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Fine structure of oscillons in the spherically symmetricf4 Klein-Gordon model
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We present results from a study of the fine structure of oscillon dynamics in the 311 spherically symmetric
Klein-Gordon model with a symmetric double-well potential. We show that in addition to the previously
understood longevity of oscillons, there exists a resonant~and critical! behavior which exhibits a time-scaling
law. The mode structure of the critical solutions is examined, and we also show that the upper bound to oscillon
formation~in r 0 space! is either nonexistent or higher than previously believed. Our results are generated using
a novel technique for implementing nonreflecting boundary conditions in the finite difference solution of wave
equations. The method uses a coordinate transformation which blueshifts and ‘‘freezes’’ outgoing radiation.
The frozen radiation is then annihilated via dissipation explicitly added to the finite-difference scheme, with
very little reflection into the interior of the computational domain.
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I. INTRODUCTION

There is a long history in physics and mathematics
trying to find new nontrivial solutions to nonlinear wav
equations. The literature on the subject goes back at lea
far as 1845 when Russell published a paper about a sur
wave he witnessed travel for almost two miles in a shall
water channel~the first scientifically reported soliton! @1#.
Since then there has been much effort directed toward un
standingstable localized solutions to nonlinear wave equ
tions: the classical kink soliton, topological defects~mono-
poles, cosmic strings, and domain walls! @2#, and
nontopological defects~such asQ balls! @3,4# are but a few
examples. However, localized butunstablesolutions have
been discussed much less frequently and in this paper
focus our attention on one such solution, the oscillon.

The definition of oscillon varies slightly depending o
context, but here we refer to localized, time-dependent,
stable, spherically symmetric solutions to the nonline
Klein-Gordon equation. Although oscillons are unstab
their lifetimes are long compared to a dynamical time. O
cillons were originally discovered by Bogolyubskii an
Makhan’kov @5,6# ~who called them ‘‘pulsons’’!, and were
later studied in more detail by Gleiser@7# and by Copeland
et al. @8#.

Oscillons can be formed via the collapse of field config
rations ~initial data! that interpolate between two vacuu
states (f1 and f2) of a symmetric double well potentia
~SDWP!.1 In spherical symmetry, such a configuration is
bubble, where the interpolating region is the bubble ‘‘wa
that separates the two vacuum states at some characte
radius~where in this work we always usef2 as the large-r

1Asymmetric double well potentials can also produce oscillo
but here we consider only the SDWP.
0556-2821/2002/65~8!/084037~12!/$20.00 65 0840
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vacuum state!. An oscillon formed this way typically has
three distinct stages in its evolution. First, immediately f
lowing the bubble collapse a large percentage of its energ
radiated away. As will be discussed below, this can hap
either through localized field oscillations, or through bounc

reminiscent of the 111 dimensional kink-antikink (KK̄)
scattering@9#. After the initial radiative phase, the solutio
settles into the oscillon stage. Here the field is localized w
a shape roughly that of an origin-centered Gaussian, with
field value asymptotically approaching the large-r vacuum
state. Because of the asymmetry of the potential about ei
minimum, the field oscillates aboutf2 ~the large-r vacuum!
such that the time-averaged value of the field lies betw
the two vacua, i.e., f2,^f&,f1 where ^•••&
[T21*0

T
•••dt as in @8#. For typical initial field configura-

tions the energy of the oscillon is slowly radiated away, a
proaching a specific ‘‘plateau’’ value. In the third and fin
stage of evolution, the oscillon stops oscillating and d
perses, radiating away its remaining energy.

Much of the original excitement about oscillons aro
from the fact that their long lifetimes could potentially alt
the dynamics of a cosmological phase transition. Howev
since oscillonsare unstable, their ability to affect such
phase transition depends crucially on their lifetimes. Pre
ous studies by Copelandet al. @8# used dynamical grid meth
ods to study oscillon dynamics and treated the initial radi
r 0, of the bubble~shell of radiation! as a free parameter
These studies showed not only that oscillon lifetimes can
comparable to the age of the universe@at the grand unified
theory ~GUT! scale#, but that oscillons are formed from
wide range of initial bubble radii. However, the comput
tional demands of the dynamical grid methods employed
@8# prevented a detailed study of ther 0 parameter space.

A key problem in the accurate, long-time simulation
oscillons is the treatment of boundary conditions at the ou
,
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edge,r 5r max, of the computational domain. It is standa
practice in the computational solution of nonlinear fie
equations to use finite difference techniques applied to fu
tions defined on a lattice of grid points. If a static, finite-siz
domain is used i.e. ifr max is fixed, then one needs to emplo
a method that minimizes the amount of radiation~energy!
that is artificially reflected atr 5r max. With masslessscalar
fields, and in spherical symmetry, this can be done q
easily simply by imposing a discrete version of an ‘‘outgoi
radiation,’’ or Sommerfeld, condition. However, for the ca
of massivescalar fields, or more generally, for fields wi
nontrivial dispersion relations, the Sommerfeld condition
only approximate, and its use generically results in sign
cant reflection atr 5r max, and subsequent contamination
the interior solution.

A surefire fix for the outer-boundary problem is to use
dynamically growing grid~as in @8#!, so thatr max5rmax(t),
and lattice points are continuously added to extend the c
putational domain as needed. Alternatively, compactified
ordinates or coordinates which propagate outward faster
any characteristic speed in the problem can be used, b
these cases, new grid points also need to be continuo
added to the mesh in order to maintain adequate resolutio
solution features. These methods are somewhat more
cient than the use of a static mesh withr max chosen so that no
signals reach the outer boundary during the integration
riod of interest,T. However, for long-lived solutions, the
mesh soon becomes quite large, and the computation
tends to be proportional toT2.

