
Maple 9
Learning Guide

Based in part on the work of B. W. Char

c© Maplesoft, a division of Waterloo Maple Inc. 2003

ii •

Maplesoft, Maple, Maple Application Center, Maple Student Center,
and Maplet are all trademarks of Waterloo Maple Inc.

c© Maplesoft, a division of Waterloo Maple Inc. 2003. All rights re-
served.

The electronic version (PDF) of this book may be downloaded and
printed for personal use or stored as a copy on a personal machine. The
electronic version (PDF) of this book may not be distributed. Information
in this document is subject to change without notice and does not repre-
sent a commitment on the part of the vendor. The software described in
this document is furnished under a license agreement and may be used or
copied only in accordance with the agreement. It is against the law to copy
software on any medium except as specifically allowed in the agreement.

Windows is a registered trademark of Microsoft Corporation.
Java and all Java based marks are trademarks or registered trade-

marks of Sun Microsystems, Inc. in the United States and other countries.
Maplesoft is independent of Sun Microsystems, Inc.

All other trademarks are the property of their respective owners.

This document was produced using a special version of Maple that
reads and updates LATEX files.

Printed in Canada

ISBN 1-894511-42-5

Contents

Preface 1
Audience . 1
Manual Set . 1
Conventions . 2
Customer Feedback . 2

1 Introduction to Maple 3
Worksheet Graphical Interface 3
Modes . 3

2 Mathematics with Maple: The Basics 5
In This Chapter . 5
Maple Help System . 5

2.1 Introduction . 5
Exact Expressions . 6

2.2 Numerical Computations 7
Integer Computations . 7
Commands for Working With Integers 9
Exact Arithmetic—Rationals, Irrationals, and Constants . 10
Floating-Point Approximations 12
Arithmetic with Special Numbers 14
Mathematical Functions 15

2.3 Basic Symbolic Computations 16
2.4 Assigning Expressions to Names 18

Syntax for Naming an Object 18
Guidelines for Maple Names 19
Maple Arrow Notation in Defining Functions 19
The Assignment Operator 20
Predefined and Reserved Names 20

2.5 Basic Types of Maple Objects 21

iii

iv • Contents

Expression Sequences . 21
Lists . 23
Sets . 24
Operations on Sets and Lists 25
Arrays . 27
Tables . 31
Strings . 32

2.6 Expression Manipulation 33
The simplify Command 33
The factor Command . 34
The expand Command . 35
The convert Command 36
The normal Command . 36
The combine Command 37
The map Command . 38
The lhs and rhs Commands 39
The numer and denom Commands 39
The nops and op Commands 40
Common Questions about Expression Manipulation . . . 41

2.7 Conclusion . 42

3 Finding Solutions 43
In This Chapter . 43

3.1 The Maple solve Command 43
Examples Using the solve Command 43
Verifying Solutions . 45
Restricting Solutions . 47
Exploring Solutions . 48
The unapply Command 49
The assign Command . 51
The RootOf Command . 53

3.2 Solving Numerically Using the fsolve Command 54
Limitations on solve . 55

3.3 Other Solvers . 58
Finding Integer Solutions 58
Finding Solutions Modulo m 58
Solving Recurrence Relations 59

3.4 Polynomials . 59
Sorting and Collecting . 60
Mathematical Operations 61
Coefficients and Degrees 62

Contents • v

Root Finding and Factorization 63
3.5 Calculus . 65
3.6 Solving Differential Equations Using the dsolve Command 71
3.7 Conclusion . 77

4 Maple Organization 79
In This Chapter . 79

4.1 The Organization of Maple 79
The Maple Library . 80

4.2 The Maple Packages . 82
List of Packages . 82
Example Packages . 87
The Student Package . 87
Worksheet Examples . 88
The LinearAlgebra Package 94
The Matlab Package . 96
The Statistics Package . 98
The simplex Linear Optimization Package 101

4.3 Conclusion . 102

5 Plotting 103
In This Chapter . 103
Plotting Commands in Main Maple Library 103
Plotting Commands in Packages 103
Publishing Material with Plots 104

5.1 Graphing in Two Dimensions 104
Parametric Plots . 106
Polar Coordinates . 108
Functions with Discontinuities 111
Functions with Singularities 112
Multiple Functions . 114
Plotting Data Points . 116
Refining Plots . 118

5.2 Graphing in Three Dimensions 119
Parametric Plots . 121
Spherical Coordinates . 121
Cylindrical Coordinates 124
Refining Plots . 125
Shading and Lighting Schemes 126

5.3 Animation . 127
Animation in Two Dimensions 128

vi • Contents

Animation in Three Dimensions 130
5.4 Annotating Plots . 132

Labeling a Plot . 133
5.5 Composite Plots . 134

Placing Text in Plots . 136
5.6 Special Types of Plots . 137

Visualization Component of the Student Package 143
5.7 Manipulating Graphical Objects 144

Using the display Command 144
5.8 Code for Color Plates . 149
5.9 Interactive Plot Builder 152
5.10 Conclusion . 153

6 Evaluation and Simplification 155
Working with Expressions in Maple 155
In This Chapter . 155

6.1 Mathematical Manipulations 156
Expanding Polynomials as Sums 156
Collecting the Coefficients of Like Powers 158
Factoring Polynomials and Rational Functions 161
Removing Rational Exponents 163
Combining Terms . 164
Factored Normal Form . 165
Simplifying Expressions 168
Simplification with Assumptions 169
Simplification with Side Relations 169
Sorting Algebraic Expressions 171
Converting Between Equivalent Forms 172

6.2 Assumptions . 174
The assume Facility . 174
The assuming Command 178

6.3 Structural Manipulations 180
Mapping a Function onto a List or Set 180
Choosing Elements from a List or Set 182
Merging Two Lists . 184
Sorting Lists . 185
The Parts of an Expression 188
Substitution . 196
Changing the Type of an Expression 200

6.4 Evaluation Rules . 202
Levels of Evaluation . 202

Contents • vii

Last-Name Evaluation . 203
One-Level Evaluation . 205
Commands with Special Evaluation Rules 206
Quotation and Unevaluation 207
Using Quoted Variables as Function Arguments 210
Concatenation of Names 211

6.5 Conclusion . 213

7 Solving Calculus Problems 215
In This Chapter . 215

7.1 Introductory Calculus . 215
The Derivative . 215
A Taylor Approximation 221
The Integral . 232
Mixed Partial Derivatives 236

7.2 Ordinary Differential Equations 240
The dsolve Command . 241
Example: Taylor Series . 255
When You Cannot Find a Closed Form Solution 259
Plotting Ordinary Differential Equations 260
Discontinuous Forcing Functions 264
Interactive ODE Analyzer 269

7.3 Partial Differential Equations 270
The pdsolve Command 270
Changing the Dependent Variable in a PDE 272
Plotting Partial Differential Equations 273

7.4 Conclusion . 276

8 Input and Output 277
In This Chapter . 277

8.1 Reading Files . 277
Reading Columns of Numbers from a File 278
Reading Commands from a File 280

8.2 Writing Data to a File . 281
Writing Columns of Numerical Data to a File 281
Saving Expressions in the Maple Internal Format 283
Converting to LATEX Format 284

8.3 Exporting Worksheets . 286
HTML and HTML with MathML 286
LATEX . 289
Maple Input . 291

viii • Contents

Maplet Application . 292
Maple Text . 293
Plain Text . 295
RTF . 296
XML . 297

8.4 Printing Graphics . 298
Displaying Graphics in Separate Windows 298
Sending Graphics in PostScript Format to a File 298
Graphics Suitable for HP LaserJet 299

8.5 Conclusion . 299

9 Maplet User Interface Customization System 301
In This Chapter . 301

9.1 Example Maplet Application 302
9.2 Terminology . 302
9.3 How to Start the Maplets Package 303
9.4 How to Invoke a Maplet Application from the Maple Work-

sheet . 303
9.5 How to Close a Maplet Application 304
9.6 How to Work With Maplet Applications and the Maple

Window (Modality) . 304
9.7 How to Activate a Maplet Application Window 305
9.8 How to Terminate and Restart a Maplet Application . . . 305
9.9 How to Use Graphical User Interface Shortcuts 305

Drop-down List Boxes . 305
Space Bar and Tab Key 306

9.10 Conclusion . 306
9.11 General Conclusion . 306

Index 307

Preface

This manual introduces important concepts and builds a framework of
knowledge that guides you in your use of the interface and the MapleTM

language. This manual provides an overview of the functionality of Maple.
It describes both the symbolic and numeric capabilities, introducing the
available Maple objects, commands, and methods. Emphasis is placed on
finding solutions, plotting or animating results, and exporting worksheets
to other formats. More importantly, this manual presents the philosophy
and methods of use intended by the designers of the system.

Audience

The information in this manual is intended for first time Maple users. As
an adjunct, access to the Maple help system is recommended.

Manual Set

There are three other manuals available for Maple users, the Maple Get-
ting Started Guide, the Maple Introductory Programming Guide, and
the Maple Advanced Programming Guide.1

• The Maple Getting Started Guide contains an introduction to the
graphical user interface and a tutorial that outlines using Maple to
solve mathematical problems and create technical documents. It also

1The Student Edition does not include the Maple Introductory Programming Guide
and the Maple Advanced Programming Guide. These programming guides can be pur-
chased from school and specialty bookstores or directly from Maplesoft.

1

2 • Preface

includes information for new users about the help system, New User’s
Tour, example worksheets, and the Maplesoft Web site.

• The Maple Introductory Programming Guide introduces the basic
Maple programming concepts, such as expressions, data structures,
looping and decision mechanisms, procedures, input and output, de-
bugging, and the MapletTM User Interface Customization System.

• The Maple Advanced Programming Guide extends the basic Maple
programming concepts to more advanced topics, such as modules,
input and output, numerical programming, graphics programming,
and compiled code.

Whereas this book highlights features of Maple, the help system is a
complete reference manual. There are also examples that you can copy,
paste, and execute immediately.

Conventions

This manual uses the following typographical conventions.

• courier font - Maple command, package name, and option name

• bold roman font - dialog, menu, and text field

• italics - new or important concept, option name in a list, and manual
titles

• Note - additional information relevant to the section

• Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related
to this and other manuals, contact doc@maplesoft.com.

1 Introduction to Maple

Maple is a Symbolic Computation System or Computer Algebra Sys-
tem. Maple manipulates information in a symbolic or algebraic manner.
You can obtain exact analytical solutions to many mathematical prob-
lems, including integrals, systems of equations, differential equations,
and problems in linear algebra. Maple contains a large set of graphics
routines for visualizing complicated mathematical information, numeri-
cal algorithms for providing estimates and solving problems where exact
solutions do not exist, and a complete and comprehensive programming
language for developing custom functions and applications.

Worksheet Graphical Interface
Maple mathematical functionality is accessed through its advanced worksheet-
based graphical interface. A worksheet is a flexible document for exploring
mathematical ideas and for creating sophisticated technical reports. You
can access the power of the Maple computation engine through a variety
of user interfaces: the standard worksheet, the command-line1 version,
the classic worksheet (not available on Macintosh r©), and custom-built
Maplet applications. The full Maple system is available through all of
these interfaces. In this manual, any references to the graphical Maple
interface refer to the standard worksheet interface. For more information
on the various interface options, refer to the ?versions help page.

Modes
You can use Maple in two modes: as an interactive problem-solving envi-
ronment and as a system for generating technical documents.

1The command-line version provides optimum performance. However, the worksheet
interface is easier to use and renders typeset, editable math output and higher quality
plots.

3

4 • Chapter 1: Introduction to Maple

Interactive Problem-Solving Environment Maple allows you to under-
take large problems and eliminates your mechanical errors. The interface
provides documentation of the steps involved in finding your result. It
allows you to easily modify a step or insert a new one in your solution
method. With minimal effort you can compute the new result.

Generating Technical Documents You can create interactive structured
documents for presentations or publication that contain mathematics in
which you can change an equation and update the solution automatically.
You also can display plots. In addition, you can structure your documents
by using tools such as outlining, styles, and hyperlinks. Outlining allows
you to collapse sections to hide regions that contain distracting detail.
Styles identify keywords, headings, and sections. Hyperlinks allow you to
create live references that take the reader directly to pages containing re-
lated information. The interactive nature of Maple allows you to compute
results and answer questions during presentations. You can clearly and
effectively demonstrate why a seemingly acceptable solution method is in-
appropriate, or why a particular modification to a manufacturing process
would lead to loss or profit. Since components of worksheets are directly
associated with the structure of the document, you can easily translate
your work to other formats, for example, HTML, RTF, and LATEX.

2 Mathematics with Maple:
The Basics

This chapter introduces the Maple commands necessary to get you
started. Use your computer to try the examples as you read.

In This Chapter
• Exact calculations

• Numerical computations

• Basic symbolic computations and assignment statements

• Basic types of objects

• Manipulation of objects and the commands

Maple Help System
At various points in this guide you are referred to the Maple help system.
The help pages provide detailed command and topic information. You
may choose to access these pages during a Maple session. To use the help
command, at the Maple prompt enter a question mark (?) followed by
the name of the command or topic for which you want more information.

?command

2.1 Introduction

This section introduces the following concepts in Maple.

• Semicolon (;) usage

5

6 • Chapter 2: Mathematics with Maple: The Basics

• Representing exact expressions

The most basic computations in Maple are numeric. Maple can func-
tion as a conventional calculator with integers or floating-point numbers.
Enter the expression using natural syntax. A semicolon (;) marks the
end of each calculation. Press enter to perform the calculation.

> 1 + 2;

3

> 1 + 3/2;

5

2

> 2*(3+1/3)/(5/3-4/5);

100

13

> 2.8754/2;

1.437700000

Exact Expressions
Maple computes exact calculations with rational numbers. Consider a
simple example.

> 1 + 1/2;

3

2

The result of 1 + 1/2 is 3/2 not 1.5. To Maple, the rational number
3/2 and the floating-point approximation 1.5 are distinct objects. The
ability to represent exact expressions allows Maple to preserve more
information about their origins and structure. Note that the advantage
is greater with more complex expressions. The origin and structure of a
number such as

0.5235987758

2.2 Numerical Computations • 7

are much less clear than for an exact quantity such as

1

6
π

Maple can work with rational numbers and arbitrary expressions.
It can manipulate integers, floating-point numbers, variables, sets, se-
quences, polynomials over a ring, and many more mathematical con-
structs. In addition, Maple is also a complete programming language that
contains procedures, tables, and other programming constructs.

2.2 Numerical Computations

This section introduces the following concepts in Maple.

• Integer computations

• Continuation character (\)

• Ditto operator (%)

• Commands for working with integers

• Exact and floating-point representations of values

• Symbolic representation

• Standard mathematical constants

• Case sensitivity

• Floating-point approximations

• Special numbers

• Mathematical functions

Integer Computations
Integer calculations are straightforward. Terminate each command with
a semicolon.

> 1 + 2;

8 • Chapter 2: Mathematics with Maple: The Basics

3

> 75 - 3;

72

> 5*3;

15

> 120/2;

60

Maple can also work with arbitrarily large integers. The practical limit
on integers is approximately 228 digits, depending mainly on the speed
and resources of your computer. Maple can calculate large integers, count
the number of digits in a number, and factor integers. For numbers, or
other types of continuous output that span more than one line on the
screen, Maple uses the continuation character (\) to indicate that the
output is continuous. That is, the backslash and following line ending
should be ignored.

> 100!;

933262154439441526816992388562667004907\
15968264381621468592963895217599993229\
91560894146397615651828625369792082722\
37582511852109168640000000000000000000\
00000

> length(%);

158

This answer indicates the number of digits in the last example. The
ditto operator, (%), is a shorthand reference to the result of the previous
computation. To recall the second- or third-most previous computation
result, use %% and %%%, respectively.

