
PAMR Reference Manual

Frans Pretorius
Department of Physics

P-412, Avadh Bhatia Physics Laboratory
University of Alberta

Edmonton, AB, T6G 2J1

Contents

I. Introduction 1

II. Initialization and clean-up 2

III. Variable definition 2

IV. Global Parameters 6

V. Hierarchy construction 8

VI. Communication 8

VII. Grid-function access 10

VIII. Time functions 12

IX. Excision support 13

X. I/O routines 13

XI. Miscellaneous routines 14

References 14

I. INTRODUCTION

PAMR (parallel adaptive mesh refinement) is a library of routines designed to manage distributed grid hierarchies,
in particular, those arising from finite difference solutions of systems of partial differential equations via adaptive mesh
refinement. PAMR is still very much under development, as is this document. Comments, questions, bug reports (no
guarantees that they will be fixed!), etc. should be sent to

fransp@phys.ualberta.ca

The following sections (rather tersely) describe all the current functions and parameters offered by the library routines.
At this stage only a C-language interface exits, though a fortran interface is in the works. The type real used
throughout the interface is currently defined via (see /include/internal opts.h)

#define real double

true and false refer to C-style booleans, namely zero for false and non-zero for true (though these are not types
defined in the PAMR headers).
Arrays are required to be indexed fortran style, i.e. first index varies most rapidly. Also, all array indices passed to

and returned from various PAMR functions use fortran style numbering (element 1 is the first element in the array);
however example code statements below are in C, and so adjust these numbers to C style.

2

II. INITIALIZATION AND CLEAN-UP

A context refers to all internal data structures associated with a given distributed grid hierarchy. In the future
support may be added for the use of multiple contexts, and transferring data between different contexts. However, a
single context is sufficiently general to describe the kinds of grid hierarchies needed to solve coupled elliptic/hyperbolic
PDEs using interwoven AMR and multigrid hierarchies, using (for instance) the algorithm described in [1]. The
following initialization function must be called before any variables or grids can be defined:

int PAMR_init_context(real *q, int q_size, int dim, int *shape,
real *bbox, char *cp_file, int cp_rank,
char *v_tag, char *c_tag);

return value: context number (> 0), or 0 if an error occurred.

q,q size: not yet implemented

dim: spatial dimension of grids in hierarchy (1, 2 or 3 currently supported)

*shape: a vector of size dim describing the array size of the base, vertex centered grid in the hierarchy. The
base cell centered array will have a size one smaller than this along each direction.

*bbox: a vector of size dim describing the coordinate bounding box [x1, x2, y1, y2, ...] of the base grid

cp file: if a non-empty string is passed, then this specifies previously saved check-point files (via PAMR cp())
to restore the grid hierarchy from (thus ignoring the dim, shape and bbox parameters). If cp rank below is
−1, then a set of files cp file.sdf, cp file 0.sdf, ..., cp file n.sdf is expected that contain the saved grid hierarchy
from a previous run on n+1 nodes. Note that every node in the current run must have access to all these files,
however the number of processes in the new run does not need to be n+ 1.

v tag,c tag: A variable in PAMR can have a cell centered or vertex centered representation. A variable’s name
determines what kind of variable it is, guided by the c tag/v tag arguments, as follows. If both c tag and
v tag are null, then all variables are vertex centered. If c tag (v tag) is null but v tag (c tag) is not, then all
variables ending in v tag (c tag) are vertex (cell) centered, and all the rest are cell (vertex) centered. If both
c tag and (v tag) are not null, then variables ending in c tag (v tag) are cell (vertex) centered, and variables
without either appendage are vertex centered.

The reasoning behind this naming convention is as follows. A given evolution scheme for some variable will
typically require either a cell centered or vertex centered discretization. If one is solving a coupled system
of equations with mixed cell and vertex centered solution methods, then in general both representations of a
variable will be needed—the primary representation in solving for the variable, the secondary one in equations
for different variables that couple to the given variable, but are solved for using the other representation. The
default naming conventions when neither c tag or v tag are supplied is for compatibility with earlier versions
of PAMR.

For example, with v tag=“ v” and c tag=“ c”, f c and f v should be interpreted as referring to the same
variable f, but f c is the cell centered representation and f v the vertex centered one. The variable f is exactly the
same variable as f v. Note that user is free to not follow this interpretation, however, then the PAMR v to c()
and PAMR c to v() functions will not be of use.