Recently, Gleiser and Sornborger@10# introduced anadia-
batic damping methodwhich adds an explicit damping term
to the equations of motion, and which has been shown
absorb outgoing massive radiation extremely well in
~spherical! and 2D~cylindrical! simulations. Here we presen
an alternative approach for dealing with outgoing mass
scalar fields which is quite general and quite different fro
previously used methods of which we are aware. The te
nique involves the use of a specially chosen coordinate
tem that ‘‘freezes’’ and blueshifts outgoing radiation in
relatively thin layer located away from the central regi
where the dynamics of principal interest unfold. The addit
of a standard type of finite-difference dissipation@11# then
‘‘quenches’’ the blueshifted, frozen radiation, and very lit
energy is reflected back into the interior region. This a
proach, like that described in@10#, has the advantage that
static and uniform finite-difference mesh can be used, so
computational time scaleslinearly with the integration pe-
riod, T.

Our new technique was crucially important to our disco
ery and detailed study of fine structure in a well-known~and
still much studied! nonlinear system. Specifically, we hav
found strong evidence for a family of resonant oscillon s
lutions in the SDWP model. Each of these solutions appe
to possess asingleunstable mode in perturbation theory, a
by tuning the family parameter,r 0, in the vicinity of a spe-
cific resonance, we can tune away that mode, producing
cillons which live longer and longer as we tune closer a
closer to the precise resonant value,r 0

!. This leads to a view
of oscillons as being analogous to the type I critical solutio
08403
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which have been discovered in the context of gravitatio
collapse@12#, and as in that case, we find compelling ev
dence for power-law scaling of the oscillon lifetime,t:

t;cr ur 02r 0
!ugr ~1!

wherecr is an overall scale factor set by the particular res
nance, andg r is a resonance-dependentexponent which is
presumably the reciprocal Lyapunov exponent associa
with the resonance’s single unstable mode.

In addition, contrary to previous claims@8,10#, we see no
hard evidence for an upper bound onr 0 beyond which oscil-
lons are no longer generated via collapse of Gaussian dat
particular we find strong evidence for resonances forr 0
*6.5, well above the limitr 0.4.2 quoted in@8,10#. More-
over, we relate the existence of these ‘‘large-r 0’’ resonances
to the ‘‘bouncing’’ behavior observed in the 111 kink-
antikink study of Campbellet al. @9#.

The remainder of the paper is organized as follows. In S
II we introduce a new coordinate system in which to so
nonlinear wave equations using finite differences. We exa
ine the conformal structure induced by our new coordina
as well as the characteristics of the resulting wave equat
In Sec. III we discuss the new properties of oscillons th
were discovered during our study. In particular, we obse
resonances in the parameter space which obey a time-sc
law, and we construct a sample resonant solution via a n
radiative ansatz~Secs. III A and III B, respectively!. Finally,
in Sec. III C we discuss oscillons and resonant solutio
found outside the bounds of the parameter space previo
explored. Sec. IV summarizes our results and is followed
two appendixes that discuss the details of the finite diff
ence equations~Appendix A! and the testing of the cod
~Appendix B!.

II. THE KLEIN-GORDON EQUATION
IN MONOTONICALLY INCREASING BOOSTED

COORDINATES

We are interested in the self-interacting scalar field the
described by the (311)-dimensional action

S@f#5E d4xAuguS 2
1

2
gmn¹mf¹nf2V~f! D ~2!

where we takeV(f) to be a symmetric double wel
potential2

VS~f!5
1

4
~f221!2 ~3!

andgmn to be the metric of flat spacetime in spherical sy
metry, written in standard spherical polar coordina
( t̃ , r̃ ,ũ,w̃):

2This is identical to usingV(f)5(l/4)(f22m2/l)2 and intro-

ducing dimensionless variablesr 5 r̃m, t5 t̃m, andx5Al/m)f.
7-2
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FINE STRUCTURE OF OSCILLONS IN THE . . . PHYSICAL REVIEW D 65 084037
ds̃252d t̃21dr̃21 r̃ 2~dũ21sin2ũdw̃2!. ~4!

We now introduce a new radial coordinate,r, which interpo-
lates between the old radial coordinate,r̃ , at smallr̃ and an
outgoing null coordinate at larger̃ . Specifically, we take

t̃ 5t, ~5!

r̃ 5r 1 f ~r !t, ~6!

ũ5u, ~7!

w̃5w, ~8!

where f (r ) is a monotonically increasingfunction which
smoothly interpolates between'0 and'1 at some charac
teristic cutoff, r c , so thatf (r )→0 for r !r c , and f (r )→1
for r @r c . We call (t,r ) monotonically increasingly booste
~MIB ! coordinates. The MIB system reduces to the origi
spherical coordinates, (t̃ , r̃ ), for r !r c , but as discussed be
low, in the r .r c region, both outgoingand ingoing ~from
r @r c) radiation tends to be ‘‘frozen’’ in the transition laye
r'r c . Furthermore, since the outgoing radiation is blu
shifted as it propagates into the transition region,r;r c , ap-
plication of standard finite-difference dissipation operat
can then quench it with minimal reflection back into t
interior of the computational domain.

In general, MIB coordinates will not cover all of the (t̃ , r̃ )
half plane. However, given thatf (r ) is monotonically in-
creasing, the determinant of the Jacobian of the transfor
tion is nonzero for allt such thatt.2maxuf8(r)u. Thus, for
this range oft, the transformation to and from the standa
spherical coordinate system is well defined, and althoug
coordinate singularity inevitably forms ast→2` ~past time-
like infinity!, this has no effect on theforward evolutionof
initial data given att50.

