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AbsIraeL We discuss a detailed numerical comparison of the results of two mdes which 
treat lhe same model problem in numerical relativity. m e  model consists of a single, 
massless scalar field minimally coupled to the gravitational field with a further restriction 
to spherical symmetry. The comparison was complicated by the fact that the codes were 
based on different formalisms, used different coordinate systems and employed different 
numerical solution techniques. After briefly reviewing the model and our basic solution 
methods we describe in detail the additional numerical analysis which enabled us to 
directly (evenl-by-event) compare our solutions. We also describe some new algorithms 
which use Richardson entraplation to significantly increase the accuracy of one of the 
mdes at a given resolution. Using the basic methodology of convergence testing, and 
with the aid of high-accuracy (better than 0.001%) numerical results (alw generated 
using extrapolation techniques), we find clear evidence that both mdes are convergent 
men in the regime where the field interactions are significantly non-linear and highly 
time-dependent. We suggesl that techniques such as those described in this paper will be 
very useful for testing mdes which solve more general problems in numerical relativity. 

1. Introduction 

As numerical relativists, one of our main concerns is the assessment of the reliability 
of the results which our codes generate. As our field has matured, attention has 
focused increasingly on this issue-witness the sentimenti expressed by Centrella 
et a1 [3], who suggest that 'newly constructed computer codes should be published 
with extensive test-bed calculations or nor at all'. As discussed in [3], such 'test- 
bed calculations' will generally fall into two classes according to whether the results 
being evaluated are compared to exact solutions or to solutions which themselves are 
produced numerically. There has been relatively little work in numerical relativity 
involving the latter type of test Among other reasons, there simply have not yet 
been many cases of different codes which purport to generate approximations of the 
same solutions of Einstein's equations (spacetimes). This paper is concerned with just 
such a pair of codes and the results of our evaluation of their relative performance 
on identical initial data. 

The codes we have constructed treat a model problem consisting of a single, 
massless scalar field, 6, which is minimally coupled to the general-relativistic gravita- 
tional field. Furthermore, we limit our attention to the case of spherical symmetry; 
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this makes the task of solving the resulting systems of Emtein/scalar field equations 
much less taxing than it would be in the general non-symmetric case. This is true, 
not only because the symmetry reduces enormously the complexity of the systems 
of equations we must deal with, but also because the computational resources (time 
and memory) which we require to compute a solution to some specified accuracy are 
many orders of magnitude less than would be needed for the generic case. However, 
we stress at the outset, and hope that this point will become clear in the following, 
that the basic methods we have used in making the comparsion, do not rely on the 
existence of a high degree of symmetry in the model. This observation, combined 
with the fact that we are able to quantitatively assess the accuracy of our numerical 
results in strongfield (non-linear) computations, suggests that the techniques we use 
should he useful for more general calculations. 

Now, these techniques are far from revolutionary-our basic idea of trying to 
establish that both codes are approaching some unique continuum limit by examining 
their respective outputs as a function of discretization scale (resolution) is an obvious 
one. However, we do adopt a somewhat more rigorous approach to our numerical 
analysis than is the norm in our field. In terms of the general issue of code validation 
in numerical relativity, we feel the efficacy of such an approach to be self-evident-by 
definition we musf be able to trust our error estimates. Moreover, and perhaps more 
importantly, through detailed study of the resolution dependence of our numerical 
computations, we have frequently been led to an improved algorithm (section 4), or 
the discovery of a deficiency in a program (section 6). 

As described in more detail in the next two sections, the job of comparing the 
two codes (programs, algorithms) was complicated by the fact that the programs use 
distinct coordinate systems and, indeed, different basic approaches in their respective 
treatments of the field equations. One of the codes, which we refer to as CH 19, lo], 
uses a characrerirIic formulation of the problem (due to Christodoulou [6, 7]), where 
initial data are specified on some outgoing null hypersurface (characteristic surface, 
surface of constant retarded time). Using the equations of motion, these data can 
then be propagated to other null slices at later (or earlier) values of retarded time. 
The other program, which we call CA [4, 51, is based on a Cauchy (3 + 1, ADM [l]) 
formalism. CA’s initial data are given on a spacelike hypersurface and are then evolved 
to other spaceiie surfaces to the future (or past) using the 3+1 equations. Therefore, 
in order to directly compare results from CH and CA, it was necessary to first perform 
a ‘numerical coordinate transformation’ on the results from one of the codes and this 
introduced the potential for additional numerical error having little to do with the 
intrinsic performances of CH and CA themselves. Thus, after briefly discussing the 
basic numerical algorithms used in the two codes (section 3), we consider in detail 
how we designed (section 4) and tested (section 5) the transformation algorithm. The 
actual results of the comparison are described in section 6 which is followed by some 
discussion in section 7. We use M?w 1131 conventions in the following; in particular, 
we choose units such that G = c = 1. We also presume familiarity with basic notions 
in the numerical solution of time-dependent partial differential equations, described, 
for example, in the introductory chapter of [18], or the last chapter of [16]. 

M W Chopfuik et a1 

2. Analytic formulations of the model 

In this section, we briefly describe the two different coordinate systems used in this 
work and the resulting Sets of equations which CH and CA must solve to evoke the 
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scalar and gravitational fields. More detailed descriptions of the characteristic [9, 101 
and Cauchy (ADM, 3 + 1) [4, 51 formulations may be found elsewhere. Note that we 
attempt to distinguish between characteristic and Cauchy quantities by using upper 
and lower case symbols, respectively. 

21. The characteristic formulation 

The characteristic code, CH, uses a coordinate system employed by Christodoulou in 
his extensive analytic studies of the model system 161. The spherically symmetric, 
time-dependent metric is Written as 

dS2(R ,  U )  = - G ( R ,  U ) C ( R ,  U ) d U 2  - 2 G d U d R +  R 2 d n 2  (2.1) 

where d n z  is, as usual, the metric on the 2-sphere of radius R. The radial coordinate, 
R, provides a direct measure of proper surface area (and, hence, will sometimes be 
described as an areal coordinate), while surfaces of constant U are outgoing null 
hypersurfaces which are parametrized by the proper time of a central ( R  = 0) 
observer. Instead of the scalar field 4 itself, it proves convenient to write the field 
equations in terms of the quantity H, defined by 

(22) 
a 

H ( R ,  U) = - ( R + ( R ,  U)). L3R 
Then 4 is the mean value of H on 0 to R 

(2.3) 
1 R  

b ( R ,  U )  = X(R,U) E H(R, U ) d R  
0 

where the overbar denotes the mean value operation With these definitions, Ein- 
stein’s equations, 

and 

Applying the method of characteristics [9], the equation of motion for the minimally 
coupled, massless scalar field, 

q+”;c = 0 (2.7) 
may be written as a pair of coupled ordinay differential equations, 

d H  1 
d U  2R 
_ -  - - ( G - E ) ( H - Z )  
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where the second equation defines the trajectories of ingoing null geodesics (char- 
acteristics). Fkpressions (2.5)-(26) and (28)-(2.9) constitute the basic set of equa- 
- tions solved by CH. To generate a particular solution of these equations, initial data, 
H( R, 0) = 4( R, 0), are specified along some initial outgoing null geodesic and then 
the data are propagated to advanced (or retarded) values of the retarded time using 
discrete versions of the equations of motion. A useful diagnostic quantity is 

M W Choptuik et a1 

M ( R , U ) =  27r -(H-H)2dk c: 
which, in a region of vacuum, is the mass contained within a sphere of radius R at 
retarded time U. 

_. 7 _. 7 Tho - . ._ rnvrhy __I_. . (2 + !,) f~pg&!jon 

The Cauchy program, CA, is based on the 3 + 1 (ADM) 11, 201 formalism, and the 
particular coordinate system we use might be regarded as a 'natural' extension of the 
usual Schwarzchild coordinates to the case of lime-dependenr spherically symmetric 
geometries. The metric is given by 

;2q ~ - 2 , -  a, - -2,- .,>da I -2 , -  A L Z  I - Z J ~ Z  us ('-,',=-U ( ' , ' , U L  T U  (,.,&,UT T I -  U&' . 
Here, as with the characteristic coordinate system, the radial coordinate, r, measures 
proper surface area. In spherical symmetry, having chosen such radial coordinates, 
the time slicing can be fixed by demanding that the 3-metric be diagonal at all times. 
Equivalently, we may describe our choice of time coordinate in terms of a condition 
on the trace of the extrinsic curvature tensor. The choice made here is hown in 
3 + 1 parlance as polar slicing [2]. In any case, we must (1) choose initial data to be 
compatible with the slicing choice and (2) choose a to satisfy a certain differential 
equation at each instant of time in order to preserve the slicing condition. 

