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We present results from a study of the fine structure of oscillon dynamics in-tlespherically symmetric
Klein-Gordon model with a symmetric double-well potential. We show that in addition to the previously
understood longevity of oscillons, there exists a resofemd critica) behavior which exhibits a time-scaling
law. The mode structure of the critical solutions is examined, and we also show that the upper bound to oscillon
formation(in ry space is either nonexistent or higher than previously believed. Our results are generated using
a novel technique for implementing nonreflecting boundary conditions in the finite difference solution of wave
equations. The method uses a coordinate transformation which blueshifts and “freezes” outgoing radiation.
The frozen radiation is then annihilated via dissipation explicitly added to the finite-difference scheme, with
very little reflection into the interior of the computational domain.
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[. INTRODUCTION vacuum state An oscillon formed this way typically has
three distinct stages in its evolution. First, immediately fol-
There is a long history in physics and mathematics oflowing the bubble collapse a large percentage of its energy is
trying to find new nontrivial solutions to nonlinear wave radiated away. As will be discussed below, this can happen
equations. The literature on the subject goes back at least aither through localized field oscillations, or through bounces
far as 1845 when Russell published a paper about a surfageminiscent of the 1 dimensional kink-antikink KK)

wave he witnessed travel for aimost two miles in a shallowscattering[9]. After the initial radiative phase, the solution
water channelthe first scientifically reported solitori1].  seties into the oscillon stage. Here the field is localized with

Since then there has been much effort directed toward undeg gp e roughly that of an origin-centered Gaussian, with the
standingstablelocalized solutions to nonlinear wave equa-

e ) : . . field value asymptotically approaching the lamgeacuum
tions: the cla§S|caI I§|nk soliton, topolqgmal defeasono- state. Because of the asymmetry of the potential about either
poles, cosmic strings, and domain wall§2], and

nontopological defectésuch asQ balls) [3,4] are but a few minimum the f'(_ald oscillates aboup_ (the Iarger yacuurr)
examples. However, localized bunstablesolutions have such that the t|me—ayeraged value of the field lies between
been discussed much less frequently and in this paper V\;Qe_ltv¥o vacua, ie., ¢ <(¢)<h, where (---)
focus our attention on one such solution, the oscillon. =T “fo---dt as in[8]. For typical initial field configura-
The definition of oscillon varies slightly depending on tions the energy of the oscillon is slowly radiated away, ap-
context, but here we refer to localized, time-dependent, unproaching a specific “plateau” value. In the third and final
stable, spherically symmetric solutions to the nonlinearstage of evolution, the oscillon stops oscillating and dis-
Klein-Gordon equation. Although oscillons are unstableperses, radiating away its remaining energy.
their lifetimes are long compared to a dynamical time. Os- Much of the original excitement about oscillons arose
cillons were originally discovered by Bogolyubskii and from the fact that their long lifetimes could potentially alter
Makhan’kov [5,6] (who called them “pulsons), and were the dynamics of a cosmological phase transition. However,
later studied in more detail by Gleisgf] and by Copeland since oscillonsare unstable, their ability to affect such a
et al.[8]. phase transition depends crucially on their lifetimes. Previ-
Oscillons can be formed via the collapse of field configu-ous studies by Copelaret al.[8] used dynamical grid meth-
rations (initial data that interpolate between two vacuum ods to study oscillon dynamics and treated the initial radius,
states ¢, and ¢_) of a symmetric double well potential ry, of the bubble(shell of radiation as a free parameter.
(SDWP.! In spherical symmetry, such a configuration is aThese studies showed not only that oscillon lifetimes can be
bubble, where the interpolating region is the bubble “wall” comparable to the age of the univefse the grand unified
that separates the two vacuum states at some characteristieory (GUT) scald, but that oscillons are formed from a
radius(where in this work we always usg¢_ as the large-  wide range of initial bubble radii. However, the computa-
tional demands of the dynamical grid methods employed in
[8] prevented a detailed study of thg parameter space.
IAsymmetric double well potentials can also produce oscillons, A key problem in the accurate, long-time simulation of
but here we consider only the SDWP. oscillons is the treatment of boundary conditions at the outer
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edge,r =r . Of the computational domain. It is standard Which have been discovered in the context of gravitational
practice in the computational solution of nonlinear field collapse[12], and as in that case, we find compelling evi-
equations to use finite difference techniques applied to funcdence for power-law scaling of the oscillon lifetime,
tions defined on a lattice of grid points. If a static, finite-sized
domain is used i.e. if o is fixed, then one needs to employ T~Celro—rg|” ()
a method that minimizes the amount of radiati@mergy
that is artificially reflected at=r,,,. With masslesscalar wherec, is an overall scale factor set by the particular reso-
fields, and in spherical symmetry, this can be done quiteance, andy, is a resonancdependentxponent which is
easily simply by imposing a discrete version of an “outgoing presumably the reciprocal Lyapunov exponent associated
radiation,” or Sommerfeld, condition. However, for the casewith the resonance’s single unstable mode.
of massivescalar fields, or more generally, for fields with  In addition, contrary to previous claini8,10], we see no
nontrivial dispersion relations, the Sommerfeld condition ishard evidence for an upper bound gpbeyond which oscil-
only approximate, and its use generically results in signifilons are no longer generated via collapse of Gaussian data. In
cant reflection at =r ., and subsequent contamination of particular we find strong evidence for resonances rfgpr
the interior solution. =6.5, well above the limity=4.2 quoted in8,10]. More-
A surefire fix for the outer-boundary problem is to use aover, we relate the existence of these “largé+esonances
dynamically growing grid(as in[8]), so thatr ,,=rmad{t),  to the “bouncing” behavior observed in the+1 kink-
and lattice points are continuously added to extend the comantikink study of Campbelét al. [9].
putational domain as needed. Alternatively, compactified co- The remainder of the paper is organized as follows. In Sec
ordinates or coordinates which propagate outward faster thaih we introduce a new coordinate system in which to solve
any characteristic speed in the problem can be used, but imonlinear wave equations using finite differences. We exam-
these cases, new grid points also need to be continuouslye the conformal structure induced by our new coordinates,
added to the mesh in order to maintain adequate resolution @fs well as the characteristics of the resulting wave equation.
solution features. These methods are somewhat more effin Sec. Ill we discuss the new properties of oscillons that
cient than the use of a static mesh with,, chosen so that no were discovered during our study. In particular, we observe
signals reach the outer boundary during the integration peresonances in the parameter space which obey a time-scaling
riod of interest, T. However, for long-lived solutions, the law, and we construct a sample resonant solution via a non-
mesh soon becomes quite large, and the computation timadiative ansatzSecs. Il A and 1l B, respective)y Finally,
tends to be proportional {62 in Sec. IlIC we discuss oscillons and resonant solutions
Recently, Gleiser and Sornbordd] introduced aradia-  found outside the bounds of the parameter space previously
batic damping methodhich adds an explicit damping term explored. Sec. IV summarizes our results and is followed by
to the equations of motion, and which has been shown téwo appendixes that discuss the details of the finite differ-
absorb outgoing massive radiation extremely well in 1Dence equationgAppendix A and the testing of the code
(spherical and 2D(cylindrical) simulations. Here we present (Appendix B.
an alternative approach for dealing with outgoing massive