The following function frees all resources associated with context num:

void PAMR_free_context(int num);

III. VARIABLE DEFINITION

The following functions allow one to define and query the set of variables (grid functions) that will comprise the
hierarchy.

int PAMR_def_var_full(char *name, int in_amrh, int in_mgh, int num_tl, int amr_inject,
int amr_interp, int amr_bdy_interp, int amr_sync, int mg_inject,
int mg_interp, int mg_sync, int mg_noinj_to_amr, int regrid_transfer,
int c_to_v, int v_to_c, int *phys_bdy_type);

3

parameter description intended representation (Vertex/Cell)

PAMR NO INJECT no injection —

PAMR STRAIGHT INJECT straight injection VC

PAMR HW RESTR half-weight restriction VC

PAMR FW RESTR full-weight restriction VC

PAMR NN AVERAGE nearest-neighbour averaging over parent cells CC

PAMR NN ADD nearest-neighbour addition over parent cells CC

TABLE I: Current fine to coarse level injection operators (defined in /include/pamr.h)

return value: the starting grid function number sgfn of the variable. A grid function number (GFN) is an
index, starting at 1, into an array of pointers to actual grid function data, as returned by PAMR get g gfs(), for
instance. Time levels [1, 2, ...,num tl] (1 being the most advanced) of grid function data in the AMR hierarchy
are mapped to GFN’s [sgfn, sgfn+ 1, ..., sgfn+ num tl− 1] respectively. If in mgh is true, the grid function
data in the multigrid (MG) hierarchy is mapped to GFN sgfn+ num tl.

name: the variable’s unique name

in amrh: whether this variable exists in the AMR hierarchy (true or false)

in mgh: whether this variable exists in the MG hierarchy (true or false)

num tl: if (in amrh), the number of time levels associated with this variable

amr inject: if (in amrh), the kind of fine to coarse level injection to be performed in the AMR hierarchy. See
Table I for the current options. Note that PAMR NN AVERAGE is for intensive quantities (such as the density
in a given cell), while PAMR NN ADD is for extensive quantities (such as mass in a given cell).

amr interp: if (in amrh), the kind of coarse to fine level interpolation to be performed in the AMR hierarchy.
See Table II for the current options.

amr bdy interp: if (in amrh), the kind of coarse to fine level interpolation to be performed on AMR bound-
aries. See Table II for the current options.

amr sync: if (in amrh), whether this grid function’s ghost regions should be synchronized in the AMR
hierarchy. See Table III for the current options.

mg inject: if (in mgh), the kind of fine to coarse level injection to be performed in the MG hierarchy. See
Table I for the current options.

mg interp: if (in mgh), the kind of coarse to fine level interpolation to be performed in the MG hierarchy.
See Table II for the current options.

mg sync: if (in mgh), whether this grid function’s ghost regions should be synchronized in the MG hierarchy.
See Table III for the current options.

mg noinj to amr: if (in mgh and in amrg), this option (when true) disables injection from a coarse level
to a fine level in the MG hierarchy if the fine level also exists in the AMR hierarchy (as levels that exist in both
hierarchies share grid function memory).

regrid transfer: if (in amrh), the kind of transfer operation to perform during a regrid of the AMR hierarchy.
See Table IV for the current options.

c to v: the kind of operation to perform when transferring from a cell to vertex centered representation. See
Table V for the current options.

v to c: the kind of operation to perform when transferring from a vertex to cell centered representation. See
Table V for the current options.

phys bdy type: a pointer to an array of (2× dim) elements. option not yet implemented

4

parameter description intended representation (Vertex/Cell)

PAMR NO INTERP no interpolation —

PAMR SECOND ORDER second order polynomial VC

PAMR FOURTH ORDER fourth order polynomial VC

PAMR SECOND ORDER ENO∗ second order polynomial with ENO slope limiter CC

PAMR FOURTH ORDER ENO∗ fourth order polynomial with ENO slope limiter CC

PAMR FIRST ORDER CONS first order conservative CC

PAMR MC second order MC limiter CC

PAMR FIRST ORDER EXTENSIVE first order extensive CC

TABLE II: Coarse to fine level interpolation operators (defined in /include/pamr.h) Asterisks denote methods which are not
yet implemented.

parameter description

PAMR NO SYNC no synchronization

PAMR SYNC enforce single-valuedness in overlap regions

TABLE III: Current inter-level synchronization options (defined in /include/pamr.h)

The following is a short-cut to PAMR def var full(), and defines a new variable name with identical parameters to
those of the most recent variable defined. The new variable’s starting GFN is returned.