Again, it is useful to introduce auxiliary variables for the treatment of the scalar 
field, primarily to avoid the appearance of time derivatives of the lapse function, a, 
which can nor be evaluated from evolution equations. Specifically, by defining 

(2.12) 

we find that the following system of equations is sufficient to determine the time 
evolution of the model: 

d a  
d r  r 

(2.13) 

(2.14) 

ji.i5j 

(2 16) 
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We note that (2.13) is the Hamiltonian constraint, (214) is the polar slicing condilwn 
which guarantees that the time coordinate has the property described earlier and 
(215) and (2.16) are equivalent to the wave equation (2.7). From the 3 + 1 perspeo 
tive, the non-trivial Einstein equations missing from this set include: (1) a component 
of the momentum constraint, which may be regarded as an algebraic equation for the 
single non-vanishing extrinsic curvature component, Krv; and (2) evolution equations 
for a and KP,. The evolution equations are not used in CA; rather the code imple- 
ments what is known as a@/& constrained evolution [14, U]. Our ability to construct 
such a scheme is a consequence both of our restriction to spherical symmetry as well 
as our particular choice of coordinates. Again, we can define a mass function, which, 
in a region of vacuum, measures the total mass within the sphere of radius T at a 
given time t: 

or, equivalently, 

m(r , t )  = +(1- a-'). (2.18) 

In the current formulation, the model is solved by specifying initial data, @(r,O),  
lI(r,O) on the initial hypersurface, t = 0, after which the evolution is determined 
from (2.13)-(2.16). We also have the following regularity conditions at T = 0: 

aa aor an 
- (0 , t )  = - (O,t )  = - ( O , t )  = @ ( O , t )  = 0. ar a y  ar 

Numerically, since the generic solution admitted by the model involves outgoing waves 
which eventually reach the outer edge of the computational domain, we must wony 
about outer boundary conditions on the scalar field variables. Effective numerical 
conditions based on the known behaviour (outgoing) of the field at sufficiently large 
radii are easy to formulate in this case and are described in detail in [4]. However, 
in the context of the computations described later, these conditions are somewhat 
irrelevant since very little of the scalar field reaches the outer edge of the numerical 
domain before the calculations are stopped. 

3. Basic numerical algorithms 

3.1. Notatiot+summay 

In the remaining sections of this paper we use a notation which was designed to help 
us concisely and accurately describe the various numerical calculations performed in 
our study. The notation is defined in detail in figure l(c) and the next subsection. At 
this point, however, the reader may simply wish to study figures l(a) and l(b) and 
the accompanying captions, then proceed to section 3.3, referring back to figure l(c) 
and/or section 3.2 when the meaning of an expression is not clear. 
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P@re 1. Grids, grid functions and definition of notation used in the t a t .  (a) and (b) 
depict the grid stmctwes used in typical CA and CH calculations respectively. The 2 . ~ 2  
used by CA (filled circles) is uniform In both space and time, and may be described in 
the notation defined in (c) as [?,q. Here, i and i denote regularly spaced sequences 
of radial and temporal mordinates which we refer to as uniyom I-@&, Then, for 
aample, the approximation of 6 computed by CA on the complete grid is the 2.~2 
fwrction dcA[i,Y. Values of this approximation along the dotted line constitute a I g i d  
fwtction dCA[i, 9; similarly, values along the chain-broken line comprise the 1-grid 
function $4CA[Pr,i]. The grid used by CH (open q u a m )  is, in general, non-uniform 
both in space and retarded time. However, the grid may again be decomposed into 
l-grids (U = U" =cons tan t )  which we denote by R(UR). Collectively, these i-grids 
form the 1-grid SU R(U) ,  and the approximation to q4 which CH computes is the 2-grid 
iunciion, +CE[2<Li),i.ii. Tne vaiues of this grid function aiong the dotted line make 
up the 1-grid function dCH[R(U6), Us]. (c)  provides a more detailed defintion of the 
notation as well as definitions of various operators used in the t a t .  Refer to section 3.2 
for additional information. 

3.2 Notationdetails 

The primary output quantities from both CH and CA are (we hope) approximations 
to various continuum functions such as +(r, t )  or H( R, U). For any specific com- 
putation, these. approximations are defined at a finite set of events, namely the grid 
poinrs or mesh points used in the computation The basic complexity we must deal 
with arises from the fact that many distinct grids are involved in our comparison, 
which, for specific initial data, involves separate CH and CA computations at several 
different resolutions. Furthermore, additional grids are introduced in the procedure, 
described in section 4, which transforms CA output into numbers which can be directly 
compared with those produced by CH. 

Due to the simplicity of our model problem, and the nature of our numerical 
techniques, the 'data structures' we need to represent all of these pi functions 
(functions defined on some collection of grid points) are quite simple. One such 
structure is the 1-grid, which, as described in figure l(c), is an ordered vector of 
coordinates. Generally, any 'syntactic construct' which includes a single normal-sized 
boldface symbol is a 1-grid. Thus r ,Ul , i i  and R ( U o )  are all 1-grids but &(U,) 
is not. When we need to reference one specific element of a 1-grid, we convert 
the boldface symbol to italic type and use the standard finite-difference subscript or 
superscript notation (rk or Ulntl) for specific spatial or temporal coodinate values, 
respectively. Note that we have implicitly defined a 'last index' operator, #. Because 
we adopt the convention of labelling 1-grid elements from 0, the number of grid 
YYY.." Y l  Y '-6L'" . Y w.  T A. 1.- . I -"1  -/Io" ~ I L I " " " c c "  a '"cJ'L-y,'aLu,~ "p","L",, 
A, whose operation is only defined on uniform 1-grids. The operator MakeUlG[, . .] 
generates uniform 1-grids as defined in the figure. 

nnintr ;n II 1.nr:A - i e  U -  L 1 Wn ha.,- -10- &*--A**.-o,4 n S - n r L  -I--:--, --,.-...-- 
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Ftgun 1. (Continued) 

A I-grid set, such as R(U,), is a set of 1-grids, one for each element of the 
associated 1-grid (U, in this case). &grid funclions (or simply grid functions) have 
the structure 'vector of vectors' and are recognizable from the fact that they are 
indeved using the construct [. . . , . . .]. As described in the figure, there are two basic 
types of 2-grid functions. The first defines a rectangular array of values, while the 
second defines a generalized array which has the same 'shape' as the I-grid set which 
appears in the &st indexing slot. W s  more general second type allows us to deal 
with functions defined on grids where the spatial structure is time-varying (either in 
the specific spatial coordinates used or the number of such coordinates). When one 
of the indexing slots of a grid function is occupied by a scalar, such as rk or U,"+', 
the resulting object is to be identified with the appropriate section ((row' or 'column') 
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of the grid function. We will also frequently work with 1-grid functions, which are 
simply vectors of values defined on some 1-grid-sections of 2-grid functions are 
examples of 1-grid functions. We note that we index by coordinate value, as we 
would in the continuum, rather than by specific integer values, as would normally be 
done in a computer program. Grid functions may be manipulated arithmetically as 
single entities, provided that their 'shapes' match. For example, f[x, y] f g[x, y] is a 
grid function whose elements are the sums of the corresponding elements of f and 
a. Similarly, an '='> ':=' or '5' sign applies on an element-wise basis in expressiols 
where 1-grids and/or 1-grid sets appear as 'free indices' on both sides of the sign (see 
equations (4.9, (4.11) and (6.2) for some examples). 

We also make extensive use of a (spatial) interpolation operator, Interpolate[.. .] 
which takes a grid function, a 1-grid set and an interpolation order, p, and returns 
another grid function which is computed using pth-order polynomial interpolation 
of the original grid function to the coordinates of the 1-grid set. Fiially, we define 
discrete I,, 1 ,  and I, n o m  for grid functions in a standard fashion. 