2.2 Numerical Computations • 9

Table 2.1 Commands for Working with Integers

Function Description

abs absolute value of an expression
factorial factorial of an integer
iquo quotient of an integer division
irem remainder of an integer division
iroot approximate integer root of an integer
isqrt approximate integer square root of an integer
max, min maximum and minimum of a set of inputs
mod modular arithmetic
surd real root of an integer

Commands for Working With Integers
Maple has many commands for working with integers, some of which
allow for calculations of the factorization of an integer, the greatest com-
mon divisor (gcd) of two integers, integer quotients and remainders, and
primality tests. See the following examples, as well as Table 2.1.

> ifactor(60);

(2)2 (3) (5)

> igcd(123, 45);

3

> iquo(25,3);

8

> isprime(18002676583);

true

10 • Chapter 2: Mathematics with Maple: The Basics

Exact Arithmetic—Rationals, Irrationals, and Constants
Maple can perform exact rational arithmetic, that is, work with rational
numbers (fractions) without reducing them to floating-point approxima-
tions.

> 1/2 + 1/3;

5

6

Maple handles the rational numbers and produces an exact result.
The distinction between exact and approximate results is important.
The ability to perform exact computations with computers enables you
to solve a range of problems. Maple can produce floating-point estimates.
Maple can work with floating-point numbers with many thousands of
digits, producing accurate estimates of exact expressions.

> Pi;

π

> evalf(Pi, 100);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
208998628034825342117068

Maple distinguishes between exact and floating-point representa-
tions of values. Here is an example of a rational (exact) number.

> 1/3;

1

3

The following is its floating-point approximation (shown to ten digits,
by default).

> evalf(%);

0.3333333333

These results are not the same mathematically, and they are not the
same in Maple.

2.2 Numerical Computations • 11

Important: Whenever you enter a number in decimal form, Maple treats
it as a floating-point approximation. The presence of a decimal number
in an expression causes Maple to produce an approximate floating-point
result, since it cannot produce an exact solution from approximate data.
Use floating-point numbers when you want to restrict Maple to working
with non-exact expressions.

> 3/2*5;

15

2

> 1.5*5;

7.5

You can enter exact quantities by using symbolic representation,
for example, π in contrast to 3.14. Maple interprets irrational numbers
as exact quantities. Here is how you represent the square root of two in
Maple.

> sqrt(2);

√
2

Here is another square root example.

> sqrt(3)^2;

3

Maple recognizes the standard mathematical constants, such as π
and the base of the natural logarithms, e. It works with them as exact
quantities.

> Pi;

π

> sin(Pi);

0

12 • Chapter 2: Mathematics with Maple: The Basics

The exponential function is represented by the Maple function exp.

> exp(1);

e

> ln(exp(5));

5

The example with π may look confusing. When Maple is producing
typeset real-math notation, it attempts to represent mathematical ex-
pressions as you might write them yourself. Thus, you enter π as Pi and
Maple displays it as π.

Maple is case sensitive. Ensure that you use proper capitalization
when stating these constants. The names Pi, pi, and PI are distinct. The
names pi and PI are used to display the lowercase and uppercase Greek
letters π and Π, respectively. For more information on Maple constants,
enter ?constants at the Maple prompt.

Floating-Point Approximations
Maple works with exact values, but it can return a floating-point approxi-
mation up to about 228 digits, depending upon your computer’s resources.
Ten or twenty accurate digits in floating-point numbers is adequate for
many purposes, but two problems severely limit the usefulness of such a
system.

• When subtracting two floating-point numbers of almost equal mag-
nitude, the relative error of the difference may be very large. This
is known as catastrophic cancellation. For example, if two numbers
are identical in their first seventeen (of twenty) digits, their difference
is a three-digit number accurate to only three digits. In this case,
you would need to use almost forty digits to produce twenty accurate
digits in the answer.

• The mathematical form of the result is more concise, compact, and
convenient than its numerical value. For instance, an exponential func-
tion provides more information about the nature of a phenomenon
than a large set of numbers with twenty accurate digits. An exact
analytical description can also determine the behavior of a function
when extrapolating to regions for which no data exists.

2.2 Numerical Computations • 13

The evalf command converts an exact numerical expression to a
floating-point number.

> evalf(Pi);

3.141592654

By default, Maple calculates the result using ten digits of accuracy,
but you can specify any number of digits. Indicate the number after the
numerical expression, using the following notation.

> evalf(Pi, 200);

3.1415926535897932384626433832795028841\
97169399375105820974944592307816406286\
20899862803482534211706798214808651328\
23066470938446095505822317253594081284\
81117450284102701938521105559644622948\
9549303820

You can also force Maple to do all its computations with floating-point
approximations by including at least one floating-point number in each
expression. Floats are contagious : if an expression contains one floating-
point number, Maple evaluates the entire expression using floating-point
arithmetic.

> 1/3 + 1/4 + 1/5.3;

0.7720125786

> sin(0.2);

0.1986693308

The optional second argument to evalf controls the number of
floating-point digits for that particular calculation, and the special vari-
able Digits sets the number of floating-point digits for all subsequent
calculations.

> Digits := 20;

Digits := 20

14 • Chapter 2: Mathematics with Maple: The Basics

> sin(0.2);

0.19866933079506121546

Digits is now set to twenty, which Maple then uses at each step
in a calculation. Maple works like a calculator or an ordinary computer
application in this respect. When you evaluate a complicated numerical
expression, errors can accumulate to reduce the accuracy of the result
to less than twenty digits. In general, setting Digits to produce a given
accuracy is not easy, as the final result depends on your particular ques-
tion. Using larger values, however, usually gives you some indication. If
required, Maple can provide extreme floating-point accuracy.

Arithmetic with Special Numbers
Maple can work with complex numbers. I is the Maple default symbol for
the square root of minus one, that is, I =

√
−1.

> (2 + 5*I) + (1 - I);

3 + 4 I

> (1 + I)/(3 - 2*I);

1

13
+

5

13
I

You can also work with other bases and number systems.

> convert(247, binary);

11110111

> convert(1023, hex);

3FF

> convert(17, base, 3);

[2, 2, 1]

2.2 Numerical Computations • 15

Maple returns an integer base conversion as a list of digits; otherwise,
a line of numbers, like 221, may be ambiguous, especially when dealing
with large bases. Note that Maple lists the digits in order from least
significant to most significant.

Maple also supports arithmetic in finite rings and fields.

> 27 mod 4;

3

Symmetric and positive representations are both available.

> mods(27,4);

−1

> modp(27,4);

3

The default for the mod command is positive representation, but you
can change this option. For details, refer to ?mod.

Maple can work with Gaussian Integers . The GaussInt package has
about thirty commands for working with these special numbers. For in-
formation about these commands, refer to ?GaussInt help page.

Mathematical Functions
Maple contains all the standard mathematical functions (see Table 2.2 for
a partial list).

> sin(Pi/4);

1

2

√
2

> ln(1);

0

16 • Chapter 2: Mathematics with Maple: The Basics

Table 2.2 Select Mathematical Functions in Maple

Function Description

sin, cos, tan, etc. trigonometric functions
sinh, cosh, tanh, etc. hyperbolic trigonometric functions
arcsin, arccos, arctan, etc. inverse trigonometric functions
exp exponential function
ln natural logarithmic function
log[10] logarithmic function base 10
sqrt algebraic square root function
round round to the nearest integer
trunc truncate to the integer part
frac fractional part
BesselI, BesselJ, Bessel functions
BesselK, BesselY
binomial binomial function
erf, erfc error & complementary error functions
Heaviside Heaviside step function
Dirac Dirac delta function
MeijerG Meijer G function
Zeta Riemann Zeta function
LegendreKc, LegendreKc1, Legendre’s elliptic integrals
LegendreEc, LegendreEc1,
LegendrePic, LegendrePic1
hypergeom hypergeometric function

Note: When Maple cannot find a simpler form, it leaves the expression
as it is rather than convert it to an inexact form.

> ln(Pi);

ln(π)

2.3 Basic Symbolic Computations

Maple can work with mathematical unknowns, and expressions which
contain them.

2.3 Basic Symbolic Computations • 17

> (1 + x)^2;

(1 + x)2

> (1 + x) + (3 - 2*x);

4− x

Note that Maple automatically simplifies the second expression.
Maple has hundreds of commands for working with symbolic expres-

sions. For a partial list, see Table 2.2.

> expand((1 + x)^2);

1 + 2x+ x2

> factor(%);

(1 + x)2

As mentioned in 2.2 Numerical Computations, the ditto operator,
%, is a shorthand notation for the previous result.

> Diff(sin(x), x);

d

dx
sin(x)

> value(%);

cos(x)

> Sum(n^2, n);

∑

n

n2

> value(%);

1

3
n3 − 1

2
n2 +

1

6
n

18 • Chapter 2: Mathematics with Maple: The Basics

Divide one polynomial in x by another.

> rem(x^3+x+1, x^2+x+1, x);

2 + x

Create a series.

> series(sin(x), x=0, 10);

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 +

1

362880
x9 +O(x10)

All the mathematical functions mentioned in the previous section also
accept unknowns as arguments.

2.4 Assigning Expressions to Names

This section introduces the following concepts in Maple.

• Naming an object

• Guidelines for Maple names

• Maple arrow notation (->)

• Assignment operator (:=)

• Predefined and reserved names

Syntax for Naming an Object
Using the ditto operator, or retyping a Maple expression every time you
want to use it, is not always convenient, so Maple enables you to name
an object. Use the following syntax for naming.

name := expression;

You can assign any Maple expression to a name.

> var := x;

var := x

2.4 Assigning Expressions to Names • 19

> term := x*y;

term := x y

You can assign equations to names.

> eqn := x = y + 2;

eqn := x = y + 2

Guidelines for Maple Names
Maple names can include any alphanumeric characters and underscores,
but they cannot start with a number. Do not start names with an un-
derscore because Maple uses these names for internal classification.

• Examples of valid Maple names are polynomial, test_data, RoOt_lOcUs_pLoT,
and value2.

• Examples of invalid Maple names are 2ndphase (because it begins
with a number) and x&y (because & is not an alphanumeric character).

Maple Arrow Notation in Defining Functions
Define functions by using the Maple arrow notation (->). This notation
allows you to evaluate a function when it appears in Maple expressions.
You can do simple graphing of the function by using the plot command.

> f := x -> 2*x^2 -3*x +4;

f := x → 2x2 − 3x+ 4

> plot (f(x), x= -5..5);

10

20

30

40

50

60

70

–4 –2 0 2 4
x

20 • Chapter 2: Mathematics with Maple: The Basics

For more information on the plot command, see chapter 5 or enter
?plot at the Maple prompt.

The Assignment Operator
The assignment (:=) operator associates a function name with a function
definition. The name of the function is on the left-hand side of the :=.
The function definition (using the arrow notation) is on the right-hand
side. The following statement defines f as the squaring function.

> f := x -> x^2;

f := x → x2

Evaluating f at an argument produces the square of the argument of
f.

> f(5);

25

> f(y+1);

(y + 1)2

Predefined and Reserved Names
Maple has some predefined and reserved names. If you try to assign to a
name that is predefined or reserved, Maple displays a message, informing
you that the name you have chosen is protected.

> Pi := 3.14;

Error, attempting to assign to ‘Pi‘ which is protected

> set := {1, 2, 3};

Error, attempting to assign to ‘set‘ which is protected

2.5 Basic Types of Maple Objects • 21

2.5 Basic Types of Maple Objects

This section examines basic types of Maple objects, including expression
sequences, lists, sets, arrays, tables, and strings. These ideas are essen-
tial to the discussion in the rest of this book. Also, the following concepts
in Maple are introduced.

• Concatenation operator

• Square bracket usage

• Curly braces usage

• Mapping

• Colon (:) for suppressing output

• Double quotation mark usage

Types Expressions belong to a class or group that share common proper-
ities. The classes and groups are known as types. For a complete list of
types in Maple, refer to the ?type help page.

Expression Sequences
The basic Maple data structure is the expression sequence . This is a
group of Maple expressions separated by commas.

> 1, 2, 3, 4;

1, 2, 3, 4

> x, y, z, w;

x, y, z, w

Expression sequences are neither lists nor sets. They are a distinct data
structure within Maple and have their own properties.

• Expression sequences preserve the order and repetition of their ele-
ments. Items stay in the order in which you enter them. If you enter
an element twice, both copies remain.

• Sequences are often used to build more sophisticated objects through
such operations as concatenation.

22 • Chapter 2: Mathematics with Maple: The Basics

Other properties of sequences will become apparent as you progress
through this manual. Sequences extend the capabilities of many basic
Maple operations. For example, concatenation is a basic name-forming
operation. The concatenation operator in Maple is “||”. You can use
the operator in the following manner.

> a||b;

ab

When applying concatenation to a sequence, the operation affects each
element. For example, if S is a sequence, then you can prepend the name
a to each element in S by concatenating a and S.

> S := 1, 2, 3, 4;

S := 1, 2, 3, 4

> a||S;

a1 , a2 , a3 , a4

You can also perform multiple assignments using expression se-
quences. For example

> f,g,h := 3, 6, 1;

f, g, h := 3, 6, 1

> f;

3

> h;

1

2.5 Basic Types of Maple Objects • 23

Lists
You create a list by enclosing any number of Maple objects (separated
by commas) in square brackets.

> data_list := [1, 2, 3, 4, 5];

data_list := [1, 2, 3, 4, 5]

> polynomials := [x^2+3, x^2+3*x-1, 2*x];

polynomials := [x2 + 3, x2 + 3x− 1, 2x]

> participants := [Kathy, Frank, Rene, Niklaus, Liz];

participants := [Kathy , Frank , Rene , Niklaus , Liz]

Thus, a list is an expression sequence enclosed in square brackets.

Order Maple preserves the order and repetition of elements in a list.
Thus, [a,b,c], [b,c,a], and [a,a,b,c,a] are all different.

> [a,b,c], [b,c,a], [a,a,b,c,a];

[a, b, c], [b, c, a], [a, a, b, c, a]

Because order is preserved, you can extract a particular element from a
list without searching for it.

> letters := [a,b,c];

letters := [a, b, c]

> letters[2];

b

Use the nops command to determine the number of elements in a list.

> nops(letters);

3

24 • Chapter 2: Mathematics with Maple: The Basics

Section 2.6 Expression Manipulation discusses this command, in-
cluding its other uses, in more detail.

Sets

Maple supports sets in the mathematical sense. Commas separate the
objects, as they do in a sequence or list, but the enclosing curly braces
identify the object as a set.

> data_set := {1, -1, 0, 10, 2};

data_set := {−1, 0, 1, 2, 10}

> unknowns := {x, y, z};

unknowns := {x, y, z}

Thus, a set is an expression sequence enclosed in curly braces.

Order Maple does not preserve order or repetition in a set. That is,
Maple sets have the same properties as sets do in mathematics. Thus, the
following three sets are identical.

> {a,b,c}, {c,b,a}, {a,a,b,c,a};

{a, b, c}, {a, b, c}, {a, b, c}

For Maple, the integer 2 is distinct from the floating-point approxi-
mation 2.0. Thus, the following set has three elements, not two.

> {1, 2, 2.0};

{1, 2, 2.0}

The properties of sets make them a particularly useful concept in
Maple, just as they are in mathematics. Maple provides many operations
on sets, including the basic operations of intersection and union using
the notation intersect and union.

> {a,b,c} union {c,d,e};

{a, b, c, d, e}

2.5 Basic Types of Maple Objects • 25

> {1,2,3,a,b,c} intersect {0,1,y,a};

{1, a}

The nops command counts the number of elements in a set or list.

> nops(%);

2

For more details on the nops command, see 2.6 Expression Manip-
ulation.

Mapping A common and useful command, often used on sets, is map.
Mapping applies a function simultaneously to all the elements of any
structure.

