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We study the general relativistic collapse of neutron star (NS) models in spherical symmetry. Our
initially stable models are driven to collapse by the addition of one of two things: an initially ingoing
velocity profile, or a shell of minimally coupled, massless scalar field that falls onto the star. Tolman-
Oppenheimer-Volkoff (TOV) solutions with an initially isentropic, gamma-law equation of state serve as
our NS models. The initial values of the velocity profile’s amplitude and the star’s central density span a
parameter space which we have surveyed extensively and which we find provides a rich picture of the
possible end states of NS collapse. This parameter space survey elucidates the boundary between Type I
and Type II critical behavior in perfect fluids which coincides, on the subcritical side, with the boundary
between dispersed and bound end states. For our particular model, initial velocity amplitudes greater than
0.3c are needed to probe the regime where arbitrarily small black holes can form. In addition, we
investigate Type I behavior in our system by varying the initial amplitude of the initially imploding scalar
field. In this case we find that the Type I critical solutions resemble TOV solutions on the 1-mode unstable
branch of equilibrium solutions, and that the critical solutions’ frequencies agree well with the fundamental
mode frequencies of the unstable equilibria. Additionally, the critical solution’s scaling exponent is shown
to be well approximated by a linear function of the initial star’s central density.
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I. INTRODUCTION

The dynamics of compact gravitating objects out of
equilibrium has always been a topic of much interest in
astrophysics. Physical systems that fall under this subject
include supernovae, “failed” supernovae such as hyper-
novae or collapsars, gamma-ray burst (GRB) progenitors,
coalescing binary neutron star (NS) systems, accreting
compact stars, and NSs that undergo sudden phase tran-
sitions, to name only a few. In the case of a core collapse
supernova, a NS may form and undergo additional evolu-
tion. For instance, the outwardly moving shock wave of
matter from the supernova may stall and collapse onto the
nascent neutron core [1]. In contrast, if the NS is in a binary
system with a less compact companion star, accretion from
the companion may push the NS over its Chandrasekhar
limit. In either of these cases, the resultant nonequilibrium
system will most likely undergo a hydrodynamic implosion
that will often result in black hole formation.
Here we wish to present work that sets such excited NSs

in the context of critical phenomena in general relativity.
Specifically, we wish to investigate (1) the criteria required
to initiate black hole formation, the boundary between
black hole forming scenarios and those that do not form

black holes, and (2) the dynamical behavior of the systems
in general. This paper is one of only several to date that
ties critical phenomena to astrophysical scenarios [2–13].
We are certainly not the first to study numerical

evolutions of NS models far from equilibrium. For exam-
ple, Shapiro and Teukolsky [14] asked whether a stable
NS with a mass below the Chandrasekhar mass could be
driven to collapse by compression. With a mixed Euler-
Lagrangian code, they began to answer the question by
studying stable stars whose density profiles had been
“inflated” in a self-similar manner such that the stars
became larger and more massive. Due to insufficient central
pressure, such configurations were no longer equilibrium
solutions and inevitably collapsed. By increasing the
degree to which the equilibrium stars were inflated, they
were able to supply more kinetic energy to the system.
They found that black holes formed only for stars with
masses greater than the maximum equilibrium mass. In
addition, Shapiro and Teukolsky studied accretion induced
collapse, where it was again found that collapse to a black
hole occurred only when the total mass of the system—in
this case the mass of the star and the mass of the accreting
matter—was above the maximum stable mass. Both exam-
ples seemed to suggest that even driven stars needed to have
masses above the maximum stable mass in order to produce
black holes. Moreover, they only witnessed three types of
outcomes: (1) homologous bounce, wherein the entire star
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underwent a bounce after imploding to maximum com-
pression; (2) nonhomologous bounce where less than 50%
of the matter followed a bounce sequence; and (3) direct
collapse to a black hole. Also, Baumgarte et al. [15] using a
Lagrangian code based on the formulation of Hernandez
and Misner [16] qualitatively confirmed these results.
In order to investigate the question posed by Shapiro and

Teukolsky further, Gourgoulhon [17,18] used pseudospec-
tral methods and realistic, tabulated equations of state to
characterize the various ways in which a NS may collapse
when given an ad hoc, polynomial velocity profile. Such
velocity profiles mimic those seen in core collapse simu-
lations as described in [19,20]. Given a sufficiently large
amplitude of the profile, Gourgoulhon was able to form
black holes from stable stars with masses well below the
maximum. He was also able to observe bounces off the
inner core, but was unable to continue the evolution
significantly past the formation of the shock since spectral
techniques typically behave poorly for discontinuous
solutions.
To further explore this problem and resolve the shocks

more accurately, Novak [6] used a Eulerian code with high-
resolution shock-capturing (HRSC) methods. In addition,
he surveyed the parameter space in the black hole–forming
regime in much greater detail than previous studies,
illuminating a new scenario in which a black hole may
form on the same dynamical time scale as the bounce.
Depending on the amplitude of the velocity perturbation,
such cases can lead to black holes that have smaller masses
than their progenitor stars. This dependence suggested that
masses of black holes generated by NS collapse might not
be constrained by the masses of their parents and, con-
sequently, could—in principle—allow the black hole mass,
MBH, to take on a continuum of values. In addition, in
accordance with the study described in [17], Novak found
that the initial star did not have to be more massive than
the maximum mass in order to evolve to a black hole. In
fact, he found that for two equations of state—the typical
polytropic equation of state (EOS) and a realistic EOS
described in [21]—arbitrarily small black holes could be
made by tuning the initial amplitude of the velocity profile
about the value at which black holes are first seen. Hence,
Novak’s work suggests that black holes born from NSs
are able to have masses in the range 0 < MBH ≤ M⋆, where
M⋆ is the mass of the progenitor star. This suggests that
critical phenomena may play a role in the black hole mass
function of driven NSs.
Critical phenomena in general relativity involves

the study of the solutions—called critical solutions—that
lie at the boundary between black hole–forming and black
hole–lacking spacetimes (for reviews please see [22–24]).
General relativistic critical phenomena began with a detai-
led numerical investigation of the dynamics of a minimally
coupled, massless scalar field in spherical symmetry [25].
This first study identified three fundamental features of the

critical behavior: (1) universality and (2) scale invariance of
a critical solution that arises at threshold, with (3) power-
law scaling behavior in the vicinity of the threshold. All
three of these have now been seen in a multitude of collapse
models with a wide variety of matter sources, including
perfect fluids [26–28], an SU(2) Yang-Mills model [29,30],
and collisionless matter [31,32] to cite just a few. It was
eventually found that there are two related yet distinct
types of critical phenomena, dubbed Type I and Type II,
due to similarities between the critical phenomena obser-
ved in gravitational collapse, and those familiar from
statistical mechanics.
Type II behavior entails critical solutions that are either

continuously self-similar (CSS) or discretely self-similar
(DSS). Supercritical solutions—those that form black
holes—give rise to black holes with masses, MBHðpÞ, that
scale as a power law,

MBHðpÞ ∝ jp − p⋆jγ; ð1Þ

implying that arbitrarily small black holes can be formed.
Here, p parametrizes a 1-parameter family of initial data
with which one can tune toward the critical solution,
located at p ¼ p⋆, and γ is the scaling exponent of the
critical behavior. Since MBHðpÞ is, loosely speaking,
continuous across p ¼ p⋆, this type of critical behavior
was named “Type II” since it parallels Type II (continuous)
phase transitions in statistical mechanics.
As in the statistical mechanical case, there is a Type I

behavior, where the black hole mass “turns on” at a finite
value. Type I critical solutions are quite different from
their Type II counterparts, tending to be metastable starlike
solutions that are either static or periodic. The critical
solutions can therefore be described by a continuous or
discrete symmetry in time, analogous to the Type II CSS
and DSS solutions. Unlike the Type II case, however, the
black hole masses of supercritical solutions do not follow a
power-law scaling. Instead, the span of time, ΔT0ðpÞ—as
measured by an observer at the origin—that a given
solution is close to the critical solution scales with the
solution’s deviation in parameter space from criticality

ΔT0ðpÞ ∝ −σ ln jp − p⋆j; ð2Þ

where σ is the scaling exponent of Type I behavior.
We note that many of the features of critical gravitational

collapse can be understood in a manner that also has a
clear parallel in statistical mechanical critical phenomena.
In particular, the critical solutions that have been identified
to date, although unstable, tend to be minimally so in the
sense that they have only a single unstable mode in
perturbation theory [27,33]. The Lyapunov exponent asso-
ciated with this mode can then be directly related to the
lifetime-scaling exponent, σ, for Type I solutions, and to the
mass-scaling exponent, γ, for Type II solutions.
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In collapse models that involve matter characterized by
one or more intrinsic length scales, the possibility of both
types of critical behavior arises. Indeed, the boundary
separating the two types has been studied extensively in
the SU(2) Einstein-Yang-Mills model [29,30] as well as the
Einstein-Klein-Gordon system [34]. In the latter case it was
found that when the length scale λ—which characterized
the “spatial extent” of a 2-parameter family of initial data—
was small compared to the scale set by the massive scalar
field, Type II behavior was observed. The transition from
Type II to Type I behavior was calculated for different
families and was found to occur when λm ≈ 1, where m is
the (particle) mass of the scalar field.
Two studies particularly close in spirit to our current

work are due to Hawley and Choptuik [35] and Lai and
Choptuik [36]. Instead of perturbing TOV solutions [37–
39], these authors perturbed stable, spherically symmetric,
boson stars. Boson stars are self-gravitating configurations
of a complex scalar field with some prescribed self-
interaction (possibly just a mass term), whose only time
dependence is a phase that varies linearly with time (see
[40] and [41] for reviews). For a given self-interaction, one
can generically construct one-parameter families of boson
stars, where the family parameter can conveniently be taken
to be the central modulus, ϕð0Þ, of the complex field, and
which plays the role of the central rest-mass density in TOV
solutions. As with their hydrostatic counterparts (discussed
in more detail in Sec. II C), when the total mass,M⋆ðϕð0ÞÞ,
of the configurations is plotted as a function of ϕð0Þ, one
typically finds a maximum mass for some ϕð0Þ ¼ ϕmaxð0Þ
which signals a change in dynamical stability: stars
with ϕð0Þ < ϕmaxð0Þ are stable, while those with ϕð0Þ >
ϕmaxð0Þ are unstable. Additionally, for any family of boson
stars, there is generally a branch of unstable stars—with
ϕð0Þ ranging from ϕmax to the next value where the mass
function is a local minimum—that have precisely one
unstable mode in perturbation theory. These stars are thus
candidates to be Type I critical solutions in a collapse
scenario.
Hawley and Choptuik perturbed a boson star by col-

lapsing a spherical pulse of massless scalar field onto it
from a distance sufficient to ensure that the two matter
distributions were initially nonoverlapping. As such a
pulse collapses through the origin, the energy distributions
associated with the two matter fields interact solely through
the gravitational field. For sufficiently large amplitudes
of the scalar field, the resulting increase in curvature within
the star is enough to significantly compress it, ultimately
resulting in either black hole formation or a star that
executes a sequence of oscillations, often of large ampli-
tude. By tuning the initial amplitude of the scalar field,
Type I critical solutions were found and, per the above
observation, were identified as (perturbed) one-mode
unstable boson star configurations. It was verified that
the lifetimes of near-critical evolutions scaled according to