We also note that in order that our MIB coordinates
regular atr 50 ~so that there is no conical singularity at th
origin!, we must also demand thatf (0)50.

Our coordinate choice results in the following spherica
symmetric, 311, or Arnowitt-Deser-Misner~ADM ! @13#
form:

ds25~2a21a2b2!dt212a2bdtdr1a2dr2

1r 2b2~du21sin2u dw2! ~9!

where

a~ t,r !511 f 8~r !t, b~ t,r !511 f ~r !
t

r

a~ t,r !51, b~ t,r !5
f ~r !

11 f 8~r !t
. ~10!
08403
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@In the nomenclature of the~ADM ! formalism,a is thelapse
function, while b is the radial component of theshift vector.#
In the work which follows, we have adopted the followin
specific form forf (r ):

f ~r !5$11tanh@~r 2r c!/d#%/21e, ~11!

where

e52@11tanh~r c /d!#/2 ~12!

is chosen to satisfy the regularity condition atr 50.
It is now instructive to consider the conformal structure

the MIB hypersurfaces. This is done by applying Eqs.~8! to
the standard conformal compactification on Minkows
space,t̃ 6 r̃ 5tan@(T6R)/2# ~whereT andR are the axes in
the conformal diagram; see@14# or @15#!, and then plotting
curves of constantr and t. The constant-t hypersurfaces are
everywhere spacelike and all reach spatial infinity,i o. Al-
though constant-r surfaces forr .r c appear at first glance to
be null, a closer look~see insets of Fig. 1! reveals that they
are indeed everywhere timelike and do not ever reach fu
null infinity, J 1.

The equation of motion for the scalar field which resu
from the action~2! is

1

Augu
]m~Augugmn]nf!5f~f221! ~13!

which with Eqs. ~9!,~10!, P[a(] tf2b] rf)/a, and F
[] rf give

Ṗ5
1

r 2b2 F r 2b2S a

a
F1bP D G822

ḃ

b
P2aaf~f221!,

~14!

Ḟ5S a

a
P1bF D 8

, ~15!

ḟ5
a

a
P1bF, ~16!

where ˙[] t and 8[] r . These equations are familiar from
the ADM formalism as applied to the spherically symmet
Klein-Gordon field coupled to the general relativistic grav
tational field @16#. However, in the current case, instead
dynamically evolving metric functions, the metric comp
nentsa, b, a, andb area priori fixed functions of (t,r ) that
resulted from a coordinate transformation offlat spacetime.

Clearly, characteristic speeds for the massless Kle
Gordon field@V(f)50# bound the inward or outward spee
~group velocities! of any radiation in aself-interactingfield
@V(f)Þ0#. Characteristic analysis of themasslessKlein-
Gordon equation with metric~9! yields local propagation
speeds

l652b6
a

a
, ~17!
7-3
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ETHAN P. HONDA AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D65 084037
wherel1 andl2 are the outgoing and ingoing characteris
speeds, respectively@16,17# ~see Fig. 2!. For r !r c , the
propagation of scalar radiation in (t,r ) or ( t̃ , r̃ ) coordinates
is essentially identical. However, as illustrated in Fig. 3, a
as can be deduced from Eqs.~17! and~10!, for r'r c boththe
ingoing and the outgoing characteristic velocities go to z
as t→` ~as the inverse power oft). Thus, any radiation
incident on this region will effectively be trapped, or ‘‘froze
in.’’ It is this property of the MIB system that enables th
effective implementation of nonreflecting boundary con
tions. As discussed further in Appendix A, an additional k

FIG. 1. Conformal diagram showing surfaces of constantr ~dot-
ted lines! and lines of constantt ~dashed lines!. Lines of constantt
look exactly like the constant-t hypersurfaces of Minkowski space
whereas the lines of constantr behave much differently. Forr
.r c , it appears as if the constant-r surfaces are null. However, a
insets A, B, and C show, the constant-r lines donot become null~do
not intersect future null infinity!, but rather are everywhere time
like.

FIG. 2. Plot of the characteristic velocities as a function of
MIB coordinatesr 8 andt8 in units wherer c is set to unity.l1 and
l2 are the outgoing and ingoing characteristic speeds respecti
d is taken to bed→d/r c'0.0893 ~corresponding to the system
used in this article!. Characteristic velocities are plotted for time
t850, 1, 10, and 100 (t85100 is larger than the lifetime of the
longest lived solution studied in this work!. As r→1, we have
l6(t8,r 8)5O(1/t8).
08403
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ingredient is the application of Kreiss-Oliger-style dissip
tion @11# to the difference equations. This dissipation ef
ciently quenches the trapped outgoing radiation, which
mentioned above tends to be blueshifted to the lattice s
on a dynamical time scale.

Finally, we note that, as is evident from Fig. 3, the ‘‘a
sorbing layer’’ in the MIB system~i.e. the region in which
the characteristic speeds are'0) expands both outward an
inward ast increases. This means that for fixedr c , the ab-
sorbing layer will eventually encroach on the interior regi
r !r c and ruin the calculation. However, the rate at whi
the layer expands is roughly logarithmic int, so, in practice,
this fact should not significantly impact the viability of th
method. For arbitrarily large final integration times,T, com-
putational cost will scale asT ln T. However, the calculations
described here all used the same values of the grid par
eters (r max560, r c554, andd55), so that for all practical
purposes, the computational cost islinear in the integration
time. The ability of the system to trap and absorb outgo
radiation is relatively insensitive to the choice of bothd and
r c and was observed to work well for varying amounts
outgoing radiation~Appendix B and Figs. 16 and 17 below!.