scalar fields which is quite general and quite different from Il. THE KLEIN-GORDON EQUATION
previously used methods of which we are aware. The tech- IN MONOTONICALLY INCREASING BOOSTED
nigue involves the use of a specially chosen coordinate sys- COORDINATES

tem that “freezes” and blueshifts outgoing radiation in a
relatively thin layer located away from the central region We are interested in the self-interacting scalar field theory
where the dynamics of principal interest unfold. The additiondescribed by the (3 1)-dimensional action
of a standard type of finite-difference dissipatidii] then
“quenches” the blueshifted, frozen radiation, and very little 4 1
energy is reflected back into the interior region. This ap- SM]ZJ d X\/@ - §9M VudV,—V($) @)
proach, like that described {i0], has the advantage that a
static anq unifor.m finite-di_fference r_nesh can be u;ed, S0 thathere we takeV(¢) to be a symmetric double well
computational time scaldiearly with the integration pe- potentiaf
riod, T.
Our new technique was crucially important to our discov- 1
ery and detailed study of fine structure in a well-knotand Vo(d)=~(¢>—1)? 3
still much studied nonlinear system. Specifically, we have 4
found strong evidence for a family of resonant oscillon so- ) ) ] )
lutions in the SDWP model. Each of these solutions appeard"dd,., to be the metric of flat spacetime in spherical sym-
to possess aingleunstable mode in perturbation theory, and Metry, written in standard spherical polar coordinates
by tuning the family parameter,, in the vicinity of a spe- (t,r,6,¢):
cific resonance, we can tune away that mode, producing os-
cillons which live longer and longer as we tune closer and—
closer to the precise resonant valug, This leads to a view  “This is identical to using/(¢)=(\/4)($?—m?/\)? and intro-
of oscillons as being analogous to the type I critical solutionsiucing dimensionless variablessrm, t=tm, and y=\/m) .
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A= — d02+ dr2+T2(d6?+ sirfod9?). (4) [In th_e nomc_ancla_ture of tf‘(@‘\DM) formalism,« is_ thelapse
function while B is the radial component of thehift vector]
In the work which follows, we have adopted the following

We now introduce a new radial coordinatewhich interpo- specific form forf(r):

lates between the old radial coordinateat smalir and an

outgoing null coordinate at large Specifically, we take f(r)y={1+tanH (r—r.)/5]}/12+ €, (11
T=t, ®) where
e=—[1+tanHr./5)]/2 (12
T=r+f(nt, (6)

is chosen to satisfy the regularity conditionratO.

_ It is now instructive to consider the conformal structure of
0=106, (7)  the MIB hypersurfaces. This is done by applying E@.to
the standard conformal compactification on Minkowski

~ ) spacet=r=taf(T+R)/2] (whereT andR are the axes in
the conformal diagram; sgd4] or [15]), and then plotting
curves of constant andt. The constant-hypersurfaces are
everywhere spacelike and all reach spatial infinify, Al-

though constant-surfaces for >r . appear at first glance to
be null, a closer looKsee insets of Fig.)lreveals that they

f(cl\)/TI[Dj I:i)b\r/gﬁgfe"s(tlmeml\jln; tg;;fsrl:]yr'gglzecae‘?r;(gjl)tlhzogrsi;?galare indeed everywhere timelike and do not ever reach future
' null infinity, 7.

spherical coordinatest (f), for r<r., but as discussed be-  The equation of motion for the scalar field which results
low, in ther>r, region, both outgoingnd ingoing (from  fom the action(2) is

r>r.) radiation tends to be “frozen” in the transition layer,

r~r.. Furthermore, since the outgoing radiation is blue- 1

shifted as it propagates into the transition regiony ., ap- —aﬂ(\/ﬂg’”aygb): d(p?—1) (13
plication of standard finite-difference dissipation operators \/@

can then quench it with minimal reflection back into the
interior of the computational domain.

In general, MIB coordinates will not cover all of the, ()
half plane. However, given thédt(r) is monotonically in- 1 w
creasing, the determinant of the Jacobian of the transforma- [J= z_t)z[rzbz(gq)+ﬂn

r

where f(r) is a monotonically increasingunction which
smoothly interpolates between0 and~1 at some charac-
teristic cutoff,r., so thatf(r)—0 for r<r., andf(r)—1

which with Egs. (9),(10), II=a(d;¢p— B, P)/a, and ®
=4,¢ give

" b
} —2- M- aag(¢p*~1),

tion is nonzero for alk such thatt>—maxf’(r)|. Thus, for b

this range oft, the transformation to and from the standard (14
spherical coordinate system is well defined, and although a ,

coordinate singularity inevitably forms &s> — (past time- s

like infinity), this has no effect on thfarward evolutionof ® aH+B(D ' (15

initial data given at=0.

