
 

Charting Islands of Stability with Multioscillators in anti–de Sitter space
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We propose the existence of an infinite-parameter family of solutions in anti–de Sitter (AdS) that
oscillate on any number of noncommensurate frequencies. Some of these solutions appear stable when
perturbed, and we suggest that they can be used to map out the AdS “islands of stability.” By numerically
constructing two-frequency solutions and exploring their parameter space, we find that both collapse and
noncollapse are generic scenarios near AdS. Unlike other approaches, our results are valid on any timescale
and do not rely on perturbation theory.
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Introduction.—Unlike Minkowski and de Sitter space
where nonlinear stability has long been established [1,2],
global anti–de Sitter (AdS) space with a reflecting boundary
may allow arbitrarily small energy excitations to form black
holes [3,4]. The first evidence of this instability appeared in
Ref. [5], where a set of initial data always seemed to lead to
collapse, even when the amplitude was arbitrarily small.
However, accumulated evidence [6–13] suggests that

there are families of initial data that do not form black
holes. While some such data are unstable and can produce
black holes when perturbed, others do not seem to collapse
under any small perturbation. Such stable noncollapsing
data are said to lie within the islands of stability [14]. The
extent of these islands remains an open problem, with
important implications for the instability and its interpre-
tation within the field theory dual provided by the AdS=
CFT correspondence [15–18].
To address this question, let us begin with perturbation

theory about AdSd. Consider a massless (real, or complex)
scalar field φ, minimally coupled to gravity, within spheri-
cal symmetry. Let t be the time measured by an observer at
the boundary of AdS, and x be a radial coordinate. Take the
perturbative expansion

φðt;xÞ¼
X∞
p¼1

ϵpφðpÞðt;xÞ; gμνðt;xÞ¼
X∞
p¼0

ϵpgðpÞμν ðt;xÞ; ð1Þ

where gð0Þμν is the metric for AdSd.

At linear order, the perturbative solution consists of a
linear combination of normal modes

φð1Þðt; xÞ ¼
X∞
n¼0

ðaþn eþiωð0Þ
n t þ a−n e−iω

ð0Þ
n tÞPnðxÞ; ð2Þ

where ωð0Þ
n ¼ d − 1þ 2n, the Pn form a set of orthogonal

functions, and a�n are complex coefficients. If φ is real, then
we must also have a−n ¼ ðaþn Þ�.
The terms at higher order depend upon the choice of a�n

at linear order. If a�n ≠ 0 for at least two distinct n, a secular
term proportional to ϵ3t appears in the scalar field at third
order, leading to an apparent breakdown of perturbation
theory at t ∼ 1=ϵ2. Much evidence [5,8–11,13,19–23] has
found that gravitational collapse, when it occurs, happens
on this timescale of t ∼ 1=ϵ2.
However, now consider allowing a�n ≠ 0 for only one

value of n. In this case, the secular terms that appear at
higher order can be removed using a standard Poincaré-
Lindstedt resummation procedure [5]. It is then possible to
construct a scalar field configuration that oscillates at a
single frequency. Such solutions are often called oscillons
[7,24] if φ is a real scalar field, and boson stars [8,23,25,26]
for configurations of a complex scalar field where the
metric does not oscillate. Away from spherical symmetry,
similar solutions exist in pure gravity called geons [27–29].
For now, we use the generic term oscillator. Oscillators can
be roughly viewed as nonperturbative extensions of nor-
mal modes.
Oscillators are noncollapsing and the ones near AdS

appear stable. To date, all initial data within the islands of
stability appear to be “close” to an oscillator. But can the
extent of the islands be determined more precisely? Note
that data “close” to a normal mode still allow for any
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number of nonzero a�n , so naive perturbation theory
appears to break down at t ∼ 1=ϵ2 for stable data as well.
Attempts to resum perturbation theory has led to some