(2), and that in each case the scaling exponent, σ, was
consistent with the inverse of the real part of the Lyapunov
exponent, ωLy, of the critical solution. Furthermore, values
of ωLy were independently calculated for several cases by
applying linear perturbation theory to the static boson star
backgrounds, and were shown to be in good agreement
with those measured from the fully dynamical calculations.
Finally, since boson stars model many of the characteristics
of TOV solutions, it was conjectured that the observed
critical behavior would carry over to the fluid case.
We note that in the results reported in [35] the end state

of marginally subcritical collapse was not identified as a
periodic spacetime (i.e. a perturbed boson star); rather, it
was assumed that the stars would disperse to spatial infinity
in such cases. Upon evolving subcritical configurations
for longer physical times, Lai and Choptuik [36]—in work
performed simultaneously to that of [42]—found that the
end states were, in fact, gravitationally bound and oscil-
latory. These results were subsequently verified by Hawley
[43]. Interestingly, in both studies it was found that during
the nontrivial gravitational interaction of the massless
scalar field and the boson star there was a transfer of mass
energy from the massless scalar field to the complex scalar
field, resulting in an increase of the gravitating mass of the
boson star.
Returning now to the fluid case, Siebel et al. [44] sought

to measure the maximum NS mass allowed by the presence
of a perturbing pulse of minimally coupled, massless
scalar field. A general relativistic hydrodynamic code using
a characteristic formulation was used to investigate the
spherically symmetric system. However, instead of varying
the massless scalar field they studied five distinct star
solutions having a range of central densities that straddled
the threshold of black hole formation. They found that the
perturbation either led to a black hole or to oscillations of
the star about its initial configuration. Further, in order to
test their new three-dimensional general relativistic fluid
code, Font et al. [45] dynamically calculated the funda-
mental and harmonic mode frequencies of spherical TOV
solutions. They observed the transition of a TOV solution
on the unstable branch to the stable branch by evolving an
unstable solution that was perturbed at the truncation error
level. The unstable star overshot and then oscillated about
the stable solution, contradicting a common assumption in
the field that stars from the unstable branch always formed
black holes. Evolving from initial conditions consisting
of an unstable TOV star has continued to be used for
code-testing purposes [46]. Liebling et al. [9,12] performed
a similar study with weakly magnetized unstable TOV
solutions in 3-d, but employed explicit and tunable per-
turbations to the pressure/density—as well as—a tunable
minimally-coupled scalar field. They, too, found evidence
for Type I behavior, and were able to tune close to the
threshold (to within 10−6) and demonstrate the expected
scaling behavior with the scalar field perturber. All the
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different kinds of perturbations they employed drove the
system to the same, seemingly universal solution.
Proximity to the critical threshold was improved in [10],
wherein they perturbed axisymmetric unstable TOV stars
by truncation error and a small ingoing velocity distribu-
tion, while tuning with the central density of the star.
Apart from thework presented here (and in [42]), themost

exhaustive explorations of Type I behavior involving NSs
are that of Jin and Suen [7], Wan et al. [8,47,48], and
Kellerman, Radice, and Rezzolla [11]. The results presented
in these papers indicated that the head-on axisymmetric
collision of twoNSs can be tunedwith a variety of initial data
parameters to a critical threshold that bifurcates end states
involving either a single black hole or a single more massive
oscillating NS. Universality of the critical behavior was
supported by tuning separately the initial magnitude of the
stellar velocities, central densities and adiabatic index of
their polytropic EOS. Threshold solutions were found to
high precision for all three of the tuning variables. All
threshold solutions were found to be perturbed TOV
solutions on the unstable branch, no matter the tuning
parameter. Since changes in the adiabatic index may mimic
the effects of cooling and accretion, an interesting conjecture
was made that critical behavior might be realizable without
the need for fine-tuning [7]. Further, frequencies at which
the near-threshold solution oscillated were measured and
found to differ—by 1 to 2 orders of magnitude—from the
frequencies of the l ¼ 0, 1 perturbation modes about the
initial stable TOV solution [8]. The seeming discrepancy in
frequencies was eventually explained by [11] when they
demonstrated that the near-threshold solutions were per-
turbed TOV solutions on the unstable branch, and that the
oscillations occurred at the fundamental mode of the
unstable TOV solution—not the original stable TOV sol-
ution. This realization in the literature paralleled conclusions
made years before in the boson star context [36], and in the
TOV context [42].
In this paper, we investigate both types of critical behavior

using a perfect fluid model, although we focus for the most
part on the Type I case. For the first timewith TOV solutions,
we demonstrate that the scaling exponent, σ, is consistent
with the inverse of the real part of the Lyapunov exponent,
ωLy, of the critical solution. This provides further evidence
to support the notion that the Type I critical solutions are
perturbed TOV solutions on the unstable branch. The initial
conditions which we adjust entail a stable TOV star with the
stiffest causal polytropic EOS (Γ ¼ 2), plus some sort of
“perturbing agent.”Themethods bywhichwedrive a star to a
nonequilibrium state involve: (1) giving the star an initially
ingoing velocity profile, and (2) collapsing a spherical
shell of scalar field onto it. Neither method can be considered
truly perturbative since both can drive the star to total
obliteration or prompt collapse to a black hole, but we use
this term since a better one is lacking.
Section II provides the theory describing our systems

and the numerical methods we use to simulate them. In

Sec. IV, we begin our study of stellar collapse by exten-
sively covering the parameter space of initial conditions
for velocity-perturbed stars. The results from this section
provide a broad view of the range of dynamical scenarios
one can expect in the catastrophic collapse of NSs. We then
employ this knowledge in our examination of the solutions
that lie on the verge of black hole formation. Both Type I
and Type II solutions are found. The stars’ Type I critical
behavior is explored in Sec. V (their Type II behavior has
been investigated in a related paper [49]). The threshold
solutions we calculate from the Type I study are then
compared to unstable TOV solutions. In addition, for the
first time, a parameter-space boundary separating the two
types of phenomena is identified and discussed. Finally,
we conclude in Sec. VI with some closing remarks and
notes on possible future work.

II. THEORETICAL MODEL

The equations and methods employed in this study
closely follow those used in [49]. The primary difference
is that we sometimes use a massless scalar field that is
minimally coupled to gravity, and hence to the fluid. We
refer the reader to [49] for details regarding the evolution of
the hydrodynamics equations, but give here the equations
that describe this “fluidþ scalar” system and the methods
used to evolve the scalar field.

A. The geometry equations

We largely follow the notation established in our pre-
vious paper onType II collapse of a perfect fluid [49].We use
geometrized units such that G ¼ c ¼ 1, and tensor notation
and sign conventions that followWald [50].When coordinate
bases are explicitly used, Greek and Roman indices will
refer to spacetime and purely spatial components, respec-
tively (i.e. μ; ν;… ∈ f0; 1; 2; 3g, and i; j; k ∈ f1; 2; 3g).
Quantities in boldface, e.g. q; f, are generally state vectors.
As in many previous critical phenomena studies in

spherical symmetry [6,25,26,28,29], we employ the so-
called polar-areal metric

ds2 ¼ −αðr; tÞ2dt2 þ aðr; tÞ2dr2 þ r2dΩ2: ð3Þ
Since we will use a variety of sources in this study, we state
the equations governing the metric functions using the
formulation of Arnowitt, Deser and Misner (ADM) [51]
and no specific assumption about the precise form of stress-
energy tensor. To update a at each time step, we solve the
Hamiltonian constraint,

a0

a
¼ 4πra2ϱþ 1

2r
ð1 − a2Þ; ð4Þ

where ϱ is the local energy density measured by an
observer moving orthonormal to the spacelike hypersurfa-
ces. Note that a “prime” will denote differentiation with
respect to r and a “dot” will represent differentiation with
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respect to t. In our coordinate basis, the 4-velocity, na, of
this orthonormal observer has components

nμ ¼
h1
α
; 0; 0; 0

iT
: ð5Þ

Hence, ϱ can be shown to be

ϱ ¼ Tμνnμnν ¼ Ttt=α2: ð6Þ
The lapse function α is calculated at each step via the polar
slicing condition,

α0

α
¼ a0

a
þ 1

r
ða2 − 1Þ − 8πa2

r

�
Tθθ −

r2

2
ðTi

i − ϱÞ
�
: ð7Þ

Even though it is used solely for diagnostic purposes, we
state here for completeness the momentum constraint,
which yields an evolution equation for a,

_a ¼ −4πrαajr; ð8Þ
where jr is the only nonvanishing component of the
momentum density measured by the orthonormal observer,

ja ≡ ðgac þ nancÞnbTbc: ð9Þ
For diagnostic purposes, it is convenient to introduce the
mass aspect function, m, given by

mðr; tÞ≡ r
2

�
1 −

1

a2

�
: ð10Þ

We note that polar-areal coordinates cannot penetrate
apparent horizons, but that the formation of a black
hole in a given calculation is nonetheless signaled by
2mðt; ~rÞ=~r → 1, for some specific radial coordinate, r ¼ ~r.

B. The matter equations

We model NS matter as a perfect fluid. Modern
conservative methods that utilize the characteristic structure
of the fluid equations of motion expressed in conservative
form have been very successful in evolving highly rela-
tivistic flows in the presence of strong gravitational fields
(see [45,52–55] for a small but representative selection of
papers on this topic), and we follow that approach here. In
particular, we use a formulation used by Romero et al. [55]
and a change of variables similar to that performed by
Neilsen and Choptuik [54].
One way in which we drive NSmodels to collapse entails

the inclusion of a massless scalar field which dynamically
perturbs the star. We also use a driving mechanism that
involves no scalar field. Not surprisingly, it turns out
that the equations governing the geometry and fluid
equations in the “fluid-only” system can be recovered
from those in the fluidþ scalar system simply by setting
the scalar field, ϕðr; tÞ, to zero for all r and t. Hence,
our numerical implementation always uses the full

fluidþ scalar equations for determining fluid and geo-
metric fields: if we wish to include the scalar field, we
simply initialize it to a nonzero value and evolve it in
tandem with the fluid. Thus, by stating the fluid equations
of motion (EOM) for the fluidþ scalar system, we are
also simultaneously—yet indirectly—stating them in the
fluid-only system.
The EOM for the two matter sources are derived, in part,

from the local conservation of energy

∇aTa
b ¼ 0; ð11Þ

where Tab is the total stress-energy tensor. Since there is no
explicit coupling between the two matter sources, the total
stress tensor is a sum of the stress tensors of the individual
sources

Tab ¼ ~Tab þ T̂ab; ð12Þ
where T̂ab and ~Tab are the stress-energy tensors of the fluid
and scalar field, respectively. Further, the local conserva-
tion of energy equation holds separately for each stress-
energy. Specifically,

∇aTab ¼ ∇a ~Tab ¼ ∇aT̂ab ¼ 0: ð13Þ
The scalar field stress-energy tensor is

~Tab ¼ ∇aϕ∇bϕ −
1

2
gabð∇cϕ∇cϕþ 2VðϕÞÞ; ð14Þ

where VðϕÞ is the scalar potential. In the following
equations, we will assume that VðϕÞ is nonzero, however,
we have set VðϕÞ≡ 0 in all of the calculations reported
below. Since there is no direct interaction between the
scalar field and the fluid, (13) yields the usual equation of
motion for the scalar field:

□ϕ≡∇a∇aϕ ¼ ∂ϕVðϕÞ: ð15Þ
We can convert this to a system of first-order (in time)
PDEs by introducing auxiliary variables, Ξ and ϒ, defined
by

Ξ≡ ϕ0; ϒ≡ a
α
_ϕ: ð16Þ

With these definitions the EOM become

_Ξ ¼ ðXϒÞ0; ð17Þ

_ϒ ¼ 1

r2
ðr2XΞÞ0 − αa∂ϕV; ð18Þ

where X ≡ α=a.
The fluid equations of motion can be easily derived from

the definition of the perfect fluid stress-energy tensor,

T̂ab ¼ ðρþ PÞuaub þ Pgab; ð19Þ
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the local conservation of energy equation (13) and the local
conservation of baryon number

∇aðρ∘uaÞ ¼ 0: ð20Þ
Here, ua is the 4-velocity of a given fluid element, P is the
isotropic pressure, ρ ¼ ρ∘ð1þ ϵÞ is the energy density, ρ∘ is
the rest-mass energy density, and ϵ is the specific internal
energy. Instead of the 4-velocity of the fluid, a more useful
quantity is the radial component of the Eulerian velocity of
the fluid as measured by a Eulerian observer:

v ¼ aur

αut
; ð21Þ

where uμ ¼ ½ut; ur; 0; 0� (recall that we are working in
spherical symmetry). The associated “Lorentz gamma
function” is defined by

W ¼ αut: ð22Þ
Given the fact that the 4-velocity is timelike and unit
normalized, i.e. uμuμ ¼ −1, v and W are related by

W2 ¼ 1

1 − v2
: ð23Þ

In conservation form, the fluid’s EOM are

∂tqþ 1

r2
∂rðr2XfÞ ¼ ψ; ð24Þ

where the state vector q is a vector of conserved variables,
and f and ψ are—respectively—the flux and source state
vectors. Our choice of conserved variables follows that of
Neilsen and Choptuik [54], and leads to improved accuracy
in the ultrarelativistic regime (ρ ≫ ρ0):

q ¼

2
64
D

Π
Φ

3
75; f ¼

2
4

Dv

vðΠþ PÞ þ P

vðΦþ PÞ − P

3
5; ψ ¼

2
64

0

Σ
−Σ

3
75;

ð25Þ

where

D ¼ aρ∘W; ð26Þ

Π ¼ E −Dþ S; ð27Þ

Φ ¼ E −D − S; ð28Þ

S ¼ ρ∘hW2v; ð29Þ

E ¼ ρ∘hW2 − P; ð30Þ

h≡ 1þ ϵþ P=ρ∘ is the specific enthalpy of the fluid, D is
the Eulerian rest-mass density, and Π and Φ are linear
combinations of the Eulerian momentum density (S) and

internal energy density (E −D). We use P, ρ∘, and v as
primitive variables. For the sake of efficiency, we state the
source function, Σ, in terms of derivatives of the metric
functions so that additional matter sources can be incorpo-
rated into the model more easily:

Σ≡ Θþ 2PX
r

ð31Þ
and

Θ ¼ −
2_aS
a

−
α0

α
XE −

a0

a
XðSvþ PÞ: ð32Þ

In practice, we use a simplified form of Θ derived from
the constraints (4) and (8) and the slicing condition (7)
to eliminate a0, α0 and _a. However, this requires knowledge
of the full stress-energy tensor, Tab, not just the fluid’s
stress-energy tensor, T̂ab, to calculate. In the fluidþ scalar
system,

Θ ¼ αa

�
ðSv − EÞ

�
4πrð2P − VðϕÞÞ þ m

r2

�

þ P

�
m
r2

− 4πrVðϕÞ
��

− 2πrX½4ΞϒSþ ðΞ2 þϒ2ÞðSvþ Pþ EÞ�: ð33Þ
When following the gravitational interaction between

the fluid and scalar field, particularly interesting quan-
tities to track are the two contributions to dm=dr:

dm
dr

¼ 4πr2ϱ ¼ 4πr2ϱfluid þ 4πr2ϱscalar; ð34Þ

dmfluid

dr
¼ 4πr2E; ð35Þ

dmscalar

dr
¼ 4πr2

�
1

2a2
ðΞ2 þϒ2Þ þ VðϕÞ

�
: ð36Þ

However, the two mass contributions can only be unam-
biguously differentiated in regions of nonoverlapping
support, since—for instance—∂mscalar=∂r depends on
metric quantities which in turn depend on the local energy
content of all matter distributions that are present. We note
that expressing dm

dr in the form of Eq. (34) is possible
because of our particular gauge choice.
The EOS closes the system of hydrodynamic equations.

Because of the extensive nature of our parameter space
survey, we wish to restrict ourselves to closed-form
(i.e. nontabulated) state equations. For isentropic flows,
the polytropic EOS,

P ¼ KρΓ∘ ; ð37Þ
for some constant, K, and adiabatic index, Γ, is commonly
used. In addition, we use the “ideal-gas” or “gamma-law”
EOS
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P ¼ ðΓ − 1Þρ∘ϵ: ð38Þ
Our initial NS models are solutions to the spherically
symmetric hydrostatic Einstein equations, and are com-
monly known as Tolman-Oppenheimer-Volkoff (TOV)
solutions [37,39]. We use both EOSs (38) and (37) to
set the initial data, but use only the ideal-gas EOS (38) to
evolve any specific configuration [56]. To simulate stiff
matter at supernuclear densities—characteristic of neutron
stars—we use Γ ¼ 2 in all of the calculations described
below. We also note that, as pointed out by Cook et al. [58],
the constant K can be thought of as the fundamental length
scale of the system, which one can use to scale any
dynamical quantity with values of ðK;ΓÞ to a system with
different values ðK0;Γ0Þ. As with G and c, we set K ¼ 1.
This makes our equations unitless, ensuring that our
dynamical variables are not at arbitrarily different orders
of magnitude, and, as discussed in Appendix A, expediting
the transformation of results to another set of ðK;ΓÞ.
In summary, in our simulations of self-gravitating,

ideal-gas fluids, the fluid is evolved by solving (24) and
(25), the scalar field is evolved using (17) and (18), while
the geometry is simultaneously calculated using the
Hamiltonian constraint (4) and the slicing condition (7).
The specific methods we employ to numerically integrate
these equations are briefly explained in Sec. III.

C. Initial star solutions

Since the TOV equations take the form of a coupled set
of ordinary differential equations, their solution does not
generally require the use of sophisticated numerical meth-
ods. Readers who are interested in more details are referred
to the pseudocode description in Shapiro and Teukolsky
[57], as well as the discussion of our specific approach
given in [42].
Analysis of TOV solutions has a rich history [59] which

we will not discuss here. We do, however, wish to note
one important aspect of such solutions that is crucial to
understanding their role in Type I critical behavior, and
which has already been touched upon in the Introduction
in the context of boson stars. Given an EOS, the TOV
solutions can be parametrized by their central pressures;
in our case, the EOS (37) allows us to reparametrize the
solutions with respect to the central rest-mass density, ρc.
Arguments from linear stability analysis [59] tell us that
TOV solutions with the smallest central densities are stable
to small perturbations, while those solutions with ρc at the
opposite end of the spectrum (large ρc) are unstable. A plot
ofM⋆ðR⋆Þ is shown in Fig. 1, where R⋆ is the radius of the
star and we see that M⋆ðR⋆Þ winds up with increasing
central density. At the global maximum of M⋆ðR⋆Þ the
fundamental, or lowest, mode becomes unstable. After each
subsequent local extremum in the direction of increasing
ρc, the next lowest mode becomes unstable. For instance,
there are four local extrema of M⋆ðR⋆Þ shown in Fig. 1, so

those solutions with the largest ρc will have their four
lowest modes exponentially grow in time.
As discussed previously, black hole critical solutions are

typically characterized by a single growing mode. Hence,
the Type I behavior associated with “perturbed” TOV
solutions can be immediately anticipated to entail those
TOV solutions that lie between the first and second extrema
of M⋆ðρcÞ. For subsequent reference we note that with the
units and EOS that we have adopted, the most massive
stable TOV solution has a central density ρc ≃ 0.318 and a
mass M⋆ ≃ 0.1637.
After the initial, starlike solution is calculated, an

ingoing velocity profile is sometimes added to drive the
star to collapse. In order to do this, we follow the
prescription used in [17] and [6]. The method described
therein involves specifying the coordinate velocity,

U≡ dr
dt

¼ ur

ut
; ð39Þ

of the star, and then finding the Eulerian velocity, v, once
the geometry has been calculated. In general, the profile
takes the algebraic form

UðxÞ ¼ A0ðx3 − B0xÞ: ð40Þ
The two profiles that were used in [6] are

U1ðxÞ ¼
U∘
2
ðx3 − 3xÞ;

U2ðxÞ ¼
27U∘
10

ffiffiffi
5

p
�
x3 −

5x
3

�
; ð41Þ

where x≡ r=R⋆. Unless stated otherwise, U1 will be used
for all the results herein.

FIG. 1. Mass versus radius of TOV solutions using Γ ¼ 2 and
K ¼ 1 with the polytropic EOS (37). In the inset, we show a
detailed view of the spiraling behavior. The arrow along the right
side of the curve indicates the direction of increasing central
density.
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Specifying the coordinate velocity instead of v compli-
cates the computation of the metric functions at t ¼ 0.
Our method for dealing with this difficulty is described
in Appendix B.

III. NUMERICAL TECHNIQUES

Simulating the highly relativistic flows encountered in the
driven collapse of NSs entails solving a system of coupled,
partial and ordinary differential equations that describe how
the fluid, scalar field, and gravitational field evolve in time.
High-resolution shock-capturing methods are used to evolve
the fluid and the iterative crank Nicholson method, with
second-order spatial differences, is used for the scalar field.
Both methods are second-order accurate, except that the
fluid method is first-order accurate near shocks and at local
extrema. The rapid numerical prototyping language (RNPL)
written byMarsa and Choptuik [60] is used to handle check-
pointing, input/output, and memory management for all our
simulations; we do not use the language of RNPL itself for
our finite differencing, but use original, secondary routines
that are called from the primary RNPL routines.More details
of the code, along with descriptions of code tests can be
found in [42,49].