We also note that in order that our MIB coordinates be a
regular atr =0 (so that there is no conical singularity at the ¢= EHJFB‘D’ (16)
origin), we must also demand th&¢0)=0.

Our coordinate choice results in the following spherically\here =g, and "=, . These equations are familiar from
symmetric, 3+1, or Arnowitt-Deser-Misner(ADM) [13]  {he ADM formalism as applied to the spherically symmetric
form: Klein-Gordon field coupled to the general relativistic gravi-

tational field[16]. However, in the current case, instead of

ds’=(—a”+a’p%)dt*+2a°Bdtdr+a’dr? dynamically evolving metric functions, the metric compo-
202, 102 2 nentsa, b, «, andB area priori fixed functions of {,r) that
+rPb*(do%+sin’6 de?) ©) resulted from a coordinate transformationflat spacetime

Clearly, characteristic speeds for the massless Klein-
where Gordon field[ V(¢) =0] bound the inward or outward speed
(group velocitiey of any radiation in aself-interactingfield
[V(¢4)#0]. Characteristic analysis of theasslesKlein-
Gordon equation with metri¢9) yields local propagation
speeds

a(t,r)=1+1f"(r)t, b(t,r):1+f(r);

f(r)

a(t,r)=1, B(t’r):r'(r)t.

(10) At=—ﬂi§, (17)

084037-3



ETHAN P. HONDA AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D65 084037

i+ A B

>

¥

=100

g 2% 0 20t

||||||||||||||||?\1|||||—

0 0.5 1 1.5 2
r

FIG. 1. Conformal diagram showing surfaces of constadot-
ted lines and lines of constartt(dashed lines Lines of constant FIG. 3. Plot of characteristic speeds, (r’,100), wherer’ and
look exactly like the constanthypersurfaces of Minkowski space, ' gre radial MIB coordinates in units V\;herg is set to unity.
whereas the lines of constantbehave much differently. For
>r¢, it appears as if the constantsurfaces are null. However, as ingredient is the application of Kreiss-Oliger-style dissipa-
insets A, B, and C show, the constanitnes donotbecome nulldo  tion [11] to the difference equations. This dissipation effi-
r_10t intersect future null infinity but rather are everywhere time- ciently quenches the trapped outgoing radiation, which as
like. mentioned above tends to be blueshifted to the lattice scale

on a dynamical time scale.

where\ , andX\ _ are the outgoing and ingoing characteristic ~ Finally, we note that, as is evident from Fig. 3, the “ab-
speeds, respectively16,17] (see Fig. 2 For r<r., the sorbing layer” in the MIB systenii.e. the region in which
propagation of scalar radiation in,f) or (i,r) coordinates the characteristic speeds aré)) expands both outward and

is essentially identical. However, as illustrated in Fig. 3, andnward ast increases. This means that for fixed, the ab-
as can be deduced from Eq$7) and(10), for r ~r . boththe sorbing Iayer' will eventually encroach on the interior region
ingoing and the outgoing characteristic velocities go to zerd <fc @nd ruin the calculation. However, the rate at which
ast—o (as the inverse power df. Thus, any radiation the layer expands is roughly logarithmictinso, in practice,
incident on this region will effectively be trapped, or “frozen this fact should not significantly impact the viability of the
in.” It is this property of the MIB system that enables the methpd. For arbl'tranly large final integration tlmgs,com—
effective implementation of nonreflecting boundary condi-Putational cost will scale akIn T. However, the calculations

tions. As discussed further in Appendix A, an additional keydescribed here all used the same values of the grid param-
eters €,,.x=60, r.=54, and6=5), so that for all practical

purposes, the computational costlirgear in the integration

L E L time. The ability of the system to trap and absorb outgoing
o E ] radiation is relatively insensitive to the choice of bdiland
0.5 3 r. and was observed to work well for varying amounts of
< F ] outgoing radiatior{Appendix B and Figs. 16 and 17 belpw
O —
T e T T T T T T . IIl. THE RESONANT STRUCTURE OF OSCILLONS
QETT T T o Copelandet al. [8] showed quite clearly that oscillons
~ 05 E 03 formed for a wide range of initial bubble radiig. They even
w TR 3 caught a glimpse of the fine structure in the model—which in
£ -l E large part motivated this study—nbut they did not explore this
< -15 = E fine structure of the parameter space in detail. With the effi-
_E, 3 ciency of our new code, we have been able to explore pa-
0 0.5 1 1.5 rameter space much more thoroughly, which in turn has
r yielded additional insights into the dynamical nature of os-

FIG. 2. Plot of the characteristic velocities as a function of theCilloNS- . . i o
MIB coordinatesr’ andt’ in units wherer is set to unityA . and Following [7] we use a Gaussian profile for initial data
)\ _ are the outgoing and ingoing characteristic speeds respectivelyvhere the fields at the core and outer boundary values are set
8 is taken to bes— d/r,~0.0893 (corresponding to the system 10 the vacuum valuesg(t,0)=¢.=1 and ¢(t,»)= ¢,
used in this article Characteristic velocities are plotted for times = — 1 respectively, and the field interpolates between them at
t'=0, 1, 10, and 100t(=100 is larger than the lifetime of the a characteristic radiusy:

longest lived solution studied in this workAs r—1, we have 212
Ao (t',r")=0(1k"). d(01)= ot (= Po)exp(—r</rg). (18
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L 1, 15,6 Top Bt v he oo 410) for -
1'014 o= p Hisplaying bifurcate behavior around thg~2.335 resonance