suggestive results (see, e.g., Refs. [9,12,13,20,21,30–37]).
In particular, the two-timescale formalism (TTF), intro-
duced and developed in Refs. [9,20,30–32], allows a slow
time dependence in the amplitudes a�n ðϵ2tÞ. The TTF
equations contain a scaling symmetry and extra conserved
quantities not present in the full equations. This scaling
symmetry implies that noncollapsing solutions within the
TTF at finite amplitude can be extended towards zero
amplitude [12]. These results, together with numerical
evidence, suggest that both collapse and noncollapse are
generic in the sense that both kinds of data have finite
measure in the ϵ → 0 limit.
Here, we take a different, nonperturbative approach. We

will construct solutions to the full nonlinear equations that
do not collapse on any timescale. By exploring the
parameter space of these solutions, we hope to chart the
extent of these islands, particularly near AdS.
To explain our approach, let us recall the construction of

an oscillator. First, AdS is linearly perturbed to obtain a
normal mode with frequency ωð0Þ

n , for some particular n.
Oscillators can be generated by correcting the normal mode
with higher orders in perturbation theory, where ωð0Þ

n also
receives perturbative corrections. Nonperturbatively, oscil-
lators have a spectral expansion

φðt; xÞ ¼
X∞
k¼−∞

X∞
l¼0

Ak;leikω1tPlðxÞ; ð3Þ

where the frequency ω1 can be used as a parameter,
recovering AdS when ω1 ¼ ωð0Þ

n . Each choice of n gen-
erates a one-parameter family of oscillators. These sol-
utions can be obtained numerically by treating t as periodic
and solving a boundary value problem.
Now let us attempt to repeat this process again. Consider

perturbing the oscillator,

φðt; xÞ ¼
�X

k;l

Ak;leikω1tPlðxÞ
�
þ ϵe−iω2tδφðt; xÞ; ð4Þ

where δφðt; xÞ is periodic in time with frequency ω1, and
the metric is similarly perturbed. Note that the function
φðt; xÞ is not periodic, since ω1 and ω2 need not be
commensurate frequencies. However, at linear order in ϵ,
ω2 will appear as an eigenvalue in the equations of motion,
and all perturbation functions will remain periodic in time
with frequency ω1. This system can therefore be solved as a
boundary value problem using standard methods for find-
ing eigenvalues.
Just as in the case for AdS itself, the reflecting boundary

of AdS leads to a spectrum of normal modes for the
frequency ω2. We can use one of these normal modes to
generate a new set of double oscillators. Nonperturbatively,
such a solution takes the spectral form

φðt; xÞ ¼
X∞

k1;k2¼−∞

X∞
l¼0

Ak1;k2;le
ik1ω1tþik2ω2tPlðxÞ; ð5Þ

which is “periodic” on two frequencies ω1 and ω2, forming
a two-parameter family.
We propose the following method of constructing such

solutions (5). Consider the alternative spectral expansion

φðt1; t2; xÞ ¼
X
k1;k2;l

Ak1;k2;le
ik1ω1t1þik2ω2t2PlðxÞ; ð6Þ

which is periodic on t1 and t2. When the equations of
motion are in first-order form, time dependence only
appears in the derivative ∂t. A comparison between
Eqs. (5) and (6) suggests that we should replace
∂t → ∂t1 þ ∂t2 . The double oscillator can then be obtained
by solving a boundary value problem in coordinates t1, t2,
and x, where t1 and t2 are periodic with frequencies ω1 and
ω2, respectively. t1 and t2 can be viewed as coordinates
on a torus around which the line t ¼ t1 þ t2 wraps. If the
frequencies ω1 and ω2 are noncommensurate, then the line
parametrized by t will be dense on this torus.
One can continue this process ad infinitum, generating

multioscillators that are periodic on more and more
frequencies. This creates an infinite-parameter family of
solutions, all of which are noncollapsing. The apparent
nonlinear stability of single oscillators suggests that nearby
multioscillators are also stable.
These multioscillators bear some resemblance to qua-

siperiodic solutions found within the TTF [9,13,37],
where each normal mode is assumed to have a different
periodic behavior anðϵ2tÞ ¼ αne−iβnt. We note, however,
that quasiperiodic solutions within the TTF form a two-
parameter family, while we have an infinite-parameter
family. We also mention that quasiperiodic behavior has
also been seen within dynamical evolution [7,23,38]. We
speculate that some of these may have a representation as
a multioscillator.
Though we have explained the construction of multi-