> numbers := {0, Pi/3, Pi/2, Pi};

numbers := {0, π, 1
3
π,

1

2
π}

> map(g, numbers);

{g(0), g(π), g(1
3
π), g(

1

2
π)}

> map(sin, numbers);

{0, 1, 1
2

√
3}

Further examples demonstrating the use of map appear in 2.6 Ex-
pression Manipulation and 6.3 Structural Manipulations.

Operations on Sets and Lists
The member command verifies membership in sets and lists.

> participants := [Kate, Tom, Steve];

participants := [Kate , Tom, Steve]

26 • Chapter 2: Mathematics with Maple: The Basics

> member(Tom, participants);

true

> data_set := {5, 6, 3, 7};

data_set := {3, 5, 6, 7}

> member(2, data_set);

false

To select items from lists, use the subscript notation, [n], where n
identifies the position of the desired element in the list.

> participants[2];

Tom

Maple recognizes empty sets and lists, that is, lists or sets that have
no elements.

> empty_set := {};

empty_set := {}

> empty_list := [];

empty_list := []

You can create a new set from other sets by using, for example, the
union command. Delete items from sets by using the minus command.

> old_set := {2, 3, 4} union {};

old_set := {2, 3, 4}

> new_set := old_set union {2, 5};

new_set := {2, 3, 4, 5}

2.5 Basic Types of Maple Objects • 27

> third_set := old_set minus {2, 5};

third_set := {3, 4}

Arrays
Arrays are an extension of the concept of the list data structure. Think
of a list as a group of items in which you associate each item with a pos-
itive integer, its index, that represents its position in the list. The Maple
array data structure is a generalization of this idea. Each element is still
associated with an index, but an array is not restricted to one dimen-
sion. In addition, indices can also be zero or negative. Furthermore, you
can define or change the array’s individual elements without redefining it
entirely.

Declare the array to indicate dimensions.

> squares := array(1..3);

squares := array(1..3, [])

Assign the array elements. Multiple commands can be entered at one
command prompt provided each ends with a colon or semicolon.

> squares[1] := 1; squares[2] := 2^2; squares[3] := 3^2;

squares1 := 1

squares2 := 4

squares3 := 9

Or do both simultaneously.

> cubes := array(1..3, [1,8,27]);

cubes := [1, 8, 27]

You can select a single element using the same notation applied to
lists.

> squares[2];

28 • Chapter 2: Mathematics with Maple: The Basics

4

You must declare arrays in advance. To see the array’s contents, you
must use a command such as print.

> squares;

squares

> print(squares);

[1, 4, 9]

The preceding array has only one dimension, but arrays can have more
than one dimension. Define a 3× 3 array.

> pwrs := array(1..3,1..3);

pwrs := array(1..3, 1..3, [])

This array has dimension two (two sets of indices). To begin, assign
the array elements of the first row.

> pwrs[1,1] := 1; pwrs[1,2] := 1; pwrs[1,3] := 1;

pwrs1, 1 := 1

pwrs1, 2 := 1

pwrs1, 3 := 1

Continue for the rest of the array. If you prefer, you can end each
command with a colon (:), instead of the usual semicolon (;), to suppress
the output. Both the colon and semicolon are statement separators.

> pwrs[2,1] := 2: pwrs[2,2] := 4: pwrs[2,3] := 8:
> pwrs[3,1] := 3: pwrs[3,2] := 9: pwrs[3,3] := 27:
> print(pwrs);

1 1 1
2 4 8
3 9 27

2.5 Basic Types of Maple Objects • 29

You can select an element by specifying both the row and column.

> pwrs[2,3];

8

You can define a two-dimensional array and its elements simultane-
ously by using a similar method employed for the one-dimensional ex-
ample shown earlier. To do so, use lists within lists. That is, make a list
where each element is a list that contains the elements of one row of the
array. Thus, you could define the pwrs array as follows.

> pwrs2 := array(1..3, 1..3, [[1,1,1], [2,4,8], [3,9,27]]);

pwrs2 :=

1 1 1
2 4 8
3 9 27

Arrays are not limited to two dimensions, but those of higher order
are more difficult to display. You can declare all the elements of the array
as you define its dimension.

> array3 := array(1..2, 1..2, 1..2,
> [[[1,2],[3,4]], [[5,6],[7,8]]]);

array3 := array(1..2, 1..2, 1..2, [

(1, 1, 1) = 1

(1, 1, 2) = 2

(1, 2, 1) = 3

(1, 2, 2) = 4

(2, 1, 1) = 5

(2, 1, 2) = 6

(2, 2, 1) = 7

(2, 2, 2) = 8

])

Maple does not automatically expand the name of an array to the rep-
resentation of all elements. In some commands, you must specify explicitly
that you want to perform an operation on the elements.

30 • Chapter 2: Mathematics with Maple: The Basics

Suppose that you want to define a new array identical to pwr, but
with each occurrence of the number 2 in pwrs replaced by the number 9.
To perform this substitution, use the subs command. The basic syntax is

subs(x=expr1, y=expr2, ... , main_expr)

Note: The subs command does not modify the value of main_expr. It
returns an object of the same type with the specified substitutions. For
example, to substitute x+ y for z in an expression, do the following.

> expr := z^2 + 3;

expr := z2 + 3

> subs({z=x+y}, expr);

(x+ y)2 + 3

Note that the following call to subs does not work.

> subs({2=9}, pwrs);

pwrs

You must instead force Maple to fully evaluate the name of the ar-
ray to the component level and not just to its name, using the com-
mand evalm.

> pwrs3:=subs({2=9}, evalm(pwrs));

pwrs3 :=

1 1 1
9 4 8
3 9 27

This causes the substitution to occur in the components and full evalua-
tion displays the array’s elements, similar to using the print command.

> evalm(pwrs3);

2.5 Basic Types of Maple Objects • 31

1 1 1
9 4 8
3 9 27

Tables
A table is an extension of the concept of the array data structure. The
difference between an array and a table is that a table can have anything
for indices, not just integers.

> translate := table([one=un,two=deux,three=trois]);

translate := table([two = deux , three = trois , one = un])

> translate[two];

deux

Although at first they may seem to have little advantage over arrays,
table structures are very powerful. Tables enable you to work with natural
notation for data structures. For example, you can display the physical
properties of materials using a Maple table.

> earth_data := table([mass=[5.976*10^24,kg],
> radius=[6.378164*10^6,m],
> circumference=[4.00752*10^7,m]]);

earth_data := table([mass = [0.5976000000 1025, kg],

radius = [0.6378164000 107, m],

circumference = [0.4007520000 108, m]

])

> earth_data[mass];

[0.5976000000 1025, kg]

In this example, each index is a name and each entry is a list. Often,
much more general indices are useful. For example, you could construct a
table which has algebraic formulæ for indices and the derivatives of these
formulæ as values.

32 • Chapter 2: Mathematics with Maple: The Basics

Strings
A string is also an object in Maple and is created by enclosing any number
of characters in double quotes .

> "This is a string.";

“This is a string.”

They are nearly indivisible constructs that stand only for themselves;
they cannot be assigned a value.

> "my age" := 32;

Error, invalid left hand side of assignment

Like elements of lists or arrays, the individual characters of a string
can be indexed with square bracket notation.

> mystr := "I ate the whole thing.";

mystr := “I ate the whole thing.”

> mystr[3..5];

“ate”

> mystr[11..-2];

“whole thing”

A negative index represents a character position counted from the
right end of the string. In the example above, −2 represents the second
last character.

The concatenation operator, “||”, or the cat command is used to
join two strings together, and the length command is used to determine
the number of characters in a string.

> newstr := cat("I can’t believe ", mystr);

newstr := “I can’t believe I ate the whole thing.”

> length(newstr);

2.6 Expression Manipulation • 33

38

For examples of commands that operate on strings and take strings
as input, refer to the ?StringTools help page.

2.6 Expression Manipulation

Many Maple commands concentrate on manipulating expressions. This
includes manipulating results of Maple commands into a familiar or useful
form. This section introduces the most commonly used commands in this
area.

The simplify Command
You can use this command to apply simplification rules to an expres-
sion. Maple has simplification rules for various types of expressions and
forms, including trigonometric functions, radicals, logarithmic functions,
exponential functions, powers, and various special functions.

> expr := cos(x)^5 + sin(x)^4 + 2*cos(x)^2
> - 2*sin(x)^2 - cos(2*x);

expr :=

cos(x)5 + sin(x)4 + 2 cos(x)2 − 2 sin(x)2 − cos(2x)

> simplify(expr);

cos(x)4 (cos(x) + 1)

To perform only a certain type of simplification, specify the type you
want.

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2);

1 + ln(2) + ln(y)

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’trig’);

1 + ln(2 y)

34 • Chapter 2: Mathematics with Maple: The Basics

> simplify(sin(x)^2 + ln(2*y) + cos(x)^2, ’ln’);

sin(x)2 + ln(2) + ln(y) + cos(x)2

With the side relations feature, you can apply your own simplifica-
tion rules.

> siderel := {sin(x)^2 + cos(x)^2 = 1};

siderel := {sin(x)2 + cos(x)2 = 1}

> trig_expr := sin(x)^3 - sin(x)*cos(x)^2 + 3*cos(x)^3;

trig_expr := sin(x)3 − sin(x) cos(x)2 + 3 cos(x)3

> simplify(trig_expr, siderel);

2 sin(x)3 − 3 cos(x) sin(x)2 + 3 cos(x)− sin(x)

The factor Command
This command factors polynomial expressions.

> big_poly := x^5 - x^4 - 7*x^3 + x^2 + 6*x;

big_poly := x5 − x4 − 7x3 + x2 + 6x

> factor(big_poly);

x (x− 1) (x− 3) (x+ 2) (x+ 1)

> rat_expr := (x^3 - y^3)/(x^4 - y^4);

rat_expr :=
x3 − y3

x4 − y4

Both the numerator and denominator contain the common factor x−y.
Thus, factoring cancels these terms.

> factor(rat_expr);

2.6 Expression Manipulation • 35

x2 + x y + y2

(y + x) (x2 + y2)

Maple can factor both univariate and multivariate polynomials over
the domain the coefficients specify. You can also factor polynomials over
algebraic extensions. For details, refer to the ?factor help page.

The expand Command
The expand command is essentially the reverse of factor. It causes the
expansion of multiplied terms as well as a number of other expansions.
This is among the most useful of the manipulation commands. Although
you might imagine that with a name like expand the result would be larger
and more complex than the original expression; this is not always the case.
In fact, expanding some expressions results in substantial simplification.

> expand((x+1)*(x+2));

x2 + 3x+ 2

> expand(sin(x+y));

sin(y) cos(x) + cos(y) sin(x)

> expand(exp(a+ln(b)));

ea b

The expand command is quite flexible. You can you specify that cer-
tain subexpressions be unchanged by the expansion and program custom
expansion rules.

Although the simplify command may seem to be the most useful
command, this is misleading. Unfortunately, the word simplify is rather
vague. When you request to simplify an expression, Maple examines
your expression, tests many techniques, and then tries applying the ap-
propriate simplification rules. However, this might take a little time. As
well, Maple may not be able to determine what you want to accomplish
since universal mathematical rules do not define what is simpler.

When you do know which manipulations will make your expression
simpler for you, specify them directly. In particular, the expand command

36 • Chapter 2: Mathematics with Maple: The Basics

is among the most useful. It frequently results in substantial simplifica-
tion, and also leaves expressions in a convenient form for many other
commands.

The convert Command
This command converts expressions between different forms. For a list of
common conversions, see Table 2.3.

> convert(cos(x),exp);

1

2
e(x I) +

1

2

1

e(x I)

> convert(1/2*exp(x) + 1/2*exp(-x),trig);

cosh(x)

> A := Matrix([[a,b],[c,d]]);

A :=

[

a b
c d

]

> convert(A, ’listlist’);

[[a, b], [c, d]]

> convert(A, ’set’);

{a, b, d, c}

> convert(%, ’list’);

[a, b, d, c]

The normal Command
This command transforms rational expressions into factored normal
form,

numerator

denominator
,

2.6 Expression Manipulation • 37

Table 2.3 Common Conversions

Argument Description

polynom series to polynomials
exp, expln, expsincos trigonometric expressions to exponential form
parfrac rational expressions to partial fraction form
rational floating-point numbers to rational form
radians, degrees between degrees and radians
set, list, listlist between data structures
temperature between temperature scales
units between units

where the numerator and denominator are relatively prime polynomials
with integer coefficients.

> rat_expr_2 := (x^2 - y^2)/(x - y)^3 ;

rat_expr_2 :=
x2 − y2

(−y + x)3

> normal(rat_expr_2);

y + x

(−y + x)2

> normal(rat_expr_2, ’expanded’);

y + x

y2 − 2x y + x2

The expanded option transforms rational expressions into expanded
normal form.

The combine Command
This command combines terms in sums, products, and powers into a sin-
gle term. These transformations are, in some cases, the reverse of the
transformations that expand applies.

> combine(exp(x)^2*exp(y),exp);

e(2x+y)

38 • Chapter 2: Mathematics with Maple: The Basics

> combine((x^a)^2, power);

x(2 a)

The map Command
This command is useful when working with lists, sets, or arrays. It pro-
vides a means for working with multiple solutions or for applying an
operation to each element of an array.

The map command applies a command to each element of a data
structure or expression. While it is possible to write program structures
such as loops to accomplish these tasks, you should not underestimate the
convenience and power of the map command. The map command is one of
the most useful commands in Maple.

> map(f, [a,b,c]);

[f(a), f(b), f(c)]

> data_list := [0, Pi/2, 3*Pi/2, 2*Pi];

data_list := [0,
1

2
π,

3

2
π, 2π]

> map(sin, data_list);

[0, 1, −1, 0]

If you give the map command more than two arguments, Maple passes
the last argument(s) to the initial command.

> map(f, [a,b,c], x, y);

[f(a, x, y), f(b, x, y), f(c, x, y)]

For example, to differentiate each item in a list with respect to x, you
can use the following commands.

> fcn_list := [sin(x),ln(x),x^2];

fcn_list := [sin(x), ln(x), x2]

2.6 Expression Manipulation • 39

> map(Diff, fcn_list, x);

[
d

dx
sin(x),

d

dx
ln(x),

d

dx
(x2)]

> map(value, %);

[cos(x),
1

x
, 2x]

You can also create an operation to map onto a list. For example,
suppose that you want to square each element of a list. Replace each
element (represented by x) with its square (x2).

> map(x->x^2, [-1,0,1,2,3]);

[1, 0, 1, 4, 9]

The lhs and rhs Commands
These two commands take the left-hand side and right-hand side of an
expression, respectively.

> eqn1 := x+y=z+3;

eqn1 := y + x = z + 3

> lhs(eqn1);

y + x

> rhs(eqn1);

z + 3

The numer and denom Commands
These two commands take the numerator and denominator of a rational
expression, respectively.

> numer(3/4);

40 • Chapter 2: Mathematics with Maple: The Basics

3

> denom(1/(1 + x));

x+ 1

The nops and op Commands
These two commands are useful for breaking expressions into parts and
extracting subexpressions.

The nops command returns the number of parts in an expression.

> nops(x^2);

2

> nops(x + y + z);

3

The op command allows you to access the parts of an expression. It
returns the parts as a sequence.

> op(x^2);

x, 2

You can also specify items by number or range.

> op(1, x^2);

x

> op(2, x^2);

2

> op(2..-2, x+y+z+w);

y, z

2.6 Expression Manipulation • 41

Common Questions about Expression Manipulation

1. How do I substitute for a product of two unknowns? Use side
relations to specify an identity. Substituting directly does not usually
work because Maple searches for an exact match before substituting.

> expr := a^3*b^2;

expr := a3 b2

> subs(a*b=5, expr);

a3 b2

The subs command was unsuccessful in its attempt to substitute. Use the
simplify command.

> simplify(expr, {a*b=5});

25 a

You can also use the algsubs command, which performs an algebraic
substitution.