3.3. The characterirtic code, CH 

The numerical algorithm employed by CH is described in detail in [9]. vpically, freely 
specifiable initial data, X(R,O) 4(R,O), given as some closed-fotm function of 
R, are evaluated on a uniform radial grid, Eo MakeUIG[~i, i , ,AEo,#Eo],  
along the initial outgoing null ray, U = 0. (The operator MakeUlG[. . .] makes a 
unrom 1-grid-see figure I(+) Equations (2.8) and (2.9) then yield a coupled set of 
2(#E0 f 1) ordinary differential equations (ODES) which can be solved numerically 
using standard techniques and/or software packages. Matters are comLticated by the 
fact that some of the 'coefficients' in these ODES, namely G, and H, are defined 
implicitly through the integrals (2.5) and (2.6). As described in 191, these integrals 

particular intitial data, CH can advance the solution to essentially arbitrary values of U 
and it will be useful to view the output from CH as being defined at a set of retarded 
times constituting a 1-grid U-this 1-grid can be regarded as an input parameter 
to CH. Then the basic outputs from CH are the grid functions HCH[R(U),q and 
4CH[R(U),U]. Note that the output grid structure is non-uniform; apart from the 
initial grid R( Uo) = Eo, the various radial grids, R( U1), . . . , R( U # u ) ,  will generally 
have non-uniform mesh spacings and varying numbers of mesh points (see figure l(b)). 
Provided that a good ODE integrator with a sufficiently stringent error tolerance is 
used, the dominant source of truncation error in a CH calculation is expected to arise 
from the numerical treatment of (2.5) and (26). Naively, the scheme is expected to 
be O(h4), provided that R j ( U " )  - Rj-l(U") = O ( h )  for all valid j and n. Thus, 
the expectation is that the scheme should exhibit, at best, fourthader convergence 

M W Choptuik et a1 

gFe app:eT.g:ed >&Lqp s ~~T'pseE&&,e sc.epae fer uneveE!y spa& nbsc&s& Fer gny 

.̂  &L^ ___.: -..... :-- 
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3.4. The Cauchy ( 3  f 1 ) code, CA, and expandability 

A CA computation is performed on the finite domain [O, rmm] x [O, t,,] in the (r ,  t )  
plane, using WO uniform radial grids P and 7 and one uniform temporal grid, 5: 

- 
8 := MakeUlG F,AP,  -1 
f := MakeUlG[-iA?, AP, #S + 11 

AF 
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The radial mesh spacing, AF = A?, and the 'Courant number' X E Ai /Ai ,  along 
with vmaX and t,,, are parameters of the computation. It is important to note that 
for fixed initial data, whenever we perform a series of calculations where we vary 
the mesh spacings, X is held k e d .  Thus, any calculation in that series is effectiveb 
characterized by a single discretization scale, h, which we can conveniently identify 
with AF. CA is a finite-difference code; as described in [4], equations (2.13)-(2.16) are 
differenced using second-order, central difference approximations for all derivatives. 
This includes the temporal derivatives in equations (2.15)-(2.16) which are treated 
with a 'leap-frog' [ll] scheme wherein data at time P+l are determined from values 
at times P and %-I. The centring of spatial derivatives is aided, to a degree, by the 
use of two separate radial meshes The scalar field, for example, is defined on 
[r,ij. rnen an O j h q  approximation to the spatiai derivative E aqjar is naruraiiy 
defined on [?,q simply as the first divided difference of +cA[F,q. Initial data for CA 
are generated by evaluating some specified function of T on the 1-grid F to produce 
4CA[F,0.0]. We must also specify the time derivative of +(r,O); in the calculations 
described later this is done indirectly by demanding that the scalar field configuration 
be purely ingoing at the initial time. Then, for our current purposes, the primary 
output from CA is a grid function which we denote as +CA[F,q. 

CA was constructed to have precrsely O ( h 2 )  fruncufion error-by which we mean 
that the CA difference equations, which are derived from the discretization of (213)- 
(2.16), yield O(hz) residuals when applied to the aac f  solution of the field equations. 
It has also been established, primarily on empirical grounds, that the actual solufion 
error (in 4, for example), +CA[F,q -+[F,q, is also O(h2) .  In fact, following Richard- 
son [lq, we have previously argued [SI that due to the uniformity of the CA mesh 
structure and the ubiquitous use of secondader, cenrred difference formuiae, we 
expect @A[F,q (as well as other CA grid functions) to admit an asymptotic (h -+ 0) 
expansion of the form 

@*[?,TI = +[F,q + h2e,[i,q + h4e4[i,ij + ' .  . . 
Here, + is the exact solution and the error funcfions e,( T, t),  t ) ,  . . . are in- 
dependent of h as h - 0 and, roughly speaking, have smoothness comparable to 
some appropriately high-order derivative of +(r,t). As discussed in [SI, given the 
differential equation and the difference equations, it is, in principle, possible to es- 
tablish the validity of expansions such as (3.2). The basic idea is that, as h -t 0, 
the various error functions such as e2 and e4 will themselves obey certain auxiliary 
systems of partial differential equations whose form is apt to be similar to, and at 
least as complicated as, the original system. Thus, the difficult part of establishing 
(3.2) will involve demonstrating that, given appropriate initial data, these auxiliary 
systems of equations for the error functions have unique, bounded solutions. How- 
ever, in the context of actual numerical calculation, it is not clear how necessary such 
a rigorous demonstration is, particularly since in this work we have invariably found 
it straightfolward to empirical& (numerically) establish when an expansion like (3.2) 
holds. 

In brief then, we have found that the expansion provides an accurate representa- 
tion of 4CA[F,q even at finite values of h, and this provides us with the opportunity 
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to use Richardson ertrapolation 18, 11, 121 to increase the accuracy of the CA calcu- 
lations. For example, we could first generate a series of grid functions, &*[ti,ii], 
I = z m l n ,  . . . , i,,,, from rixed initial data, but using different basic mesh spacings, 
hi.  Then, by taking an appropriate linear combination of these grid functions, we 
could, in the ideal case, eliminate the i,, - i,,, leading order error terms from 
one specifz grid function (presumably the one from the highest resolution calcula- 
tion). Now, the extrapolated values would be defined at some set of ( r ,  t )  (Cauchy) 
coordinates. In fact, we do nor deal with such results in this paper; rather, as dis- 
cussed in the next section, we first transform the CA output to (R,  U) coordinates 
and rhen extrapolate. We can understand heuristically how the resulting algorithm 
works by again following Richardson and arguing that for grid functions which are 
solutions of second-order centred difference equations, the expansion property should 
be generally invariant with respect to subsequent numerical operations (such as nu- 
merical differentiation, numerical integration and interpolation), provided that these 
operations are Ihemselves based upon second-order, central-differcncing. 

To be slightly more precise, the algorithms described in the next section can be 
viewed as series of computations where the output grid function from one stage is 
the input to the next stage. Let us say that a grid function is qundable if it admits 
an expansion of the form (3.2). In general, we will not be too concerned if the 
expansion ceases to be valid after the first error term, so that expandable will imply, 
as a minimum, that e2 is unique and h-independenr The basic strategy in designing 
the procedures described later is to construct each stage of the computation so that 
if the appropriate continuuni values were supplied as input, the output would be 
expandable. This is often simply a matter of consistently using central-difference 
formulae on uniform meshes. By Richardson's argument, when approximate values 
are supplied as input, the output is still expandable provided rhat the input vulues 
are themselves expandable. The utility of this idea cannot be overemphasized since 
it allows us to chain together many separate numerical computations which, in the 
end, produce a final grid function which is still expandable and which is therefore 
still amenable to extrapolation. 

. .  

4. Details of the comparison 

4.1. Tkanforming C4 output to CH coordinates 
Because CH and CA use different coordinate systems, it is necessary to perform some 
numerical 'post-processing' on the results from at least one code in order to directly 
compare solutions. We trust that is clear that any error estimates which we derive 
at the end of such a procedure should represent upper bounds on the real level 
of deviation between the two solutions (to the extent that such a measure can be 
sensibly defined), unless the numerical transformations serendipitously reduce the 
level of discrepancy. It was most straightforward to set things up so that this post- 
processing could be viewed as a transformation of the CA output into quantities which 
were then directly (up to an interpolation) compared to those generated by CH. We 
discuss this transformation in some detail in this section. We note at this point that 
we have only compared the functions 4 (alias T)  and H, rather than attempting 
to implement a general scheme wherein an arbitrary dynamical quantity (from either 
code), including metric functions, could be compared. However, since both systems 
of PDES involve such an obviously fundamental coupling of the scalar field variables 
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to the gravitational variables, we feel that a demonstration of convergence of the 
scalar field variables, in a calculation involving significant self-gravitation, implicitly 
demonstrates convergence of the entire solution. 