: (Ary~10"%; the solid curve is the envelope barely above reso-

nance(15 modulationswhile the dotted line is the envelope barely

Keeping ¢, and ¢, constant, but varying,, we have a one pelow resonancél4 modulations Bottom plot shows the energy
parameter family of solutions to explore. Figure 4 shows thadiated as a function of time through the surface containing the
behavior of the oscillon lifetime as a function of in the  oscillon as defined in Appendix B. The increases in the energy
range 2.6<r,=<5.0. We discuss three main findings that areradiated are synchronized with the modulation in the field.
distinct from previous work: the existence of resonances and
their time scaling properties, the mode structure of the resoyig|q oscillates with a period~4.6 (for all oscillons so the

nant solutions, and Fhe existence of oscillons outside thﬁ1dividua| oscillations cannot be seen in the plot, but it is the
parameter-space regions2 ,<5. lower-frequency modulation that is of interest héfEhe top
figure shows the envelope @f(t,0) on both sides of a reso-

A. Resonances and time scaling nance(dotted and solid curvesWe see that the large period
modulation that exists for all typical oscillons disappears late
QE the lifetime of the oscillon as, is brought closer to a
resonant value;,;. On one side of ; the modulation returns
before the oscillon disperséseferred to asupercriticaland
shown with the solid curyewhile on the other side af; the
modulation does not return and the the oscillon simply dis-
perseqreferred to asubcritical and shown with the dotted
curve. For resonances wherg=<2.84, the subcritical solu-
———— tions appear on the,<rj side of the resonance and the
supercritical solutions appear on thg>ry side of the reso-
nance. The opposite is true for resonances whgre2.84,
i.e. the subcritical solutions appear on the>r{ side of the
resonance and the supercritical solutions appear orr ghe
<rg side of the resonance. This bifurcate behavior does not
manifest itself untir , is quite close ta . In practice then, to
locate a resonant valueg, we first maximize the oscillon
lifetime using a three point extremization routiigolden
section searchwith bracketing interval of~0.62,[18]) until
we have computed an interval whose end points exhibit the
ol b b b two distinct behaviors just described. Once a resonance has
RR7T RR2T5 RRE  2.R85 =29 been thus bracketed, we switch to a standard bisection

Initial Bubble Radius, r, search, and subsequently locate the resonance to close to

machine precision. Although we can see from Fig. 6 that the
modulation is directly linked to the resonant solution, it is

In contrast to Fig. 7 of Copelanet al. [8], the most ob-
vious new feature seen in Fig. 4 is the appearance of the 1
resonances which rise above the overall lifetime profile
These resonancéalso seen in Fig. sbecome visible only
after carefully resolving the parameter space. Upon fine
tuning r, to about 1 part in~10'* we noticed interesting
bifurcate behavior about the resonan¢Egy. 6, top. The

1500

._.

o

o

S
I

500

Oscillon Lifetime

FIG. 5. Plot of oscillon lifetime versus initial bubble radius for
2.27<rja<2.29. The three resonances shown occur r&t
~2.2805,r7 ~2.2838, and'; ~2.2876. Each resonance separates
the parameter space into regions witlandn+ 1 modulations; the
X's correspond to oscillons with no modulations, the triangles to 3In dimensionful coordinates, andt, the period would bér
oscillons with one modulation, the squares to two modulations, and=4.6m . In general, to recover proper dimensions, lengths and

the circles to three modulations. times are multiplied byn~* and energies bym™1.
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FIG. 7. Plot of time scalingT versus lfro—rg| for the rq
~2.335 resonance. The top liigiangles displays the scaling be-
havior for supercritical evolutiong,o>rg, while the bottom line
(Xx’s) shows the scaling for subcritical calculatiomg<ry. The

FIG. 8. Plot of critical exponents for each resonance. There are
two values ofy for each resonance. The top plot displaysvsry
while the lower plot displaysy_ vs rg. The uncertainties are esti-
exponentsmeasured by the slopes of the lip@se both approxi- mated from running thentire parameter space surveys at two reso-

i o N L
mately equal toy=30. The offset in the two curves represents the IAutlo_ns, N=N,=1449 andN’=N; = 1025 and estimating the error,
time spent by supercritical oscillons in executing the final modula- r=Imw=ml.

tion shown in Fig. 6. lifetime scaling for each resonance, the scaling expopent
sevaries from resonance to resonance; a plot of the scaling
exponents;y, andy_, versus the critical initial bubble ra-
dius can be seen in Fig. 8. For all resonances we #ind
=Y

not obvious why this is so. However, if we look at the rela-
tionship between the modulation in the figlthp) and the
power radiated by the oscillafibottom), we see that they are
clearly synchronized.

The behavior of these resonant solutions may not be SUEitical gravitational collapse, we expect that the scaling ex-

prising to those familiar with the 1 KKscattering studied ponents,y, are simply the reciprocal Lyapunov exponents
using the same modg®]. Campbellet al. showed that after associated with each resonance’s single unstable mode. In
the “prompt radiation” phase—the initial release of radiation addition we note that, for any resonance, if we were able to
upon collision of a kink and antikink—the remaining radia- infinitely fine-tuner, to rg, we would expect the oscillon
tion was emitted from the decay of what they referred to asifetime to go to infinity.