int PAMR_def_var_brief(char *name);

After definition, variable attributes can be changed or queried via the following two functions. The arguments have
identical meaning to those described in PAMR def var full(), and the boolean return code indicates if the operation
was successful.

int PAMR_set_var_attribs(char *name, int in_amrh, int in_mgh, int num_tl, int amr_inject,
int amr_interp, int amr_bdy_interp, int amr_sync, int mg_inject,
int mg_interp, int mg_sync, int mg_noinj_to_amr, int regrid_transfer,
int c_to_v, int v_to_c, int *phys_bdy_type);

int PAMR_get_var_attribs(char *name, int *in_amrh, int *in_mgh, int *num_tl, int *amr_inject,
int *amr_interp, int *amr_bdy_interp, int *amr_sync, int *mg_inject,
int *mg_interp, int *mg_sync, int *mg_noinj_to_amr, int *regrid_transfer,
int *c_to_v, int *v_to_c, int *phys_bdy_type);

parameter description intended representation (Vertex/Cell)

PAMR NO INTERP no interpolation —

PAMR SECOND ORDER second order polynomial VC

PAMR FOURTH ORDER fourth order polynomial VC

PAMR SECOND ORDER ENO∗ second order polynomial with ENO slope limiter CC

PAMR FOURTH ORDER ENO∗ fourth order polynomial with ENO slope limiter CC

PAMR FIRST ORDER CONS first order conservative CC

PAMR MC MC slope limiter CC

PAMR FIRST ORDER EXTENSIVE first order extensive CC

TABLE IV: Regrid transfer operators (defined in /include/pamr.h). If transferring data between hierarchies, data is first
interpolated from coarse to fine levels via the operator specified above, then data is copied from existing data at the same level.
Asterisks denote methods which are not yet implemented.

5

parameter description

PAMR V TO C NO TRANSFER no transfer

PAMR V TO C SECOND ORDER second order polynomial

PAMR V TO C FOURTH ORDER∗ fourth order polynomial

PAMR C TO V NO TRANSFER no transfer

PAMR C TO V SECOND ORDER second order polynomial

PAMR C TO V FOURTH ORDER∗ fourth order polynomial

PAMR C TO V SECOND ORDER ENO∗ second order polynomial with ENO slope limiter

PAMR C TO V FOURTH ORDER ENO∗ fourth order polynomial with ENO slope limiter

TABLE V: Transfer operators (defined in /include/pamr.h) when copying a function from a cell(vertex) centered represen-
tation to a vertex(cell) centered one. Asterisks denote methods which are not yet implemented.

The following set of commands can be used to disabled, enable, or query the corresponding state of a variable,
respectively. A variable that is enabled (disabled) will (will not) have memory allocated for it during subsequent global
regridding operations. Note therefore that the state of a variable will not change immediately upon the execution of
one of these commands, only when the next PAMR compose hierarchy() that involves the entire hierarchy is performed.

void PAMR_disable_var(char *name);
void PAMR_enable_var(char *name);
int PAMR_is_var_enabled(char *name);

The following is a utility function to map a particular grid function to its grid function number (GFN).

int PAMR_get_gfn(char *name, int hier, int tl);

return: the GFN of the grid function name, in hierarchy hier, at time level tl. If the requested grid function
doesn’t exist, 0 is returned.

*name: the name of the grid function.

hier: which hierarchy (see Table VII).

tl: the time level if in the AMR hierarchy, else 0.

The following function returns the type (cell or vertex centered) of a variable, based on the naming convention
defined in PAMR init context() (note that the variable does not need to be defined).

int PAMR_var_type(char *name);

return: either PAMR VERTEX CENTERED or PAMR CELL CENTERED.

*name: a variable name.

The following function returns the type (cell or vertex centered) of a data array corresponding to a specific grid
function number (gfn).

int PAMR_gfn_var_type(int gfn);

return: PAMR VERTEX CENTERED, PAMR CELL CENTERED or −1 if gfn is invalid.

gfn: a grid function number (gfn).

6

IV. GLOBAL PARAMETERS

The set of functions listed here allow one to set and/or query miscellaneous grid hierarchy parameters. The argument
descriptions below only describe the set-parameters—the query (get) function arguments are identical except for the
usage of pass-by-reference rather than pass-by-value in some instances. Unless otherwise noted, all arguments that
are pointers to objects require the user to pre-allocate the memory of the object.

void PAMR_set_lambda(real lambda);
void PAMR_get_lambda(real *lambda);

lambda: the CFL factor

void PAMR_set_rho(int *rho_sp, int *rho_tm, int num);
void PAMR_get_rho(int *rho_sp, int *rho_tm, int num);

*rho sp: an array of size num (up to a maximum of PAMR MAX LEVS) defining the spatial refinement ratio
of levels 1..num in the hierarchy (with level 1 being the coarsest level).