IV. VELOCITY-INDUCED NEUTRON
STAR COLLAPSE

Here we present a description of the various dynamic
scenarios we have seen in perturbed NS models, as a
function of the initial star solution and the magnitude of the
initial velocity profile. These results are compared to those
from previous studies—most notably that of Novak [6]—
but also provide some new insights. Specifically, this
section provides a description of various phases we have
identified in parameter space, including those from a survey
of the subcritical regime that is more detailed than has
been reported in prior work. In Sec. V we then focus on
the critical phenomena observed at the threshold of black
hole formation, and where collapse is induced via inter-
action of the fluid star with a collapsing pulse of massless
scalar field.
In this section any specific TOV solution is driven out

of equilibrium by endowing it with an ingoing profile for
the initial coordinate velocity, Uðr; 0Þ, as described in
Sec. II C. We measure the magnitude of this perturbation by
the absolute value of the minimum value of the Eulerian
velocity v, vmin, at the initial time. We find that vmin is
uniquely specified by the parameter U∘ provided that
we follow the prescription for generating perturbed TOV
stars given in Appendix B. We also note that vmin is a more
physical quantity than similar parameters—e.g. U∘—that
pertain to the fluid’s gauge-dependent, coordinate velocity.
Our survey used 22 different stable TOV solutions—

specified by the initial central density ρc—shown in Fig. 2.
The solutions used for the parameter space survey are

displayed along the M⋆ðρcÞ curve for Γ ¼ 2 TOV solu-
tions. We note that a wide spectrum of stars were chosen,
from noncompact stars that are relatively large and diffuse,
to compact and dense stars.
By sampling vmin and the initial central density of the star,

ρc, we have created a type of “phase diagram” for the various
ways in which perturbed TOV solutions evolve. The
phase diagram is shown in Fig. 3. We sample the parameter

FIG. 2. Initial TOV solutions used in the parameter space
survey.

FIG. 3. Parameter space showing the regions in which
various outcomes (phases) occur. The space is spanned by
the initial magnitude of the velocity perturbation, vmin, and
the initial central density of the star, ρc. The small black
rectangular region located at ðρc; vminÞ ∼ ð0.05; 0.53–0.55Þ rep-
resents a set of solutions that undergo an SBO-type evolution.
Phase legend: PC ¼ prompt collapse, SBC¼ shock-bounce-
collapse, SBD¼shock-bounce-dispersal, SBO¼shock-bounce-
oscillation, O¼oscillation. See text for further explanation of
the various phases.
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space by varying the parameter vmin for each value of ρc.
Approximately 360 fρc; vming sets were run in order to
resolve the phase boundaries. Given any combination of
the central value of the star’s rest-mass density, ρc, and vmin,
the system will evolve in a fashion specified by the diagram.
In Fig. 4, we display the phases in ðM⋆; vminÞ space.
The types of dynamical outcomes or “phases” identified

in Figs. 3 and 4 are:
Prompt collapse (PC).—The initial “perturbation” is so
strong that the star is driven directly to black hole formation.
The fluid collapses homologously—or uniformly—and
insignificant amounts of material are ejected before the
black hole forms.
Shock-bounce-collapse (SBC).—The perturbation is not
sufficient to spontaneously form a black hole, but is strong
enough to eventually drive the star to collapse. The outer
part of the star collapses at a faster rate than the interior
and eventually bounces off the denser core, producing an
outgoing shock which expels a significant portion of the
outer layers of the star.
Shock-bounce-dispersal (SBD).—This case is quite similar
to the SBC scenario, except a black hole never forms.
Instead, the star contracts until it reaches some maximum
density and pressure at the origin which is great enough to
expel the remainder of the star, leaving behind an ever-
decreasing amount of matter. This final explosion results

in another outgoing shock wave that typically overtakes
and engulfs the first shock.
Shock-bounce-oscillation (SBO).—As the perturbation is
decreased, the rebound of the interior no longer results in
complete mass expulsion. Rather, some matter remains
after the first two shocks propagate outwards and this
matter settles into a new equilibrium state by oscillating
away any excess kinetic energy via shock heating. After the
oscillations dampen away, a star is left behind that is larger,
sparser and hotter than the original.
Oscillation (O).—Finally, if the inward velocity is minimal,
then the perturbed star will undergo adiabatic oscillations at
its fundamental frequency and overtones with a negligible
expulsion of mass.
Quantitative definitions and further descriptions of these
end states can be found in Appendix C.
The phase boundaries—with the possible exception of

that between the SBO/O states—appear to be quite smooth.
This uniformity lends itself to global characterizations,
such as a comparison of the dynamical scenarios possible
between less compact stars (low ρc) and more compact
stars (high ρc). For example, we find that only low ρc stars
can undergo a complete explosion that disperses the
star’s matter to infinity, and they require significantly larger
perturbations to form black holes. Both of these aspects are
intuitive since such stars generate less spacetime curvature.
On the other hand, more compact stars induce greater
spacetime curvature, and so are more difficult—and appa-
rently impossible in some cases—to completely disperse
from the origin.
From our survey, we have also found that it is not

possible to drive some of the less compact stars to black
hole formation, regardless of the size of the initial velocity
perturbation. Black holes arise through SBC dynamical
scenarios for ρc ≳ 0.007, and homologous collapse to a
black hole (PC) only occurs for stars with ρc ≳ 0.01. Since
we observe Type II critical phenomena for 0.01≲ ρc ≲
0.05343 (see [49] for more details), we surmise that
arbitrarily small black holes can form for this entire range
of TOV solutions. For ρc ≳ 0.05344, we find that the
threshold solutions are Type I solutions, suggesting the
smallest black holes that can evolve from such stars have
finite masses. The Type I behavior seen in perturbed stars
will be discussed in Sec. V.
In order to compare our results to Novak’s, we need to

transform our scale to his. However, it is unclear what scale
Novak used. He stated masses in terms of solar masses, but
wrote “K ¼ 0.1” without specifying the units of K. This
possibly suggests that he used geometrized units in that
case. Given this uncertainty, we attempt to compare our
values to his by determining the K that makes the mass of
our last stable TOV solution (i.e. the solution with the
maximum mass) correspond to his value of 3.16M⊙. We
will place a “hat” over all quantities that we state in these
units. Using the methods described in Appendix A, we find

FIG. 4. Parameter space showing the regions in which various
outcomes occur. This is the same data shown in Fig. 3 but
displayed with respect to the initial magnitude of the velocity
perturbation, vmin, and the initial mass of the star, M⋆ð0Þ. Note
thatM⋆ is the gravitational mass of the static star solution and not
of the perturbed star. SinceM⋆ðρcÞ is monotonic in the region we
sampled (Fig. 2), this figure is essentially a distortion of Fig. 3.
The most massive stars shown here have ρc ¼ 0.27 and
M⋆ ¼ 0.1629. The small black rectangular region located at
ðM⋆; vminÞ≃ ð0.086; 0.53–0.55Þ represents a set of solutions that
undergo an SBO-type evolution. See the Fig. 3 caption and text
for definition of various phases that are identified.
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that this factor of K is K̂ ¼ 5.42 × 105 cm5 g−1 s−2. LetM1

be the mass of the least massive star that can form a black
hole through any scenario, and M2 be the mass of the least
massive star that we observe to undergo prompt collapse
to a black hole. In our units, we find M1 ≃ 0.01656 at
ρc ¼ 0.007, and M2 ≃ 0.02309 at ρc ¼ 0.01. Using K̂ to
convert our masses to his yields M̂1 ¼ 0.320M⊙ versus
M̂1 ¼ 1.155M⊙, and M̂2 ¼ 0.446M⊙ where Novak reports
M̂2 ≈ 2.3M⊙. Note that M̂2 is estimated from Fig. 5 of [6],
where a velocity profile equivalent to our U2 profile (41) is
used. Since we have only performed the parameter space
survey for U1 we cannot say what we would get for M2

when using U2. However, Novak performed a comparison
between these two profiles and found that his estimates
for M1 deviated by about 1% between the two. Hence, we
believe it is adequate to quote his result for U2 in order to
compare to our result for U1.
The difference in masses is also obvious in our res-

pective phase diagrams from the parameter space surveys,
where the point along the ρc axis (nB in Novak’s case)
at which black holes can form occurs for noticeably
more compact stars in Novak’s case [61]. Another signifi-
cant distinction we see in our phase space plot is an
absence of SBC states for larger ρc. Novak seems to
observe such scenarios all the way to the turnover point
(ρc ¼ 0.318), whereas we find that they no longer happen
for ρc ≳ 0.108.
Additionally, we believe our study is the first to

extensively cover the subcritical region of NS collapse.
While the method by which the NSs are perturbed may not
be the most physically relevant prescription, we are able to
see all the collapse scenarios found in previous works.
Much of the previous research focused on compact stars
near the turnover point or studied some other region
exclusively (e.g. [44,45,55,62,63]), while others individu-
ally observed much of the phenomenon without thoroughly
scrutinizing the boundaries between the phases [6,14,17].
Our parameter space survey also sheds light on the

critical behavior observed at the threshold of black hole
formation. Specifically, we see that the SBD/SBO boun-
dary on the subcritical side of the diagram seems to be
correlated with the transition from Type II to Type I critical
behavior. The Type II threshold lies along the SBD/SBC
boundary, while the Type I threshold occurs along the line
that separates SBO and O cases from black hole–forming
cases. We have been able to determine that ρc ≈ 0.05344 is
the approximate point at which the transition from Type II
to Type I behavior occurs. For Type II minimally subcritical
solutions near this transition, the matter disperses from the
origin but it is difficult to say if it escapes to infinity since
our grid refinement procedure is incapable of coarsening
the domain. Consequently, the time step is too small to
allow for longtime evolutions of these dispersal cases, and
we are unable to guarantee that they do indeed disperse
to infinity. In addition, the self-similar portion of these

marginally subcritical solutions entails only a small amount
of the original star’s matter, the remainder of which could,
in principle, collapse into a black hole at a time after the
inner self-similar component departs from the origin.
Hence, with our current code, it is difficult to determine
the ultimate fate of these dispersal scenarios.
What does this parameter survey suggest about the black

hole mass function from driven NS collapse? For PC
scenarios, the black hole mass is approximately the same
as the progenitor star’s mass. The SBC/PC boundary marks
where the black hole mass function can begin to signifi-
cantly deviate from the stellar mass function. The least
extreme (smallest vmin) SBC scenario takes place near
vmin ≃ 0.3, ρc ≃ 0.1 and M⋆ ≃ 0.13. Such a large velocity
profile may seem unphysical, however, a self-consistent,
general relativistic simulation of a core collapse supernova
in spherical symmetry performed by Liebendörfer et al.
[64] led to a minimum velocity of ∼ − 0.6c soon after
bounce. This suggests that vmin ≳ 0.3 is not so unrealistic.
Also, it means that Type II behavior may be physically
attainable in nature if—in fact—vmin reaches the magni-
tudes seen in [64] since vmin ≃ 0.55 is the smallest velocity
profile that leads to Type II behavior. However, we find that
MBH becomes a power law onlywhen vmin has been tuned to
less than 0.01% of the critical value [49], suggesting that
such cases will not affect the black hole mass function
significantly. Unfortunately, we have not measured the
dependence of MBH on vmin and ρc in the SBC regime,
and—therefore—are not sure if the distribution is nontrivial.
We hope to measure this in the future.
Wan et al. [8] present a similar phase space survey of a

head-on collision between two identical Gaussian distri-
butions of stiff matter (Γ ¼ 2) to approximate the head-on
merger of identical neutron stars. The two Gaussian
distributions were boosted toward each other with the
same velocity magnitude. The amplitude of the boost
velocities and the initial central densities of the Gaussian
distributions were varied to explore the nature of the critical
surface. As the central densities were varied, the total
baryonic masses of the pulses were kept constant by
adjusting the width of each distribution. Like us, they find
that there is a line that separates black hole forming initial
conditions from NS forming conditions. Unlike our results,
however, they find that their line is concave leftward,
suggesting that there is a maximum density beyond which
black hole formation is impossible independent of boost
velocity. Further, it suggests that at a given initial central
density (below this upper limit) there are two critical
transitions: from NS-forming to BH-forming to NS-
forming—i.e. there is a velocity value above which only
NS formation is possible. Wan [48] explains further that the
second threshold arises because at this point the merger
produces a shock that heats the gas to the point that collapse
is prevented. In our system, black hole formation is always
possible except for the sparsest stars.
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V. TYPE I CRITICAL PHENOMENA

In this section we describe the Type-I behavior observed
when perturbing a TOV solution with an imploding pulse
of scalar field. Please see [49] for a description of the Type
II phenomena.