The simplicity of the model problem, combined with the special and related 
nature of the coordinate systems we used in constructing CH and CA, made it quite 
easy to modify CA so that it produced numbers which could be directly compared to 
the output from CH. This was particularly true when the output we compared was 
the sca& quantity +then we had to do little more than augment CA so that it 
could compute trajectories of outgoing null rays and record the calculated values of 
4 along such trajectories. (As will be seen in the next sub-section, the procedure was 
somewhat more involved when we compared H. In addition, the generation of the CA 
results was complicated by the use of Richardson extrapolation-this too is discussed 
in section 4.2.) We note that an obvious alternative approach to the comparison 
(which could also have been implemented without undue trouble) would have had 
CH find surfaces of constant CA time. However, as we have just stated, we set up the 
comparison so that the post-processing of CH results is minimal. Finally, we point 
out that the modifications to CA, which essentially amount to a transformation of CA 
results to CH coordinates, provide the means for supplying equivalent initial data to 
the two codes. 

wncciiimiuig un I I I ~  a y  I wuc, mcn, we rcuaii Lnai we parameiruc rciarum ~mt: 
using the proper time of a central (R = r = 0 )  observer. We denote this quantity 
by U,(t)  and observe that CA can easily monitor it by using a discrete version of the 
following expression, which follows directly from (2.11): 

C^_^^ ___. :..- -- .I_^" , * ^^J^ .Le_ ---. 7, *I_.~.._ _._^_.___ ._^ _..__ > - >  -:_.. 

U,( t )  U ( 0 , t )  = a(0, t ' )dt ' .  J', 
Here, we have chosen CA's coordinate origin, ( r , t )  = (O,O), so that U = 0 intersects 
it. The particular O ( h 2 )  discretization used to compute a grid function, U,m, which 
approximates U,( t )  is 

U,"+' := UOR + $At . I n t e r p o l a t e j ~ ( a [ ~ , ~ + ' ]  + 0 r [ ~ , t ~ 1 ) , 0 . 0 , 4 ]  (4.2) 

where the interpolation operation returns an O ( h 2 )  approximation of a(O.0, W 1 1 2 ) .  
Now, for any specific value of U,, which we will generically refer to as a launch 
time, U,, CA can approximately compute the trajectoly, R u j ( t ) ,  of the outgoing null 
geodesic which is launched from the origin at U, = U,. The null geodesic equation 
which CA approximately solves is just 

(4.3) 

The initial condition is 

RU,i , ( tI)  = 0 (4.4) 

Uo(t,) = U,. (4.5) 

where t i  is the value of 3+ 1 time at which the geodesic is launched and thus satisfies 
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Again, we employ an O(h2)  discretization of (4.3) in CA to compute a grid function, 
R, m which we may also view as a 1-grid R,, . Specifically, we use 
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so that at every CA time step, F", we must interpolate in the uniform 3 + 1 radial 
mesh, F, to get a value of a / a  at the radial coordinate R , " .  Note that (4.6) requires 
two starting values, since it is a 'leapfrog' integration. In general, the launch time, 
t , ,  will nut coincide with one of the CA mesh times, in, and some additional care 
(which, again, involves interpolation in the CA mesh) must be exercised in order 
that the initial values are set properly so that the whole process retains second- 
order accuracy. (However, in relation to the extrapolation algorithm described in 
section 4.2, some of these details are not completely understood, and would benefit 
from further study. In particular, see figures 6 and 7 and further discussion in the 
accompanying text.) 

As the trajectory of a given geodesic is calculated, the computed values of the 
scalar field along the geodesic are accumulated to form a 1-grid function .@m, 
which can also be indexed with the 1-grid, R,,. Thus, 

&fm = &f[R,,] := Interpolate[+[F,q, R,,,m,4]. (4.7) 

In general, the set of specified launch times form a 1-grid U, and we can view the 
entire set of values accumulated along all of the null geodesics as the 2-grid function 
$CA[R(Ui),Uf]. Now, this is a grid function which is almost directly comparable 
to the output from CH. In general, for a given initial radial grid Eo and a set of 
retarded times, U,, the output from CH will be +CH[R'(U,),Uf], for some R'(U,) # 
R(U,). Therefore, at this point we could effect a direct comparison with one more 
interpolation operation; for example, the computation 

$CA[R'[U!], U,] := Interplate[q5CA[R(U,), U,], R'(U,), 41 (4.8) 

would suffice. However, as stated previously, we do not view qiCA[R(U,),Uf] as 
the final output of CA. The generation of the final CA results involves Richardson 
extrapolation, and is described in more detail in the next sub-section. Recall that 
extrapolation involves calculations with grid functions generated from fixed initial 
data, but using different discretization scales, hi. (A subscript i will often be used in 
the following to label a quantity computed at resolution hi.) In order to expedite the 
extrapolation of its output, it proved useful to have CA perform a final interpolation 
of the grid function, $CA[R(U,),U,], to a uniform radial grid, K. Then, we conclude 
this sub-section by stating that at this point we can view CA as an algorithm which 
takes as input: (1) initial data, (2) a uniform 2-grid [?,,ii], with characteristic scale, 
hi;  and (3) a null geodesic grid U,, and produces, as output, the grid function: 

where AFi, AI, and ARi are all constant multiples of hi .  Specscally, for any given 
initial data, the ratios X Aiii/AFi are always held tixed as we 
vary h, = AFi. For all of the calculations subsequently described, we used X = 0.25, 
d = 1 .oo. 

Aii/AFi and U 
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4.2. Richardson-wrapolating the CA results 

In the remainder of the paper we will often deal with series of grid functions computed 
by CH and CA at different resolutions, hi. Such series are of interest to us for two 
basic reasons. First, the investigation of the behaviour of the estimated errors in grid 
functions as a function of hi-convergence testing-is the primary tool we use in our 
comparison of the two codes, as well as in our testing of the algorithms described in 
the current section. Second, we need to generate such series for our extrapolation 
procedures. The discussion in this sub-section is chiefly concerned with this latter 
function, hut we stress that our basic strategy will always be to perform a comparison 
of final results-even if they are alrapolated final results-which are generated using 
a number of distinct resolutions. 

Considering the extrapolation of CA data, then, we adopt a convention of 'increas- 
ing resolution' (decreasing mesh-spacing) with increasing resolution-index (subscript), 
and as a matter of convenience, we invariably use hi = 2hitl ('21 refinement ra- 
tio'). Thus, for example, the grid structures for a sequence of CA computations are 
specified by 

Pi := MakeUlG[0,2-' . Afo, 2" #io] 

1 -  ?i :=MakeUIG[--Ar'i,A?i,#F'i + 11 
2 

Zi := MakeUlG[O,X. AF';,2" #io]. (4.10) 

Here, AFo, #r0, and #lo are parameters defining the extent and scale of the coarsest 
grid. Although essentially arbitrary, it is sensible to choose these parameters so that 
the h, calculation is computationally inexpensive, yet useful. We have just discussed 
the cdmputation of +FA[Ei, U,] (or simply +FA where there can be no confusion)- 
from these values we compute Richardson-extrapolated quantities which we label with 
a double subscript, ii', where i' > i. Specifically, 

&?[&(U,), U,] I Extrapolate[@*, 4:$, . . . , &A, &(U,), U,] 

i' 
.- .- Cwxi~:+' . 1 n t e r p o l a t e l ~ ~ * , ~ ( ~ ~ ) , 2 ( i ' -  i+ I)]. (4.11) 

Here, &(U,) is a 1-grid set of reference coordinates at which we eventually perform 
the comparison with CH results-in general we can Extrapolate[. . .] to any set of 
coordinates. The extrapolation involves a weighted sum over single-level CA output, 
which is itself interpolated to the reference coordinates. (Heuristic reasoning based 
on equation (3.2) suggests that 2(i' - i + 1) is an appropriately high degree of in- 
terpolation.) In general, the weights, wx;-'+' depend on: (1) the number of levels 
of data used-(i' - i t 1); (2) the various mesh ratios-hi/hi+, , h i t , / h i + , ,  . . . (al- 
ways 2 in our calculations); and (3) the nature (possibly empirically determined) of 
the -mid function's Richardson expansion. 