III. THE RESONANT STRUCTURE OF OSCILLONS

Copelandet al. @8# showed quite clearly that oscillon
formed for a wide range of initial bubble radii,r 0. They even
caught a glimpse of the fine structure in the model—which
large part motivated this study—but they did not explore t
fine structure of the parameter space in detail. With the e
ciency of our new code, we have been able to explore
rameter space much more thoroughly, which in turn h
yielded additional insights into the dynamical nature of o
cillons.

Following @7# we use a Gaussian profile for initial da
where the fields at the core and outer boundary values ar
to the vacuum values,f(t,0)[fc51 and f(t,`)[fo
521 respectively, and the field interpolates between them
a characteristic radius,r 0:

f~0,r !5fo1~fc2fo!exp~2r 2/r 0
2!. ~18!

ly.

FIG. 3. Plot of characteristic speeds,l6(r 8,100), wherer 8 and
t8 are radial MIB coordinates in units wherer c is set to unity.
7-4
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FINE STRUCTURE OF OSCILLONS IN THE . . . PHYSICAL REVIEW D 65 084037
Keepingfc andfo constant, but varyingr 0, we have a one
parameter family of solutions to explore. Figure 4 shows
behavior of the oscillon lifetime as a function ofr 0 in the
range 2.0<r 0<5.0. We discuss three main findings that a
distinct from previous work: the existence of resonances
their time scaling properties, the mode structure of the re
nant solutions, and the existence of oscillons outside
parameter-space region 2<r 0<5.

A. Resonances and time scaling

In contrast to Fig. 7 of Copelandet al. @8#, the most ob-
vious new feature seen in Fig. 4 is the appearance of the
resonances which rise above the overall lifetime profi
These resonances~also seen in Fig. 5! become visible only
after carefully resolving the parameter space. Upon fi
tuning r 0 to about 1 part in;1014 we noticed interesting
bifurcate behavior about the resonances~Fig. 6, top!. The

FIG. 4. Plot of oscillon lifetime versus initial bubble radius fo
2.0<r 0<5.0. Each of the 125 resonances is resolved to one pa
1014.

FIG. 5. Plot of oscillon lifetime versus initial bubble radius fo
2.27<r initial<2.29. The three resonances shown occur atr 0*
'2.2805, r 1* '2.2838, andr 2* '2.2876. Each resonance separa
the parameter space into regions withn andn11 modulations; the
3 ’s correspond to oscillons with no modulations, the triangles
oscillons with one modulation, the squares to two modulations,
the circles to three modulations.
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field oscillates with a periodT'4.6 ~for all oscillons! so the
individual oscillations cannot be seen in the plot, but it is t
lower-frequency modulation that is of interest here.3 The top
figure shows the envelope off(t,0) on both sides of a reso
nance~dotted and solid curves!. We see that the large perio
modulation that exists for all typical oscillons disappears l
in the lifetime of the oscillon asr 0 is brought closer to a
resonant value,r 0

!. On one side ofr 0
! the modulation returns

before the oscillon disperses~referred to assupercriticaland
shown with the solid curve!, while on the other side ofr 0

! the
modulation does not return and the the oscillon simply d
perses~referred to assubcritical and shown with the dotted
curve!. For resonances wherer 0

!&2.84, the subcritical solu-
tions appear on ther 0,r 0

! side of the resonance and th
supercritical solutions appear on ther 0.r 0

! side of the reso-
nance. The opposite is true for resonances wherer 0

!*2.84,
i.e. the subcritical solutions appear on ther 0.r 0

! side of the
resonance and the supercritical solutions appear on thr 0

,r 0
! side of the resonance. This bifurcate behavior does

manifest itself untilr 0 is quite close tor 0
!. In practice then, to

locate a resonant value,r 0
!, we first maximize the oscillon

lifetime using a three point extremization routine~golden
section searchwith bracketing interval of;0.62,@18#! until
we have computed an interval whose end points exhibit
two distinct behaviors just described. Once a resonance
been thus bracketed, we switch to a standard bisec
search, and subsequently locate the resonance to clos
machine precision. Although we can see from Fig. 6 that
modulation is directly linked to the resonant solution, it

3In dimensionful coordinates,r̃ and t̃ , the period would beT̃
54.6m21. In general, to recover proper dimensions, lengths a
times are multiplied bym21 and energies bylm21.

in

s

o
d

FIG. 6. Top plot shows the envelope off(t,0) for r 0
!6Dr 0

displaying bifurcate behavior around ther 0
!'2.335 resonance

(Dr 0;10214); the solid curve is the envelope barely above re
nance~15 modulations! while the dotted line is the envelope bare
below resonance~14 modulations!. Bottom plot shows the energy
radiated as a function of time through the surface containing
oscillon as defined in Appendix B. The increases in the ene
radiated are synchronized with the modulation in the field.
7-5
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ETHAN P. HONDA AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D65 084037
not obvious why this is so. However, if we look at the re
tionship between the modulation in the field~top! and the
power radiated by the oscillon~bottom!, we see that they are
clearly synchronized.

The behavior of these resonant solutions may not be
prising to those familiar with the 111 KK̄scattering studied
using the same model@9#. Campbellet al. showed that after
the ‘‘prompt radiation’’ phase—the initial release of radiatio
upon collision of a kink and antikink—the remaining radi
tion was emitted from the decay of what they referred to
‘‘shape’’ oscillations. The ‘‘shape modes’’ were driven by th
contribution to the field ‘‘on top’’ of theK and K̄ soliton
solutions. Since the exact closed-form solution for the id
nonradiativeKK̄ interaction is not known, initial data aime
at generating such an interaction is generally only appro
mate, and the ‘‘surplus’’~or deficit! field is responsible for
exciting the shape modes. The energy stored in the sh
modes slowly decays away as the kink and antikink inter
and eventually the solution disperses.