A. Model description

As others have done [35,44], we use a minimally
coupled, massless scalar field to perturb our star solutions
dynamically. The scalar field is advantageous for several
reasons. First, the fact that the two matter models are
both minimally coupled to gravity with no explicit
interaction between the two ensures that any resulting
dynamics from the perturbation is entirely due to their
gravitational interaction. Second, the EOM of the scalar
field are straightforward to solve numerically and provide
little overhead to the hydrodynamic simulation. Third,
since gravitational waves cannot exist in spherical sym-
metry and the scalar field only couples to the fluid through
gravity, it can serve as a plausible first approximation to
gravitational radiation acting on these spherical stars.
We will continue to approximate NSs as polytropic

solutions of the TOV equations with Γ ¼ 2, and the factor
in the polytropic EOS (37) will still be set to K ¼ 1 to
keep the system unitless. Since all stellar radii R⋆ satisfy
R⋆ < 1.3 for such solutions, we will—by default—position
the initial scalar field pulse at r ¼ 5. This has been found
to be well outside any star’s extent and so ensures that the
two matter sources are not initially interacting.

B. The critical solutions

The evolution of the star towards the critical solution and
the critical solutions themselves will be described in this
section. As the scalar field pulse travels into the star, the
star undergoes a compression phase wherein the exterior
implodes at a faster rate than the interior. This is reminis-
cent of the velocity-induced shock-bounce scenarios
described in Sec. IV. If the perturbation is weak, then
the star will undergo oscillations with its fundamental
frequency after the scalar field disperses through the origin
and finally escapes to null infinity (higher harmonics are
also excited). On the other hand, when the initial scalar
shell is of sufficiently large amplitude, the star can be
driven to prompt collapse, trapping some of the scalar field
along with the entire star in a black hole. Somewhere in
between, the scalar field can compactify the star to a nearly
static state that resembles an unstable TOV solution of
slightly increased mass. The length of time the perturbed
star emulates the unstable solution, which we will call the
lifetime, increases as the initial pulse’s amplitude is
adjusted closer to the critical value, p⋆. It is expected
from this scaling behavior that a perfectly constructed
scalar field pulse with p ¼ p⋆ would perturb the star in
such a way that it would resemble the unstable solution

forever. This putative, infinitely long-lived state is referred
to as the critical solution of the progenitor star.
Examples of solutions near and far from the critical

solution are illustrated in Figs. 5 and 6 for a star with
ρc ¼ 0.14. Here we show the evolution of the spatial
maximum of 2m=r, maxð2m=rÞ, and the central density
of the star for a series of solutions. The quantity 2m=r is,
effectively, a measure of the degree of compactification;
the global maximum that 2m=r can attain for the static
TOV solutions studied herein is approximately 0.61, and
2m=r → 1when a black hole would form. The supercritical
systems far from the threshold quickly collapse to black
holes as indicated here by the divergence of the central
density and compactification factor. On the opposite side
of the spectrum, we see that subcritical solutions undergo
a series of oscillations. The plateau shown in the plots
represents the period of time during which the marginally
subcritical and supercritical solutions resemble the critical
solution. We will see shortly that this critical solution is
actually a starlike configuration oscillating about an unsta-
ble TOV solution. Interestingly, we do not see the secular
growth in the central density with respect to time in these
near-threshold solutions that others report [10]; these
authors note that it is likely due to their use of a
multidimensional code and lower effective resolution.
Instead of dispersing to spatial infinity as do the solitonic

oscillon stars of [34], the marginally subcritical TOV stars
ultimately settle into bound states. Depending on the
magnitude of p⋆ for a particular progenitor star, the final
star solution will either be larger and sparser than the
original (large p⋆), or it will oscillate indefinitely about
the original solution. In reality, the star will radiate away
the kinetic energy of the oscillation via some viscous

FIG. 5. Evolutions of maxð2m=rÞ from four solutions near the
critical threshold of a star parametrized by Γ ¼ 2, ρc ¼ 0.15.
Shown are solutions far from threshold on the supercritical side
(long dashes), near threshold on the supercritical side (short
dashes), near threshold on the subcritical side (solid curve),
and far from threshold on the subcritical side (dots). The two
solutions near the threshold have been tuned to within machine
precision of the critical value.
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mechanism. In our model, however, the only dissipation is
the trivial amount from the numerical scheme, and that
from the star shock heating its atmosphere—transferring
the kinetic energy of the bulk flow into internal energy.
If the subcritical star settles to a sparser solution, it will do
this through a series of violent, highly damped oscillations
similar to the SBO scenarios of velocity-perturbed stars
described in Sec. IV. Examples of such subcritical SBO
solutions are depicted in Figs. 5–7. The damped oscilla-
tions are best illustrated in the marginally subcritical
solutions shown in Figs. 5 and 6, since the oscillations
of the subcritical solution of ρc ¼ 0.09 (Fig. 7) occur at an
imperceptible scale.
For these sparser stars, the perturbation required to

generate near-critical evolution is quite large and, con-
sequently, is such that it drives the star to significantly

overshoot the unstable TOV solution, setting it to ring
about the unstable solution instead. This metastable ringing
decreases with decreasing p⋆ðρcÞ, or increasing ρc. For
instance, the critical solution of the ρc ¼ 0.09 star seems to
correspond to an unstable TOV star with central density
ρ⋆c ≃ 2 that oscillates such that 0 < ρ∘ð0; tÞ < 4. The
increase in central density—from the initial stable star to
the unstable star solution—represents an increase by a
factor of 22. This is to be contrasted with the critical
solution for the ρc ¼ 0.29 star which has a central density
ρ⋆c ≃ 0.35—an increase by a factor of 1.2; this critical
solution oscillates such that 0.32 < ρ∘ð0; tÞ < 0.38. This
trend will be discussed further in Sec. V C.
In addition to smaller oscillations about the metastable

states for denser initial stars, we see from Figs. 8 and 9
that near-critical evolutions can momentarily depart from
their metastable states. The departures are illustrated by a
break in the plateaus of the ρ∘ð0; tÞ distributions. As ρc
increases and gets closer to the turnover point, which is
located at ρc ¼ 0.318, we see that the number of distinct
plateaus increases. The ρc ¼ 0.1835 solution is the smallest
initial central density where two plateaus are observed,
and ρc ¼ 0.21 is the first one where three are seen. For
higher densities we see an ever-increasing number of
plateaus, most likely because the difference between the
progenitor solution and its corresponding critical solution
diminishes. We explore possible causes of these departures
in Appendix D.
As we can see in the time sequence of the scalar field and

fluid contributions to dm=dr in Fig. 10, the marginally
subcritical and supercritical stars leave the unstable TOV
star configuration only to return to it after one oscillation
about the progenitor solution. The unstable star solution

FIG. 6. Same as in Fig. 5 but of ρ∘ðr ¼ 0; tÞ.

FIG. 7. Sample evolutions of the central rest-mass density for
supercritical (dashes) and subcritical (solid) solutions from a
progenitor star with ρc ¼ 0.09. The solutions have been tuned
to within machine precision of criticality. Note that ρ∘ð0; tÞ for
the supercritical calculation tends to a constant value since the
“collapse of the lapse” has effectively frozen the star’s evolution
near the origin. The subcritical solution evolves to an oscillating
star that is larger and sparser than the original state; these
oscillations are not visible at the scale used here.

FIG. 8. Sample evolutions of the central rest-mass density for
supercritical (dashes) and subcritical (solid) solutions from a
progenitor star with ρc ¼ 0.1835. The ρc ¼ 0.1835 star is the star
with the smallest initial central density whose nearest-to-critical
solution exhibits a momentary departure from the unstable
equilibrium solution; this is indicated by the break between
the two “plateaus” in the graph. This behavior is seen for most
stars above ρc ¼ 0.1835.
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shown was found by calculating a TOV solution with
central density equal to the time average of ρ∘ð0; tÞ of the
solution tuned nearest to the threshold. The shock from the
outer layers of the star reacting first to the increase in
curvature is first seen at t ¼ 9 of this figure.
Making a quantitative comparison of the critical solution

to an unstable star is not easy since the critical solution is
not exactly static. If we make the assumption that the
oscillation is sinusoidal, we can take a time average of
the solution when it most resembles an unstable star.
We first start with the subcritical solution that is closest
to the threshold. The periods over which the solution best
approximates the unstable solution are determined by
qualitatively judging where the sequences of quasinormal
oscillations begin and end. The central density, ρ⋆c , of the
critical solution is then estimated as the time average of
ρ∘ð0; tÞ over each of these periods. For each system with
multiple periods (or plateaus) studied here, we have found
the plateau averages all agree with each other to within
their standard deviation. Hence, we feel that this is a
consistent method for identifying the unstable star asso-
ciated with a critical solution.
After identifying a perturbed star’s associated metastable

solution, we can compare its shape with the solution it
oscillates about during a plateau. To perform this com-
parison for ρc ¼ 0.197, we used the time average of the
perturbed star during the second plateau and the TOV
solution with central density ρ⋆c. The results of this
comparison are shown in Figs. 11 and 12, where metric
and fluid functions from the time average and the estimated
unstable TOV solution are shown together along with
their differences. These figures clearly show that, during
“plateau epochs,” the critical solution closely approximates
an unstable TOV solution of similar central density. The
relative deviation between the two solutions increases near
the radius of the star, R⋆, which is not surprising since the

fluid’s time-averaged velocity is greatest there. Also, near
R⋆ the star is most likely interacting with the atmosphere in
a nontrivial way, which could alter its form near the surface.
In fact, a similar discrepancy was observed in the critical
boson star solutions in [35]; they found that the critical
solutions had a longer “tail” than their corresponding static
solutions. Still, the differences we see here are encouraging,
and suggest strongly that the critical solutions we obtain are
perturbed stellar solutions from the unstable branch.

C. Mass transfer and the transition
to the unstable branch

Not only does the perturbing scalar field momentarily
increase the spacetime curvature near the origin as it
implodes through the star, the gravitational interaction of
the two matter fields involves an exchange of mass from
the scalar field to the star. In Fig. 13, we provide a more
explicit illustration of the mass exchange for two margin-
ally subcritical solutions of stars with ρc ¼ 0.197 and
ρc ¼ 0.09. The total gravitating mass Mtotal is calculated
via Eq. (10), while Mfluid (Mscalar) is found by integrating
dmfluid=dr (dmscalar=dr) from the origin to the outer

FIG. 10. Time series of fluid and scalar field contributions to
dm=dr for the solutions closest to the critical threshold of
progenitor stars with ρc ¼ 0.197. The supercritical (subcritical)
fluid contribution is the dotted (solid) curve, and the scalar
field contribution that gives rise to the supercritical (subcritical)
solution is shown as a dot-dashed (long-dashed) curve near the
bottom of each frame (and is most visible in the third and fourth
frames). The dm=dr of the fluid’s unstable, equilibrium solution
that most closely approximates our critical solution is shown
as the dashed line. The elapsed proper time measured at spatial
infinity of each frame is shown in the upper-right corner. Since
the differences between the supercritical and subcritical scalar
field perturbations are on the order of machine precision, the
subcritical scalar field contribution is completely obscured by
the supercritical one. Also, the supercritical and subcritical fluid
contributions are nearly identical until t ¼ 80, when the two
solutions begin to diverge from the critical solution.