Now, our empirically motivated presumption of the expansion (3.2) for @*[?,TI, 
combined with the assumption that the transformation of the CA data to (R, U )  
coordinates preserves expandability, suggests that we assume 

@i 

k=i  

(4.12) CA - [Ri,UiI =#[K;,UjI+ h2E2[Ej,U~1 t h4E4[Eiii,Uj1 +." .  
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We are particularly interested in values extrapolated from two levels of data. Such 
values, which ostensibly should be O(h*)), are computed from (4.11) specialized to 
the case i' = i + 1. Thus, given that h,/h;+, = 2, the weights are wxi = -$, 
wx: = $. As we shall see, there is good empirical evidence that this procedure does 
lead to two-level extrapolated CA values for 4 which are O(h'), and it is precisely 
these values which we view as the final output of CA We have not studied in detail 
the issue of whether the expansion (4.12) is valid past the leading order error term 
(Es  may not be independent of h, for example). However, we know (again, from 
empirical evidence) that extrapolation naively based on (4.12) and involving more than 
two levels of data generally leads to results significantly more accurate than the hvo- 
level ones. So, although we cannot claim to have a clear theoretical understanding of 
multi-level extrapolation, we nonetheless use the procedure to generate very accurate 
values which have obvious utility in our studies of the errors in the CH and CA results. 
Thus, for example, we compute the initial data, 4FH[pi,0.0], which is then supplied 
to the characteristic program CH, using 
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(4.13) 

Here, imi, and i,, are chosen in an attempt to produce a very low level of error in 
~ 0.01. Leaving the specific numerical details for later: we note that by using 

up to five levels, we can quite easily generate initial data for CH which has fractional 
accuracy of or better. This allows us to supply effectively exact initial data to 
CH, as well as CA, eliminating an obvious potential bias in the comparison calculations 
described in section 6. Now, the extrapolated results along U = 0 are consistently 
superior to those generated at later retarded times. However, we estimate that all of 
the multi-level extrapolated results used later have fractional errors which are < 
As will be seen, this is more than adequate to eiucidate the convergence properties 
of both the CH and CA (two-level extrapolated) results at resolutions characteristic of 
the calculations which have previously been reported [9, 10, 4, 51. 

We now discuss the generation of extrapolated approximations of the function H 
from the CA data. Originally, we used a procedure comeetely analagous to that just 
described for 4; we produced approximate values HFA[Ri,U,] at varying resolutions 
hi ,  and then extrapolated. However, we found that the convergence properties of the 
values so produced were significantly inferior to the convergence properties of the 
scalar field itself. We now use a method which takes advantage both of the simple 
relation between 4 and H, 

$CH[K,, 0.01 := Extrapolate[4Fmtm, '. , + i m s z ,  CA - R, ,  0.01. 

(4.14) 

and the fact that we can use (4.11) to extrapolate CA data to any radial coordinate 
along a given outgoing null ray. Specifically, we compute 

H ~ f V W J , ) , U i l  := d d ,  ( W J i )  + kc)  &%rl.(W,) t kc,U11 (4.15) 
2 

k=-Z 

where c is some arbitrary (but small) spacing, the finite difference weights, d d k ,  are 
( lZe) - ' [ -1 ,8 ,0 , -8 ,1]  and the values $z?[q(U,)  + ICc,U,] are computed from 
(4.11). Here, we are essentially using a standard technique for computing numerical 
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derivatives of functions which can be evaluated at arbitrary values of their argument 
The basic idea is that the error in H$'[q(U,),U,] will have a component due to the 
a p p r h a t e  nature of ~ ~ ! - [ R $ J , ) , U , ]  as well as a contribution arising from the use 
of an O(e4) finite difference operation (instead of a differentiation) in (4.15). By an 
appropriate choice of E we try to minimize the latter type of error, since the former is 
clearly an 'intrinsic' error at this stage of the calculation. We note that for any specific 
calculation on a ked-precision machine, we expect an optimaf value of E to exist. This 
follows from the standard argument that as E -+ 0,  errors due to the finite-precision 
nature of floating-point arithmetic become proportionally more severe and eventually 
exceed the actual finite-differencing error. However, in the computations described 
later, we simply used a ked  and experimentally determined value, E = 0.001. We 
also note that we could have experimented with other finite difference approximations; 
however, the O(c4) central formula used in (4.15) seemed satisfactory. The results 
we obtain suggest that the finite-differencing error was generally small in comparison 
with the intrinsic error (but see figure 4). 

We can conclude our description of the manner in which the comparison is set 
up by directing our attention to the characteristic code, CH. Here, we have as basic 
output the grid functions &HIR,(Ul),Ul] and H~H[R,(U,),U,].  ?b enable direct 
comparison with the extrapolated CA values, we merely have to interpolate to the 
reference coordinates, &(U,). Thus we compute 

where we use sixth-order interpolation in an arguably over-cautious attempt to mini- 
mize interpolation error relative to truncation error. 

5. Testing the numerical coordinate transFormation 

In the extreme weak field, flat spacetime limit, where the scalar field decouples from 
the gravitational field, our model problem (in the 3 f 1 formalism) r edum to the 
usual linear wave equation for spherically symmetric disturbances: 

or 

A general solution of ths equation may be constructed by specifying two arbitrary 
functions f(r) and g(r) as the ingoing and outgoing components, respectively, of r-4 
at the initial time, t = 0. Then, initially 

r4(r,o) = f(r)  t dr) (5.3) 
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and the complete solution is 
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T @ ( r ,  t )  = f ( t  + p )  + g ( r  - t )  

Td,(T, t )  = f (  t + r )  - f ( t  - r)  

p 2 t 

T < 1.' 

Thus, given the initial data, f ( r ) ,  g ( r ) ,  which, along with the ordinary derivatives 
f'(r), g ' ( r ) ,  we always take as closed form expressiom in T ,  we can compute the 
values satisfying (5.1) for arbitrary T and t. In particular, we can calculate the scalar 
field values along an arbitrary outgoing null ray, U = t-  r = constant. We can also 
compute the function, H, along such a geodesic using the following relation 

In this section we use such a linear solution to test the algorithms described in 
the previous section. (The use of linear data to check CH has previously been d o c  
umented [9].) Although gravitational effects are absent, we can still test the various 
stages of the process which transforms output from CA to values which can be directly 
compared to the output from CH. These stages include the initialization and integra- 
tion oi the finite-differenced nuii-geodesic equations ior arbitrary vaiues of retarded 
time, the accumulation of scalar field values along the null rays, the interpolation 
of the accumulated values to a uniform mesh, and the interpolation, Richardson ex- 
trapolation and finite-differencing operations which produce the final values of d, and 
H at some specified reference coordinates. We note that the convergence testing 
procedure described later can be used to investigate the implementation of each step 
of the calculation; this was, in fact, done, and was quite useful both in designing and 
debugging the algorithm. Here, we will simply examine the overall convergence of the 
method, and assert that, provided the set of reference coordinates is suitably generic, 
the convergence of the algorithm as a whole implies convergence of the constituent 
stages. 

The convergence tests we make here, and in the next section, are straightfonvard. 
For fixed initial data and ( R ,  U) reference coordinates, we directly measure errors 
in the computed approximations of + and X as a function of the basic mesh spacing, 
h,. Given a generic grid function, QC, and an associated continuum quantity, Q, 
which can be evaluated on QC's mesh, we define E,(QC,Q) and E,(QC,Q), 
which provide logarithmic measure# of per cenf relalive error (mean and maximum, 
respectively) at any given value of retarded time. Specifically, for the values of 
retarded times Uln E U,, we compute 

We use a base-2 logarithm since whenever we perform a convergence test which 
involves a series of grid functions QF = QF, QF, . . . we take hi = 2h,+,.  Then, 
for Q," which are expandable in the sense defined in section 3.4, with leadmg error 
terms of order (hi)P, we should find for all U," 

hL-0  lim (E1lm(Qf:, Q)IU,"I - E,/,(Q?+,, Q) lUtn l )  = P. (5.9) 
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Note that E, ,=  0 and E, = -10 correspond to 1% and about 0.001% relative 
errors, respectively. 

The initial datum for the test is a single, ingoing 'Gaussian' pulse in $, defined 
bY 

(5.10) 

g(r) = 0. (5.11) 

where f,, 7, and 6 are parameters. We have also used this type of initial data 
for the intermediate and strong field computations described in the next section; in 
particular, f, is a convenient control parumeter with which to govern the 'strength' 
of the gravitational self-interaction and has been used as such in this study. Thus, 
for all the calculations described later, the other parameters were fixed; specifically, 
we took T,  = 25.0 and 6 = 3.0. Finally, we ObSeNe that, strictly speaking, this is 
not a 'linear test', since the full, non-linear version of CA is used; however, we claim 
that the spacetime which is generated using f, = 1.0 x lo-'" is flat to the level of 
precision with which we are concerned. 