“shape” oscillations. The “shape modes” were driven by the

contribution to the field “on top” of theK and K soliton B. Mode structure
solutions. Since the exact closed-form solution for the ideal Assuming that periodic, nonradiative solutions to EkB)

nonradiativeK K interaction is not known, initial data aimed ©€Xist, we should be able to construct them by inserting an
at generating such an interaction is generally only approxi@nsatz of the form
mate, and the “surplusf{or deficit) field is responsible for

exciting the shape modes. The energy stored in the shape d(t,r)=do(r)+ >, dn(r)cognwt) (19
modes slowly decays away as the kink and antikink interact n=1

and eventually the So“.Jt'on disperses. . . in the equations of motion and solving the resulting system
In our case, we believe the large period modulation rep-

resents the excitation of a similar “shape mode” Superim_of ordinary differential equations obtained from matching

S - . N cosfwt) terms:
posed on a periodic, nonradiative, localized oscillating solu- fret)

tion. On either side of a resonance in theparameter space, 3

the solution is on the threshold of having one more shape (1°¢0)'/T?=¢o( o= 1)(¢ho—2)+ §(¢0_1)E (m)?
mode oscillation. If this is the case, then, as we tuge "

— g, we are, in effect, tuning away tlsingleunstable shape 1

mode, and thus should expect that the oscillon lifetime will *t7 mqu DnPpdq(Sm ~p=q), (20
obey a scaling law such as that seen in type | solutions in o

criti_cal grgvit_ational collaps@l2]. Figure 7 shows a plot of (r2p!) Ir2=[3(¢o—1)2— (n2w?+1)] b,

oscillon lifetime versus Iny—rg| (for the ry=2.3%...

resonanckg and we can see quite clearly that thesa scal- 3

ing law, T~ yIn|ro—rj|, for the lifetime of the solution as T3 (¢o~ 1)% PoPal O =p=a)

measured on either side of the resonance. We denotior
the scaling exponent on the,>r{ side, andy_ for the
scaling exponent on they,<rg side. Although we observe

Igihally we note that, by analogy with the case of type |

1
+Z E ¢m¢n¢q(5n,tmtptq)- (22)
m,p.q
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FIG. 9. Critical solutioneg,(r) (for n=0,1,2,3,4) obtained from )
the Fourier-decomposed PDE data'$) overlaid with ¢,(r) ob- FIG. 10. Power spectra of the core amplitudét,0), for the
tained by shooting Eqg20) and (21) (solid curvey. The Fourier-  Oscillons barely above and below tlig~2.335 resonance. The

decomposed PDE data overlies the shooting solution everywherePower measured in each frequency regime slowly diminishes as the
oscillon radiates away much of its energy until approximately

Equations(20) and (21) can also be obtained by inserting =1100 where the oscillon enters a nonradiative state and all the
ansatz(lg) into the action and Varying with respect to ﬂﬁﬁ Components of the power Spectrum become constant.
[19]. This set of ordinary differential equations can be solved

by “shooting,” where the quantitiegh,(0) are the shooting as studied by Bradgt al. [12], where the intermediate at-

parameters. Unfortunately, we were unable to construct gactors are unstable, periodic, “oscillon stars” discovered
method that self-consistently computedthe best we could  ogjier by Seidel and Sud0].

achieve was to solve Eq&0) and(21) for a givenw which
we measured from the partial differential equatidPDE)
solution.

For ease of comparison of the results obtained from the ) ) )
periodic ansatz with those generated via solution of the Lastly, we consider the existence of oscillons generated
PDEs, we Fourier decomposed the PDE results. This waly Gaussian initial data with,=5. The oscillons explored
done by taking the solution during the interval of time whenbPy Copelancet al. were restricted to the parameter-space re-
the large period modulation disappears (1206:1800 for ~ gion 2<ry=<5, and in fact it was concluded that there was an
the oscillon in Fig. 6, for exampleand constructing fast upper boundy,~4.2, beyond which evolution of Gaussian
Fourier transformgFFTS of ¢ at each grid pointr;. Spe- data would not result in an oscillon phgd®]. However, we
cifically, at eaclr;, the amplitude of each Fourier mode was have found that oscillonsan form for ry=5, and that they
obtained from a FFT which used a time seriegt",r;), n do so by a rather interesting mechanism.
=1,2,... 4096 with t""!—t"=At=const. Keeping only  Again, from the 1 dimensionaK scattering studies of
the first five modes in the expansi¢h9), we compare the  campbellet al, it is well known that a kink and antikink in
Fourier decomposed PDE data with the shooting solutionyeraction often “bounce” many times before either dispers-
(see Fig. 9. It should be noted that although the value éor 4 or falling into an(unstable bound state. Here, a bounce
was determined from the PDE solution, the shooting algo'occurs when the kink and antikink reflect off one another,

rithm still involved a five-dimensional search for the the stop after propagating a short distance, and then recollapse.

shooting parametersh,(0), n=0, L 4 Theclose corre- We find that such behavior occurs in the«3) dimen-
spondence of the curves shown in Fig. 9 strongly suggests

o 2 x Sional case as well, but now the unstable bound state is an
that the resonant solutior(ge. in the limit asro—rg) ob- . . L -

. . ; . . gscillon. For largerrg, instead of remaining withim=<2.5
served in the PDE calculations are indeed consistent with thgfter reflection through =0 (as occurs for Zr,<5), the
periodic, nonradiative oscillon ansatk9). gir= 0=~/

By examining the three most dominant components of th?uPble wall travels out to larger(typically 3<r=<6), stops,
power spectrum of5(t,0), Fig. 10, we can see that during then recollapses, §hedd|ng away Iqrge amounts of energy in
the “no-modulation” epoch, the amplitude of each Fourier the processsee Fig. 11 Thus in this system, as with the
mode becomes constant. Although the specific plot is for thd+1 KK model, there are regions of parameter space which
core amplitudet =0, we note that this behavior holds for all constitute “bounce windows.” Within such regions, the
r. Again, this is consistent with the view that as we tugéo ~ bounces allow the bubble to radiate away large amounts of
rg, the oscillon phase of the evolution is better and betteenergy. The bubble then recollapses, effectively producing a
described by a one-mode unstable “intermediate attractor.new initial configurationalbeit with a different shapewith
As discussed previously, this is precisely reminiscent of thed smaller effectiver,. Within these “windows” both oscil-
type | critical phenomena studied in critical gravitational col-lons and resonanceSimilar to those observed for=2r
lapse, particularly the collapse of a real, massive scalar fiel&c4.6) can be observe@inset of Fig. 12.