> algsubs(a*b=5, expr);

25 a

2. How do I factor out the constant from 2x + 2y? Currently, this
operation is not possible in Maple because its simplifier automatically
distributes the number over the product, believing that a sum is simpler
than a product. In most cases, this is true.

If you enter the following expression, Maple automatically multiplies
the constant into the expression.

> 2*(x + y);

2x+ 2 y

How can you then deal with such expressions, when you need to factor
out constants, or negative signs? To factor such expressions, try this sub-
stitution.

42 • Chapter 2: Mathematics with Maple: The Basics

> expr3 := 2*(x + y);

expr3 := 2x+ 2 y

> subs(2=two, expr3);

x two + y two

> factor(%);

two (x+ y)

2.7 Conclusion

In this chapter you have seen many of the types of objects which Maple
is capable of manipulating, including sequences, sets, and lists. You have
seen a number of commands, including expand, factor, and simplify,
that are useful for manipulating and simplifying algebraic expressions.
Others, such as map, are useful for sets, lists, and arrays. Meanwhile,
subs is useful almost any time.

In the next chapter, you will learn to apply these concepts to solve
systems of equations, one of the most fundamental problems in mathe-
matics. As you learn about new commands, observe how the concepts of
this chapter are used in setting up problems and manipulating solutions.

3 Finding Solutions

This chapter introduces the key concepts needed for quick, concise prob-
lem solving in Maple. Several commands are presented along with infor-
mation on how they interoperate.

In This Chapter
• Solving equations symbolically using the solve command

• Manipulations, plotting, and evaluating solutions

• Solving equations numerically using the fsolve command

• Specialized solvers in Maple

• Functions that act on polynomials

• Tools for solving problems in calculus

3.1 The Maple solve Command

The Maple solve command is a general-purpose equation solver. It takes
a set of one or more equations and attempts to solve them exactly for
the specified set of unknowns. (Recall from 2.5 Basic Types of Maple
Objects that you use braces to denote a set.)

Examples Using the solve Command
In the following examples, you are solving one equation for one unknown.
Each set contains only one element.

> solve({x^2=4}, {x});

43

44 • Chapter 3: Finding Solutions

{x = 2}, {x = −2}

> solve({a*x^2+b*x+c=0}, {x});

{x =
1

2

−b+
√
b2 − 4 a c

a
}, {x =

1

2

−b−
√
b2 − 4 a c

a
}

Maple returns each possible solution as a set. Since both of these
equations have two solutions, Maple returns a sequence of solution sets.

Solving for All Unknowns If you do not specify any unknowns in the
equation, Maple solves for all of them.

> solve({x+y=0});

{x = −y, y = y}

Here, the result is one solution set containing two equations. This
means that y can take any value, while x is the negative of y. This solution
is parameterized with respect to y.

Expression versus Equation If you give an expression rather than an
equation, Maple automatically assumes that the expression is equal to
zero.

> solve({x^3-13*x+12}, {x});

{x = 1}, {x = 3}, {x = −4}

Systems of Equations The solve command can also handle systems of
equations.

> solve({x+2*y=3, y+1/x=1}, {x,y});

{x = −1, y = 2}, {x = 2, y =
1

2
}

Returning the Solution as a Set Although you do not always need
the braces (denoting a set) around either the equation or variable, using
them forces Maple to return the solution as a set, which is usually the
most convenient form. For example, it is a common practice to check your

3.1 The Maple solve Command • 45

solutions by substituting them into the original equations. The following
example demonstrates this procedure.

As a set of equations, the solution is in an ideal form for the subs

command. You might first give the set of equations a name, like eqns, for
instance.

> eqns := {x+2*y=3, y+1/x=1};

eqns := {x+ 2 y = 3, y +
1

x
= 1}

Then solve.

> soln := solve(eqns, {x,y});

soln := {x = −1, y = 2}, {x = 2, y =
1

2
}

This produces two solutions:

> soln[1];

{x = −1, y = 2}

and

> soln[2];

{x = 2, y =
1

2
}

Verifying Solutions
To check the solutions, substitute them into the original set of equations
by using the two-parameter eval command.

> eval(eqns, soln[1]);

{1 = 1, 3 = 3}

> eval(eqns, soln[2]);

{1 = 1, 3 = 3}

46 • Chapter 3: Finding Solutions

For verifying solutions, you will find that this method is generally the
most convenient.

Observe that this application of the eval command has other uses.
To extract the value of x from the first solution, use the eval command.

> x1 := eval(x, soln[1]);

x1 := −1

Alternatively, you could extract the first solution for y.

> y1 := eval(y, soln[1]);

y1 := 2

Converting Solution Sets to Other Forms You can use this evaluation
to convert solution sets to other forms. For example, you can construct
a list from the first solution where x is the first element and y is the
second. First construct a list with the variables in the same order as
you want the corresponding solutions.

> [x,y];

[x, y]

Evaluate this list at the first solution.

> eval([x,y], soln[1]);

[−1, 2]

The first solution is now a list.
Instead, if you prefer that the solution for y comes first, evaluate [y,x]

at the solution.

> eval([y,x], soln[1]);

[2, −1]

Since Maple typically returns solutions in the form of sets (in which
the order of objects is uncertain), remembering this method for extracting
solutions is useful.

3.1 The Maple solve Command • 47

Applying One Operation to All Solutions The map command is another
useful command that allows you to apply one operation to all solutions.
For example, try substituting both solutions.

The map command applies the operation specified as its first argument
to its second argument.

> map(f, [a,b,c], y, z);

[f(a, y, z), f(b, y, z), f(c, y, z)]

Due to the syntactical design of map, it cannot perform multiple func-
tion applications to sequences. Consider the previous solution sequence,
for example,

> soln;

{x = −1, y = 2}, {x = 2, y =
1

2
}

Enclose soln in square brackets to convert it to a list.

> [soln];

[{x = −1, y = 2}, {x = 2, y =
1

2
}]

Use the following command to substitute each of the solutions simul-
taneously into the original equations, eqns.

> map(subs, [soln], eqns);

[{1 = 1, 3 = 3}, {1 = 1, 3 = 3}]

This method can be valuable if your equation has many solutions,
or if you are unsure of the number of solutions that a certain command
produces.

Restricting Solutions
You can limit solutions by specifying inequalities with the solve com-
mand.

> solve({x^2=y^2},{x,y});

48 • Chapter 3: Finding Solutions

{x = −y, y = y}, {y = y, x = y}

> solve({x^2=y^2, x<>y},{x,y});

{x = −y, y = y}

Consider this system of five equations in five unknowns.

> eqn1 := x+2*y+3*z+4*t+5*u=41:
> eqn2 := 5*x+5*y+4*z+3*t+2*u=20:
> eqn3 := 3*y+4*z-8*t+2*u=125:
> eqn4 := x+y+z+t+u=9:
> eqn5 := 8*x+4*z+3*t+2*u=11:

Solve the system for all variables.

> s1 := solve({eqn1,eqn2,eqn3,eqn4,eqn5}, {x,y,z,t,u});

s1 := {x = 2, t = −11, z = −1, y = 3, u = 16}

Solving for a Subset of Unknowns You can also solve for a subset of the
unknowns. Maple returns the solutions in terms of the other unknowns.

> s2 := solve({eqn1,eqn2,eqn3}, { x, y, z});

s2 := {x = −527

13
− 7 t− 28

13
u, z = −70

13
− 7 t− 59

13
u,

y =
635

13
+ 12 t+

70

13
u}

Exploring Solutions
You can explore the parametric solutions found at the end of the previous
section. For example, evaluate the solution at u = 1 and t = 1.

> eval(s2, {u=1,t=1});

{x =
−646

13
, y =

861

13
, z =

−220

13
}

Suppose that you require the solutions from solve in a particular
order. Since you cannot fix the order of elements in a set, solve does
not necessarily return your solutions in the order x, y, z. However, lists do
preserve order. Try the following.

3.1 The Maple solve Command • 49

> eval([x,y,z], s2);

[−527

13
− 7 t− 28

13
u,

635

13
+ 12 t+

70

13
u, −70

13
− 7 t− 59

13
u]

This command fixed the order and extracted the right-hand side of
the equations. Because the order is fixed, you know the solution for each
variable. This capability is particularly useful if you want to plot the
solution surface.

> plot3d(%, u=0..2, t=0..2, axes=BOXED);

–58–56–54–52–50–48–46–44–42

50 55 60 65 70 75 80

–25
–20
–15
–10

–5

The unapply Command
For convenience, define x = x(u, t), y = y(u, t), and z = z(u, t), that
is, convert the solutions to functions. Recall that you can easily select a
solution expression for a particular variable using eval.

> eval(x, s2);

−527

13
− 7 t− 28

13
u

However, this is an expression for x and not a function.

> x(1,1);

x(1, 1)

To convert the expression to a function, use the unapply command.
Provide unapply with the expression and the independent variables. For
example,

50 • Chapter 3: Finding Solutions

> f := unapply(x^2 + y^2 + 4, x, y);

f := (x, y) → x2 + y2 + 4

produces the function, f , of x and y that maps (x, y) to x2 + y2 + 4.
This new function is easy to use.

> f(a,b);

a2 + b2 + 4

Thus, to make your solution for x a function of both u and t, obtain
the expression for x, as above.

> eval(x, s2);

−527

13
− 7 t− 28

13
u

Use unapply to turn it into a function of u and t.

> x := unapply(%, u, t);

x := (u, t) → −527

13
− 7 t− 28

13
u

> x(1,1);

−646

13

You can create the functions y and z in the same manner.

> eval(y,s2);

635

13
+ 12 t+

70

13
u

> y := unapply(%,u,t);

y := (u, t) → 635

13
+ 12 t+

70

13
u

3.1 The Maple solve Command • 51

> eval(z,s2);

−70

13
− 7 t− 59

13
u

> z := unapply(%, u, t);

z := (u, t) → −70

13
− 7 t− 59

13
u

> y(1,1), z(1,1);

861

13
,
−220

13

The assign Command
The assign command allocates values to unknowns. For example, instead
of defining x, y, and z as functions, assign each to the expression on the
right-hand side of the corresponding equation.

> assign(s2);
> x, y, z;

−527

13
− 7 t− 28

13
u,

635

13
+ 12 t+

70

13
u, −70

13
− 7 t− 59

13
u

Think of the assign command as turning the “=” signs in the solution
set into “:=” signs.

The assign command is convenient if you want to assign expressions
to names. While this command is useful for quickly assigning solu-
tions, it cannot create functions.

This next example incorporates solving differential equations, which
section 3.6 Solving Differential Equations Using the dsolve Com-
mand discusses in further detail. To begin, assign the solution.

> s3 := dsolve({diff(f(x),x)=6*x^2+1, f(0)=0}, {f(x)});

s3 := f(x) = 2x3 + x

52 • Chapter 3: Finding Solutions

> assign(s3);

However, you have yet to create a function.

> f(x);

2x3 + x

produces the expected answer, but despite appearances, f(x) is simply
a name for the expression 2x3+x and not a function. Call the function
f using an argument other than x.

> f(1);

f(1)

The reason for this behavior is that the assign command performs
the following assignment

> f(x) := 2*x^3 + x;

f(x) := 2x3 + x

which is not the same as the assignment

> f := x -> 2*x^3 + x;

f := x → 2x3 + x

• The former defines the value of the function f for only the special
argument x.

• The latter defines the function f :x 7→ 2x3+x so that it works whether
you say f(x), f(y), or f(1).

To define the solution f as a function of x, use unapply.

> eval(f(x),s3);

2x3 + x

> f := unapply(%, x);

3.1 The Maple solve Command • 53

f := x → 2x3 + x

> f(1);

3

The RootOf Command

Maple occasionally returns solutions in terms of the RootOf command.
The following example demonstrates this point.

> solve({x^5 - 2*x + 3 = 0},{x});

{x = RootOf(_Z 5 − 2_Z + 3, index = 1)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 2)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 3)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 4)},
{x = RootOf(_Z 5 − 2_Z + 3, index = 5)}

RootOf(expr) is a placeholder for all the roots of expr. This indicates
that x is a root of the polynomial z5 − 2z + 3, while the index parameter
numbers and orders the solutions. This can be useful if your algebra is over
a field different from the complex numbers. By using the evalf command,
you obtain an explicit form of the complex roots.

> evalf(%);

{x = 0.9585321812 + 0.4984277790 I},
{x = −0.2467292569 + 1.320816347 I},
{x = −1.423605849},
{x = −0.2467292569− 1.320816347 I},
{x = 0.9585321812− 0.4984277790 I}

A general expression for the roots of degree five polynomials in terms
of radicals does not exist.

54 • Chapter 3: Finding Solutions

3.2 Solving Numerically Using the fsolve

Command

The fsolve command is the numeric equivalent of solve. The fsolve

command finds the roots of the equation(s) by using a variation of New-
ton’s method, producing approximate (floating-point) solutions.

> fsolve({cos(x)-x = 0}, {x});

{x = 0.7390851332}

For a general equation, fsolve searches for a single real root. For a
polynomial, however, it searches for all real roots.

> poly :=3*x^4 - 16*x^3 - 3*x^2 + 13*x + 16;

poly := 3x4 − 16x3 − 3x2 + 13x+ 16

> fsolve({poly},{x});

{x = 1.324717957}, {x = 5.333333333}

To search for more than one root of a general equation, use the avoid
option.

> fsolve({sin(x)=0}, {x});

{x = 0.}

> fsolve({sin(x)=0}, {x}, avoid={x=0});

{x = −3.141592654}

To find a specified number of roots in a polynomial, use the maxsols

option.

> fsolve({poly}, {x}, maxsols=1);

{x = 1.324717957}

By using the complex option, Maple searches for complex roots in
addition to real roots.

3.2 Solving Numerically Using the fsolve Command • 55

> fsolve({poly}, {x}, complex);

{x = −0.6623589786− 0.5622795121 I},
{x = −0.6623589786 + 0.5622795121 I},
{x = 1.324717957}, {x = 5.333333333}

You can also specify a range in which to look for a root.

> fsolve({cos(x)=0}, {x}, Pi..2*Pi);

{x = 4.712388980}

In some cases, fsolve may fail to find a root even if one exists. In
these cases, specify a range. To increase the accuracy of the solutions,
increase the value of the special variable, Digits. Note that in the fol-
lowing example the solution is not guaranteed to be accurate to thirty
digits, but rather, Maple performs all steps in the solution to at least
thirty significant digits rather than the default of ten.

> Digits := 30;

Digits := 30

> fsolve({cos(x)=0}, {x});

{x = 1.57079632679489661923132169164}

Limitations on solve

The solve command cannot solve all problems. Maple has an algorithmic
approach, and it cannot necessarily use the shortcuts that you might use
when solving the problem by hand.

• Mathematically, polynomials of degree five or higher do not have a
solution in terms of radicals. Maple attempts to solve them, but you
may need to use a numerical solution.

• Solving trigonometric equations can also be difficult. In fact, working
with any transcendental equation is quite difficult.

> solve({sin(x)=0}, {x});

56 • Chapter 3: Finding Solutions

{x = 0}

Note: Maple returns only one of an infinite number of solutions. How-
ever, if you set the environment variable _EnvAllSolutions to true,
Maple returns the entire set of solutions.

> _EnvAllSolutions := true;

_EnvAllSolutions := true

> solve({sin(x)=0}, {x});

{x = π_Z1 ~}

The prefix _Z on the variable indicates that it has integer values. The
tilde (~) indicates that there is an assumption on the variable, namely
that it is an integer. In addition, with the fsolve command you can
specify the range in which to look for a solution. Thereby you may gain
more control over the solution.

> fsolve({sin(x)=0}, {x}, 3..4);

{x = 3.14159265358979323846264338328}

These types of problems are common to all symbolic computation
systems, and are symptoms of the natural limitations of an algorithmic
approach to equation solving. When using solve, check your results.