FIG. 9. Sample evolutions of the central rest-mass density for
supercritical (dashes) and subcritical (solid) solutions from a
progenitor star with ρc ¼ 0.29. The supercritical solution under-
goes a curious sequence not seen in many cases: after it deviates
from the subcritical solution—instead of collapsing to a black
hole immediately—it returns to it one last time before collapsing.
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boundary. For each case, the nontrivial gravitational inter-
action of the fluid and scalar field can be recognized by the
sudden change in their integrated masses, which occurs
near t ¼ 7 in each plot. The perturbation for the ρc ¼ 0.197
star is small and does not transfer a significant portion of
its mass to the star, whereas the perturbation required to
drive the ρc ¼ 0.09 star to its marginally subcritical state

transfers more than a third of its mass to the star. This
dramatic interaction drives the star to oscillate wildly about
its unstable counterpart—as seen in Fig. 7—and it even-
tually expels a great deal of the star’s mass as it departs
from this highly energetic, yet unstable, bound state. The
loss of the ejected matter from the grid is clearly seen in
Fig. 13 as the long tail of MfluidðtÞ, which begins to
decrease well after the scalar field leaves the grid.
To examine how the amount of mass exchange varies for

different critical solutions and to see where exactly critical
solutions fall on the M⋆ versus ρc graph of equilibrium
solutions, we constructed Fig. 14. The initial star solutions
are indicated here on the left side—the stable branch—
while their critical solutions are shown on the right along
the unstable branch. There are two associated masses for
each critical solution: the mass it would have if its profile
exactly matched the unstable TOV solution with the same
time-averaged central density, and its true mass. Both of
these masses are indicated in Fig. 14 to the right of the
turnover point. We find that the total fluid mass is always
larger than its initial mass, whereas the mass of the attractor
solution is always smaller than its stable progenitor.
In addition, as the turnover is approached, both of these
deviations diminish until, at turnover, the final mass of the
fluid distribution corresponds to its initial mass and the
mass of the unstable TOV solution.
The observed trend that the mass of the unstable TOV

solution is always smaller than the progenitor’s may be
explainable in a number of ways. First, the assumption that
the oscillations of the critical solution about the attractor
solution are sinusoidal would most likely result in over-
estimates of ρc since the oscillations seem to decay in a
nonlinear fashion over time. A larger ρc would then lead
to a mass estimate smaller than it should be, since
dM⋆=dρc < 0 on the unstable branch. Second, it was seen

FIG. 11. Time averages (×’s) of ρ∘ (top) and a (bottom) from
the marginally subcritical solution compared to those from the
associated unstable TOV solution (ρ⋆∘ and a⋆, dark solid curves) it
best approximates. The subcritical solution used has been tuned
to within machine precision of the critical solution, and whose
initial star has central density of ρc ¼ 0.197. Only every eighth
point of the time-averaged distributions is displayed. Also shown
(light solid curves) are the relative differences between these two
sets of functions. The curves are truncated at the stellar radius of
the critical solution.

FIG. 12. Same as in Fig. 11 but for the functions P (top) and
v (bottom).

FIG. 13. Integrated masses of the matter fields as a function of
time for marginally subcritical solutions of progenitor stars with
ρc ¼ 0.197 (left) and ρc ¼ 0.09 (right). The decrease in Mtotal
(solid curve) at the same time as Mscalar (long dashes) vanishes
signifies the scalar field leaving the numerical grid; from the time
it leaves, Mtotal is equivalent to Mfluid (short dashes).
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in Figs. 7–9 that the oscillations of the critical solutions
decrease with increasing ρc. The decrease in the amount of
energy in these kinetic modes seems to be correlated with
the decrease in the exchanged mass. A large portion of the
exchanged mass must therefore go into the unstable star’s
kinetic energy.

D. Type I scaling behavior

As the amplitude of the initial pulse of scalar field is
adjusted toward p⋆, the lifetime of the metastable, near-
critical configuration increases. To quantify the scaling for
a given initial star solution, the subcritical solution closest
to the critical one is first determined. This is done by tuning
the amplitude of the scalar field pulse, p, until consecutive
bisections yield a change in p smaller than machine
precision. Let plo be the value of p that yields the
subcritical solution that most closely approximates the
critical solution. For each p, a unique solution is produced
that resembles this marginally subcritical solution for
different lengths of time, determined by how close p is
to p⋆. Assuming that the plo solution resembles the critical
solution longer than any other, the lifetime, T0ðpÞ, is then
the proper time measured at the origin that elapses until
max ð2m=rÞ deviates from that of the plo solution by more
than 1%. These lifetimes T0ðpÞ are then fit against the
expected trend (2). An example of such a fit is given in
Fig. 15. Since supercritical solutions resemble the critical
solution as well as subcritical solutions, both kinds can be
used when determining the scaling exponent σ. The

exponent is the negative of the slope of the fitted line.
The deviation of the code-generated data from the best fit
has an obvious modulation, which may be due to the
periodic nature of the near-threshold solutions. Similar
modulations in the scaling behavior have also been reported
for the case of head-on neutron star collisions [11]. In
addition, we note that the values of σðρ∘Þ are dependent on
resolution; from the grid spacing used in the simulations
here and the convergence tests performed with Type II
critical behavior in [49], we expect the values of σ are
accurate to a few percent. Please see [49] for further
information on tests demonstrating our numerical scheme’s
validity and its second-order rate of convergence in regions
devoid of shocks.
In practice, the lifetime is determined using the proper

time elapsed at spatial infinity, T∞, instead of that measured
at the origin. Let us denote σ∞ as the scaling exponent
measured with T∞. In order to get the correct scaling
exponent, which would correspond to 1=ωLy of the
unstable mode, σ∞ must be rescaled. Since T∞ is the same
as our coordinate time, t, then

dT0ðtÞ ¼ αð0; tÞdt: ð42Þ

In order to estimate the rescaling factor, we assume that
αð0; tÞ does not vary much when the solution is in the near-
critical regime, so that

αð0; tÞ ≈ α⋆ð0Þ; ð43Þ

FIG. 15. (top) Lifetimes, T0ðpÞ, for solutions near the threshold
that start from a star with ρc ¼ 0.14. (bottom) Deviations of
T0ðpÞ from the best linear fit to the data. The scaling exponent, σ,
is found from the negative of the slope of the best linear fit to the
points. The fact that both supercritical (triangles) and subcritical
(squares) solutions can be used for calculating T0ðpÞ is illustrated
here by our inclusion of both sets of points. The lifetimes shown
here are actually those measured at spatial infinity; see the text for
further information.

FIG. 14. Mass versus the log of the central density for
equilibrium solutions (solid curve), a few of the initial data sets
used (circles), and the critical solutions obtained from these initial
data sets (triangles and squares). The central density of a critical
solution was obtained by taking a time average of the central
density when the star most resembled the attractor solution. The
triangles show where these central densities lie on the unstable
branch, and the mass denoted by a circle or square is of all the
fluid in the numerical domain. The dashed and dotted lines
indicate the solutions’ associations.
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where α⋆ is the central value of the lapse of the unstable
TOV solution that corresponds to the critical solution. The
corrected value of σ is then calculated using

σ ¼ α⋆σ∞: ð44Þ
We have performed fits for σ∞ and then rescaled them

using the above procedure to obtain an estimate of σ for 55
different initial TOV stars. The Lyapunov exponent for a
critical solution is ωLy ¼ 1=σ. The variation of ωLy with ρ⋆c
is shown in Fig. 16. We find that ωLyðρ⋆cÞ is fit surprisingly
well by the linear relationship

ωLy ¼ 5.93ρ⋆c − 1.475: ð45Þ

In order to verify that the calculated σ values are, indeed,
equal to 1=ωLy, we need to calculate the fundamental
modes of the unstable star solutions. To the extent of the
authors’ knowledge and that of others [65,66], this has
not been done for the particular EOS used. However, the
equations governing radial pulsations of stars in general
relativity are well known (see [67,68] and references
therein). Our method for their solution follows “Method
1-A” of [67], which exploits the fact that the equation to be
solved has the Sturm-Liouville form. Since the fundamen-
tal mode, ω0, of these unstable star solutions is expected
to be the unstable mode that we tune away, we expect
ω0 ¼ ωLy. For each unstable star with ρ∘ ¼ ρ⋆c , we calcu-
late ω0 by iteratively integrating the eigenfunctions in first-
order form from r ¼ 0 to r ¼ R⋆. After each iteration, we
lower (raise) our guess for ω0 depending on whether the

solution has one (zero) nodes. This bisection process
proceeds until we have found ω0 to at least six digits.
A comparison between ω0 and ωLy is shown in Fig. 17.

The Lyapunov exponents deviate from the fundamental
mode frequencies of unstable solutions by no more than 7%
for all ρ⋆c . The relative difference, ðω0 − ωLyÞ=ω0, is seen to
grow with ρ⋆c . This may be explained by the possible bias
we mentioned earlier in how we calculate ρ⋆c from the near-
threshold solution. Stars with larger ρ⋆c oscillate with a
larger amplitude that tends to decay with time (e.g. Fig. 7).
If one were to assume this decay is the result of the
threshold solution shedding excess kinetic energy, then
our time averages of ρ∘ðr ¼ 0Þ would yield excessively
large ρ⋆c values.
Before leaving this section, we wish to comment on

the universality of our system’s critical solutions. Unlike
systems with one unstable static solution—as seen in the
Einstein-Yang-Mills model [29,30], for example—the TOV
system admits a family of static critical solutions (i.e. the
unstable branch of TOV solutions). As demonstrated in
[7–9,12,47,48], one can perturb unstable TOV solutions in
a number of ways to demonstrate Type I behavior; in this
kind of method, one starts with an unstable solution and
tunes it to the critical solution by adjusting a parameter of
the initial data that acts to eliminate the single unstable
mode. In our study we demonstrate that Type I behavior of
TOV solutions can also be found when one starts from a
stable solution and tunes the perturbing agent that drives
the star to the unstable branch. We have demonstrated that,
at least for the perturbing methods we have explored, the
mapping from stable to unstable solutions followed no
obvious trend. We therefore cannot predict what critical

FIG. 16. (top) Real part of the estimated Lyapunov exponent for
a given star solution parametrized by ρ⋆c using the first plateau
(triangles) and the second plateau (squares). maxð2m=rÞ was
used to calculate the ωLy shown here. (bottom) The relative
deviation of the data from the best linear fit to data from the first
plateau (45).