L U  L U G  LbUL, LLYIILCII- *a-Luuu a,c w L L 1 y ' X L G u  W1U1 " 3 a C . L  "aluru "1. L l l G  L V L ' V W U L ~  

reference grid: 
TI +ha +ns+ -..-n-:-nI . . n I . . n m  0-n .-n---mrt r r A h  n-n-* .rnl . .nr  -- ILn F-II-...:.rn 

[R,(Ul),Uz] = [ET,Ul] = [MakeU1G[0.0,0.5,lOO],U~] (5.12) 

with 

U, = [0.0,3.6,7.6,11.6,15.6,19.6,23.6,27.6,31.6,35.6,39.6]. (5.13) 

There is nothing particularly significant about these launch times, other than the 
fact that they are also used in the actual comparison calculations described in the 
next section. As will be mentioned later, it ir significant that the reference grid is 
radially uniform. Figure 2 displays some of the main features of the test calculation. 
As described in the caption, the dotted iines show the trajectories of the outgoing 
null geodesics in the ( r , t )  plane, while the boundaries of the shaded regions in 
figures 2(a) demark e-1 limits of 141 and 17~99% limits of m, respectively. Various 
discrete norms of 4 and H as a function of U are shown in figure 2(b). 

The convergence testing procedure, as applied to the 'raw' (non-extrapolated) 
output of CA is summarized in figure 3. The test used five levels of discretization 

with equation (5.9), the type of pattern seen in these graphs-namely a regularly 
spaced vertical sequence of symbols with a separation between symbols of p units-is 
the generic signal of O(hP) convergence. It is quite clear from the plots, then, that 
both &* and HfA have O ( h 2 )  error. Lest the reader be concerned about a lack of 
convergence at U,. = 39.6, we point out that the norms of 4 and H are at that time 
reduced by more than six orders of magnitude relative to U," = 0.0 (see figure 2). 
A plot of the convergence of HFA shows essentially the same behaviour. 

Figure 4 shows the results of the convergence test of the two-level, Richardson- 
extrapolated quantities, &? and HS?. Note the change (from figure 3) in the scale 
of the y-axes, as well as the fact that the vertical separation between markers is now 

rafi&g from hi = A?, = 4 to h5 = A?, z2 1/22. w e  first "tP that, i!! a..orfl.ncP- 



738 M W Choptuik et a1 
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a I ,  0 1, 0 1, f,=l.Ox10-'0 $ 1 ,  ~~ ~ 

0.0 5.0 10.0 15.0 20.0 2SO 30.0 35.0 40.0 
T 

U 
Flgure 1. Spacetime plots of the principal features of the linear computation, and 
various norms of lhe scalar field variables + and H. In (a), the cmss.halched re- 
gion includes all grid points (?>,?') such that l+[F, ,P] l  2 e-' . ll+[?,P'][p. The 
dolted lines are the (r,t)  trajectories of outgoing null geodesies labelled by val- 
ues of retarded time, U, which are elements of the launch veculr (1-grid), Ut = 
(0.0,3.6,7.6,11.6,15.6,19.6,23.6,27.6,31.6,35.6,39.6]. In thecumntease,  the 
outgoing null geodesies are essentially straight lines with unit slope. (b) are plots of 
various norms (spatial norms at specific values of U. see figure l(c) of + and H .  Note 
that the norms of both functions are very much reduced at late retarded times. 

generally four units. Again, this is a clear demonstration that, at least for this linear 
calculation, the extrapolated values have O(h4) error. The principal irregularities in 
these plots appear at and after U," = 23.6 and are particularly in the 1, norm. 
This behaviour reflects the fact that, for a ked  resolution, the computations are 
least accurate during, and to a lesser extent, following the period when the pulse is 
propagating near r = 0. As described in the figure caption, dficulties in keeping the 
various difference equations precisely centred at r = 0 are most likely responsible 
for the dominant error terms in the extrapolated results. Nevertheless, as is usually 
the case in numerical calculations where Richardson extrapolation works, the gain 
in accuracy is quite impressive. This is particularly true for the highest resolution 
calculations, where the errors in the extrapolated results are generally at least 500 
times smaller than those of the single-level calculations. 
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0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
U 

Figure 3. Results of a convergence test of the basic (non-exuapalated) CA grid functions 
+F"[E,,U,] and H P A [ R r , U ~ ] .  The eimr measures E,( ...) and E,( ...) are defined 
in the text. At any ked value of U, the sequence of symbols shows a particular 
measure of the emom from a series of calulations made usiig different resolutons h,, 
with h, = 2h,+, .  Successive symbols should be two units apart (vertically) if the 
convergence of lhe quantity is second order (O(hz) ) .  

0.0 5.0 10.0 15.0 m.0 25.0 30.0 35.0 40.0 
U 

Figure 4. Convergence of the hvo-level extrapolated CA results 4z?l i i , ,U1)  and 
H$? [% , U,]. Note that for all U, the extrapolated values are generated on the uniform 
radial reference grid E, = fi, = MakeUlG[O.O,0.5,100]. The convergence of bolh 
+$? and HE? is generally O(h')  (different sized symbols vertically separated by four 
units) throughout the computation. For the highest resolution calculation (ii' = 45), the 
extrapolated results are about 500 times more accurate than the corresponding single level 
calculation (i = 5). Multi-level extrapolation produces better results still, particularly at 
eariy values of U. 

6. Results of the comparison of CH and CA 

In this section we present the results of our comparison of the CH and CA codes. Here 
we use initial field configurations which generate spacetimes where there is signscant 
interaction between the scalar and gravitational fields. In contrast to the calcula- 
tions described in the previous section, we do not have exact solutions with which to 
evaluate the accuracy and convergence of the various numerical results we compute 
from such initial data. Indeed, to a large extent, it was precisely this fact which 
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motivated us to perform the comparison. However, as will be seen in the following, 
we have strong evidence that both codes are convergent, at least for the particular 
class of initial data we have used. Thus, for given initial data, we can, in principle, 
use either code to generate an arbitrarily accurate numerical solution by computing 
with an appropriately small mesh spacing. Moreover, for the purposes of investigating 
the convergence of the two codes down to some limiting discretization scale, h,,,, 
it is clearly sufficient that the error in the numerical reference solution be ‘small’ 
compared to the errors in the CH and CA results at that resolution. As described 
in section 3.4, we can efficiently produce a good reference solution using multi-level 
Richardson extrapolation of CA data, and this is the approach we have adopted. We 
wish to stress, however, that the convergence-testing approach we used was equally 
useful in establishing the relative performance of the two algorithm before we ob- 
tained the evidence that both codes were converging and that very accurate results 
could be obtained, even in the non-linear regime, using multiple-level Richardson 
extrapolation. We remind the reader that we expect O(h4) convergence at best for 
both the CH and CA results. We also note that we have not addressed the question of 
the relative computational efficiency of the two codes when operating at comparable 
resolutions. Our justification for this omission is as follows. Simple considerations 
indicate that both CH and CA should have run-times proportional to the number of 
discrete events which are used in the calculation and this expectation is borne out 
in practice. In t e r m  of a comparison, the specific values of the respective constan& 
of proportionality would be quite relevant if the convergence rotes of the codes were 
the same. However, as ail1 be seen, the convergence rates of CH and CA are not the 
same. ’lb be fair in our comparison, we have to demand that the two codes achieve 
similar accuracies for a given problem, and particularly for high-accuracy computa- 
tions, the difference in resource usage between the two codes will be dominated by 
the difference in convergence rates, not by the per-event operation count. 

As discussed previously, we study solutions generated from initicl data which, from 
the Cauchy (CA) point of view, describe a single ‘Gaussian’ pulse (or more properly, 
a shell, since the solution is spherically symmetric) of scalar field which is ingoing at 
t = 0. The resulting profile +( R, 0) of the scalar field along the initial data surface, 
U = 0, for the characteristic (CH) code is also essentially ‘Gaussian’ in such solutions; 
however, in both of the cases which we consider, 4(R,O) has a tail which falls off 
roughly like R-’ at large R. This tail is due to backscatter from the spacetime 
curvature which is itself induced by the scalar field. At this point we note that it 
has been well established numerically [4, 9, 101, and analytically [7], that the model 
we are studying admits black hole solutions. For the particular type of initial data 
we are considering, we know that if our control parameter, fo, is chosen sufficiently 
large, the resulting spacetime will contain a black hole (in the one-parameter family 
of solutions considered here, a black hole forms at fo = 2.08.. . x low5). However, 
it is also well established that neither CH nor CA is ideally suited for the study of 
black hole spacetimes since, in both cases, pathologies in the behaviour of the values 
of some of the discrete dynamical variables and/or their derivatives develop on a 
dynamical time scale, t - h4b,, where Mbh is the black hole mass. The algorithms 
we have described cannot cope with these difficulties, which chiefly arise from our 
particular choice of coordinate systems. It is principally for this reason that we have 
avoided the ‘black hole region of parameter space’ in our comparison calculations. 