*rho tm: same as rho sp but for the temporal refinement ratio

void PAMR_get_dxdt(int lev, real *dx, real *dt);

lev: a level number of the current AMR hierarchy (1..PAMR MAX LEVS)

real *dx: an array of size dim reals (dim is the number of spatial dimensions) that will be filled, upon return,
with the mesh spacing of level lev. dx[i] cannot be set directly, but is calculated from the current base grid
information and spatial refinement ratios.

real *dt: a real that will be set, upon return, with the time discretization scale of level lev. The base level
dt is calculated as the minimum of over i of lambda*dx[i], where i runs from 1 to dim; higher level dt’s are
calculated using the base level dt and temporal refinement ratio.

void PAMR_set_ghost_width(int *ghost_width);
void PAMR_get_ghost_width(int *ghost_width);

*ghost width: an array of size dim, where ghost width[i-1] defines the number of ghost cells that are
needed at artificial grid boundaries introduced in the i direction via the grid distribution process. In other
words, ghost width[i-1] is interpreted as the width of the ghost region in units of the grid spacing.

void PAMR_set_periodic_bdy(int *periodic);
void PAMR_get_periodic_bdy(int *periodic);

*periodic: an array of size dim defining whether boundary i is periodic (periodic[i-1]=true) or not
(periodic[i-1]=false, which is the default). If a boundary is periodic, grids adjacent to it along the right
edge (larger coordinate value) are extended by an amount proportional to the corresponding ghost width. All
PAMR communication functions then use this extra domain to enforce the periodicity of the domain across the
boundary.

void PAMR_set_min_width(int *min_width);
void PAMR_get_min_width(int *min_width);

*min width: an array of size dim defining the minimum number of points allowed for any distributed grid
component. In other words, no grid will be split into components with a size along dimension i smaller than
that given by min width[i-1].

void PAMR_set_MG_coarse_width(int *min_width);
void PAMR_get_MG_coarse_width(int *min_width);

*min width: an array of size dim defining the minimum number of points allowed for any grid in the multigrid
hierarchy (independent of how that grid might be distributed across a network). In other words, these parameters
defined the coarsest possible grid in the multigrid hierarchy.

7

parameter description

PAMR GDM GRID BY GRID individually splits each grid in a level among the n nodes in the parallel environment

[default is to collectively divide the memory of all grids in a level across the nodes]

PAMR GDM ALIGN forces all child grid boundaries to be aligned with the mesh of a parent

grid, and does so by increasing the local ghost width, if needed

PAMR GDM NO OVERLAP clips all overlapping grids in the sequential hierarchy prior to distribution

(i.e., the only overlap after PAMR compose hierarchy() will be the ghostzones)

TABLE VI: Current grid distribution options (defined in /include/pamr.h). Each one of these options behaves as an on/off
switch (default is off), and the method parameter passed to PAMR set gdm() is the bitwise-or (|) of the desired set of flags.

parameter description

PAMR AMRH the AMR hierarchy

PAMR MGH the MG hierarchy

TABLE VII: Current grid hierarchies that can exist within a context (defined in /include/pamr.h).

void PAMR_set_interp_buffer(int interp_buffer);
void PAMR_get_interp_buffer(int *interp_buffer);

*interp buffer: an array of size dim defining an additional “communication buffer” to place around a coarse
grid during a coarse-to-fine interpolation step. This does not affect the size of the region updated on the fine
grid, rather it allows the use of interior interpolation stencils for a broader set of points on the fine grid (for
example, set to 1 for second order interpolation, and 2 for fourth order).

void PAMR_get_global_bbox(real *bbox);

*bbox: a vector describing the coordinate bounding box [x1, x2, y1, y2, ...] of the base grid, as originally specified
in PAMR init context()

void PAMR_set_gdm(int method);
void PAMR_get_gdm(int *method);

method: specifies how grids are distributed in a parallel environment; see Table VI for the current options.

void PAMR_set_trace_lev(int lev);

lev: the level of verbosity of PAMR output for PAMR debugging purposes (i.e. these traces will probably not
be useful in debugging any numerical code). 0 is no output, 1 is a function trace, and options greater than 1
can produce disastrous amounts of output.

int PAMR_get_max_lev(int hier);

return: the current finest level number (1 is coarsest) containing grids in the hierarchy specified by hier

hier: which hierarchy (see Table VII).

int PAMR_get_min_lev(int hier);

return: the current coarsest level number (will usually be 1) containing grids in the hierarchy specified by hier

hier: which hierarchy (see Table VII).