FIG. 17. (top) Comparison of ωLy from the first plateau data
(triangles) and ωLy from the second plateau data (squares) to the
fundamental mode frequencies, ω0, of the corresponding unstable
TOV solutions (connected dots). (bottom) Relative deviations
between ωLy and ω0.
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solution a particular set of initial data will tend toward. On
the other hand, the calculations performed by the others
begin with initial data very near an unstable solution that
is ultimately identified with a critical solution. These
computations demonstrate that the unstable branch serves
as a family of 1-mode unstable solutions, whereas our
method additionally demonstrates that the unstable branch
is the family of 1-mode unstable solutions to which stable
solutions are attracted—at least for the scenarios we
examined.

VI. CONCLUSION

In this paper, we simulated spherically symmetric
relativistic perfect fluid flow in the strong-field regime
of general relativity. Specifically, a perfect fluid that admits
a length scale, for example one that follows a relativistic
ideal gas law, was used to investigate the dynamics of
compact, stellar objects. A stiff equation of state was used
to approximate the behavior of some realistic state equa-
tions for NS matter. The stars served as initial data for a
parameter survey, in which we drove them to collapse using
either an initial velocity profile or a pulse of massless scalar
field. Both types of critical phenomena were observed
using each of the two mechanisms. The parameter space
survey provided a description of the boundary between
Type I and Type II behavior, and illustrated the wide range
of dynamical scenarios involved in stellar collapse. We
found that the non–black hole end states of solutions near
the threshold of black hole seemed to be correlated to the
type of critical behavior observed. For instance, Type I
behavior seemed to always entail subcritical end states that
were bound and starlike. Type II behavior, on the other
hand, was observed to coincide with dispersal end states.
Since the unstable branch of TOV solutions has been

known for decades, many anticipated that TOV solutions
would exhibit some kind of Type I behavior. This paper
describes the first in depth analysis of Type I phenomena
associated with hydrostatic solutions in that the Lyapunov
exponents of the critical solutions were measured for a
variety of cases. We verified that the Lyapunov exponents
agree well with the normal mode frequency of their
associated unstable TOV solutions, confirming that the
critical solutions are TOV solutions on the unstable branch.
The exponents were found to follow a linear relationship as
a function of the time-averaged central densities of their
associated critical solutions. We also discovered that the
Type I critical solutions coincided with perturbed unstable
hydrostatic solutions which were typically more massive
than their progenitor stars.
In the future, we hope to address a great number of topics

that expand on this work. First, the supercritical section of
parameter space demands further exploration in order to
investigate how much matter can realistically be ejected
from shock/bounce/collapse scenarios. In addition, the
ability to follow spacetimes after the formation of an

apparent horizon would allow us to study the possible
simultaneous overlap of Type I and Type II behavior. It
would also allow us to measure the ultimate mass distri-
bution of black holes, as we are able only to measure the
black hole masses at the time of formation which neglects
any subsequent mass accretion. Ultimately, it is our goal to
expand the model a great deal, making the matter descrip-
tion more realistic and eliminating symmetry. As a first
step, we wish to develop adaptive mesh refinement proce-
dures for conservative systems that will be required to study
critical phenomena of stellar objects in axial symmetry
[69]. Also, we wish to examine how Type II behavior
changes in the context of realistic equations of state. For
example, realistic equations of state effectively make the
adiabatic index of the fluid a function of the fluid’s density
and temperature, and, to date, critical behavior in perfect
fluids has only been described for fluids with constant
adiabatic index.
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APPENDIX A: CONVERSION
OF UNITS AND SCALE

When theoretical calculations are made in the theory of
general relativity, it is customary to use “geometrized units”
in which G ¼ c ¼ 1 (see Appendix E of [50] for a
comprehensive discussion on the conversion to and from
geometrized units, only a few key ideas will be mentioned
here). In such units, scales or dimensions of mass (M) and
time (T) are transformed into scales of length (L) only, by
multiplying by appropriate factors ofG and c. For instance,
because of how G and c scale with mass and time, one can
easily derive that a quantity Q that scales like LlMmTt can
be converted into geometrized units by multiplication of
ctðG=c2Þm. After the conversion to geometrized units, Q
scales as Llþmþt.
Since the equations governing the ultrarelativistic

fluid are all invariant under changes in the fundamental
length scale L, such fluids naturally follow self-similar
behavior [70]. The inclusion of ρ∘ in the system elimi-
nates this intrinsic scale invariance via the EOS. For
example, when using the polytropic EOS, P ¼ KρΓ∘ , the
constantK has dimensions L2ðΓ−1Þ in geometrized units and
L3Γ−1M1−ΓT−2 in nongeometrized units. Hence, one may
set the fundamental length scale of the system by choosing
a value for K [58,71]. Since all physical quantities are
expressible in dimensions of L in geometrized units, the
quantities of static and dynamic systems which use one set
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fK;Γg should be exactly the same as those using another
set fK̂; Γ̂g, modulo a rescaling of each quantity by the
factor

ðL̂=LÞn ¼ ðK̂1=2ðΓ̂−1Þ=K1=2ðΓ−1ÞÞn; ðA1Þ
where n depends on how the particular quantity scales with
length. Thus, setting K ¼ 1 makes the system dimension-
less, and this is the approach used in the paper. This choice
simplifies the comparison of two solutions having different
values of K and Γ.
In order to transform from our dimensionless system to

one with dimensions, one must first set the scale by fixing
K. Let X̂ be a quantity that has dimensions of LlMmTt, and
X be the corresponding dimensionless quantity. In order to
transform X into X̂, one may use the following equation:

X̂ ¼ KxcyGzX; ðA2Þ
where

x ¼ lþmþ t
2ðΓ − 1Þ ; z ¼ −

lþ 3mþ t
2

ðA3Þ

y ¼ ðΓ − 2Þlþ ð3Γ − 4Þm − t
Γ − 1

: ðA4Þ

When presenting results of TOV solutions using poly-
tropic state equations, it is customary to choose K in such a
way that the maximum stable mass for the given polytrope
corresponds to that of the Chandrasekhar mass, 1.4M⊙.
As an example, a mass M̂ðKÞ expressed in units can be
calculated from the dimensionless MðK ¼ 1Þ via the
above formula (since M̂ has dimensions of only mass,
then l ¼ 0, m ¼ 1, t ¼ 0):

M̂ðKÞ ¼ K1=2ðΓ−1Þc3c−1=ðΓ−1ÞG−3=2MðK ¼ 1Þ: ðA5Þ

Since the TOV solutions for Γ ¼ 2 and K ¼ 1 yield a
maximum stable mass of 0.164, then the K that
would make M̂ðKÞ ¼ 1.4M⊙ would be approximately
105 cm5 g−1 s−2, in cgs units. The radius of this maximum
mass star is 0.768 with K ¼ 1, and is about 9.4 km
with K ¼ 105 cm5 g−1 s−2.

APPENDIX B: CALCULATING THE INITIAL
STAR SOLUTION WITH AN INGOING

COORDINATE VELOCITY

Initializing the star with a certain coordinate velocity
instead of the Eulerian velocity, v ¼ aU=α, couples the
Hamiltonian constraint (4) and the slicing condition (7) by
introducing α and a into their right-hand sides. In order to
explicitly show how the right-hand sides change, the con-
served variables must be expressed in terms of the coordinate
velocity and primitive variables via Eqs. (26)–(28):

a0

a
¼ a2

�
4πr

�
ρ∘h

1 − ðaUα Þ2
− P

�
−

1

2r2

�
þ 1

2r2
; ðB1Þ

α0

α
¼ a2

�
4πr

�
ρ∘h

ðaU=αÞ2
1 − ðaUα Þ2

þ P

�
þ 1

2r2

�
−

1

2r2
: ðB2Þ

The coupling of these equations complicates their
numerical solution. We will briefly describe how they
are solved here. We start by solving the TOV equations,
adjusting the lapse so that αajr¼rmax

¼ 1. Given U∘, UðrÞ is
specified via Eq. (41), and α; a are recalculated via a two-
dimensional Newton-Raphson method which solves
Eqs. (B1) and (B2) at each grid point. The integration
starts at the origin with αðr ¼ 0Þ, aðr ¼ 0Þ from the TOV
solution. The Eulerian velocity, v ¼ Ua=α, is calculated
using α; a at this stage. Since the parametrization for α is
chosen at the origin, the outer boundary condition,
αajr¼rmax

¼ 1, will not necessarily be satisfied. In order
to impose this outer boundary condition and calculate the
final values of αðrÞ and aðrÞ, the uncoupled Hamiltonian
constraint (4) and slicing condition (7) are then solved
using the v calculated in the previous step.

APPENDIX C: PERTURBED NEUTRON STAR
END STATES

Differentiating between some of the types of outcomes is
difficult. To aid in this process, we examined how various
quantities varied with time at the star’s radius, R⋆ðtÞ. We
define R⋆ð0Þ as the radius of the last numerical cell before
which ρ∘ falls below the floor density [72], and set R⋆ðtÞ
to be the radius at which ρ∘ðr; tÞ ¼ ρ∘ðR⋆ð0Þ; 0Þ to within
some finite precision. This served as a fair approximation
to the worldline of the fluid element originally at R⋆ð0Þ,
however, we do not assume that R⋆ðtÞ is that of a
Lagrangian observer. The Eulerian velocity at r ¼ R⋆ðtÞ
is also considered and will be referred to as v⋆.
The boundary between SBO and O outcomes may be the

most imprecisely determined one. This is due to the fact
that the shock in SBO cases weakens as the perturbation is
reduced, making it difficult to tell if a bounce actually
happens and whether the subsequent oscillations take place
about a different star solution. In addition, an O system
may form a minor shock at first, but still maintain nearly
constant amplitude oscillations, indicating the absence of
significant shock heating. Herein, an O state is defined as a
star which lost less than 1% of its mass over the first six
periods of its fundamental mode of oscillation. This choice
of cutoff is motivated by two facts: (1) evolutions which
seem to be oscillating about the initial solution still lose
mass, because the oscillations still eject minute amounts of
matter from the star’s surface; (2) those evolutions which
are obviously SBO seem to eject most of the expelled
matter within the first 6 oscillations. Using this definition,
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we estimate the systematic error of the SBO/O boundary to
be no larger than 0.05 in vmin.
Histories of the star’s radius, change in mass, central

density and velocity at its outer edge for a case that
epitomizes an SBO state are plotted in Fig. 18. The star
first undergoes a quick shock and bounce at its edge which
seems to play an insignificant role in the subsequent
evolution. This is indicated by the first maxima in v⋆ near
t ≈ 3.2. While the shock propagates out of the star, the inner
part of the star continues to infall and rebounds from the
origin, which is responsible for ejecting the majority of the
matter from the star. The apex of the rebound takes place
near t ¼ 10, when the star reaches minimum size and
maximum central density, and when the star begins to lose
a significant portion of its initial mass—up to 43% in total.
This large change inM⋆ signifies how poorly R⋆ðtÞ follows
the path of a Lagrangian observer in this case; however,
we still feel tracking quantities along this path produces
information with which we can consistently differentiate
end states. In order to illustrate how the SBO star’s
distribution of mass changes with time, we show snapshots
of ρ∘ðr; tÞ in Fig. 19. The initial shock (t≃ 1.86) and bounce
(t≃ 2.66) are clearly seen early on in the time sequence,
while the subsequent rebounds of the interior are seen later in
time. One can also see that the first rebound of the core
(2.66≲ t≲ 3.86) is responsible for most of the ejection of
matter, even though the initial bounce near the star’s surface
involves the strongest shock. The ensuing oscillations after
t≃ 10 are evident in all the quantities shown. The star finally
settles to a time-independent state with a smaller central
density, larger radius and smaller mass than it had initially.
It is also sometimes difficult differentiating SBO states