oscillators for a scalar field in spherical symmetry, the
arguments for their existence and method of construction
apply equally well with fewer spatial symmetries, with
other field configurations like pure gravity, and even
situations without AdS boundary conditions. So long as
the perturbation of oscillators continues to yield normal
modes, additional frequencies can be added.
We wish to construct such solutions and explore their

parameter space. We were successful in constructing
double oscillators for a real scalar, but such solutions
depend on three coordinates, as shown in Eq. (6). Here, we
instead present results using a complex scalar field where
the first frequency dependence eiω1t1 factors out, reducing
the problem to only two coordinates. This type of solution
may be viewed as a boson star in the frequency ω1, but an
oscillon in the frequency ω2.
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Numerical construction.—We set the AdS length scale
and gravitational constant to unity, and the spacetime
dimension d to 5. Our metric ansatz is

ds2 ¼ 1

cos2 x

�
−αβ2dt2 þ dx2

α
þ sin2 xdΩ3

�
; ð7aÞ

φ ¼ cos4 xeiω1tðφþ þ iφ−Þ; ð7bÞ

where we have defined

α ¼ 1 − sin2xcos4xA; β ¼ 1 − cos8xδ: ð8Þ
and A, δ, and φ� are real functions of t and x. The time
dependence in the factor of eiω1t in the scalar field will
cancel out in the equations of motion. We are therefore free
to treat the functions A, δ, and φ� as periodic in time with
frequency ω2. The scalar field φ will itself be doubly
periodic on frequencies ω1 and ω2.
We introduce first-order variables Φþ, Φ−, Πþ, Π− via

cos x∂xφ� − 4 sin xφ� ¼ Φ�; ð9aÞ

∂tφ� ¼ αβ
Π�
cos x

� ω1φ�: ð9bÞ

The Hamiltonian constraint takes the form

∂tA ¼ 2
cos4x
sin x

α2βðΦþΠþ þΦ−Π−Þ; ð10Þ

while the remaining equations of motion are

cos x∂xδ − sin xð8þ cos8xSÞδ ¼ − sin xS ð11aÞ

sin x∂xAþ cos xð4þ sin2xcos8xSÞA ¼ cos3xS ð11bÞ
∂tΦ� ¼ βðα∂xΠ� − AΦ tan xΠ�Þ � ω1Φ∓; ð11cÞ

∂tΠ� ¼ βðα∂xΦ� þ AΠ cot xΦ�Þ � ω1Π∓; ð11dÞ

where

S ¼ Φ2þ þΦ2
− þ Π2þ þ Π2

−; ð12aÞ

AΦ ¼ 3 −
1

2
½9 − 5 cosð2xÞ� cos4 xA; ð12bÞ

AΠ ¼ 3 −
1

2
½3 − 5 cosð2xÞ� sin2 x cos2 xA: ð12cÞ

In what follows, the Hamiltonian constraint (10) as well
as the definitions (9) are not solved directly, and are instead
used as a check of numerics.
To find the boson stars and their perturbations, set

Φþðt; xÞ ¼ Φ0ðxÞ þ ϵ½cosðω2tÞδΦþðxÞ�; ð13aÞ

Φ−ðt; xÞ ¼ ϵ½sinðω2tÞδΦ−ðxÞ�; ð13bÞ

Πþðt; xÞ ¼ ϵ½sinðω2tÞδΠþðxÞ�; ð13cÞ
Π−ðt; xÞ ¼ Π0ðxÞ þ ϵ½cosðω2tÞδΠ−ðxÞ�; ð13dÞ

Aðt; xÞ ¼ A0ðxÞ þ ϵ½cosðω2tÞδδðxÞ�; ð13eÞ

δðt; xÞ ¼ δ0ðxÞ þ ϵ½cosðω2tÞδAðxÞ�; ð13fÞ

fþðt; xÞ ¼ f0ðxÞ þ ϵ½cosðω2tÞδfþðxÞ�; ð13gÞ
f−ðt; xÞ ¼ ϵ½sinðω2tÞδf−ðxÞ�; ð13hÞ

where we have chosen a specific phase in time. Setting
ϵ ¼ 0 will yield a set of ordinary differential equations
(ODEs) that can be solved to obtain the boson star. These
boson stars are parametrized by the frequency ω1. A linear
expansion in ϵ will yield another set of ODEs for the
perturbation functions in the form of an eigenvalue problem
with ω2 as an eigenvalue. We solve these using Fourier
spectral methods. We use a quarter Fourier grid in the
coordinate x that exploits the symmetries of the functions.
By the redefinitions (7b) and (8), these symmetries plus
finiteness of the functions ensure that all required boundary
conditions are satisfied.
Once the boson stars and their perturbations have been