8

V. HIERARCHY CONSTRUCTION

Once the context has been initialized and all the variables have been defined, PAMR compose hierarchy() will
distribute and allocate the local memory for a given AMR grid hierarchy. Regridding is performed via subsequent
calls to PAMR compose hierarchy(), which will copy/interpolate (by at most one level) data from like time levels of
the old to new hierarchy as specified in the variable definitions. A multigrid (MG) hierarchy can be constructed on top
of an existing AMR hierarchy via a call to PAMR build mgh(), and subsequently removed with PAMR destroy mgh().
See [1] for a discussion of a MG hierarchy and how to use it. Regridding cannot be performed when a MG hierarchy
exists.
NOTE: PAMR does not interpolate in time when initializing new fine grids, or portions thereof, in a multi time-

level hierarchy. This means that if certain time levels are not in sync (which is the case for past time levels in Berger
and Oliger style AMR), it is the user’s responsibility to do the appropriate temporal interpolation, in new portions
of the fine grid, afterward. In existing regions of the fine grid data is copied from the old level, and this data will
(presumably) be at the correct time. In the future support may be added for certain standard temporal interpolation
schemes; however, temporal interpolation is a purely local operation (network-wise) and so is not an essential feature
for a grid distribution package like PAMR to provide.

void PAMR_compose_hierarchy(int min_lev, int max_lev, int num, int *lev, real *bbox, real t);

min lev,max lev: grids on levels from min lev to max lev are to be allocated (or reallocated) as specified
via the [lev,bbox] arrays. During a regrid operation, if no grids are specified on a given level, then that level
is removed from the hierarchy.

num: the number of new grids

*lev: an array of size num, where lev[i-1]∈ 1, 2, ... is the level (1 is coarsest) of new grid i (∈ 1, 2, ...num).

*bbox: an array of size 2*dim*num, where [bbox[2*dim*(i-1)],...,bbox[2*dim*(i)-1]] stores the coordi-
nate bounding box [x1, x2, y1, y2, ...] of new grid i.

t: the coordinate time of the new levels.

void PAMR_build_mgh(int min_lev, int max_lev, int tl);

min lev: the minimum (coarsest) AMR level to partake in the MG hierarchy.

max lev: the maximum (finest) AMR level to partake in the MG hierarchy. Note that in general the MG
hierarchy will contain coarser levels than the AMR hierarchy. The coarsest level in the MG hierarchy is always
labeled level 1; hence some level ℓ > 1 in the MG hierarchy will correspond to level min lev of the AMR
hierarchy.

tl: the time level of the AMR hierarchy that will be used to populate the MG hierarchy.

void PAMR_destroy_mgh();

VI. COMMUNICATION

PAMR provides several basic communication functions: synchronize grid functions that overlap
on a given level (PAMR sync), interpolate grid functions from a coarse to the next finer level
(PAMR interp,PAMR AMR bdy interp), inject grid functions from a fine to the next coarser level
(PAMR inject), and copy values from a vertex to cell centered representation (PAMR v to c) and vice-
versa (PAMR c to v). Note that PAMR AMR bdy interp c was introduced to permit a different interpretation
of the width argument in the cell-centered and vertex-centered cases (see below). By default, the particular grid
functions involved and the kind of injection/interpolation operations performed are those specified in the variable
definitions; however these defaults can be overwritten using transfer bits, controlled via the ... tf bits functions
described below. Each grid function at each time level in both the AMR and MG hierarchies (i.e. each GFN) has a
unique transfer bit associated with it, which specifies how the corresponding grids are treated during a communication
operation (the particular values depend upon the operation, and are listed in Tables I, II, III and IV). By default,
PAMR’s communication functions call PAMR clear tf bits, which turns off communication for all grid functions,
then PAMR set tf bits before doing any communication. To set custom transfer bits using any combination of

9

PAMR clear tf bits, PAMR set tf bits and PAMR set tf bit, the user must call PAMR freeze tf bits
prior to invoking any communication functions; this stops the communication functions from over-writing the custom
transfer bits. Afterward, PAMR thaw tf bits should be called to return to the default communication scheme.

int PAMR_sync(int l, int tl, int hierarchy, int AMR_bdy_width);

return: true for success, false for failure.

l: level of the hierarchy to sync.

tl: if the AMR hierarchy, the time level to sync.

hierarchy: which hierarchy—see Tab. VII.