In our case, we believe the large period modulation r
resents the excitation of a similar ‘‘shape mode’’ superi
posed on a periodic, nonradiative, localized oscillating so
tion. On either side of a resonance in ther 0 parameter space
the solution is on the threshold of having one more sh
mode oscillation. If this is the case, then, as we tuner 0

→r 0
!, we are, in effect, tuning away thesingleunstable shape

mode, and thus should expect that the oscillon lifetime w
obey a scaling law such as that seen in type I solution
critical gravitational collapse@12#. Figure 7 shows a plot o
oscillon lifetime versus lnur02r0

!u ~for the r 052.335 . . .
resonance!, and we can see quite clearly that thereis a scal-
ing law, T;g lnur02r0

!u, for the lifetime of the solution as
measured on either side of the resonance. We denoteg1 for
the scaling exponent on ther 0.r 0

! side, andg2 for the
scaling exponent on ther 0,r 0

! side. Although we observe

FIG. 7. Plot of time scalingT versus lnur02r0
!u for the r 0

'2.335 resonance. The top line~triangles! displays the scaling be
havior for supercritical evolutions,r 0.r 0

!, while the bottom line
(3 ’s! shows the scaling for subcritical calculations,r 0,r 0

!. The
exponents~measured by the slopes of the lines! are both approxi-
mately equal tog530. The offset in the two curves represents t
time spent by supercritical oscillons in executing the final modu
tion shown in Fig. 6.
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lifetime scaling for each resonance, the scaling exponentper
sevaries from resonance to resonance; a plot of the sca
exponents,g1 andg2 , versus the critical initial bubble ra
dius can be seen in Fig. 8. For all resonances we findg1

'g2 .
Finally we note that, by analogy with the case of type

critical gravitational collapse, we expect that the scaling
ponents,g, are simply the reciprocal Lyapunov exponen
associated with each resonance’s single unstable mode
addition we note that, for any resonance, if we were able
infinitely fine-tune r 0 to r 0

!, we would expect the oscillon
lifetime to go to infinity.

B. Mode structure

Assuming that periodic, nonradiative solutions to Eq.~13!
exist, we should be able to construct them by inserting
ansatz of the form

f~ t,r !5f0~r !1 (
n51

`

fn~r !cos~nvt ! ~19!

in the equations of motion and solving the resulting syst
of ordinary differential equations obtained from matchi
cos(nvt) terms:

~r 2f08!8/r 25f0~f021!~f022!1
3

2
~f021!(

m
~fm!2

1
1

4 (
m,p,q

fnfpfq~dm,6p6q!, ~20!

~r 2fn8!8/r 25@3~f021!22~n2v211!#fn

1
3

2
~f021!(

p,q
fpfq~dn,6p6q!

1
1

4 (
m,p,q

fmfnfq~dn,6m6p6q!. ~21!

-

FIG. 8. Plot of critical exponents for each resonance. There
two values ofg for each resonance. The top plot displaysg1 vs r 0

!

while the lower plot displaysg2 vs r 0
!. The uncertainties are esti

mated from running theentireparameter space surveys at two res
lutions,N[Nr51449 andN8[Nr851025 and estimating the erro
Dg5ugN2gN8u.
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FINE STRUCTURE OF OSCILLONS IN THE . . . PHYSICAL REVIEW D 65 084037
Equations~20! and ~21! can also be obtained by insertin
ansatz~19! into the action and varying with respect to thefn
@19#. This set of ordinary differential equations can be solv
by ‘‘shooting,’’ where the quantitiesfn(0) are the shooting
parameters. Unfortunately, we were unable to construc
method that self-consistently computedv; the best we could
achieve was to solve Eqs.~20! and~21! for a givenv which
we measured from the partial differential equation~PDE!
solution.

For ease of comparison of the results obtained from
periodic ansatz with those generated via solution of
PDEs, we Fourier decomposed the PDE results. This
done by taking the solution during the interval of time wh
the large period modulation disappears (1200,t,1800 for
the oscillon in Fig. 6, for example! and constructing fas
Fourier transforms~FFTs! of f at each grid point,r i . Spe-
cifically, at eachr i , the amplitude of each Fourier mode w
obtained from a FFT which used a time series,f(tn,r i), n
51,2, . . . ,4096 with tn112tn[Dt5const. Keeping only
the first five modes in the expansion~19!, we compare the
Fourier decomposed PDE data with the shooting solu
~see Fig. 9!. It should be noted that although the value forv
was determined from the PDE solution, the shooting al
rithm still involved a five-dimensional search for the th
shooting parameters,fn(0), n50, . . . ,4. Theclose corre-
spondence of the curves shown in Fig. 9 strongly sugg
that the resonant solutions~i.e. in the limit asr 0→r 0

!) ob-
served in the PDE calculations are indeed consistent with
periodic, nonradiative oscillon ansatz~19!.