computed, we can use them to find double oscillators.
Because the ω1 periodicity is not manifest in the equations,
we can find the desired solutions by treating t as a periodic
coordinate with frequency ω2. The symmetries in the
functions along t allow us to use a half Fourier grid.
The full equations of motion are solved as a boundary value
problem, using a Newton-Raphson method with the per-
turbed boson stars as initial estimates.
Results.—In Fig. 1, we show the energy of the lowest

frequency branch of boson stars as a function of the
frequency ω1. This curve is typical of oscillators, and
has been produced elsewhere [8,23,25,26]. The point
corresponding to ω1 ¼ 4 is pure AdS, where the frequency
merely represents a perturbative normal mode. Naturally,
there are other branches of boson stars that are generated

FIG. 1. Energy of boson stars versus their frequency.
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from other normal modes of AdS, but we do not consider
them here.
This figure shows a turning point at ω1 ≈ 3.55, where

the energy is maximal. Such turning points are typically
associated with a change in linear stability, and is a
common feature in many gravitational systems [39–42].
The dynamical stability of boson stars was studied

previously in Refs. [8,23], where indeed solutions on the
AdS side of the turning point appeared to be stable, while
solutions on the other side are unstable. The endpoint of
unstable boson star evolution depends on how the star is
perturbed: one generically sees either collapse to a black
hole or migration towards some oscillating solution.
Analogous behavior is seen in other systems, including
those in flat space [23,26,38,43–47].
In Fig. 2, we fix the frequency ω1 and plot the energy of

double oscillators as a function of ω2. In the top panel,
ω1 ¼ 3.9 and in the bottom panel, ω1 ¼ 3.59. The boson
star coincides with the dot in each figure, where the
frequency represents a perturbative normal mode. Unlike
the boson stars where moving away from AdS increases the
energy, these double oscillators decrease in energy as one
moves away from the boson star.
The top panel in Fig. 2 has a turning point in the energy,

where the energy is minimal. We expect that the lower
panel has such a turning point as well, but were unable to
reach it with our limited computational resources. By
analogy with the pure boson star and similar situations
[42,48–54], this turning point may come with a change in
dynamical stability. Physically, the expectation is that linear

energy fluctuations correspond to changes in frequency.
But near a turning point, the energy does not change to first
order, suggesting that some frequency becomes a zero
mode and is thus unstable on one side of the turning point.
We emphasize, however, that it remains unclear whether
these stability arguments apply to our current situation.
In particular, dynamical instabilities can exist in regions
without turning points (see, e.g., discussion in Ref. [55]).
We leave more detailed questions of stability and dynami-
cal evolution to future work.
In the top panel of Fig. 2, ω2 decreases as the double

oscillators move away from the boson star, while in the
bottom panel ω2 initially increases before decreasing again.
That is, the double oscillators in the bottom panel have a
turning point in frequency. Such a turning point occurs for
double oscillators with ω1 ≲ 3.6.
We are now in a position to present the space of double-

oscillator solutions parametrized by ω1 and ω2. In Fig. 3, the
black solid line shows the principal perturbative frequency
ω2 of the boson star. The point ω1 ¼ 4, ω2 ¼ 2 corresponds
to pure AdS, with both of these frequencies representing
AdS normal modes. At ω1 ≈ 3.55, corresponding to the
turning point seen in Fig. 1, ω2 becomes a zero mode. For
ω1 ≲ 3.55, the normal mode frequency of the boson star ω2

becomes purely imaginary, corresponding to an unstable
mode. There are therefore no double oscillators generated
by this mode for ω1 ≲ 3.55.
The dotted red curve locates the turning points in energy,

such as the one that occurs in the top panel of Fig. 2. If these
turning points mark a change in stability, we expect
oscillators above this red line to be stable, and those below
it to be unstable.
The dashed blue curve locates the turning points in

frequency ω2, such as the one that occurs in the bottom
panel of Fig. 2. Double oscillators at these values of ω1

exist below the blue curve, and the region immediately
below this curve contains two oscillator solutions.