We refer to computations we have done using control parameter values (see s e o  
tion 5, equation (5.10)) fa = 1.0 x as ‘intermediate-field’ 
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and fo = 2.0 x 
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and 'strong-field' calculations, respectively. One way of characterizing the 'strength' 
(non-linearity) of the solutions is to quote the maximal value of 2m(v , t ) /v  which 
develops in the evolution 191. This measure is 0.0719 for the intermediate-strength 
calculation and 0.349 for the strong-field one. Figure 5 shows some of the non-linear 
(self-gravitating) aspects of the current computations. Although the appearance of 
the intermediate-field plots is quite similar to the corresponding linear-field graphs, 
the lag in integrated proper time at the origin relative to coordinate time is noticeable 
(as mentioned previously, we use the collection of launch times, U,, given by expres- 
sion (5.13), in the two comparison computations). In the strong-field computation, 
additional signs of self-gravity are visible in the plots. These include the broadening 
of the support of the oulgoing scalar radiation and the clear 'bending' of the null 
geodesics passing through the interaction region. 

In order to assess the relative accuracies and convergence rates of our algo- 
rithms, we again use straightforward convergence tests. The relative levels of error 
in the codes, and, to a lesser extent, the convergence rate of these errors are, in 
general, resolutiondependent quantities. Here we compute with a range of mesh 
spacings characteristic of the discretization scales used, for example, in the com- 
putations described in 191. Although we continue to work with the mesh-spacing 
sequence hi = 1/2,1/4,1/8,. . . employed in section 5, it transpires that for both 
the intermediate and strong-field calculations, the lowest resolution ( h ,  = 112) CA 
computation is too coarse to be used effectively in the extrapolation algorithm. Thus, 
using resolutions down to a limiting value of h, = 1/32, we consider three sepa- 
rate sets of CA grid functions (.@$,&: and 422, for example) and three sets of 
CH grid functions (@H, q5zH, 4:"). As discussed earlier, as reference solutions (in 
lieu of the exact values we have to check linear computations) we use multi-level 
extrapolated values which are computed from CA computations made on levels 2 
through 6 (hs = 1/64). As previously claimed, we feel that these reference values 
are generally good to at least a part in lo5; this is a level of precision which is more 
than sufficient to reveal the dominant error behaviour in both the CH and (two-level) 
CA computations We therefore feel justified in referring to the deviation of a grid 
function relative to such a multi-level extrapolated quantity simply as the error in 
that grid function. In addition, the multi-level values are used to provide initial data 
along U = 0 for the CH algorithm. We can argue that these values have errors no 
wo:se than a few parts in IO8 so that any errors in CH values due to inaccuracies in 
the initial data are negligible. 

For given launch times U, and reference coordinates &(U,), we define then, in 
analogy to (5.8), the following measure of error of a grid function QC relative to the 
reference quantity Q:&: 

For both computations described here, &(U,) were chosen to be the radial coordi- 
nates computed and used in the i = 2, CH calculation. 

The errors, as defined above, for the various grid functions computed in the 
intermediate field calculations are plotted in figure 6. At early retarded times we see 
rapid convergence of all monitored grid functions. For the CH code, the convergence 
of both +CH and HCH appears to be O( h4); for the two-level extrapolated CA values, 
the early time convergence of 4CA appears to be O(h4) while we measure an O(h3)  
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F@n 5. Spacetime ploU showing Some principal features of ihe intermediate-field 
(U) (fo = 1.0 x and stmng-field (b) (fa = 2.0 x IO-') computations. The 
hatched areas are defined as in figure 2@), and fhe dotied liner are again the U E Ut 
null geodesics. Note that the non-linearily in the intermediate-field calculation does 
not induce much change from the linear case in the qualitative appearance of this 
plot. However, the lag in central pmper time. Ua, relative IO coordinate time, t, is 
noticeable-the last null geodesic is launahed ai U = 39.6. Non-linear effectr am 
considerably more distinct in the corresponding strong-field plots. In particular, note 
the 'bending' of the outgoing null rays in (he Tnleraction region' of the mmputltional 
domain. (c) shows various norms of 6 for boih calculations. 
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F@m 6. ResulU of the intermediate-field mmpalison of the CH and CA codes. The 
error measure E,(...), defined in the text, involves a reference solution generated 
from multi-level extrapolation of CA values. The basic discretization scales for the three 
separate computations made with each code are h, = i ,  h, = and h, = &. 
At early retarded times, we have O(h')  convergence of $FH, HFH and $$$, and 
O ( h 3 )  convergence of HE:. The very low levels of ermr in HFH at the first four 
retarded times are particularly noteworthy. At later times (once the pulse of scalar 
field has reached R = r = 0), the ermrs at fixed resolution increase in 011 quantities, 
but proportionately more for the CH values. As a result, the CA values are signiecantly 
more accurate than their CH counterparts at late times. The convergence rate of the 
CA grid functions remains VirtuaUy constant throughout the calculation. while it appears 
that there is, at best, O ( h a )  convergence of +FH and HFH after the pulse arrives at 
the origin. 

convergence for HCA.  The latter behaviour, which is not completely understood at 
this time, differs from the behaviour observed in the linear calculations of the previous 
section and can be traced to the fact that the various radial 1-grids comprising the 
reference coordinates &(U,) are in general, non-uniform. At later values of retarded 
time (U = 23.6,27.6,31.6), and for any specific mesh-spacing, there is a clear 
decrease in the accuracy of the values from either code, relative to the corresponding 
early-time values. This is to be expected since it is along these null geodesics that 
non-iiiear eEem are most preiominani. in  atidition, at these vaiues of U, tnere 
is significant variation in the dynamical variables at and near R = T = 0 which is 
where the truncation errors of both algorithms are likely to be largest. Returning to 
the question of convergence, it is clear from the plots that the convergence rates of 
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the CA values remain quite steady through the entire calculations, whereas the CH 
convergences rates deteriorate at late retarded times and, in fact, become somewhat 
indeterminate with the measure we are using. At worst, we observe about 0.25% 
fractional error in HfH compared with about 0.002% in Hf?. Lest the reader miss 
an obvious point, we stress that these plots (as well as the corresponding strong-field 
graphs) provide strong evidence that both codes are converging to a unique solution. 
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Figure 7 shows the results from the strong-field computation The basic features 
to which we wish to draw attention are essentially the same as for the previous 
calculation. In particular, the overall observed rates of convergence for the various 
grid functions before, during and after the non-hear period of the calculation are very 
similar to those measured in the intermediate-field computation For the strong-field 
calculation, we obtain a maximum fractional error of about 1% in HfH compared 
with about 0.01% in H f e  at the same value of U. We note that the strong-field 
computation is probably quite similar to the A = 1.8 (where A is another control 
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parameter) calculation described in [9]. There, relative deviations in 2 M ( R ,  U ) / R  
of about 3% were measured between i = 3 and i = 4 computations. This seems 
entirely consistent with the current observations. We also point out that, in this case, 
the late-time convergence of the CH values is a little more definitive, and we have 
even tried to Richardson-extrapolate the CH results based on a presumed second- 
order convergence (this makes the early time results worse, since at early times, we 
generally have O(h4) convergence). However, it is not at all clear that we can 
expect the CH results to be expandable in the sense defined in section 3.4 and the 
extrapolation does not lead to a significant improvement of the CH data. Finally, we 
note that after we first examined (graphically) event-by-event deviations of the late- 
time CH results from corresponding CA values, we were quickly able to isolate what 
is presumably the dominant source of error in the CH code-namely the use of the 
'boundary condition' +[Ro(U),U] z ?i [Ro(U) ,q  := U[R"(U),U], which has O ( h )  
truncation error if, as appeared to be the case in these computations, R,,(U) = O ( h ) .  