By examining the three most dominant components of
power spectrum off(t,0), Fig. 10, we can see that durin
the ‘‘no-modulation’’ epoch, the amplitude of each Fouri
mode becomes constant. Although the specific plot is for
core amplitude,r 50, we note that this behavior holds for a
r. Again, this is consistent with the view that as we tuner 0 to
r 0

!, the oscillon phase of the evolution is better and be
described by a one-mode unstable ‘‘intermediate attract
As discussed previously, this is precisely reminiscent of
type I critical phenomena studied in critical gravitational c
lapse, particularly the collapse of a real, massive scalar fi

FIG. 9. Critical solutionfn(r ) ~for n50,1,2,3,4) obtained from
the Fourier-decomposed PDE data (3 ’s! overlaid with fn(r ) ob-
tained by shooting Eqs.~20! and ~21! ~solid curves!. The Fourier-
decomposed PDE data overlies the shooting solution everywhe
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as studied by Bradyet al. @12#, where the intermediate at
tractors are unstable, periodic, ‘‘oscillon stars’’ discover
earlier by Seidel and Suen@20#.

C. „Bounce… windows to more oscillons

Lastly, we consider the existence of oscillons genera
by Gaussian initial data withr 0*5. The oscillons explored
by Copelandet al. were restricted to the parameter-space
gion 2&r 0&5, and in fact it was concluded that there was
upper bound,r 0;4.2, beyond which evolution of Gaussia
data would not result in an oscillon phase@10#. However, we
have found that oscillonscan form for r 0*5, and that they
do so by a rather interesting mechanism.

Again, from the 111 dimensionalK̄ scattering studies o
Campbellet al., it is well known that a kink and antikink in
interaction often ‘‘bounce’’ many times before either dispe
ing or falling into an~unstable! bound state. Here, a bounc
occurs when the kink and antikink reflect off one anoth
stop after propagating a short distance, and then recolla

We find that such behavior occurs in the (311) dimen-
sional case as well, but now the unstable bound state is
oscillon. For largerr 0, instead of remaining withinr &2.5
after reflection throughr 50 ~as occurs for 2&r 0&5), the
bubble wall travels out to largerr ~typically 3&r &6), stops,
then recollapses, shedding away large amounts of energ
the process~see Fig. 11!. Thus in this system, as with th

111 KK̄ model, there are regions of parameter space wh
constitute ‘‘bounce windows.’’ Within such regions, th
bounces allow the bubble to radiate away large amount
energy. The bubble then recollapses, effectively producin
new initial configuration~albeit with a different shape! with
a smaller effectiver 0. Within these ‘‘windows’’ both oscil-
lons and resonances~similar to those observed for 2&r 0
&4.6) can be observed~inset of Fig. 12!.

.

FIG. 10. Power spectra of the core amplitude,f(t,0), for the
oscillons barely above and below ther 0'2.335 resonance. The
power measured in each frequency regime slowly diminishes as
oscillon radiates away much of its energy until approximatelyt
51100 where the oscillon enters a nonradiative state and all
components of the power spectrum become constant.
7-7
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IV. CONCLUSIONS

Using a new technique for implementing nonreflecti
boundary conditions for finite-differenced evolutions of no
linear wave equations, we have conducted an extensive
rameter space survey of bubble dynamics described b
spherically symmetric Klein-Gordon field with a symmetr
double-well potential. We have found that the parame
space of the model exhibits resonances wherein the lifeti
of the intermediate-phase ‘‘oscillons’’ diverge as one a
proaches a resonance. We have conjectured that these
nances are single-mode unstable solutions, analogous to
I solutions in critical gravitational collapse, and have p
sented evidence that their lifetimes satisfy the type of sca
law which is to be expected if this is so.

In addition, we have independently computed reson
solutions starting from an ansatz of periodicity, and ha
demonstrated good agreement between the solutions the

FIG. 11. Plot off(t,0) for r 057.25 displaying extremely non
linear and unpredictable behavior during the ‘‘bouncing’’ phase~for
t,60), after which the field settles into a typical oscillon evolutio
Once in the oscillon regime, the period is approximatelyT'4.6,
and the first two modulations of the field can be seen~envelope
maxima att'105 andt'200).

FIG. 12. Plot of oscillon lifetime versus initial radius of bubb
for 4.22<r 0<9. Although there seem to be no oscillons in t
range 4.6&r 0&6, it is clear that oscillons and resonancesdo exist
for higher initial bubble radii,r 0*6.5.
08403
-
a-
a

r
es
-
so-
pe

-
g

nt
e
by

computed and those generated via finite-difference solu
of the PDEs. Finally, we have showed that oscillons can fo
from bubbles with energies higher than had previously b
assumed, through a mechanism analogous to the bounce
dows found in the 111 case of kink-antikink scattering.

We note that the use of MIB or related coordinates,
conjunction with finite-difference dissipation technique
should result in a generally applicable strategy for formul
ing nonreflecting boundary conditions for finite-differen
solution of wave equations. The method has already b
used in the study of axisymmetric oscillon collisions@21#,
and attempts are under way to use similar techniques in
context of 3D numerical relativity and 2D and 3D oce
acoustics.
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APPENDIX A: FINITE DIFFERENCE EQUATIONS

Equations~14!,~15!,~16! are solved using two-level sec
ond order~in both space and time! finite difference approxi-
mations on a static uniform spatial mesh:

r i5~ i 21!Dr , i 51,2, . . . ,I , ~A1!

whereI is the total number of mesh points

Dr 5
r max

I 21
. ~A2!

TABLE I. Two-level finite difference operators. Here we hav
adopted a standard finite-difference notation:f i

n[ f „(n21)Dt,(i
21)Dr ….