AMR bdy width: if greater than 0, specifies a region about AMR boundaries to exclude from consideration.
(The value of AMR bdy width is the width of this region in units of the grid spacing, i.e. the cell width.)

int PAMR_inject(int lf, int tl, int hierarchy);

return: true for success, false for failure

lf: the fine level of the hierarchy to inject to coarser level lf-1.

tl: if the AMR hierarchy, the time level to inject.

hierarchy: which hierarchy—see Tab. VII.

int PAMR_interp(int lc, int tl, int hierarchy);

return: true for success, false for failure

lc: the coarse level of the hierarchy to interpolate to finer level lc+1.

tl: if the AMR hierarchy, the time level to interpolate.

hierarchy: which hierarchy—see Tab. VII.

int PAMR_AMR_bdy_interp(int lc, int tl, int AMR_bdy_width);

return: true for success, false for failure

lc: the coarse level of the AMR hierarchy to interpolate to finer level lc+1.

tl: the time level to interpolate.

AMR bdy width: this function interpolates to a region of width AMR bdy width points along AMR
boundaries on the fine level.

int PAMR_AMR_bdy_interp_c(int lc, int tl, int AMR_bdy_width_c);

return: true for success, false for failure

lc: the coarse level of the AMR hierarchy to interpolate to finer level lc+1.

tl: the time level to interpolate.

AMR bdy width c: this function interpolates to a region of size AMR bdy width c (in units of the grid
spacing) along AMR boundaries on the fine level.

int PAMR_c_to_v(int l, int tl, int hierarchy);

return: true for success, false for failure

l: level of the hierarchy to copy.

tl: the time level to copy.

10

hierarchy: which hierarchy—see Tab. VII.

int PAMR_c_to_v_local(int tl, int hierarchy);

return: true for success, false for failure

tl: the time level to copy.

hierarchy: which hierarchy—see Tab. VII.

int PAMR_v_to_c(int l, int tl, int hierarchy);

return: true for success, false for failure

l: level of the hierarchy to copy.

tl: the time level to copy.

hierarchy: which hierarchy—see Tab. VII.

int PAMR_v_to_c_local(int tl, int hierarchy);

return: true for success, false for failure

tl: the time level to copy.

hierarchy: which hierarchy—see Tab. VII.

void PAMR_freeze_tf_bits(void);

void PAMR_thaw_tf_bits(void);

void PAMR_clear_tf_bits(void);

void PAMR_set_tf_bit(int gf, int val);

gf: the grid function number (see PAMR get gfn, PAMR def var full) whose transfer bit will be set to val.

val: one of the quantities in Tables I, II, III and IV, depending upon which communication function will
subsequently be used.

void PAMR_set_tf_bits(int tl, int hierarchy, int stage);

tl: if the AMR hierarchy, the time level whose grids are involved.

hierarchy: which hierarchy—see Tab. VII.

stage: an operation number defining what stage of communication to set the transfer bits for — see Tab. VIII.

VII. GRID-FUNCTION ACCESS

Once a grid hierarchy has been allocated, the functions described here can be used to access the individual grids. A
sequential iterator is used to loop through all grids at a given level within a hierarchy; the basic usage is demonstrated
in the following C example code, which loops through all local grids at level 2 in the AMR hierarchy:

int valid;

valid=PAMR_init_s_iter(2,PAMR_AMRH,0);
while(valid)
{

// do stuff with current grid

valid=PAMR_next_g();
}

11

parameter description

PAMR TF SYNC synchronize

PAMR TF COMPOSE regrid

PAMR TF INJECT inject

PAMR TF INJECT TO MG LEVEL inject to a MG level that does not exist in the AMR hierarchy

PAMR TF INTERP interpolate

PAMR TF BDY INTERP boundary interpolate

PAMR TF BDY INTERP C boundary interpolate for CC variables

PAMR TF MGH INIT inject only functions common to both MG and AMR MG hierarchies

PAMR TF C TO V copy from cell centered to vertex center representations

PAMR TF V TO C copy from vertex centered to cell center representations

TABLE VIII: Options for the stage variable of PAMR set tf bits.