Removable Singularities The following example highlights an issue that
can arise with removable singularities.

> expr := (x-1)^2/(x^2-1);

expr :=
(x− 1)2

x2 − 1

Maple finds a solution

> soln := solve({expr=0},{x});

soln := {x = 1}

3.2 Solving Numerically Using the fsolve Command • 57

but when you evaluate the expression at 1, you get 0/0.

> eval(expr, soln);

Error, numeric exception: division by zero

The limit shows that x = 1 is nearly a solution.

> Limit(expr, x=1);

lim
x→1

(x− 1)2

x2 − 1

> value (%);

0

Maple displays a vertical line at the asymptote, unless you specify
discont=true.

> plot(expr, x=-5..5, y=-10..10);

–10
–8
–6
–4
–2

0

2
4
6
8

10

y

–4 –2 2 4
x

Maple removes the singularity x = 1 from the expression before solv-
ing it. Independent of the method or tools you use to solve equations,
always check your results using the eval command.

58 • Chapter 3: Finding Solutions

3.3 Other Solvers

Maple contains many specialized solve commands. This section briefly
mentions some of them. If you require more details on any of these com-
mands, use the help system by entering ? and the command name at the
Maple prompt.

Finding Integer Solutions
The isolve command finds integer solutions to equations, solving for all
unknowns in the expression(s).

> isolve({3*x-4*y=7});

{x = 5 + 4_Z1 , y = 2 + 3_Z1 }

Maple uses the global names _Z1, . . . , _Zn to denote the integer param-
eters of the solution.

Finding Solutions Modulo m
The msolve command solves equations in the integers modulo m (the
positive representation for integers), solving for all unknowns in the ex-
pression(s).

> msolve({3*x-4*y=1,7*x+y=2},17);

{y = 6, x = 14}

> msolve({2^n=3},19);

{n = 13 + 18_Z1 ~}

The tilde (~) on _Z1 indicates that msolve has placed an assumption
on _Z1, in this case that _Z1 is an integer.

> about(_Z1);

Originally _Z1, renamed _Z1~:
is assumed to be: integer

Section 6.2 Assumptions describes how you can place assumptions
on unknowns.

3.4 Polynomials • 59

Solving Recurrence Relations
The rsolve command solves recurrence equations, returning an expres-
sion for the general term of the function.

> rsolve({f(n)=f(n-1)+f(n-2),f(0)=1,f(1)=1},{f(n)});

{f(n) =

(
1

2
+

1

10

√
5) (

1

2

√
5 +

1

2
)n + (

1

2
− 1

10

√
5) (−1

2

√
5 +

1

2
)n}

For more information, refer to ?LREtools.

3.4 Polynomials

A polynomial in Maple is an expression containing unknowns. Each term
in the polynomial contains a product of the unknowns. For example, if the
polynomial contains only one unknown, x, then the terms might contain
x3, x1 = x, and x0 = 1 as in the case of the polynomial x3 − 2x + 1. If
more than one unknown exists, then a term may also contain a product
of the unknowns, as in the polynomial x3 + 3x2y + y2. Coefficients can
be integers (as in the previous examples), rational numbers, irrational
numbers, floating-point numbers, complex numbers, or other variables.

> x^2 - 1;

x2 − 1

> x + y + z;

x+ y + z

> 1/2*x^2 - sqrt(3)*x - 1/3;

1

2
x2 −

√
3x− 1

3

> (1 - I)*x + 3 + 4*I;

(1− I)x+ 3 + 4 I

60 • Chapter 3: Finding Solutions

> a*x^4 + b*x^3 + c*x^2 + d*x + f;

a x4 + b x3 + c x2 + d x+ f

Maple possesses commands for many kinds of manipulations and
mathematical calculations with polynomials. The following sections in-
vestigate some of them.

Sorting and Collecting
The sort command arranges a polynomial into descending order of powers
of the unknowns. Rather than making another copy of the polynomial
with the terms in order, sort modifies the way Maple stores the original
polynomial in memory. In other words, if you display your polynomial
after sorting it, it retains the new order.

> sort_poly := x + x^2 - x^3 + 1 - x^4;

sort_poly := x+ x2 − x3 + 1− x4

> sort(sort_poly);

−x4 − x3 + x2 + x+ 1

> sort_poly;

−x4 − x3 + x2 + x+ 1

Maple sorts multivariate polynomials in two ways.

• The default method sorts them by total degree of the terms. Thus,
x2y2 will come before both x3 and y3.

• The other option sorts by pure lexicographic order (plex), first by the
powers of the first variable in the variable list (second argument) and
then by the powers of the second variable in the variable list.

The difference between these sorts is best shown by an example.

> mul_var_poly := y^3 + x^2*y^2 + x^3;

mul_var_poly := y3 + x2 y2 + x3

3.4 Polynomials • 61

> sort(mul_var_poly, [x,y]);

x2 y2 + x3 + y3

> sort(mul_var_poly, [x,y], ’plex’);

x3 + x2 y2 + y3

The collect command groups coefficients of like powers in a poly-
nomial. For example, if the terms ax and bx are in a polynomial, Maple
collects them as (a+ b)x.

> big_poly:=x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;

big_poly := x y + z x y + y x2 − z y x2 + x+ z x

> collect(big_poly, x);

(y − z y)x2 + (y + z y + 1 + z)x

> collect(big_poly, z);

(x y − y x2 + x) z + x y + y x2 + x

Mathematical Operations
You can perform many mathematical operations on polynomials. Among
the most fundamental is division, that is, to divide one polynomial into
another and determine the quotient and remainder. Maple provides the
commands rem and quo to find the remainder and quotient of a polynomial
division.

> r := rem(x^3+x+1, x^2+x+1, x);

r := 2 + x

> q := quo(x^3+x+1, x^2+x+1, x);

q := x− 1

62 • Chapter 3: Finding Solutions

> collect((x^2+x+1) * q + r, x);

x3 + x+ 1

Sometimes it is sufficient to know whether one polynomial divides
into another polynomial exactly. The divide command tests for exact
polynomial division.

> divide(x^3 - y^3, x - y);

true

> rem(x^3 - y^3, x - y, x);

0

You evaluate polynomials at values as you would with any expression,
by using eval.

> poly := x^2 + 3*x - 4;

poly := x2 + 3x− 4

> eval(poly, x=2);

6

> mul_var_poly := y^2*x - 2*y + x^2*y + 1;

mul_var_poly := y2 x− 2 y + y x2 + 1

> eval(mul_var_poly, {y=1,x=-1});

−1

Coefficients and Degrees
The commands degree and coeff determine the degree of a polynomial
and provide a mechanism for extracting coefficients.

> poly := 3*z^3 - z^2 + 2*z - 3*z + 1;

3.4 Polynomials • 63

Table 3.1 Commands for Finding Polynomial Coefficients

Command Description

coeff extract coefficient
lcoeff find the leading coefficient
tcoeff find the trailing coefficient
coeffs return a sequence of all the coefficients
degree determine the (highest) degree of the polynomial
ldegree determine the lowest degree of the polynomial

poly := 3 z3 − z2 − z + 1

> coeff(poly, z^2);

−1

> degree(poly,z);

3

Root Finding and Factorization
The solve command determines the roots of a polynomial whereas the
factor command expresses the polynomial in fully factored form.

> poly1 := x^6 - x^5 - 9*x^4 + x^3 + 20*x^2 + 12*x;

poly1 := x6 − x5 − 9x4 + x3 + 20x2 + 12x

> factor(poly1);

x (x− 2) (x− 3) (x+ 2) (x+ 1)2

> poly2 := (x + 3);

poly2 := x+ 3

> poly3 := expand(poly2^6);

64 • Chapter 3: Finding Solutions

Table 3.2 Functions that Act on Polynomials

Function Description

content content of a multivariate polynomial
compoly polynomial decomposition
discrim discriminant of a polynomial
gcd greatest common divisor
gcdex extended Euclidean algorithm
interp polynomial interpolation
lcm least common multiple
norm norm of a polynomial
prem pseudo-remainder
primpart primitive part of a multivariate polynomial
randpoly random polynomial
recipoly reciprocal polynomial
resultant resultant of two polynomials
roots roots over an algebraic number field
sqrfree square-free factorization

poly3 :=

x6 + 18x5 + 135x4 + 540x3 + 1215x2 + 1458x+ 729

> factor(poly3);

(x+ 3)6

> solve({poly3=0}, {x});

{x = −3}, {x = −3}, {x = −3}, {x = −3}, {x = −3}, {x = −3}

> factor(x^3 + y^3);

(x+ y) (x2 − x y + y2)

Maple factors the polynomial over the ring implied by the coefficients,
for example, the integers or rational numbers. The factor command also
allows you to specify an algebraic number field over which to factor the
polynomial. For more information, refer to the ?factor help page. For a
list of functions that act on polynomials, see Table 3.2.

3.5 Calculus • 65

3.5 Calculus

Maple provides many powerful tools for solving problems in calculus. This
section presents the following concepts.

• Computing the limits of functions by using the Limit command

• Creating series approximations of a function by using the series com-
mand

• Symbolically computing derivatives, indefinite integrals, and definite
integrals

About Calculus Examples in This Manual This and the following sec-
tion provide an introduction to the Maple commands for calculus prob-
lems. A more extensive look at the Student[Calculus] package and the
calculus commands in the main library is provided in chapter 4 and chap-
ter 7. Also, detailed information is available in the Maple help system.

Using the Limit Command Compute the limit of a rational function
as x approaches 1.

> f := x -> (x^2-2*x+1)/(x^4 + 3*x^3 - 7*x^2 + x+2);

f := x → x2 − 2x+ 1

x4 + 3x3 − 7x2 + x+ 2

> Limit(f(x), x=1);

lim
x→1

x2 − 2x+ 1

x4 + 3x3 − 7x2 + x+ 2

> value(%);

1

8

Taking the limit of an expression from either the positive or the neg-
ative direction is also possible. For example, consider the limit of tan(x)
as x approaches π/2.

Calculate the left-hand limit by using the option left.

> Limit(tan(x), x=Pi/2, left);

66 • Chapter 3: Finding Solutions

lim
x→(1/2π)−

tan(x)

> value(%);

∞

Calculate the right-hand limit.

> Limit(tan(x), x=Pi/2, right);

lim
x→(1/2π)+

tan(x)

> value(%);

−∞

Using the series Command To create a series approximation of a func-
tion, note the following example.

> f := x -> sin(4*x)*cos(x);

f := x → sin(4x) cos(x)

> fs1 := series(f(x), x=0);

fs1 := 4x− 38

3
x3 +

421

30
x5 +O(x6)

By default, the series command generates an order 6 polynomial.
By changing the value of the special variable, Order, you can increase or
decrease the order of a polynomial series.

Using convert(fs1, polynom) removes the order term from the se-
ries so that Maple can plot it.

> p := convert(fs1,polynom);

p := 4x− 38

3
x3 +

421

30
x5

3.5 Calculus • 67

> plot({f(x), p},x=-1..1, -2..2);

–2

–1

0

1

2

–1–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1
x

If you increase the order of truncation of the series to 12 and try again,
you see the expected improvement in the accuracy of the approximation.

> Order := 12;

Order := 12

> fs1 := series(f(x), x=0);

fs1 := 4x− 38

3
x3 +

421

30
x5 − 10039

1260
x7 +

246601

90720
x9−

6125659

9979200
x11 +O(x12)

> p := convert(fs1,polynom);

p := 4x− 38

3
x3 +

421

30
x5 − 10039

1260
x7 +

246601

90720
x9

− 6125659

9979200
x11

> plot({f(x), p}, x=-1..1, -2..2);

68 • Chapter 3: Finding Solutions

–2

–1

0

1

2

–1–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1
x

Computing Derivatives and Integrals Maple can symbolically compute
derivatives and integrals. For example, differentiate an expression, calcu-
late the indefinite integral of its result, and compare it with the original
expression. For more information on definite integration in Maple, see the
next example.

> f := x -> x*sin(a*x) + b*x^2;

f := x → x sin(a x) + b x2

> Diff(f(x),x);

∂

∂x
(x sin(a x) + b x2)

> df := value(%);

df := sin(a x) + x cos(a x) a+ 2 b x

> Int(df, x);

∫

sin(a x) + x cos(a x) a+ 2 b x dx

> value(%);

−cos(a x)

a
+

cos(a x) + a x sin(a x)

a
+ b x2

3.5 Calculus • 69

> simplify(%);

x (sin(a x) + b x)

Diff and Int are the inert forms of the diff and int commands.
The inert form of a command returns a typeset form of the operation
instead of performing the operation. In the previous examples, the inert
forms of the commands have been used in conjunction with the value

command. Note that it is unnecessary to use the inert forms; derivatives
and integrals can be calculated in single commands by using diff and
int, respectively. For more information on these commands, refer to the
?diff and ?int help pages.

You can also perform definite integrations. For example, recompute
the previous integral on the interval x = 1 to x = 2.

> Int(df,x=1..2);

∫ 2

1
sin(a x) + x cos(a x) a+ 2 b x dx

> value(%);

−sin(a) + 3 b+ 2 sin(2 a)

Consider a more complicated integral.

> Int(exp(-x^2), x);

∫

e(−x2) dx

> value(%);

1

2

√
π erf(x)

If Maple cannot clearly determine whether a variable is real or com-
plex, it may return an unexpected result.

> g := t -> exp(-a*t)*ln(t);

70 • Chapter 3: Finding Solutions

g := t → e(−a t) ln(t)

> Int (g(t), t=0..infinity);

∫ ∞

0
e(−a t) ln(t) dt

> value(%);

lim
t→∞

− e(−a t) ln(t) + Ei(1, a t) + γ + ln(a)

a

Maple assumes that the parameter a is a complex number. Hence, it
returns a more general answer.

For situations where you know that a is a positive, real number, indi-
cate this by using the assume command.

> assume(a > 0):
> ans := Int(g(t), t=0..infinity);

ans :=

∫ ∞

0
e(−a~ t) ln(t) dt

> value(%);

− ln(a~)

a~
− γ

a~

The result is much simpler. The only non-elementary term is the con-
stant gamma. The tilde (~) indicates that a carries an assumption. Remove
the assumption to proceed to more examples. You must do this in two
steps. The answer, ans, contains a with assumptions. To reset and con-
tinue using ans, replace all occurrences of a~ with a.

> ans := subs(a =’a’, ans);

ans :=

∫ ∞

0
e(−a t) ln(t) dt

The first argument, a = ’a’, deserves special attention. If you type
a after making an assumption about a, Maple automatically assumes you

3.6 Solving Differential Equations Using the dsolve Command • 71

mean a~. In Maple, single quotes delay evaluation. In this case, they
ensure that Maple interprets the second a as a and not as a~.

Now that you have removed the assumption on a inside ans, you can
remove the assumption on a itself by assigning it to its own name.

> a := ’a’:

Use single quotes here to remove the assumption on a. For more informa-
tion on assumptions, see 6.2 Assumptions.

3.6 Solving Differential Equations Using the
dsolve Command

Maple can symbolically solve many ordinary differential equations (ODEs),
including initial value and boundary value problems.

Define an ODE. Note that the diff command and not the inert form
Diff is used in this example.

> ode1 := {diff(y(t),t,t) + 5*diff(y(t),t) + 6*y(t) = 0};

ode1 := {(d
2

dt2
y(t)) + 5 (

d

dt
y(t)) + 6 y(t) = 0}

Define initial conditions.

> ic := {y(0)=0, D(y)(0)=1};

ic := {D(y)(0) = 1, y(0) = 0}

Solve with dsolve by using the union operator to form the union of
the two sets.

> soln := dsolve(ode1 union ic, {y(t)});

soln := y(t) = −e(−3 t) + e(−2 t)

To evaluate the solution at points or plot it, first use the unapply

command to define a proper Maple function. For more information, see
3.1 The Maple solve Command.

To extract a value from a solution set, use the eval command.

