
or implicitly, they are completely fixed; for the case of
implicit specification this may well mean that the co-

ordinate functions themselves will satisfy PDEs, which,
furthermore, can be of essentially any type in practice
(i.e. elliptic, hyperbolic, parabolic, . . .). Finally, with
consistent initial data, {γij(0, xk), Ki

j(0, xk); ξA(0, xk)},
in hand, and with a prescription for the coordinate func-
tions, the evolution equations (37) and (38) can be used
to advance the dynamical variables forward or backward
in time.

The above description is naive since, apart from a con-
sistent mathematical specification, the most crucial issue
in the solution of a time-dependent PDE as a Cauchy
problem, is that the problem be well posed. Roughly
speaking, this means that solutions do not grow with-
out bound (“blow up”) without physical cause, and that
small, smooth changes to initial data yield correspond-
ingly small, smooth changes to the evolved data. In
short, the Cauchy problem must be stable, and whether
or not a particular subset of the equations displayed in
this section yields a well posed problem is a complicated
and delicate issue, especially in the generic 3D case. The
reader is thus again cautioned against blind application
of any of the equations displayed in this article.

D. Boundary Conditions

In principle, because all spacelike hypersurfaces, Σ(t),
in a pure Cauchy evolution are edgeless—and provided
that the initial data {γij(0, xk), Ki

j(0, xk); ξA(0, xk)} is
consistent with asymptotic flatness, or whatever other
condition is appropriate given the topology of the Σ(t)—
there are essentially no boundary conditions to be im-
posed on the dynamical variables, {γij(t, x

k), Ki
j(t, x

k)}
during Cauchy evolution. Note that asymptotic flatness
generally requires that

lim
X→∞

γij = fij + O

(

1

X

)

, (40)

and

lim
X→∞

Ki
j = O

(

1

X2

)

, (41)

where X is defined by

X ≡
√

γijxixj (42)

as previously, and fij is the flat 3-metric. Similarly,
should the lapse, α, and shift, β, be constrained by ellip-
tic partial differential equations—as is frequently the case
in practice—then the only natural place to set boundary
conditions is at spatial infinity, and then, provided that
the frame at spatial infinity is inertial, with coordinate
time t measuring proper time, one should have

lim
X→∞

α = 1 + O

(

1

X

)

, (43)
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and

lim
X→∞

βi = O

(

1

X

)

. (44)

It is critical to note at this point, however, that in
the vast bulk of past and current work in numerical rel-
ativity, including most of the ongoing work in 3D, the
Einstein equations (1) have been solved, not as a pure
Cauchy problem, but as a mixed initial-value/boundary-
value (IBVP) problem. That is, in the discretization pro-
cess in which the continuum equations (1) are replaced
with algebraic equations, the continuum domain (6-7) is
typically replaced with a truncated spatial domain

|xi| ≤ X i
max (45)

where the X i
max are a priori specified constants (param-

eters of the computational solution) that define the ex-
tremities of the “computational box”. As one might ex-
pect, the theory underlying stability and well-posedness
of IBVP problems—especially for differential systems as
complicated as (1) is even more involved than for the
pure initial-value case, and is another very active area of
research in both mathematical and numerical relativity
(see, for example, Friedrich and Nagy (1999)).
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