Operator Definition Expansion

D r
f f i

n (23 f i
n14 f i 11

n 2 f i 12
n )/2Dr ] r f u i

n1O(Dr 2)
D r

bf i
n (3 f i

n24 f i 21
n 1 f i 22

n )/2Dr ] r f u i
n1O(Dr 2)

D r f i
n ( f i 11

n 2 f i 21
n )/2Dr ] r f u i

n1O(Dr 2)
D t f i

n ( f i
n112 f i

n)/Dt ] t f u i
n11/21O(Dt2)

D t
df i

n ( f i
n112 f i

n)/Dt1 ] t f u i
n11/21O(Dt2)

edis@6 f i
n1 f i 22

n 1 f i 12
n 2

4( f i 21
n 1 f i 11

n )]/16Dt
m t f i

n ( f i
n111 f i

n)/2 f u i
n11/21O(Dt2)

.
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FINE STRUCTURE OF OSCILLONS IN THE . . . PHYSICAL REVIEW D 65 084037
The scale of discretization is set byDr andDt5lDr , where
we fixed the Courant factor,l, to 0.5 as we changed the ba
discretization.

Using the operators from Table I,] r r̃ 5a, ] r5nrn21] r n,
andrb5 r̃ , the difference equations applied in the interior
the mesh,i 52,3, . . . ,I 21, are

D t
dP i

n53m tFaD r̃ 3H r̃ 2S a

a
F1bP D J G

i i

n

2m tS 2
ḃ

b
P2aaf~f221! D

i

n

, ~A3!

D t
dF i

n5m tD r S a

a
P1bF D

i

n

, ~A4!

D t
df i

n5m tS a

a
P1bF D

i

n

. ~A5!

These equations are solved using an iterative scheme
explicit dissipation of the type advocated by Kreiss a
Oliger @11#. The dissipative term, incorporated in the ope
tor D t

d , is essentially a fourth spatial derivative multiplied b
(Dr )3 so that the truncation error of the difference sche
remainsO(Dr 2,Dt2). Although the results discussed in th
paper were not sensitive to the choice ofedis , we always
usededis50.1. The temporal difference operator,D t

d , is used
as an approximation to] t everywhere in the interior of the
computational domain, except for next-to-extremal poin
whereD t is used because the grid valuesf i 12

n or f i 22
n are not

defined.
At the inner boundary,r 50, we useO(Dr 2) forward spa-

tial differences to evolveP:

FIG. 13. Fundamental fieldf(r ) in the freeze-out region att
50, 57, 75, and 270. The characteristic speeds of the radiation→0
asr→r c ~here,r c556) and the wavelength of the radiation is blu
shifted to the lattice Nyquist limit, 2Dr . The Kreiss-Oliger dissipa-
tion explicitly added to the finite difference equations subseque
‘‘quenches’’ the field.
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m tS D i
fP2

a8

a
P D

1

n

50, ~A6!

whereasF1
n is fixed by regularity:

F1
n50. ~A7!

To updatef, we use a discrete versions of the equati
for ḟ which follows from the definition ofP:

D tf5m tS aP

a
1bF D

i

n

i 51,2, . . . ,I . ~A8!

ly

FIG. 14. Typical convergence factor,Cf5uuf4h2f2huu2 /uuf2h

2fhuu2, for the fieldf composed from the solution at three diffe
ent discretizations~value of 4 indicates second order convergenc!.
The l 2 norm uu•••uu2 is defined byuuvuu25(N21( i 51

N v i)
1/2. Exten-

sive convergence testing was performed throughoutr 0 space and
the above plot is representative of all the tests performed.

FIG. 15. Plot of energy contained in oscillon~dashed line!, en-
ergy radiated~dotted line!, and total energy~solid line!. The total
energy of the system is a constant of motion and is numeric
conserved to within a few tenths of a percent. The energy conta
within the bubble drops rapidly during the initial radiative pha
and plateaus aroundE'43m/l during the quasistable ‘‘oscillon’’
phase.
7-9
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ETHAN P. HONDA AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D65 084037
At the outer boundary,r 5r max, our specific choice of
boundary conditions and discretizations thereof have li
impact; due to the use of MIB coordinates and Kreiss-Oli
dissipation, almost none of the outgoing scalar field reac
the outer edge of the computational domain. Neverthel
we imposed discrete versions of the usual Sommerfeld c
ditions for amasslessscalar field onP andF:

D tP i
n1m tS D r

bP1
P

r D
I

n

50, ~A9!

D tF i
n1m tS D r

bF1
F

r D
I

n

50, ~A10!

APPENDIX B: TESTING THE MIB CODE

One might think that ‘‘freezing’’ outgoing radiation on
static uniform mesh would lead to a ‘‘bunching-up’’ of th
wave-train from the oscillating source, which would th
result in a loss of resolution, numerical instabilities, and
eventual breakdown of the code. However, this turns out
to be the case; all outgoing radiationis ‘‘frozen’’ around r
'r c , but the steep gradients which subsequently form in

FIG. 16. Plot comparing the OBC~solid lines! and MIB ~dotted
lines! solutions to ‘‘ideal’’ solutions forr 052.4,2.8,3.5,4. These
values were chosen to reasonably cover the region of interestr 0

space and test the system with varying amounts of outgoing ra
tion ~at r 054 almost four times the mass of a typical oscillon ent
the regionr'r c). The OBC solutions are obtained using a massl
outgoing boundary condition, the MIB solutions are obtained
solving the system in spherical MIB coordinates, and the ideal
lutions are obtained by evolving the solution in standard (r ,t) co-
ordinates on a grid large enough to ensure no reflection off the o
boundary. The error estimates are obtained from thel 2 norm of the
difference between the trial solutions~OBC or MIB! and the ideal
solution, uuf2f idealuu2. Contamination of the OBC solution is ob
served at two crossing times,t'120, where the error estimate in
creases by over three orders of magnitude.
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region are efficiently and stably annihilated by the dissip
tion which is explicitly added to the difference scheme~Fig.
13!.