72 • Chapter 3: Finding Solutions

> eval(y(t), soln);

−e(−3 t) + e(−2 t)

Define y as a function of t by using the unapply command.

> y1:= unapply(%, t);

y1 := t → −e(−3 t) + e(−2 t)

> y1(a);

−e(−3 a) + e(−2 a)

Verify that y1 is a solution to the ODE:

> eval(ode1, y=y1);

{0 = 0}

and that y1 satisfies the initial conditions.

> eval(ic, y=y1);

{0 = 0, 1 = 1}

Another method for solution checking is also available. Assign the new
solution to y instead of y1.

> y := unapply(eval(y(t), soln), t);

y := t → −e(−3 t) + e(−2 t)

When you enter an equation containing y, Maple uses this function
and evaluates the result, in one step.

> ode1;

{0 = 0}

> ic;

3.6 Solving Differential Equations Using the dsolve Command • 73

{0 = 0, 1 = 1}

To change the differential equation, or the definition of y(t), remove
the definition with the following command.

> y := ’y’;

y := y

With Maple, you can use special functions, such as the Dirac delta
function, also called the impulse function, used in physics.

> ode2 := 10^6*diff(y(x),x,x,x,x) = Dirac(x-2) -
> Dirac(x-4);

ode2 := 1000000 (
d4

dx4
y(x)) = Dirac(x− 2)−Dirac(x− 4)

Specify boundary conditions

> bc := {y(0)=0, D(D(y))(0)=0, y(5)=0};

bc := {y(0) = 0, y(5) = 0, (D(2))(y)(0) = 0}

and an initial value.

> iv := {D(D(y))(5)=0};

iv := {(D(2))(y)(5) = 0}

> soln := dsolve({ode2} union bc union iv, {y(x)});

74 • Chapter 3: Finding Solutions

soln := y(x) =
1

6000000
Heaviside(x− 2)x3

− 1

750000
Heaviside(x− 2) +

1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

> eval(y(x), soln);

1

6000000
Heaviside(x− 2)x3 − 1

750000
Heaviside(x− 2)

+
1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

> y := unapply(%, x);

y := x → 1

6000000
Heaviside(x− 2)x3

− 1

750000
Heaviside(x− 2) +

1

500000
Heaviside(x− 2)x

− 1

1000000
Heaviside(x− 2)x2

− 1

6000000
Heaviside(x− 4)x3 +

1

93750
Heaviside(x− 4)

− 1

125000
Heaviside(x− 4)x+

1

500000
Heaviside(x− 4)x2

− 1

15000000
x3 +

1

1250000
x

3.6 Solving Differential Equations Using the dsolve Command • 75

This value of y satisfies the differential equation, the boundary con-
ditions, and the initial value.

> ode2;

−12Dirac(1, x− 2)− 1

6
Dirac(3, x− 4)x3 + 8Dirac(2, x− 2)

+ 24Dirac(1, x− 4) + 4Dirac(x− 2)− 4Dirac(x− 4)

− 6Dirac(1, x− 4)x+ 16Dirac(2, x− 4)x

− 2Dirac(2, x− 4)x2 − 8Dirac(2, x− 2)x

+ 2Dirac(2, x− 2)x2 +
1

6
Dirac(3, x− 2)x3

+
32

3
Dirac(3, x− 4)− 4

3
Dirac(3, x− 2)− 8Dirac(3, x− 4)x

+ 2Dirac(3, x− 4)x2 + 2Dirac(3, x− 2)x

−Dirac(3, x− 2)x2 + 6Dirac(1, x− 2)x

− 32Dirac(2, x− 4) = Dirac(x− 2)−Dirac(x− 4)

> simplify(%);

Dirac(x− 2)−Dirac(x− 4) = Dirac(x− 2)−Dirac(x− 4)

> bc;

{0 = 0}

> iv;

{0 = 0}

> plot(y(x), x=0..5, axes=BOXED);

76 • Chapter 3: Finding Solutions

0

2e–07

4e–07

6e–07

8e–07

1e–06

0 1 2 3 4 5
x

Unassign y now since you are done with it.

> y := ’y’;

y := y

Maple can also solve systems of differential equations. For example,
solve the following system of two simultaneous, second order equations.

> de_sys := { diff(y(x),x,x)=z(x), diff(z(x),x,x)=y(x) };

de_sys := { d2

dx2
z(x) = y(x),

d2

dx2
y(x) = z(x)}

> soln := dsolve(de_sys, {z(x),y(x)});

soln := {z(x) = _C1 ex +_C2 e(−x) +_C3 sin(x) + _C4 cos(x),

y(x) = _C1 ex +_C2 e(−x) −_C3 sin(x)−_C4 cos(x)}
If you solve the system without providing additional conditions, Maple
automatically generates the appropriate constants _C1, . . . , _C4.

You can extract and define the solutions by using the eval and
unapply commands.

> y := unapply(eval(y(x), soln), x);

y := x → _C1 ex +_C2 e(−x) −_C3 sin(x)−_C4 cos(x)

> y(1);

3.7 Conclusion • 77

_C1 e+_C2 e(−1) −_C3 sin(1)−_C4 cos(1)

You can unassign it again when you are finished.

> y := ’y’;

y := y

3.7 Conclusion

This chapter encompasses fundamental Maple features that will assist
you greatly as you learn more complicated problem-solving methods. Sec-
tions 3.1 and 3.2 introduced the solve and fsolve commands, and how
to evaluate and plot solutions. The final section of this chapter introduced
specialized solvers, and commands for solving calculus problems.

78 • Chapter 3: Finding Solutions

4 Maple Organization

This chapter introduces the organization of Maple, including the library
and built-in packages of specialized commands.

In This Chapter
• The Maple Library

• List of Maple Packages

• The Student Package

• The LinearAlgebra Package

• The Matlab Package

• The Statistics Package

• The simplex Linear Optimization Package

4.1 The Organization of Maple

The kernel is the base of the Maple system. It contains fundamental and
primitive commands.

• Maple language interpreter (which converts the commands you enter
into machine instructions your computer processor can understand)

• Algorithms for basic numerical calculation

• Routines to display results and perform other input and output oper-
ations

79

80 • Chapter 4: Maple Organization

The kernel consists of highly optimized C code—approximately 10% of
the system’s total size. The kernel has been kept small for speed and
efficiency. The Maple kernel implements the most frequently used routines
for integer and rational arithmetic and simple polynomial calculations.

The remaining 90% of the Maple mathematical algorithms is written
in the Maple language and resides in the Maple library.

The Maple Library
The Maple library divides into two groups: the main library and the
packages. These groups of functions sit above the kernel.

The main library contains the most frequently used Maple commands
(other than those in the kernel). The last commands in the library are in
the packages. Each package contains a group of commands for related cal-
culations. For example, the LinearAlgebra package contains commands
for the manipulation of Matrices.

You can use a command from a package in three ways.

1. Use the complete name of the package and the command name.

package[cmd](...)

If the package has a subpackage, use the complete name of the package,
the complete name of the subpackage, and the command name.

package[subpackage][cmd](...)

2. Activate the short form of the names for all the commands in a package
by using the with command.

with(package)

If the package has a subpackage, use the following with command.

with(package[subpackage])

Then use the short name for the command.

4.1 The Organization of Maple • 81

cmd(...)

3. Activate the short name for a single command from a package.

with(package, cmd)

If the package has a subpackage, use the following command.

with(package[subpackage], cmd)

Then use the short form of the command name.

cmd(...)

The following example uses the Tangent command in the Student[Calculus1]
package to calculate the slope of the tangent of the expression sin(x) at
the point x = 0.

> with(Student[Calculus1]);

[AntiderivativePlot , AntiderivativeTutor ,

ApproximateInt , ApproximateIntTutor , ArcLength,

ArcLengthTutor , Asymptotes , Clear , CriticalPoints ,

CurveAnalysisTutor , DerivativePlot , DerivativeTutor ,

DiffTutor , ExtremePoints , FunctionAverage ,

FunctionAverageTutor , FunctionChart , FunctionPlot ,

GetMessage , GetNumProblems , GetProblem, Hint ,

InflectionPoints , IntTutor , Integrand , InversePlot ,

InverseTutor , LimitTutor , MeanValueTheorem,

MeanValueTheoremTutor , NewtonQuotient ,

NewtonsMethod , NewtonsMethodTutor ,

PointInterpolation, RiemannSum, RollesTheorem,

Roots , Rule , Show , ShowIncomplete , ShowSteps ,

Summand , SurfaceOfRevolution,

SurfaceOfRevolutionTutor , Tangent ,

TangentSecantTutor , TangentTutor ,

TaylorApproximation, TaylorApproximationTutor ,

Understand , Undo, VolumeOfRevolution,

VolumeOfRevolutionTutor , WhatProblem]

82 • Chapter 4: Maple Organization

> Tangent(sin(x), x = 0);

x

When you enter the with(package); command, a list of the short
forms of all command names in the package is displayed. A warning mes-
sage is displayed if it has redefined any pre-existing names. To suppress
the display of the shorts forms of all command names, end the command
with a colon, for example, with(package):.

4.2 The Maple Packages

Maple has packages of specialized commands perform tasks from an ex-
tensive variety of disciplines, from Student Calculus to General Relativity
Theory. The examples in this section are not intended to be comprehen-
sive. They are simply examples of a few commands in selected packages,
to give you a glimpse of Maple functionality.

List of Packages
Many Maple packages are listed below. For a complete list of packages, re-
fer to the ?packages help page. For a full list of commands in a particular
package, refer to the ?packagename help page.

algcurves tools for studying the one-dimensional algebraic varieties
(curves) defined by multi-variate polynomials.

CodeGeneration functions that translate Maple code to other program-
ming languages such as C, Fortran, JavaTM, MATLAB r©, and Visual
Basic r©.

combinat combinatorial functions, including commands for calculating
permutations and combinations of lists, and partitions of integers.
(Use the combstruct package instead, where possible.)

combstruct commands for generating and counting combinatorial struc-
tures, as well as determining generating function equations for such
counting.

context tools for building and modifying context-sensitive menus in the
Maple graphical user interface (for example, when right-clicking an
output expression).

4.2 The Maple Packages • 83

CurveFitting commands that support curve-fitting.

DEtools tools for manipulating, solving, and plotting systems of differ-
ential equations, phase portraits, and field plots.

diffalg commands for manipulating systems of differential polynomial
equations (ODEs or PDEs).

difforms commands for handling differential forms; for problems in dif-
ferential geometry.

Domains commands to create domains of computation; supports com-
puting with polynomials, matrices, and series over number rings, finite
fields, polynomial rings, and matrix rings.

ExternalCalling commands that link to external functions.

finance commands for financial computations.

FileTools commands for file manipulation. Contains two subpackages:
Text for manipulating text files and Binary for working with files of
binary data.

GaussInt commands for working with Gaussian Integers; that is, num-
bers of the form a + bI where a and b are integers. Commands for
finding GCDs, factoring, and primality testing.

genfunc commands for manipulating rational generating functions.

geom3d commands for three-dimensional Euclidean geometry; to define
and manipulate points, lines, planes, triangles, spheres, polyhedra,
etcetera, in three dimensions.

geometry commands for two-dimensional Euclidean geometry; to define
and manipulate points, lines, triangles, and circles in two dimensions.

Groebner commands for Gröbner basis computations; in particular tools
for Ore algebras and D-modules.

group commands for working with permutation groups and finitely-
presented groups.

inttrans commands for working with integral transforms and their in-
verses.

LibraryTools commands for library manipulation and processing.

84 • Chapter 4: Maple Organization

liesymm commands for characterizing the contact symmetries of systems
of partial differential equations.

LinearAlgebra enhanced linear algebra commands for creating special
types of Matrices, calculating with large numeric Matrices, and per-
forming Matrix algebra.

LinearFunctionalSystems commands that solve linear functional sys-
tems with polynomial coefficients, find the universal denominator of
a rational solution, and transform a matrix recurrence system into an
equivalent system with a nonsingular leading or trailing matrix.

ListTools commands that manipulate lists.

LREtools commands for manipulating, plotting, and solving linear recur-
rence equations.

Maplets package commands for creating windows, dialogs, and other vi-
sual interfaces that interact with a user to provide the power of Maple.

MathML commands that import and export Maple expressions to and from
MathML text.

Matlab commands to use several MATLAB numerical matrix func-
tions, including eigenvalues and eigenvectors, determinants, and LU-
decomposition. (Only accessible if MATLAB is installed on your sys-
tem.)

MatrixPolynomialAlgebra set of tools for the algebraic manipulation of
matrix polynomials.

networks tools for constructing, drawing, and analyzing combinatorial
networks. Facilities for handling directed graphs, and arbitrary ex-
pressions for edge and vertex weights.

numapprox commands for calculating polynomial approximations to func-
tions on a given interval.

numtheory commands for classic number theory, primality testing, find-
ing the nth prime, factoring integers, generating cyclotomic polyno-
mials. This package also contains commands for handling convergents.

Ore_algebra routines for basic computations in algebras of linear oper-
ators.

4.2 The Maple Packages • 85

OrthogonalSeries commands for manipulating series of classical orthog-
onal polynomials or, more generally, hypergeometric polynomials.

orthopoly commands for generating various types of orthogonal polyno-
mials; useful in differential equation solving.

padic commands for computing p-adic approximations to real numbers.

PDEtools tools for manipulating, solving and plotting partial differential
equations.

plots commands for different types of specialized plots, including contour
plots, two- and three-dimensional implicit plotting, plotting text, and
plots in different coordinate systems.

plottools commands for generating and manipulating graphical objects.

PolynomialTools commands for manipulating polynomial objects.

powseries commands to create and manipulate formal power series rep-
resented in general form.

process the commands in this package allow you to write multi-process
Maple programs under UNIX r©.

RandomTools commands for working with random objects.

RationalNormalForms commands that construct the polynomial normal
form or rational canonical forms of a rational function, or minimal
representation of a hypergeometric term.

RealDomain provides an environment in which the assumed underlying
number system is the real number system not the complex number
system.

ScientificConstants commands that provide access to the values of
various constant physical quantities that occur in fields such as chem-
istry and physics.

ScientificErrorAnalysis commands that provide representation and
construction of numerical quantitites that have a central value and
associated uncertainty or error. This allows users to determine the
uncertainty in, for example, the product of quantities-with-error.

simplex commands for linear optimization using the simplex algorithm.

86 • Chapter 4: Maple Organization

Slode commands for finding formal power series solutions of linear ODEs.

Sockets commands for network communication in Maple. The routines
in this package enable you to connect to processes on remote hosts
on a network (such as an Intranet or the Internet) and exchange data
with these processes.

SolveTools commands that solve systems of algebraic equations. This
package gives expert users access to the routines used by the solve

command for greater control over the solution process.

Spread tools for working with spreadsheets in Maple.

stats simple statistical manipulation of data; includes averaging, stan-
dard deviation, correlation coefficients, variance, and regression anal-
ysis.

StringTools optimized commands for string manipulation.

Student contains subpackages that are course specific. In general, the
subpackages contain computation, interactive, and visualization com-
ponents. The following is a description of three subpackages.

Precalculus interactive tutors, which help with some of the fun-
damental concepts that lead to calculus.

Calculus1 commands for stepping through differentiation, integra-
tion, and limit problems, visualization of Newton’s method, Rie-
mann sums, arc length, volume of rotation and others, as well as
routines for finding points of interest of an expression.

LinearAlgebra commands to help instructors present and students
learn the basic material of a standard first course in linear algebra.
Visualization routines use Maple plotting facilities to represent var-
ious concepts and computations, for example, displaying two 3-D
Vectors and their cross products. Interactive routines allow students
to work interactively through a particular type of linear algebra
problem, such as finding the eigenvalues of a square matrix. The
subpackage also includes routines for Matrix computations, such as
constructing a Matrix of Jordon blocks.