When an iterator is in a “valid” state, all attributes and data associated with the corresponding grid can be accessed
via the PAMR get g ... functions below. As with other PAMR get ... functions, unless otherwise noted any
information returned through argument pointers requires the user to preallocate the required memory for the object;
i.e. PAMR simply copies the requested data to the location pointed to by the argument. Nested iteration can be
performed using the internal iterator stack, accessed via PAMR pop iter and PAMR push iter.

int PAMR_init_s_iter(int l, int hier, int all);

return: true for success (implying that the first grid in the list of grids at this level can subsequently be
accessed), false for failure (implying either that there are no grids at the requested level, or some invalid
parameters where passed).

l: the level (1 is coarsest) of the hierarchy whose grids will be accessed

hier: which hierarchy—see Tab. VII.

all: if all=false then only local grids (i.e. those with function data and coordinate arrays that are allocated on
the local machine) are iterated through, otherwise all grids are accessed. Note that one cannot access a non-local
grid’s data (via PAMR get g gfs) or coordinate arrays (via PAMR get g x).

int PAMR_next_g();

return: true for success (meaning the iterator is referring to a valid grid), false for failure or the iterator has
reached the end of the list.

int PAMR_push_iter();

return: true for success, false for failure (internal stack overflow, or invalid iterator).

int PAMR_pop_iter();

return: true for success (with the current grid restored to that pointed to at the time of the corresponding
push), false for failure (stack empty).

int PAMR_get_g_attribs(int *rank, int *dim, int *shape, int *shape_c, real *bbox,
int *ghost_width, real *t, int *ngfs, real **x, real **x_c, real **gfs);

int PAMR_get_g_rank(int *rank);
int PAMR_get_g_dim(int *dim);
int PAMR_get_g_shape(int *shape);
int PAMR_get_g_shape_c(int *shape_c);
int PAMR_get_g_bbox(real *bbox);
int PAMR_get_g_ghost_width(int *ghost_width);
int PAMR_get_g_t(real *t);
int PAMR_get_g_ngfs(int *ngfs);
int PAMR_get_g_x(real **x);
int PAMR_get_g_x_c(real **x_c);
int PAMR_get_g_gfs(real **gfs);

12

return: true if the current iterator is valid and hence the returned fields are valid, false otherwise.

*rank: the MPI rank of the node where this grid’s data is stored

*dim: the spatial dimension of the grid

*shape: an array of size dim that specifies the number of points along each dimension of the grid [Nx, Ny, ...].

*shape c: an array of size dim that specifies the number of cells along each dimension of the grid (will be
[Nx − 1, Ny − 1, ...], if [Nx, Ny, ...] is the shape of the vertex centered array).

*bbox: an array of size 2*dim that describes the coordinate bounding box of the grid [x1, x2, y1, y2, ...].

*ghost width: an array of size 2*dim indicating the size of the ghost region, in cells, adjacent to the
[xmin, xmax, ymin, ymax, ...] boundaries of the grid.

*t: the coordinate time t.

*ngfs: the number of grid functions.

**x: an array of size dim that will be filled with pointers to local arrays containing the coordinates of the
vertices (of size Nx, Ny, ...) if the grid is local, else the pointers will be set to 0.

**x c: an array of size dim that will be filled with pointers to local arrays containing the coordinates of the
cell centers (of size Nx − 1, Ny − 1, ...) if the grid is local, else the pointers will be set to 0.

**gfs: an array of size ngfs that will be filled with pointers to local data arrays (of size Nx ∗ Ny ∗ ...) if the
corresponding grid function is allocated, else the corresponding pointer is set to 0 (if the grid is non-local, or
the hierarchy to which the grid function belongs does not exist).

int PAMR_get_g_level(int *L);

return: true if the iterator is valid, false otherwise.

*L: the level number of the current grid.

int PAMR_get_g_comm(int *comm);
int PAMR_set_g_comm(int comm);

return: true if the iterator is valid, false otherwise.

*comm: whether this grid partakes in any communication functions (true or false).