FIG. 2. Energy of double oscillators at fixed ω1. The boson star
solutions are located at the black dots.

FIG. 3. Parameter space of double oscillators. The solid line is
the boson stars, the dashed blue curve is where double oscillators
have a turning point in the frequency, and the dotted red line is
where oscillators have a turning point in the energy. The inset
zooms in near AdS, and plots the frequency difference, Δω2,
relative to the boson star.
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Now we examine the space of double oscillators in the
neighbourhood of AdS. The inset of Fig. 3 shows the
difference in frequency Δω2 between the double oscillator
and the boson star normal mode in the region near AdS.
Note that the line does not become tangent toΔω2 ¼ 0 near
ω1 ¼ 4, suggesting an open set of noncollapsing data in the
neighborhood of AdS. This is in agreement with arguments
in Ref. [12]. Note that unlike Ref. [12], our results are
constructive (rather than merely proving existence), non-
perturbative, and valid on any timescale.
The solutions at the energy turning point can be

projected onto the orthogonal functions PkðxÞ, as we show
in Fig. 4. We observe that these lines have nonzero slope
near AdS, which is another indication of an open set of
noncollapsing data [12]. We also note that the modes do not
reach equal amplitude, which agrees with numerical
evidence suggesting that equal-amplitude, two-mode initial
data will eventually form black holes [5,9,13,20,21,56].
Discussion.—We have proposed the existence of a

family of noncollapsing solutions that oscillate on any
number of frequencies, and provided a method of con-
structing them that does not rely on any perturbative
approximation nor dynamical evolution.
This infinite-parameter family is unusually large. In a

sense, the entire space of initial data can also be viewed as
an infinite-parameter family. The existence of so many
multioscillators may account for the apparent stability of
boson stars and oscillons. It is also tempting to conjecture
that the entire island of stability lies within the multi-
oscillator family.
We have constructed and mapped out part of a two-

frequency section of this family. We found that double
oscillators contain a line of turning points in their energy. If
such turning points indeed mark a change in stability, then
they also mark a boundary to the islands of stability. One
could presumably map out more of the islands of stability
by searching for turning points among additional frequen-
cies. But, like charting any coastline, the entire boundary of
these islands of stability cannot be determined by any finite
process.

We thank Oscar Dias, Stephen Green, Gary Horowitz,
and Luis Lehner for helpful comments, and for reading an
earlier version of the manuscript. J. E. S. is supported in
part by STFC Grants No. PHY-1504541 and No. ST/
P000681/1. M.W. C. and B.W. are supported by NSERC.

*choptuik@physics.ubc.ca
†jss55@cam.ac.uk
‡benson@phas.ubc.ca

[1] H. Friedrich, J. Geom. Phys. 3, 101 (1986).
[2] D. Christodoulou and S. Klainerman, The Global Nonlinear

Stability of the Minkowski Space (Princeton University
Press, Princeton, NJ, 1993).

[3] M. Dafermos and G. Holzegel, Seminar at DAMTP (Uni-
versity of Cambridge, Cambridge, England, 2006), https://
www.dpmms.cam.ac.uk/∼md384/ADSinstability.pdf.

[4] M. Dafermos, Proceedings of the Newton Institute (Uni-
versity of Cambridge, Cambridge, England, 2006), http://
www-old.newton.ac.uk/webseminars/pg+ws/2006/gmx/
1010/dafermos/.

[5] P. Bizon and A. Rostworowski, Phys. Rev. Lett. 107,
031102 (2011).

[6] O. J. C. Dias, G. T. Horowitz, D. Marolf, and J. E. Santos,
Classical Quantum Gravity 29, 235019 (2012).

[7] M. Maliborski and A. Rostworowski, Phys. Rev. Lett. 111,
051102 (2013).