SumTools tools for finding closed forms of definite and indefinite sums.

tensor commands for calculating with tensors and their applications in
General Relativity Theory.

4.2 The Maple Packages • 87

TypeTools commands for extending the set of recognized types in the
type command.

Units commands for converting values between units, and environments
for performing calculations with units.

VariationalCalculus commands for Calculus of Variations computa-
tions.

VectorCalculus procedures to perform multivariate and Vector calculus
operations on objects based on the rtable datatype.

Worksheet commands that provide an infrastructure for generating and
manipulating Maple worksheets by using the Maple language.

XMLTools commands that manipulate Maple’s internal representation of
XML documents.

Example Packages
The following section provides examples from five Maple packages.

• Student[Calculus1]

• LinearAlgebra

• Matlab

• Statistics

• simplex Linear Optimization

The Student Package
The Student package contains subpackages designed to assist with the
teaching and learning of undergraduate mathematics. There are many
routines for displaying functions, computations, and theorems. In general,
the Student package contains computation, interactive, and visualization
components. For a complete list of subpackages, refer to the ?Student help
page. The following provides examples from the Student[Calculus1]

subpackage.

The Student Calculus1 Subpackage (Single Variable) This subpack-
age helps you step through differentiation, integration, and limit com-
putations. The package contains visualization and interactive routines,
and single-step computation. For details about the Student[Calculus1]
package, refer to the ?Student[Calculus1] help page.

88 • Chapter 4: Maple Organization

Finding the Derivative of a Function You can find the derivative of
a function by using the DiffTutor Maplet application, an interactive
routine in the Student[Calculus1] package. For example, the following
code invokes the interactive DiffTutor.

> with(Student[Calculus1]);
> DiffTutor();
> DiffTutor(x*cos(x));
> DiffTutor(x*cos(x),x);

See the ?Student[Calculus1][DiffTutor] help page and copy the ex-
ample into you worksheet.

Worksheet Examples
The following examples are generated using the Student[Calculus1]

subpackage.

Derivative Given the function 4*x^2, find its derivative. First, activate
the short forms of all the command names in the package by using the
with command.

> with(Student[Calculus1]):
> infolevel[Student[Calculus1]] := 1:

4.2 The Maple Packages • 89

To view a list of all the commands that Maple is loading, replace the
colon at the end of the command with a semicolon.

> Diff(4*x^2, x);

d

dx
(4x2)

Use the constantmultiple rule.

> Rule[constantmultiple](%);

Creating problem #1

d

dx
(4x2) = 4 (

d

dx
(x2))

Use the power rule.

> Rule[power](%);

d

dx
(4x2) = 8x

Integration Consider the following integration example. Integrate x ∗
cos(x) + x from x = 0 to x = π.

> Int(x*cos(x) + x, x=0..Pi);

∫ π

0
x cos(x) + x dx

Use the sum rule.

> Rule[sum](%);

Creating problem #2

90 • Chapter 4: Maple Organization

∫ π

0
x cos(x) + x dx =

∫ π

0
x cos(x) dx+

∫ π

0
x dx

Use the power rule.

> Rule[power](%);

∫ π

0
x cos(x) + x dx =

∫ π

0
x cos(x) dx+

1

2
π2

Use the Hint command to determine a possible next step for the
problem.

> Hint(%);

[parts , x, sin(x)]

Use the hint with the Rule command.

> Rule[%](%%);

∫ π

0
x cos(x) + x dx = −

∫ π

0
sin(x) dx+

1

2
π2

Use the sin rule to complete this computation.

> Rule[sin](%);

∫ π

0
x cos(x) + x dx = −2 +

1

2
π2

Calculating Limits Calculate the limit of (1+1/x)x. Use the Understand
command to use rules for calculating the Limit without explicitly apply-
ing them. To add the constant, constant multiple, power, and sum Limit

rules to the list of understood rules for the following example, use the
Understand command.

> Understand(Limit, constant, ‘c*‘, power, sum);

Limit = [constant , constantmultiple , power , sum]

4.2 The Maple Packages • 91

> Limit((1 + 1/x)^x, x=infinity);

lim
x→∞

(1 +
1

x
)x

Request a hint for the next step of the computation.

> Hint(%);

Creating problem #3

Rewrite the expression as an exponential to prepare for using
l‘Hopital’s rule

[rewrite , (1 +
1

x
)x = e(x ln(1+ 1

x
))]

Use the rule that is returned by Hint.

> Rule[%](%%);

lim
x→∞

(1 +
1

x
)x = lim

x→∞
e(x ln(1+ 1

x
))

> Hint(%);

[exp]

> Rule[%](%%);

lim
x→∞

(1 +
1

x
)x = e(limx→∞ x ln(1+ 1

x
))

> Hint(%);

[lhopital , ln(1 +
1

x
)]

> Rule[%](%%);

lim
x→∞

(1 +
1

x
)x = e(limx→∞

x
x+1)

92 • Chapter 4: Maple Organization

> Hint(%);

rewrite ,
x

x+ 1
=

1

1 +
1

x

> Rule[%](%%);

lim
x→∞

(1 +
1

x
)x = e

Plotting a Function and A Tangent Line Consider the function −2/3∗
x2 + x. Plot the function and its tangent line at x = 0.

> Tangent(-2/3*x^2+x, x=0, -2..2, output=plot,
> showtangent=true);

f(x)
The tangent at x = 0

The Tangent to the Graph of
f(x) = –2/3*x^2+x

at the Point (0, f(0))

–5

–4

–3

–2

–1

1

2

–2 –1 1 2
x

Where does this curve cross the x-axis?

> Roots(-2/3*x^2+x);

[0,
3

2
]

4.2 The Maple Packages • 93

You can find the area under the curve between these two points by
using Riemann sums.

> ApproximateInt(-2/3*x^2+x, x=0..3/2, method=midpoint,
> output=plot, view=[0..1.6, -0.15..0.4]);

f(x)

An Approximation of the Integral of
f(x) = –2/3*x^2+x

on the Interval [0, 3/2]
Using a Midpoint Riemann Sum

Approximate Value: .3750000000

 Area: .3768750000

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x

Since the result is not a good approximation, increase the number of
boxes used to forty.

> ApproximateInt(-2/3*x^2+x, x=0..3/2, method=midpoint,
> output=plot, view=[0..1.6, -0.15..0.4],
> partition=40);

f(x)

An Approximation of the Integral of
f(x) = –2/3*x^2+x

on the Interval [0, 3/2]
Using a Midpoint Riemann Sum

Approximate Value: .3750000000

 Area: .3751171867

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
x

To determine the actual value, take the limit as n goes to ∞. Use n
boxes and change the output to sum .

> ApproximateInt(-2/3*x^2+x, x=0..3/2, method=midpoint,
> output=sum, partition=n);

94 • Chapter 4: Maple Organization

3

2

n−1
∑

i=0

−
3

2

(i+
1

2
)2

n2
+

3

2

i+
1

2
n

n

Take the limit as n goes to ∞.

> Limit(%, n=infinity);

lim
n→∞

3

2

n−1
∑

i=0

−
3

2

(i+
1

2
)2

n2
+

3

2

i+
1

2
n

n

> value(%);

3

8

Observe that you can obtain the same result by using an integral.

> Int(-2/3*x^2+x, x=0..3/2);

∫ 3/2

0
− 2

3
x2 + x dx

> value(%);

3

8

For more information on calculus with Maple, see chapter 7.

The LinearAlgebra Package
The LinearAlgebra package contains routines for computational linear
algebra.

• For a complete list of commands, refer to the ?LinearAlgebra help
page.

• For the student version, refer to the ?Student[LinearAlgebra] help
page.

4.2 The Maple Packages • 95

The following examples are generated using the LinearAlgebra package.
In linear algebra, a set of linearly independent vectors that generates a
vector space is a basis. That is, you can uniquely express any element in
the vector space as a linear combination of the elements of the basis.

A set of vectors {v1, v2, v3, . . . , vn} is linearly independent if and only
if

c1v1 + c2v2 + c3v3 + · · ·+ cnvn = 0

implies
c1 = c2 = c3 = · · · = cn = 0.

Determining a Basis Determine a basis for the vector space generated
by the vectors [1,−1, 0, 1], [5,−2, 3,−1], and [6,−3, 3, 0]. Express the vec-
tor [1, 2, 3,−5] with respect to this basis.

Enter the vectors.

> with(LinearAlgebra):
> v1:=<1|-1|0|1>:
> v2:=<5|-2|3|-1>:
> v3:=<6|-3|3|0>:
> vector_space:=<v1,v2,v3>;

vector_space :=

1 −1 0 1
5 −2 3 −1
6 −3 3 0

If the vectors are linearly independent, then they form a basis. To test
linear independence, set up the equation c1v1 + c2v2 + c3v3 = 0

c1[1,−1, 0, 1] + c2[5,−2, 3,−1] + c3[6,−3, 3, 0] = [0, 0, 0, 0]

which is equivalent to

c1 + 5c2 + 6c3 = 0

−c1 − 2c2 − 3c3 = 0

3c2 + 3c3 = 0

c1 − c2 = 0

> LinearSolve(Transpose(vector_space), <0,0,0,0>);

96 • Chapter 4: Maple Organization

−_t0 3

−_t0 3

_t0 3

The vectors are linearly dependent since each is a linear product of a
variable. Thus, they cannot form a basis. The RowSpace command returns
a basis for the vector space.

> b:=RowSpace(vector_space);

b := [[1, 0, 1, −1], [0, 1, 1, −2]]

> b1:=b[1]; b2:=b[2];

b1 := [1, 0, 1, −1]

b2 := [0, 1, 1, −2]

> basis:=<b1,b2>;

basis :=

[

1 0 1 −1
0 1 1 −2

]

Express [1, 2, 3,−5] in coordinates with respect to this basis.

> LinearSolve(Transpose(basis), <1|2|3|-5>);

[

1
2

]

The Matlab Package
The Matlab package enables you to call selected MATLAB functions from
a Maple session, provided you have MATLAB installed on your system.1

MATLAB is an abbreviation of matrix laboratory and is a popular nu-
merical computation package, used extensively by engineers and other
computing professionals.

1There is also a Symbolic Computation Toolbox available for MATLAB that allows
you to call Maple commands from MATLAB.

4.2 The Maple Packages • 97

To establish the connection between the two products, enter the com-
mand

> with(Matlab):

The call to the Matlab library automatically executes the openlink

command.
To determine the eigenvalues and eigenvectors of a matrix of integers,

first define the matrix in Maple syntax.

> A := Matrix([[1,2,3],[1,2,3],[2,5,6]]):

Then the following call to eig is made.

> P,W := eig(A, eigenvectors=true):

Notice what is to the left of the assignment operator. The (P,W)

specifies that two outputs are to be generated and assigned to variables
— the eigenvalues to W and the eigenvectors to P. This multiple assignment
is available to standard Maple commands is rarely used because existing
Maple commands are designed to create a single result.

Consider the individual results.

> W;

9.321825 0. 0.

0. −.5612673 10−15 0.

0. 0. −.3218253

> P;

−.3940365889964673 −.9486832980505138 −.5567547110202646

−.3940365889964672 −2.758331802155925 10−16 −.5567547110202655

−.8303435030540421 .3162277660168383 .6164806432593667

The commands in this package can also take input in MATLAB for-
mat. For more information on acceptable input, refer to the ?Matlab help
page.

98 • Chapter 4: Maple Organization

The Statistics Package
The stats package has many commands for data analysis and manipu-
lation, and various types of statistical plotting. It also contains a wide
range of statistical distributions.

The stats package contains subpackages. Within each subpackage,
the commands are grouped by functionality.

> with(stats);

[anova, describe , fit , importdata, random, statevalf ,

statplots , transform]

The stats package works with data in statistical lists , which can
be standard Maple lists. A statistical list can also contain ranges and
weighted values. The difference is best shown using an example. The name
marks is assigned a standard list,

> marks :=
> [64,93,75,81,45,68,72,82,76,73];

marks := [64, 93, 75, 81, 45, 68, 72, 82, 76, 73]

as is readings

> readings := [0.75, 0.75, .003, 1.01, .9125,
> .04, .83, 1.01, .874, .002];

readings := [0.75, 0.75, 0.003, 1.01, 0.9125, 0.04, 0.83,

1.01, 0.874, 0.002]

which is equivalent to the following statistical list.

> readings := [Weight(.75, 2), .003, Weight(1.01, 2),
> .9125, .04, .83, .874, .002];

readings := [Weight(0.75, 2), 0.003, Weight(1.01, 2),

0.9125, 0.04, 0.83, 0.874, 0.002]

The expression Weight(x,n) indicates that the value x appears n
times in the list.

If differences less than 0.01 are so small that they are not meaningful,
you can group them together, and give a range (using “..”).

4.2 The Maple Packages • 99

> readings := [Weight(.75, 2), Weight(1.01, 2), .9125,
> .04, .83, .874, Weight(0.002..0.003, 2)];

readings := [Weight(0.75, 2), Weight(1.01, 2), 0.9125,

0.04, 0.83, 0.874, Weight(0.002..0.003, 2)]

The describe subpackage contains commands for data analysis.

> describe[mean](marks);

729

10

> describe[range](marks);

45..93

> describe[range](readings);

0.002..1.01

> describe[standarddeviation](readings);

0.4038750457

This package contains many statistical distributions. Generate some
random data using the normal distribution, group it into ranges, and then
plot a histogram of the ranges.

> random_data:=[random[normald](50)];

100 • Chapter 4: Maple Organization

random_data := [−0.4386378394, −1.140005385,

0.1529160443, 0.7487697029, −0.4908898750,

−0.6385850228, 0.7648245898, −0.04721150696,

−1.463572278, 0.4470293004, 1.342701867,

2.162605068, −0.2620109124, 0.1093403084,

−0.9886372087, −0.7765483851, −0.1231141571,

0.3876183720, 1.625165927, 1.095665255,

−0.2068680316, −1.283733823, 1.583279600,

0.3045008349, −0.7304597374, 0.4996033128,

0.8670709448, −0.1729739933, −0.6819890237,

0.005183053789, 0.8876933468, −0.3758638317,

1.452138520, 2.858250470, 0.6917100232,

0.6341448687, 0.6707087107, 0.5872984199,

0.03801888006, −0.1238893314, −0.01231563388,

−0.7709242575, −1.599692668, 0.8181350112,

0.08547526754, 0.09467224460, −1.407989130,

0.4128440679, −0.9586605355, −0.08180943597]

> ranges:=[-5..-2,-2..-1,-1..0,0..1,1..2,2..5];

ranges := [−5..− 2, −2..− 1, −1..0, 0..1, 1..2, 2..5]

> data_list:=transform[tallyinto](random_data,ranges);

data_list := [Weight(2..5, 2), Weight(0..1, 20),

Weight(−5..− 2, 0), Weight(−2..− 1, 5), Weight(1..2, 5),

Weight(−1..0, 18)]

> statplots[histogram](data_list);

0

5

10

15

20

–6 –4 –2 2 4 6

4.2 The Maple Packages • 101

The simplex Linear Optimization Package
The simplex package contains commands for linear optimization, using
the simplex algorithm. Linear optimization involves finding optimal solu-
tions to equations under constraints.

An example of a classic optimization problem is the pizza delivery
problem. You have four pizzas to deliver, to four different places, spread
throughout the city. You want to deliver all four using as little gas as
possible. You also must get to all four locations in under twenty minutes,
so that the pizzas stay hot. If you can create mathematical equations
representing the routes to the four places and the distances, you can find
the optimal solution. That is, you can determine what route you should
take to get to all four places in as little time and using as little gas as
possible. The constraints on this particular system are that you have to
deliver all four pizzas within twenty minutes of leaving the restaurant.

Here is a very small system as an example.