In fact, there is a loss of resolution and second ord
convergence forr;r c , but this does not affect the stabilit
or convergence of the solution forr !r c . Figure 14 shows a
convergence test for the fieldf for r ,r c/2 over roughly six
crossing times. Extensive convergence testing was
formed throughoutr 0 space and Fig. 14 is representative
all the tests performed. Since we are solving Eq.~13! in flat
spacetime, it is very simple to monitor energy conservati
The spacetime admits a timelike Killing vector,tn, so we
have a conserved current,Jm[tnTmn . We monitor the flux of
Jm through a surface constructed from two adjacent space
hypersurfaces forr<r c @with normalsnm5(61,0,0,0)#, and
an ‘‘end cap’’ at r 5r O @with normal nm5(0,a21,0,0)#. To
obtain the the conserved energy at a time,t f , the energy
contained in the bubble,

Ebubble54pE
0

r O
r 2b2S P21F2

2a2
1V~f!D dr ~B1!

~where the integrand is evaluated at timet f!, is added to the
total radiated energy,

Erad54pE
0

t f
r 2b2

PF

a2
dt ~B2!

~where the integrand is evaluated atr 5r O). The sum,Etotal
5Ebubble1Erad, remains conserved to within a few tenths
a percent4 through 250 000 iterations~see Fig. 15!.

Although monitoring energy conservation is a very impo
tant test, it says little about whether there is reflection of
field off the outer boundary,r 5r max, or the regionr'r c . To
check the efficacy of our technique for implementing non
flecting boundary conditions, we compare the MIB results
those obtained with two other numerical schemes. The
alternate method involves evolution of Eq.~13! in ( t̃ , r̃ ) co-
ordinates on a grid withr max sufficiently large that radiation
never reaches the outer boundary~large-grid solutions!. For a
given discretization scale, results from this approach serv
near-ideal reference solutions, since the solution is gua
teed to be free of contamination from reflection off the ou
boundary. The second method involves evolution on a g
with the samer max adopted in the MIB calculation, but with
discrete versions of massless Sommerfeld~outgoing radia-
tion! conditions applied atr 5r max. We refer to the results
thus generated as outgoing boundary condition~OBC! solu-
tions, and since we know that these solutionsdo have error
resulting from reflections fromr 5r max, they demonstrate
what can go wrong when a solution is contaminated by
flected radiation. Treating the large-grid solution as ide
Fig. 16 compares log10uuf2f idealuu2 of both MIB and OBC
solutions for four different values ofr 0, showing the consis-

4A few hundredths of a percent if measured relative to the ene
remaining after the initial radiative burst from the collapse.
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FINE STRUCTURE OF OSCILLONS IN THE . . . PHYSICAL REVIEW D 65 084037
tency of the system across the region of interest inr 0 space.
It should be noted that by increasingr 0 more energy is shed
away during the initial bubble collapse~up to almost four
times the mass of a typical oscillon atr 054). In each plot
there is a steep increase in the OBC solution error~three
orders of magnitude! aroundt5125, which is at roughly two
crossing times~again, r max560 and r c554). This implies
that some radiation emitted from the initial collapse reach
the outer boundary and reflected back into the regior

FIG. 17. Plot comparing the OBC~solid lines! and MIB ~dotted
lines! solutions to ‘‘ideal’’ solutions for differentd. The OBC solu-
tions are obtained using a massless outgoing boundary cond
the MIB solutions are obtained by solving the system in spher
MIB coordinates, and the ideal solutions are obtained by evolv
the solution in standard (r ,t) coordinates on a grid large enough
ensure no reflection off the outer boundary. The error estimates
obtained from thel 2 norm of the difference between the trial sol
tions ~OBC or MIB! and the ideal solution,uuf2f idealuu2. Contami-
nation of the OBC solution is observed at two crossing timest
'120, where the error estimate increases by over three orde
magnitude. Note that while some reflection is seen ind51 MIB
solution, no reflection is observed for 2<d<8. Thel 2 norm of the
difference between the MIB and the ideal solutions increases
increasingd. This is due to the slight differences between the c
ordinate systems~i.e. aÞ1, bÞ1, andbÞ0 for the MIB system!;
these differences increase with largerd.
h

08403
d

,rO . There is no such behavior found in any MIB solution
Figure 17 shows the insensitivity of the system to the cho
of d; although there is some reflection observed in the M
system whend51, for 2<d<8 no reflection is observed
The system is also insensitive to the choice ofr c , again
assuming thatr c is chosen such that the ‘‘freeze-out’’ regio
does not encroach on the region of interest. Lastly, fo
more direct look at the field itself, we can seef(t,0) for
large-grid~triangles!, MIB ~solid curves!, and OBC~dashed
curves! solutions in Fig. 18. Initially, both the MIB and OBC
solutions agree with the large-grid solution extremely we
However, after two crossing times the OBC solution starts
substantially diverge from the ideal solution, while the MI
results remain in very good agreement with the ideal cal
lations.

In summary, the MIB solution conserves energy, co
verges quadratically in the mesh spacing~as expected!, and
produces results which are equivalent—at the level of tr
cation error—to large-grid reference solutions. At the sa
time, the MIB approach is considerably more computatio
ally efficient than dynamical- or large-grid techniques.
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FIG. 18. f(t,0) versus time for the large-grid solution~tri-
angles!, MIB solution ~solid curves!, and OBC solution~dashed
curves!. The solutions all agree before 2tcrossing, but the OBC solu-
tion begins to drift away from the ideal solution after 2tcrossing. The
error in the OBC solution is due to radiation that is reflected off
outer boundary~hence needing two crossing times to return tor
50 to contaminate the oscillon!. All pictures span the same are
Df50.075 byDt50.5.
D
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