[8] A. Buchel, S. L. Liebling, and L. Lehner, Phys. Rev. D 87,
123006 (2013).

[9] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and
S. L. Liebling, Phys. Rev. Lett. 113, 071601 (2014).

[10] P. Bizon and A. Rostworowski, Phys. Rev. Lett. 115,
049101 (2015).

[11] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner, and
S. L. Liebling, Phys. Rev. Lett. 115, 049102 (2015).

[12] F. Dimitrakopoulos and I. Sheng Yang, Phys. Rev. D 92,
083013 (2015).

[13] S. R. Green, A. Maillard, L. Lehner, and S. L. Liebling,
Phys. Rev. D 92, 084001 (2015).

[14] This term often refers to data that does not collapse within a
certain timescale (typically scaling with the energy as 1=E).
For our purposes, we take this timescale to be infinite.

[15] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.
Theor. Math. Phys. 2, 231 (1998).

[16] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[17] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[18] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).
[19] A. Buchel, L. Lehner, and S. L. Liebling, Phys. Rev. D 86,

123011 (2012).
[20] A. Buchel, S. R. Green, L. Lehner, and S. L. Liebling, Phys.

Rev. D 91, 064026 (2015).
[21] P. Bizon, M. Maliborski, and A. Rostworowski, Phys. Rev.

Lett. 115, 081103 (2015).
[22] B. Freivogel and I.-S. Yang, Phys. Rev. D 93, 103007

(2016).
[23] M.W. Choptuik, O. J. C. Dias, J. E. Santos, and B. Way,

Phys. Rev. Lett. 119, 191104 (2017).

FIG. 4. Scalar field of double oscillators at the energy turning
point, evaluated at t ¼ 0 (where φ is real) and projected onto the
orthogonal functions φðt ¼ 0; xÞ ¼ P

akPkðxÞ.

PHYSICAL REVIEW LETTERS 121, 021103 (2018)

021103-5

https://doi.org/10.1016/0393-0440(86)90004-5
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
https://www.dpmms.cam.ac.uk/md384/ADSinstability.pdf
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
http://www-old.newton.ac.uk/webseminars/pg%2Bws/2006/gmx/1010/dafermos/
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1103/PhysRevLett.107.031102
https://doi.org/10.1088/0264-9381/29/23/235019
https://doi.org/10.1103/PhysRevLett.111.051102
https://doi.org/10.1103/PhysRevLett.111.051102
https://doi.org/10.1103/PhysRevD.87.123006
https://doi.org/10.1103/PhysRevD.87.123006
https://doi.org/10.1103/PhysRevLett.113.071601
https://doi.org/10.1103/PhysRevLett.115.049101
https://doi.org/10.1103/PhysRevLett.115.049101
https://doi.org/10.1103/PhysRevLett.115.049102
https://doi.org/10.1103/PhysRevD.92.083013
https://doi.org/10.1103/PhysRevD.92.083013
https://doi.org/10.1103/PhysRevD.92.084001
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1103/PhysRevD.86.123011
https://doi.org/10.1103/PhysRevD.86.123011
https://doi.org/10.1103/PhysRevD.91.064026
https://doi.org/10.1103/PhysRevD.91.064026
https://doi.org/10.1103/PhysRevLett.115.081103
https://doi.org/10.1103/PhysRevLett.115.081103
https://doi.org/10.1103/PhysRevD.93.103007
https://doi.org/10.1103/PhysRevD.93.103007
https://doi.org/10.1103/PhysRevLett.119.191104


[24] G. Fodor, P. Forgács, and P. Grandclément, Phys. Rev. D 92,
025036 (2015).

[25] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, J. High
Energy Phys. 07 (2011) 115.

[26] S. L. Liebling and C. Palenzuela, Living Rev. Relativity 15,
6 (2012).

[27] O. J. C. Dias, G. T. Horowitz, and J. E. Santos, Classical
Quantum Gravity 29, 194002 (2012).

[28] G. T. Horowitz and J. E. Santos, Surveys Diff. Geom. 20,
321 (2015).

[29] G. Martinon, G. Fodor, P. Grandclément, and P. Forgàcs,
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