VIII. TIME FUNCTIONS

The following functions manage the time levels within the AMR hierarchy. PAMR tick advances the time of
the level by its local dt, PAMR get time and PAMR set time can be used to set and read the time of a level
respectively, and PAMR swap tl swaps time levels in the hierarchy.

real PAMR_tick(int lev);

return: the time after the ”tick”

lev: the level to update

int PAMR_swap_tl(int lev, int tl1, int tl2);

return: true for success, false for failure

lev: the level of the AMR hierarchy

tl1: swap grids at time level tl1 with those at time level tl2

tl2:

13

real PAMR_get_time(int lev);

return: the time associated with AMR level lev

lev:

void PAMR_set_time(int lev, real t);

lev: AMR level

t: time to set above level to

IX. EXCISION SUPPORT

PAMR supports excision in the sense that it will alter the interpolation and injection operators near an excised
region if desired. The user must supply a routine that, when called, initializes a specified grid function to define the
excised region. By default excision is off, is turned on via PAMR excision on, and can subsequently be turned off
via PAMR excision off

int PAMR_excision_on(char *ex_mask_var, char *ex_mask_c_var,
void (*app_fill_ex_mask_fnc)(real *mask, real *mask_c, int dim,

int *shape, int *shape_c, real *bbox, real excised),
real excised, int initialize_now);

return: true on success, false otherwise.

*ex mask var: a vertex centered function, existing in both the AMR and MG hierarchies with only a single
time level in the AMR hierarchy, that will be used to define the excised region for vertex centered variables.

*ex mask var c: a cell centered function, existing in both the AMR and MG hierarchies with only a single
time level in the AMR hierarchy, that will be used to define the excised region for cell centered variables.

*app fill ex mask fnc: a pointer to a function that, when called, will initialize the dim dimensional vertex
array mask (of size shape) and cell array mask c (of size shape c), both with bounding box bbox, to
excised where corresponding components of the grid are excised, and some other number elsewhere. NOTE:
the function app fill ex mask fnc will be called during regridding when the internal hierarchy is only partially
built, hence none of the PAMR structure or grid function access routines should be used by this routine.

excised: The value defining an excised point on the grid

initialize now: Initialize the mask grid on all levels now if initialize now is true, else the mask will only be
initialized during the next regrid.

void PAMR_excision_off();

X. I/O ROUTINES

PAMR save gfn can be used to save grid functions to the local disk in SDF [2] format. PAMR cp is for
check-pointing, and saves the current state of the hierarchy to disk.

int PAMR_save_gfn(char *name, int hier, int tl, int L, real t, char *pre_tag, char *post_tag);

return: true if successful, implying that the grid function name in hierarchy hier (see Table VII), level L (-1
for all) and time level tl was appended to the SDF file

< pre tag >< name > [tl| MG] < post tag > < rank > .sdf ,

with a time parameter t (-1 to use the current time of the grid function). The time level tl is inserted for AMR
hierarchy functions, and the letters “MG” for functions in the MG hierarchy. The rank is the MPI rank.

*name: grid function name

14

hier: which hierarchy (see Table VII)

tl: the time level if the AMR hierarchy, else 0

L: the level

t: the output time to use (set to -1 to use the current grid function time)

*pre tag: a prefix tag for the filename

*post tag: a postfix tag for the filename

int PAMR_cp(char *cp_name, int cp_rank);

return: true if successful, false otherwise

*cp name: The base name for the set of checkpoint files to be saved; see PAMR init context().

cp rank: currently cp rank must be −1.

XI. MISCELLANEOUS ROUTINES

PAMR merge bboxes is a utility routine to help programs produce the global list of bounding boxes that define
a grid hierarchy (as required by PAMR compose hierarchy), from a local set of bounding boxes as would be
computed via local truncation error estimates (for instance). Each node passes its local list of local num bounding
boxes in local bbox, and a preallocated memory block in global bbox that can hold up to global num bounding
boxes. PAMR will then merge together the local lists, joining two bounding boxes if the “efficiency” of the merge,
defined as

efficiency = volume(AunionB)/volume(C) (1)

is larger that min eff. In the above, A and B are two local bounding boxes, and C is the smallest rectangular
bounding box encompassing A and B. Upon completion, global num is set to the total number of merged grids.

int PAMR_merge_bboxes(real *local_bbox, int local_num, real *global_bbox, int *global_num, real min_eff);

return: true for success, false for failure.

*local bbox: an array of size 2*dim*local num reals

local num: the number of local bounding boxes

*global bbox: an array of size 2*dim*(*global num) reals

*global num: as input, the maximum number of bounding boxes the array global bbox can hold, and upon
completion is set to the actual number of merged bounding boxes.

min eff: a number between 0 and 1, as described above.

PAMR get sgh

[1] F. Pretorius, “Numerical Simulations of Gravitational Collapse”, Univ. of British Columbia Ph.D. Thesis (2002)
[2] R.L. Marsa and M.W. Choptuik, “The RNPL User’s Guide”, http://laplace.physics.ubc.ca/Members/marsa/rnpl/users guide/users guide.h

(1995)