C. (Bounce windows to more oscillons
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computed and those generated via finite-difference solution
of the PDEs. Finally, we have showed that oscillons can form
from bubbles with energies higher than had previously been
assumed, through a mechanism analogous to the bounce win-
dows found in the ¥ 1 case of kink-antikink scattering.

We note that the use of MIB or related coordinates, in
conjunction with finite-difference dissipation techniques,
should result in a generally applicable strategy for formulat-
ing nonreflecting boundary conditions for finite-difference
solution of wave equations. The method has already been
used in the study of axisymmetric oscillon collisiofxl],
and attempts are under way to use similar techniques in the

PP U AFETETIN APRTRTAI PR context of 3D numerical relativity and 2D and 3D ocean
50 100 150 200 250 acoustics.
Time

[T T T [ T T T [T =T [ T T

o

FIG. 11. Plot of¢(t,0) for ro=7.25 displaying extremely non- ACKNOWLEDGMENTS
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space of the model exhibits resonances wherein the lifetimes
of the intermediate-phase “oscillons” diverge as one ap-

proaches a resonance. We have conjectured that these reso- APPENDIX A: FINITE DIFFERENCE EQUATIONS
nances are single-mode unstable solutions, analogous to type
| solutions in critical gravitational collapse, and have pre-

sented evidence that their lifetimes satisfy the type of scalin

law which is to be expected if this is so.

In addition, we have independently computed resonant ) )
solutions starting from an ansatz of periodicity, and have ri=>-1Ar, i=12,...J, (A1)
demonstrated good agreement between the solutions thereby

wherel is the total number of mesh points

Equations(14),(15),(16) are solved using two-level sec-
nd order(in both space and timdinite difference approxi-
ations on a static uniform spatial mesh:

4000 T T 7T | T rrT T T 1T mr T T T T T
: 4000 : r
I ] Ar= "2 (A2)
L 3000 [ i |1—-1
03000 | -
g I =000 | B - .
3 r b ] TABLE I. Two-level finite difference operators. Here we have
= C 1 4 adopted a standard finite-difference notatidf=f((n—1)At,(i
—2000 * —1)Ar).
g L _
S i
B 1 Operator Definition Expansion
©1000 . -
A (= 3f+4f],  —f],)/2Ar a,f|"+0(Ar?)
APfD (3N —4fl  + 1 )/2Ar 3, f|"+O(Ar?)
0 Mt AT (11— 1)/2Ar 31"+ 0(Ar?)
I5nitia1 P?ubble ;adius 8r ’ A (f" 1= )/At af[ "+ O(AtY)
v AYfD (M1 —fM/At+ af|M Y2+ O(At?)
FIG. 12. Plot of oscillon lifetime versus initial radius of bubble €qisl 617+ 1o+ 11—
for 4.22<ry<9. Although there seem to be no oscillons in the 4(f)+ 11 )]/16AL
range 4.6sr,<6, it is clear that oscillons and resonandesexist  y f!" (fM 1+ £M/2 |24 0(At?)

for higher initial bubble radiiy ;=6.5.
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o) FrToT | TTTT TTTT T3 L | T I’\\‘\ L L= 5 T T T T T T T T T T T T
St - ] ~ : L -
o[ ] . L
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%'w'?é' T T = 1
o[ ar 7 - il
[ 4 L 4 | 4
I 1r ] a2 | _
- 1 E . <t J
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40 45 50 55 40 45 50 55 Time
FIG. 13. Fundamental fielgp(r) in the freeze-out region dt FIG. 14. Typical convergence facto®;=|| dan— bonll2/|| P2n

=0, 57,75, and 270. The characteristic speeds of the radiatidn  — ¢ 1|, for the field» composed from the solution at three differ-
asr—r (here,r.=56) and the wavelength of the radiation is blue- gnt discretizationgvalue of 4 indicates second order converggnce

shifted to the lattice Nyquist limit, &r. The Kreiss-Oliger dissipa- Thel, norm||---||, is defined byl|v||,=(N"1SN ,v;)¥2 Exten-
tion explicitly added to the finite difference equations subsequentlyjye convergence testing was performed throughguspace and
“quenches” the field. the above plot is representative of all the tests performed.

The scale of discretization is set By andAt=\Ar, where cooal "
we fixed the Courant factok,, to 0.5 as we changed the base Mt( A; H—aH) =0, (AB)

discretization. 1
Using the operators from Table d,r =a, d,=nr""1n,

/. _ _ b 7 oo whereasD] is fixed by regularity:
andrb=r, the difference equations applied in the interior of

the meshj=23,...]1—1, are ®'1=0. (A7)
g ~[a n To updateg, we use a discrete versions of the equation
A1 =3y alps) re| — @+ BlI for ¢ which follows from the definition ofl:
1
b ' ab—pl i po| ic12 A8
— 1ty 25Hfaa¢(¢271) , (A3) = 5 T8 | i=12,...]. (A8)
i
150 T rrT LU LB LB L T
depyn @ " = -
Af D= wed, EH"’B(D ) (Ad) s ]
[ | i
g a n 100 r _______ -
At¢?=m(aﬂ+ﬁq’) - (AS) I P— _
) ap L ]
! g |
= H 7
= \ i
These equations are solved using an iterative scheme and 50 _ i
explicit dissipation of the type advocated by Kreiss and T
Oliger [11]. The dissipative term, incorporated in the opera- 3 .
tor A?, is essentially a fourth spatial derivative multiplied by 1 ]
(Ar)® so that the truncation error of the difference scheme 0 e
remainsO(ArZ,AtZ). Although the results discussed in this 0 1000 2000 3000 4000 5000
paper were not sensitive to the choice &f;, we always Time