from SBD states since perturbed stars with smaller ρc on
the SBD side near the SBD/SBO boundary often

homologously inflate to arbitrary sizes. The central den-
sities of these stars diminish to magnitudes comparable to
the floor density. In contrast the denser stars close to the
SBC/SBD border tend to disperse completely from the
origin in a shell of matter that has compact support. In order
to ensure that these “inflated” stars will not ultimately settle
into a new equilibrium configuration, we typically let the
evolution last until the central density of the distribution
becomes comparable to the floor density and increase the
size of the grid to accommodate for the expansion. If, at this
time, vðrÞ > 0 for all r and dρ∘ð0; tÞ=dt < 0 are still
satisfied, then the particular case is labeled as a dispersal,
or SBD variety. An archetypal example of an SBD case
involving a compact star is shown in Figs. 20 and 21.
The small rectangle near the upper-right corner of

the SBD region in Figs. 3 and 4 represent three runs with
ρc ¼ 0.05 that exhibited SBO behavior. It remains to be
seen whether or not these cases are dominated by numerical
artifacts—that is, the remnant star may converge away as
Δr → 0—or, if they instead represent the sparsest instances
of SBD type evolutions along the black hole threshold line.
If they are real solutions, then each section of the parameter
space diagram may not be as homogeneous as illustrated
here. Interestingly, these three runs are near the region
where the black hole threshold behavior changes from
being of Type II to Type I (ρc ≈ 0.05344).
Since our choice of coordinates (3) precludes a black

hole from forming in finite time, we need a fairly rigorous
prescription for predicting when they would form.
Empirically, we have found that those systems which attain
maxð2m=rÞ > 0.7will asymptote to a state that resembles a
black hole in our coordinates—where a diverges and α
shrinks to an exponentially small magnitude at the origin.
These all provide strong evidence that the simulated
spacetime contains a black hole. If all goes well, we label
any spacetime that reaches maxð2m=rÞ > 0.995 a “black

FIG. 18. Evolutions of stellar radius (R⋆), velocity at R⋆ (v⋆),
relative stellar mass deviation from initial time (ΔM⋆ðtÞ=M⋆ð0Þ),
and the natural logarithm of the central density for a SBO
case. The defining parameters for this run are ρ∘ð0; 0Þ ¼ 0.02,
vminð0Þ ¼ 0.397, M⋆ð0Þ ¼ 0.1185.

FIG. 19. Time sequence of ln ρ∘ðr; tÞ versus lnðrþ 0.1Þ for the
same SBO scenario shown in Fig. 18.
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hole.” Since such spacetimes involve extremely steep
gradients, it is often difficult to stably integrate the
equations of motion until this threshold is achieved.
Consequently we assume that any evolution, which crashes
and satisfies maxð2m=rÞ > 0.7, will eventually give rise to
a black hole. Otherwise, the system is assumed to be one
without a black hole and is either of type O, SBO or SBD.
A dynamical scenario is said to be of the type

SBC if a black hole forms, a shock/bounce occurs, and
ΔM⋆ðtÞ=M⋆ð0Þ decreases over the entire course of the
evolution by an amount greater than 10 times the numerical
error in calculating ðΔM⋆ðtÞ=M⋆ð0ÞÞ. The numerical error
here is the time step–to–time step stochastic fluctuation we
see in this quantity due to truncation and roundoff errors.
The distinction between SBC and PC states is somewhat

arbitrary because we are unable to measure the eventual
steady-state mass of a nascent black hole, due to restrictions
imposed by our coordinate system. Further, we do find a few
instanceswhere the star’smatter is still trapped even after the
shock and bounce, as seen in Fig. 22. That is, the external
matter bounces from the denser core, forms a shock and
propagates outwards, but a portion of this matter eventually
falls back onto the black hole. The fact thatR⋆ decreases and
v⋆ becomes ingoing after the bounce suggests that the outer
parts of the star do indeed accrete onto the collapsing
interior. This example demonstrates that not all SBC
scenarios result in black holes that are less massive than
their progenitors, and that the final mass of the black hole is
most likely continuous across the SBC/PC boundary.
For less compact stars, it is natural to justify the existence

of the transition between SBD to SBO scenarios. If we
follow evolutions of a particular star—say one with
ρc ¼ 0.03—for various vmin, we see that the initial velocity
perturbation results in dispersal of more and more of the
stellar material as vmin increases. The central densities and
masses of the resultant SBO stars decrease as the SBO/SBD
boundary is reached, implying that the transition is con-
tinuous. For instance, if ρfc and Mf⋆ are the final central
density and mass, respectively, of the product star, then we
should see that ρfc;M

f⋆ → 0 as vmin → v⋆−minðρcÞ, where
v⋆minðρcÞ is the threshold value of vmin that separates the
SBO and SBD states. We have found that this seems to be
the case since after tuning vmin → v⋆minð0.03Þ to an approxi-
mate precision of 10%, ρfc ≃ 0.0045—which is about an
85% decrease in central density. Alternatively, we cross the
threshold by varying ρc and keeping vmin constant. That is,
if we choose a specific vmin and start perturbing stars with

FIG. 20. Evolutions of stellar radius (R⋆), velocity at R⋆ (v⋆),
relative stellar mass deviation from initial time (ΔM⋆ðtÞ=M⋆ð0Þ),
and the natural logarithm of the central density for a SBD star.
The defining parameters for this run are ρ∘ð0; 0Þ ¼ 0.02,
M⋆ð0Þ ¼ 0.0726, R⋆ð0Þ ¼ 1.1885, and vminð0Þ ¼ 0.766.

FIG. 21. Time sequence of ln ρ∘ðr; tÞ versus lnðrþ 0.1Þ for the
same SBD scenario shown in Fig. 20. By t ¼ 54.04, ρ∘ has fallen
well below the floor’s density in the vicinity of the origin.

FIG. 22. Evolutions of stellar radius (R⋆), velocity at R⋆ (v⋆),
relative stellar mass deviation from initial time (ΔM⋆ðtÞ=M⋆ð0Þ),
and central density for a SBC star. The evolution was stopped
when the maximum value of 2m=r obtained a value of 0.995, at
which point the mass of black hole was calculated to be about
0.1080 and the minimum of α was 1.0 × 10−8. The defining
parameters for this run are ρ∘ð0; 0Þ ¼ 0.05, vminð0Þ ¼ −0.556,
and M⋆ð0Þ ¼ 0.1092.
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larger ρc, we see that—as the stars become less compact—
the velocity distribution is able to expel more and more
matter from the central core. In turn, smaller and smaller
stars will form for a given vmin as ρc → ρ⋆þc ðvminÞ, where
ρ⋆cðvminÞ is the value of ρc at the SBO/SBD boundary for a
given value of vmin. It would be interesting to calculate the
scaling behavior of Mf⋆ as a function of ρc − ρ⋆c ðvminÞ or
v⋆minðρcÞ − vmin. An accurate calculation of this scaling law
would require many runs in this regime, which is one of
the most computational intensive regimes. In this limit, we
would have to resolve a wide range of scales in order to
evolve the initial dynamics of the compact progenitor star
through to it settling into a new equilibrium. Such calcu-
lations might require a full-fledged adaptive mesh refine-
ment code, which we leave for future work.

APPENDIX D: DEPARTURES OF NEAR
CRITICAL SOLUTIONS FROM UNSTABLE

EQUILIBRIUM

In order to gather a better understanding of what causes
the near critical solutions to temporarily depart from the
unstable branch, we tuned to the critical solution using
different values of various control parameters. For instance,
to see if the presence of the departures is affected by the
floor, we tuned to the critical solution for three different
values of δ. The most marginally subcritical solutions from
these searches are shown in Fig. 23. In addition, the effect
of changing the outer boundary’s location, rmax is seen in
Fig. 24. To see if the time at which the pulse collides with
the star has any effect, the initial position of the pulse, Rϕ

was varied; the results from this particular analysis are
shown in Fig. 25.
In general, we see all these aspects to have a significant

and nontrivial effect on the threshold solution’s departure
from the unstable solution. But, all the different marginally
subcritical solutions finally depart from the unstable
solution at approximately the same time and all cases
share the same scaling exponent.
Whether because of its magnitude or extent, the solution’s

departure seems to be affected by the floor. Increasing the

FIG. 24. Central density as a function of time of the subcritical
solutions closest to the threshold obtainedwith physical domains of
various sizes. The dotted (dashed) curve used a domain twice
(thrice) as large as that of the original configuration,which is shown
here as a solid curve. All runs shown here used ρc ¼ 0.197.

FIG. 23. Comparisons of ρ∘ð0; tÞ for the marginally subcritical
solutions obtained when using varying values of the fluid’s
floor. The original, reference solution (solid curve) used δ ¼
3.8809 × 10−18, while the other two lines used floor values 10
(dotted line) and 100 (dashed line) times greater. Variations can
be seen between the three solutions, even though the smallest
discrepancies are between the two solutions with the largest floor
values. All runs shown here used ρ∘ð0; 0Þ ¼ 0.197.

FIG. 25. Central density as a function of time of the subcritical
solutions closest to the threshold obtained by using different initial
locations of the initial scalar field distribution,Rϕ. Specifically, the
scalar field at t ¼ 0 takes the form of a Gaussian distribution, and
the position of the center of this Gaussian is unique for each curve
shown here. In our units the radius of the progenitor star was
r ¼ 0.87, while the initial positions of the scalar field pulses were
at r ¼ 4 (dots), r ¼ 5 (solid curve), r ¼ 6 (short dashes), r ¼ 7
(long dashes). All runs shown here used ρc ¼ 0.197.
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size of the floor seems to hasten the initial departure; even
though they represent only two points of reference, the
similarity of the solutions with the two highest floor values
may suggest that the floor’s effect “converges” to one
behavior as its size increases. On the other hand, changes
in the size of the computational domain andRϕ seem to have
no consistent effect on the first departure time.
The most likely explanation is that excited modes from

the artificial atmosphere surrounding the star instigate the
departures. The unstable solutions to which the near critical
solutions emulate are 1-mode unstable TOV solutions, and
TOV solutions do not involve an atmosphere. Since these
additional modes have no effect on the scaling exponent
and only periodically affect the evolution of the threshold

solutions, they must be transient and stable. Their little
influence is consistent with the idea that they come from the
atmosphere since it is hydrodynamically and gravitation-
ally insignificant compared to the star. Further work will
need to be done in order to definitively understand the
cause of the departures.
Similar studies (e.g., [7–13,47,48]) have not reported

encountering similar phenomena. It remains to be seen
whether it is because their investigations involved different
neutron star solutions (e.g., different values of K as in [7],
or rotating and magnetized unstable-branch neutron stars
as in [9]), different numerical schemes, or something else
altogether.
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