Although figures 6 and 7 provide a good summary of the overall results of the 
comparison of CH and CA, it is interesting and instructive to examine some of the 
errors in the various grid functions as computed on an event-by-event basis. Specif- 
ically, for a generic grid function, QC, and a given retarded time, U,", we compute 
the following deviation relative to the corresponding reference quantity Qf&: 

Plots of some such values from the strong-field calculations are shown in figure 8. 
The rapid and regular convergence of both the CH and CA values for U = 3.6,7.6 
and 11.6 is again clearly visible (the convergence of IfCH is particularly noteworthy) 
as is the deterioration at later times in the characteristic, and to a lesser extent, 
Cauchy solutions. 

Finally, it is also instructive to display similar plots of event-wise deviations gener- 
ated from an earlier version of our comparison. The results, some of which are shown 
in figure 9(a), were quite confusing since both groups had strong, justifiable convic 
tions that their respective results could be made arbitrarily accurate at early times. 
In the case of the CH code, the choice of variables and solution techniques made the 
algorithm manifestly accurate at such times, while for the CA code, the numerical re- 
sults were evidently converging as anticipated. The somewhat obvious question which 
arose was why the CH calculations appeared to be converging (rapidly!) to something 
which was (1) not the exact solution and (2) not even smoothly related to the exact 
solution. In time, this puzzling phenomenon was traced to the fact that in one of the 
two steps of the comparison process where we actually transmitted data between the 
groups, we used a FORMAT statement (we coded exclusively in FORTRAN in this study) 
which did not provide enough precision in the specification of the radial coordinates. 
This turned out to be quite crucial, since these radial coordinate values, in the case of 
the i = 2, CH calculation, were exactly the values used as the reference coordinates, 
R,(U,), for the comparison. The otlculation proceeded under the assumption that 

coordinates which were produced with the offending FORMAT statement. The specific 
output format we used produced three digits to the right of the decimal place-we 
could then expect 'random' errors at roughly the loy3 level in the CH grid functions, 
which is just what we observe. We feel the difference between the 'before' and 'after' 

cii .~diues w e ~ e  app'ocioiations io mniinuum qnantiikS ai preciseir 
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Plyre 8. Some of the event-by-event dcviarions computed from the strong field CH and 
CA calculations. The ermr measure on(. . .) is defined in the text. Note that only a 
portion of the radial domain is plotted in each case and that the finest mesh spciog 
used in these calculations was h, = A. The results shown in ((I) and (b) am typical 
oi the early-time (U,'' < 19.6) convergence patterns obselvcd in both the intermediate 
and strong field calculations. Although the increase in the level of e m r  in the CH results 
at later times (particularly near R = 0 is quite evident in (+(e), it seems clear that 
the two codes produce results which converge to the Same solution. 

pictures (the data transferral was finally done with greater than 15 digits precision) is 
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Figure 8. (Continued) 

quite remarkable and provides yet another illustration of the level of error we have 
been able to detect as well BS the utility of convergence tests. 

7. Summary and discussion 

We first summarize the computations we have described earlier and then proceed 
to some discussion of the implications of our study for the general problem of code 
tesung m numcnur rcranviry. we nave sct up anu peniurIrreu numerim IWL OGU pj 
calculations which compare the output from two different numerical relativity codes. 
These codes (CH and CA), which treat the problem of spherically symmetric evolution 
of a minimally coupled, self-gravitating, massless scalar field, are based on different 
formalisms, use different coordinate systems, and employ different numerical solution 
methods~ In order to 'directly' compare results from the two programs, we had to 

functions (H) we compared was not a scalar, we also had to choose a reference coor- 
dinate system. Here, we always chose to compare solutions in the characteristic coor- 
dinate system and at a subset of the events used in some particular CH computation. 
This meant that we had to transform CA results into characteristic coordinates and, 
knowing that the CA output in ( T,  t) coordinates, could be Richardson-extrapolated, 

.._<.__I- -.~-.--:--*__..&....- . .T,- L..~. ... _ _ 1  ~ ~ . - c  > ' :--* .... L _ A ,  ro, 

=mac nn o cat nf avcn+c *+ whirh +n m P r f n n n  thn rnmna&nn snrl rinw nnc nf the "e- "a' Y .,I& "I 1,ll.Y U L  1.1111.1 L" p..," .... .&.I nrlr.yr.w"'., "..U, "U-- "1.1 .,I ...- 
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Plgore 9. Event-wisc deviations calculated before and after a problem with data trans- 
ferral was comcted. As described in section 2.1, the characteristic code, CH, peram 
its grid ~ t ~ c t u r e .  R(U), in the course of a calculation, and produces ifs output on some 
sub-grid, R(U#). In (a), the fractional pans of the coordinates in this sub-grid were 
rounded to t h m  digits prior to the comparison calculations. In (b), no such rounding 
occurred. Refer lo the text for mare details. 

we designed the transformation algorithm so that the transformed CA values could 
also be extrapolated in ( R ,  U) coordinates. By contrast, the 'post-processing' of CH 
results was kept to a minimum and involved, at most, a spatial interpolation of the 
basic CH output 

The results of our comparison of the two codes consisted of measuremenls of 
the errors in the CH and (two-level extrapolated) CA results at several different res- 
olutions, hi.  We selected initial data which generated spacetimes with significant 
self-gravitational effects (but no black holes) and, in the absence of exact solutions 
with which to determine the errors in thevarious computations, we used high-accuracy 
(effectively 'fully converged') numerical results which were computed via multi-level 
extrapolation of CA output For both sets of initial data with which we worked, the 
results of the comparison indicated (1) that the two codes were converging to the 
same continuum solution (worst case deviations < 1% between the highest resolu- 
tion CH and CA calculations); and (2) that, although the levels of error in the CA 
and CH results at a given resolution were quite comparable at early retarded times 
,..;+I. +I.- -6 +I.- -nr:m..i..-~. ---:A _-.. -I uCH\ .I.* .-I..-- 
\",U, L l l r  c*ccyL'u" U, L l l G  y a . l L L r u 1 P L n J  ,ay,u c v 1 L * c 1 g c , 1 ~  U, 11 ,, L L l G  La "LllUGl 
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were significantly more accurate than the CH data once the pulse of scalar field had 
reached R = 0. Furthermore, the convergence testing allowed us to make derailed 
examination of the errors in the computations (even in the non-linear regime) and 
provided indications of how the CH algorithm might be improved. 

In terms of the general issue of testing codes in numerical relativity, we again 
refer to the discussion of Centrella et a1 concerning the development of test-bed 
calculations. In discussing the treatment of problems which do not have ‘analytic’ 
solutions, these authors conclude that ‘(the) only method of insuring . . . reliability 
is to run the same simulations on two or more independent codes’. Of course, this 
is precisely what we have done and in terms of being convinced of ‘correctness’, 
the psychological importance of having agreement of two codes cannot be denied. 
However, we wish to stress that the methods we have used in constructing our test- 
bed calculation are applicable to a single code. Here, we are saying nothing more 
than that, as numerical analysts, we should q e c r  our numerical solutions to cowerge 
to the continuum solution as h 4 0. By performing convergence tests (which do 
not require extant numerical results) we should be able to establish whether we 
have convergence and, if we do, we should then be able to estimate the level of 
error in the solution. Provided the problems we study are sufficiently well posed, 
this should apply even in highly dynamic, non-linear regimes, and we feel that our 
work has demonstrated this point clearly. Now one can raise the question: ‘Could 
not an incorrect difference equation or a correct discretization of a mistranscribed 
differential equation lead to an apparently convergent numerical procedure?’ This 
indeeed seems possible and is a principal reason that the notion of comparison with 
an independently generated solution is so attractive. However, we point out that there 
are other routes to ‘independent’ checks which do not involve another approximate 
solution of the differential equations, just as one does not have to know how to 
integrate to verify that one function is the antiderivative of another. Another possible 
concern is that for more complex systems of equations than the ones we have studied 
here, it may be possible to extract interesting physics from a computation which for 
some reason (such as the nature of the discrete equations which are used or the 
maximum level of resolution which is available) does not produce a particularly clear 
signal of convergence. All we can say here is that in such instances it seems probable 
that the resolution dependence of the calculations will still allow us to estimate a 
lower bound for the error in the computations 

Finally, Shapuo [19] has recently pointed out that scalar field solutions, such as 
the ones considered here, can also be generated by general relativistic hydrodynamical 
codes and suggests that ‘such solutions (of the scalar field equations) can be checked 
by spherical hydrodynamical codes’. We fully agree that ‘(it) would be useful to per- 
form such checks’, and look forward to reports of a hydro code capable of efficiently 
assessing the level of error in our most accurate scalar field results. 
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