usedegis=0.1. The temporal difference opera}tmg , 1S used FIG. 15. Plot of energy contained in oscill¢dashed ling en-
as an apprOX'mat'on_tat everywhere in the interior of th,e ergy radiateddotted ling, and total energysolid line). The total
Computat_lonal domain, except _for next-to-extremal poiNtSgnergy of the system is a constant of motion and is numerically
whereA, is used because the grid valugls, or f{_, are not  conserved to within a few tenths of a percent. The energy contained

defined. within the bubble drops rapidly during the initial radiative phase
At the inner boundary,=0, we useD(Ar?) forward spa- and plateaus arounB~43m/\ during the quasistable “oscillon”
tial differences to evolvél: phase.
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SO L L L A B region are efficiently and stably annihilated by the dissipa-
o4 OBCum b rezs ke tion which is explicitly added to the difference schetfiég.
£ 7 T " 13).
't 1t . In fact, thereis a loss of resolution and second order
of e I convergence for~r., but this does not affect the stability
o b A reSe 4 F “TMIB or convergence of the solution forcr . Figure 14 shows a
= i 1r 7 convergence test for the field for r <r./2 over roughly six
< o" il TR crossing times. Extensive convergence testing was per-
& T L formed throughout, space and Fig. 14 is representative of
= _I TTT | TTTT | TTTT I TTTrT I TTrT I_ _I TTT I LI I TTTT | TTTT | TTTT Il th t t f d S | . ) . fl t
s b ogc JEL OBC all the tests performed. Since we are solving B in fla _
& [ or=35 W [ r,=4.0 ! spacetime, it is very simple to monitor energy conservation.
TE 1F . The spacetime admits a timelike Killing vectdr, so we
ofF 1T ] have a conserved curredt,=t"T,, . We monitor the flux of
I s I A YW EoP s J,, through a surface constructed from two adjacent spacelike
ol MB 1 [ MIB ] hypersurfaces for<r . [with normalsn,=(+1,0,0,0}, and
! 1 ] an “end cap” atr=rq [with normaln*=(0,a~%,0,0)]. To
= AT R FETTR YRR FET B iy (AT FRTA RN R ARy obtain the the conserved energy at a tirhg, the energy
o 50 100 150 200 © 50 100 150 200 contained in the bubble,
Time
. - o 24+ @2
FIG. 16. Plot comparing the OB@olid lineg and MIB (dotted Ebubble:477j r?b?| ———+V(¢) |dr (B1)
lineg solutions to “ideal” solutions forr,=2.4,2.8,3.5,4. These 0 2a?

values were chosen to reasonably cover the region of interegt in

space and test the system with varying amounts of outgoing radigwhere the integrand is evaluated at titpg is added to the
tion (atry=4 almost four times the mass of a typical oscillon enterstotal radiated energy,
the regionr=~r.). The OBC solutions are obtained using a massless

outgoing boundary condition, the MIB solutions are obtained by t; e

solving the system in spherical MIB coordinates, and the ideal so- Erad=477f r2b2—2dt (B2)
lutions are obtained by evolving the solution in standard)(co- 0 a

ordinates on a grid large enough to ensure no reflection off the outer . .

boundary. The error estimates are obtained from sherm of the ~ (Where the integrand is evaluatedratro). The sUmEqq
difference between the trial solutio®BC or MIB) and the ideal = Ebubbliet Erad, rf€Mains conserved to within a few tenths of
solution, || — digeal |- Contamination of the OBC solution is ob- & percerftthrough 250 000 iterationsee Fig. 15

served at two crossing timess 120, where the error estimate in-  Although monitoring energy conservation is a very impor-
creases by over three orders of magnitude. tant test, it says little about whether there is reflection of the

field off the outer boundary,=r ., Or the regiorr=~r_. To
At the outer boundaryyr=r,.., our specific choice of check the efficacy of our technique for implementing nonre-
boundary conditions and discretizations thereof have littiglecting boundary conditions, we compare the MIB results to
impact; due to the use of MIB coordinates and Kreiss-Oligeithose obtained with two other numerical schemes. The first
dissipation, almost none of the outgoing scalar field reacheslternate method involves evolution of Ed3) in (t,r) co-
the outer edge of the computational domain. Neverthelesardinates on a grid with,,,,, sufficiently large that radiation
we imposed discrete versions of the usual Sommerfeld comever reaches the outer boundéarge-grid solutions For a
ditions for amasslesscalar field onlI and®: given discretization scale, results from this approach serve as
near-ideal reference solutions, since the solution is guaran-
teed to be free of contamination from reflection off the outer
boundary. The second method involves evolution on a grid
with the same . adopted in the MIB calculation, but with
®\" discrete versions of massless Sommerf@dtgoing radia-
At<b{‘+,ut(A?<I>+ _> =0, (A10)  tion) conditions applied at =r,,. We refer to the results
r thus generated as outgoing boundary conditoBC) solu-
tions, and since we know that these soluticlsshave error
APPENDIX B: TESTING THE MIB CODE resulting from reflections from:.rmax., they de_monstrate
what can go wrong when a solution is contaminated by re-
One might think that “freezing” outgoing radiation on a flected radiation. Treating the large-grid solution as ideal,
static uniform mesh would lead to a “bunching-up” of the Fig. 16 compares lag| ¢ — @igeal|» Of both MIB and OBC
wave-train from the oscillating source, which would then solutions for four different values af;, showing the consis-
result in a loss of resolution, numerical instabilities, and an
eventual breakdown of the code. However, this turns out not————
to be the case; all outgoing radiatids “frozen” around r “A few hundredths of a percent if measured relative to the energy
~r., but the steep gradients which subsequently form in thisemaining after the initial radiative burst from the collapse.

n= 0, (A9)
|

n b I
AT+ pug| AT+ —
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= [ MIB | [
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2 9 A 1 L1 ‘ | | L1l | Ll Il ] | | ] | Llr ‘ L1l
|
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l = i Time
L ‘ | | L | | | FIG. 18. ¢(t,0) versus time for the large-grid solutiofri-

-10

angle3, MIB solution (solid curveg, and OBC solution(dashed
] curves. The solutions all agree beforé 2,sing but the OBC solu-
Time tion begins to drift away from the ideal solution afte,2ssing The
FIG. 17. Plot comparing the OB@Golid lineg and MIB (dotted ~ €Or in the OBC solution is (_iue to radiatiqn tha_1t is reflected off the
lines) solutions to “ideal” solutions for differens. The OBC solu-  Outer boundaryhence needing two crossing times to returnr to
tions are obtained using a massless outgoing boundary conditiory; O 0 contaminate the oscillonAll pictures span the same area,
the MIB solutions are obtained by solving the system in sphericaﬂmﬁ:o'm5 byAt=0.5.
MIB coordinates, and the ideal solutions are obtained by evolving
the solution in standard (t) coordinates on a grid large enough to <r . There is no such behavior found in any MIB solutions.
ensure no reflection off the outer_boundary. The error est_lmates arleigure 17 shows the insensitivity of the system to the choice
obtained from the;, norm of the difference between the trial solu- ¢ 5. o1though there is some reflection observed in the MIB
tions (OBC or MIB) and the ideal solution| ¢ — ¢jgeal |- Contami- - o
nation of the OBC solution is observed at two crossing tintes, System When_é—l, fo_r 2< 558 no reflectlon 1S Observ_ed'
~120, where the error estimate increases by over three orders the system 1S filso insensitive to the choicerpf agaln
magnitude. Note that while some reflection is seersinl MIB  assuming that. is chosen such that the “freeze-out” region
solution, no reflection is observed for25<8. Thel, norm of the ~ does not encroach on the region of interest. Lastly, for a
difference between the MIB and the ideal solutions increases witinore direct look at the field itself, we can segt,0) for
increasingd. This is due to the slight differences between the co-large-grid(triangles, MIB (solid curve$, and OBC(dashed
ordinate systeméi.e.a# 1, b#1, andB+0 for the MIB systeny  curves solutions in Fig. 18. Initially, both the MIB and OBC
these differences increase with larger solutions agree with the large-grid solution extremely well.
However, after two crossing times the OBC solution starts to
tency of the system across the region of interesgjispace. substantially diverge from the ideal solution, while the MIB
It should be noted that by increasing more energy is shed results remain in very good agreement with the ideal calcu-
away during the initial bubble collapsep to almost four lations.
times the mass of a typical oscillon g§=4). In each plot In summary, the MIB solution conserves energy, con-
there is a steep increase in the OBC solution eftbree  verges quadratically in the mesh spaciiag expected and
orders of magnitudearoundt =125, which is at roughly two produces results which are equivalent—at the level of trun-
crossing times(again, r ,,,,=60 andr.=54). This implies cation error—to large-grid reference solutions. At the same
that some radiation emitted from the initial collapse reachedime, the MIB approach is considerably more computation-
the outer boundary and reflected back into the region ally efficient than dynamical- or large-grid techniques.

0 50 100 150 200 0 50 100 150 200

[1] J.S. Russell, ifReport of the Fourteenth Meeting of the British  [6] I.L. Bogolyubskii and V.G. Makhan’kov, JETP Lete5, 107

Association for the Advancement of Scieridehn Murray, (1977).
London, 1845. [7] M. Gleiser, Phys. Rev. [29, 2978(1994.
[2] A. Vilenkin, Phys. Repl121, 263(1985. [8] E.J. Copeland, M. Gleiser, and H.R. Nar, Phys. Rev. 052,
[3] R. Friedberg, T.D. Lee, and A. Sirlin, Phys. Rev.13, 2739 1920(1995.
(1976. [9] D.K. Campbell, J.F. Schonfeld, and C.A. Wingate, Physica D
[4] S. Coleman, Nucl. Phy8262, 263 (1985. 9, 1(1983.
[5] I.L. Bogolyubskii and V.G. Makhan’kov, JETP LetR4, 12 [10] M. Gleiser and A. Sornborger, Phys. Rev6E 1368(2000.
(1976. [11] H.-O. Kreiss and J. Oliger, “Methods for the Approximate

084037-11



ETHAN P. HONDA AND MATTHEW W. CHOPTUIK PHYSICAL REVIEW D65 084037

Solution of Time Dependent Problems,” Global Atmospheric gland, 1973
Research Program Publication No. 10, World Meteorological[15] R. Wald, General Relativity The University of Chicago Press,
Organization, Case Postale No. 1, CH-1211 Geneva 20, Swit-  Chicago, 1984

zerland, 1973. [16] M.W. Choptuik, Ph.D. dissertation, The University of British
[12] M.W. Choptuik, T. Chmaj, and P. BizoiPhys. Rev. Lett77, Columbia, 1986.

424 (1996; P.R. Brady, C.M. Chambers, and S.M.C.V. Gon- [17] R. Courant and D. HilbertMethods of Mathematical Physics

calves, Phys. Rev. B6, 6057(1997); S.H. Hawley and M.W. (Wiley and Sons, New York, 1962Vol. II.

Choptuik, ibid. 62, 104024(2000. [18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
[13] R. Arnowitt, S. Deser, and C.W. Misner, i@ravitation: An nery, Numerical Recipes in @nd ed.(Cambridge University

Introduction to Current Researcledited by L. Witten(Wiley, Press, Cambridge, England, 1994

New York, 1962; C.W. Misner, K.S. Thorne, and J.A. [19] P.J. Morrison(private communication
Wheeler,Gravitation (W.H. Freeman, San Francisco, 1973  [20] E. Seidel and W.-M. Suen, Phys. Rev. L&, 1659(1991).

[14] S.W. Hawking and G. Ellis,The Large Scale Structure of [21] E.P. Honda, Ph.D. dissertation, The University of Texas at
Space-Time(Cambridge University Press, Cambridge, En- Austin, 2000.

084037-12