> with(simplex);

Warning, the name basis has been redefined
Warning, the protected names maximize and minimize have
been redefined and unprotected

[basis , convexhull , cterm, define_zero, display , dual ,

feasible , maximize , minimize , pivot , pivoteqn, pivotvar ,

ratio, setup, standardize]

To maximize the expression w, enter

> w := -x+y+2*z;

w := −x+ y + 2 z

subject to the constraints c1, c2, and c3.

> c1 := 3*x+4*y-3*z <= 23;

c1 := 3x+ 4 y − 3 z ≤ 23

> c2 := 5*x-4*y-3*z <= 10;

c2 := 5x− 4 y − 3 z ≤ 10

102 • Chapter 4: Maple Organization

> c3 := 7*x +4*y+11*z <= 30;

c3 := 7x+ 4 y + 11 z ≤ 30

> maximize(w, {c1,c2,c3});

In this case, no answer means that Maple cannot find a solution. You can
use the feasible command to determine if the set of constraints is valid.

> feasible({c1,c2,c3});

true

Try again and place an additional restriction on the solution.

> maximize(w, {c1,c2,c3}, NONNEGATIVE);

{z =
1

2
, y =

49

8
, x = 0}

4.3 Conclusion

This chapter introduced the organization of Maple and the Maple library.
Additionally, examples from five packages were provided. This information
serves as context for references and concepts in the following chapters.

5 Plotting

Maple can produce several forms of graphs. Maple accepts explicit, im-
plicit, and parametric forms, and recognizes many coordinate systems.

In This Chapter
• Graphing in two dimensions

• Graphing in three dimensions

• Animation

• Annotating plots

• Composite plots

• Special plots

• Manipulating graphical objects

• Code for color plates

• Interactive plot builder

Plotting Commands in Main Maple Library
The command-line plotting feature of Maple contains plotting functions
in the main library and in packages. The plot and plot3d commands
reside in the main Maple library. These functions can be called any time
during a Maple session. For details about these commands, refer to the
?plot and ?plot3d help pages.

Plotting Commands in Packages
Many functions reside in the plots and plottools packages. These pack-
ages must be accessed by using the long or short form in the command
calling sequence. For details about these packages, refer to the ?plots

and ?plottools help pages. For command calling sequence information,
refer to the ?UsingPackages help page.

103

104 • Chapter 5: Plotting

Publishing Material with Plots
Plots created with the default thickness of 0 are sometimes too faint for
professionally published documents. It is recommended that you increase
plot line thickness to 3 before submitting documents for professional print-
ing. For information about this feature, see the ?plot[options] help
page.

5.1 Graphing in Two Dimensions

When plotting an explicit function, y = f(x), Maple requires the function
and the domain.

> plot(sin(x), x=-2*Pi..2*Pi);

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6
x

Click a point in the plot window to display particular coordinates. The
menus (found on the menu bar or by right-clicking the plot) allow you
to modify various characteristics of the plots or use many of the plotting
command options listed in the ?plot,options help page.

Maple can also graph user-defined functions.

> f := x -> 7*sin(x) + sin(7*x);

f := x → 7 sin(x) + sin(7x)

> plot(f(x), x=0..10);

5.1 Graphing in Two Dimensions • 105

–6

–4

–2
0

2

4

6

2 4 6 8 10
x

Maple allows you to focus on a specified section in the x- and y-
dimensions.

> plot(f(x), x=0..10, y=4..8);

4

5

6

7

8

y

0 2 4 6 8 10
x

Maple can plot infinite domains.

> plot(sin(x)/x, x=0..infinity);

0 infinity
x

106 • Chapter 5: Plotting

Parametric Plots
You cannot specify some graphs explicitly. In other words, you cannot
write the dependent variable as a function, y = f(x). For example, on a
circle most x values correspond to two y values. One solution is to make
both the x-coordinate and the y-coordinate functions of some parame-
ter, for example, t. The graph generated from these functions is called a
parametric plot. Use this syntax to specify parametric plots.

plot([x-expr, y-expr, parameter=range])

Plot a list containing the x-expr, the y-expr, and the name and range of
the parameter. For example

> plot([t^2, t^3, t=-1..1]);

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

The points (cos t, sin t) lie on a circle.

> plot([cos(t), sin(t), t=0..2*Pi]);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

The above plot resembles an ellipse because Maple, by default, scales
the plot to fit the window. Here is the same plot again but with

5.1 Graphing in Two Dimensions • 107

scaling=constrained. To change the scaling, use the context-sensitive
menu or the scaling option.

> plot([cos(t), sin(t), t=0..2*Pi], scaling=constrained);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

The drawback of constrained scaling is that it may obscure impor-
tant details when the features in one dimension occur on a much smaller
or larger scale than the others. The following plot is unconstrained.

> plot(exp(x), x=0..3);

2
4
6
8

10
12
14
16
18
20

0 0.5 1 1.5 2 2.5 3
x

The following is the constrained version of the same plot.

> plot(exp(x), x=0..3, scaling=constrained);

108 • Chapter 5: Plotting

2
4
6
8

10
12
14
16
18
20

0123
x

Polar Coordinates
Cartesian (ordinary) coordinates is the Maple default and is one among
many ways of specifying a point in the plane. Polar coordinates, (r, θ),
can also be used.

In polar coordinates, r is the distance from the origin to the point,
while θ is the angle, measured in the counterclockwise direction, between
the x-axis and the line through the origin and the point.

You can plot a function in polar coordinates by using the polarplot

command in the plots package. To access the short form of this command,
you must first employ the with(plots) command.

> with(plots):

Figure 4.1 The Polar Coordinate System

θ

r

0

y

x

Use the following syntax to plot graphs in polar coordinates.

5.1 Graphing in Two Dimensions • 109

polarplot(r-expr, angle=range)

In polar coordinates, you can specify the circle explicitly, namely as r = 1.

> polarplot(1, theta=0..2*Pi, scaling=constrained);

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Use the scaling=constrained option to make the circle appear
round. Here is the graph of r = sin(3θ).

> polarplot(sin(3*theta), theta=0..2*Pi);

–1

–0.8

–0.6

–0.4

–0.2
0

0.2

0.4

–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8

The graph of r = θ is a spiral.

> polarplot(theta, theta=0..4*Pi);

110 • Chapter 5: Plotting

–10
–8
–6
–4
–2

2
4
6
8

–5 5 10

The polarplot command also accepts parametrized plots. That is,
you can express the radius and angle coordinates in terms of a parameter,
for example, t. The syntax is similar to a parametrized plot in Cartesian
(ordinary) coordinates. See this section, page 106.

polarplot([r-expr, angle-expr, parameter=range])

The equations r = sin(t) and θ = cos(t) define the following graph.

> polarplot([sin(t), cos(t), t=0..2*Pi]);

–0.4

–0.2

0.2

0.4

–1 –0.5 0.5 1

Here is the graph of θ = sin(3r).

> polarplot([r, sin(3*r), r=0..7]);

5.1 Graphing in Two Dimensions • 111

–4

–2

0

2

4

1 2 3 4 5 6

Functions with Discontinuities
Functions with discontinuities require extra attention. This function has
two discontinuities, at x = 1 and at x = 2.

f(x) =

−1 if x < 1,
1 if 1 ≤ x < 2,
3 otherwise.

Define f(x) in Maple.

> f := x -> piecewise(x<1, -1, x<2, 1, 3);

f := x → piecewise(x < 1, −1, x < 2, 1, 3)

> plot(f(x), x=0..3);

–1

0

1

2

3

0.5 1 1.5 2 2.5 3
x

Maple draws almost vertical lines near the point of a discontinuity.
The option discont=true indicates that there may be discontinuities.

112 • Chapter 5: Plotting

> plot(f(x), x=0..3, discont=true);

–1

0

1

2

3

0.5 1 1.5 2 2.5 3
x

Functions with Singularities
Functions with singularities, that is, those functions which become arbi-
trarily large at some point, constitute another special case. The function
x 7→ 1/(x− 1)2 has a singularity at x = 1.

> plot(1/(x-1)^2, x=-5..6);

0

50000

100000

150000

200000

250000

–4 –2 2 4 6
x

In the previous plot, all the interesting details of the graph are lost
because there is a spike at x = 1. The solution is to view a narrower
range, perhaps from y = −1 to 7.

> plot(1/(x-1)^2, x=-5..6, y=-1..7);

5.1 Graphing in Two Dimensions • 113

–1
0

1

2

3

4

5

6

7

y

–4 –2 2 4 6
x

The tangent function has singularities at x = π
2 + πn, where n is any

integer.

> plot(tan(x), x=-2*Pi..2*Pi);

1000

2000

3000

–6 –4 –2 2 4 6
x

To see the details, reduce the range to y = −4 to 4.

> plot(tan(x), x=-2*Pi..2*Pi, y=-4..4);

–4

–3

–2

–1
0

1

2

3

4

y

–6 –4 –2 2 4 6
x

Maple draws almost vertical lines at the singularities. To specifiy a
plot without these lines, use the discont=true option.

114 • Chapter 5: Plotting

> plot(tan(x), x=-2*Pi..2*Pi, y=-4..4, discont=true);

–4

–3

–2

–1
0

1

2

3

4

y

–6 –4 –2 2 4 6
x

Multiple Functions
To graph more than one function in the same plot, give plot a list of
functions.

> plot([x, x^2, x^3, x^4], x=-10..10, y=-10..10);

–10
–8
–6
–4
–2

0

2
4
6
8

10

y

–10 –8 –6 –4 –2 2 4 6 8 10
x

> f := x -> piecewise(x<0, cos(x), x>=0, 1+x^2);

f := x → piecewise(x < 0, cos(x), 0 ≤ x, 1 + x2)

> plot([f(x), diff(f(x), x), diff(f(x), x, x)],
> x=-2..2, discont=true);

5.1 Graphing in Two Dimensions • 115

–1

0

1

2

3

4

5

–2 –1 1 2
x

This technique also works for parametrized plots.

> plot([[2*cos(t), sin(t), t=0..2*Pi],
> [t^2, t^3, t=-1..1]], scaling=constrained);

–1

–0.5

0.5

1

–2 –1 1 2

To distinguish between several graphs in the same plot, use differ-
ent line styles such as solid, dashed, or dotted. Use the linestyle

option where linestyle=SOLID for the first function, sin(x)/x, and
linestyle=DOT for the second function, cos(x)/x.

> plot([sin(x)/x, cos(x)/x], x=0..8*Pi, y=-0.5..1.5,
> linestyle=[SOLID,DOT]);

–0.4
–0.2

0

0.2
0.4
0.6
0.8

1
1.2
1.4

y

5 10 15 20 25
x

116 • Chapter 5: Plotting

You can also change the line style by using the standard menus and
the context-sensitive menus. Similarly, specify the colors of the graphs by
using the color option. Note that in this manual, the lines appear in two
different shades of gray.

> plot([[f(x), D(f)(x), x=-2..2],
> [D(f)(x), (D@@2)(f)(x), x=-2..2]],
> color=[gold, plum]);

–1

0

1

2

3

4

1 2 3 4 5

For more details on colors, refer to the ?plot,color help page.

Plotting Data Points
To plot numeric data, call pointplot in the plots package with the data
in a list of lists of the form

[[x1, y1], [x2, y2], . . . , [xn, yn]].

If the list is long, assign it to a name.

> data_list:=[[-2,4],[-1,1],[0, 0],[1,1],[2,4],[3,9],[4,16]];

data_list :=

[[−2, 4], [−1, 1], [0, 0], [1, 1], [2, 4], [3, 9], [4, 16]]

> pointplot(data_list);

5.1 Graphing in Two Dimensions • 117

0

2

4

6

8

10

12

14

16

–2 –1 1 2 3 4

By default, Maple does not join the points with straight lines. Use the
style=line option to plot the lines. You can also use the menus to draw
lines.

> pointplot(data_list, style=line);

0

2

4

6

8

10

12

14

16

–2 –1 1 2 3 4

To change the appearance of the points, use the context-sensitive
menu or the symbol and symbolsize options.

> data_list_2:=[[1,1], [2,2], [3,3], [4,4]];

data_list_2 := [[1, 1], [2, 2], [3, 3], [4, 4]]

> pointplot(data_list_2, style=point, symbol=cross,
> symbolsize=30);

118 • Chapter 5: Plotting

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

Use the CurveFitting package to fit a curve through several points,
and then use the plot function to see the result. For more information,
refer to the ?CurveFitting help page.

Refining Plots
Maple uses an adaptive plotting algorithm. It calculates the value of the
function or expression at a modest number of approximately equidistant
points in the specified plotting interval. Maple then computes more points
within the subintervals that have a large amount of fluctuation. Occasion-
ally, this adaptive algorithm does not produce a satisfactory plot.

> plot(sum((-1)^(i)*abs(x-i/10), i=0..50), x=-1..6);

2.6

2.8

3

3.2

3.4

–1 0 1 2 3 4 5 6
x

To refine this plot, indicate that Maple compute more points.

> plot(sum((-1)^(i)*abs(x-i/10), i=0..50), x=-1..6,
> numpoints=500);

5.2 Graphing in Three Dimensions • 119

2.6

2.8

3

3.2

3.4

–1 0 1 2 3 4 5 6
x

For further details and examples, refer to the ?plot and ?plot,options

help pages.

5.2 Graphing in Three Dimensions

You can plot a function of two variables as a surface in three-dimensional
space. This allows you to visualize the function. The syntax for plot3d is
similar to that for plot.

Plot an explicit function, z = f(x, y).

> plot3d(sin(x*y), x=-2..2, y=-2..2);

You can rotate the plot by dragging in the plot window. The menus
allow you to change various characteristics of a plot.

As with the plot command, plot3d can graph user-defined functions.

> f := (x,y) -> sin(x) * cos(y);

120 • Chapter 5: Plotting

f := (x, y) → sin(x) cos(y)

> plot3d(f(x,y), x=0..2*Pi, y=0..2*Pi);

By default, Maple displays the graph as a shaded surface. To change
the surface, use the context-sensitive menu or the style option. For ex-
ample, style=hidden draws the graph as a hidden wireframe structure.

> plot3d(f(x,y), x=0..2*Pi, y=0..2*Pi, style=hidden);

For a list of style options, refer to the ?plot3d,options help page.
The range of the second parameter can depend on the first parameter.

> plot3d(sqrt(x-y), x=0..9, y=-x..x);

5.2 Graphing in Three Dimensions • 121

Parametric Plots
You cannot specify some surfaces explicitly as z = f(x, y). The sphere is
an example of such a plot. As for two-dimensional graphs (see section 5.1),
one solution is a parametric plot. Make the three coordinates, x, y, and
z, functions of two parameters, for example, s and t. You can specify
parametric plots in three dimensions by using the following syntax.

plot3d([x-expr, y-expr, z-expr],

parameter1=range, parameter2=range)

Here are two examples.

> plot3d([sin(s), cos(s)*sin(t), sin(t)],
> s=-Pi..Pi, t=-Pi..Pi);

> plot3d([s*sin(s)*cos(t), s*cos(s)*cos(t), s*sin(t)],
> s=0..2*Pi, t=0..Pi);

Spherical Coordinates
The Cartesian (ordinary) coordinate system is only one of many coor-
dinate systems in three dimensions. In the spherical coordinate system,
the three coordinates are the distance r to the origin, the angle θ in the
xy-plane measured in the counterclockwise direction from the x-axis, and
the angle φ measured from the z-axis.

122 • Chapter 5: Plotting

Figure 4.2 The Spherical Coordinate System

θ

rφ

0

z

y

x

You can plot a function in spherical coordinates by using the sphereplot
command in the plots package. To access the command with its short
name, use with(plots). To avoid listing all the commands in the plots

package, use a colon, rather than a semicolon.

> with(plots):

Use the sphereplot command in the following manner.

sphereplot(r-expr, theta=range, phi=range)

The graph of r = (4/3)θ sinφ looks like this:

> sphereplot((4/3)^theta * sin(phi),
> theta=-1..2*Pi, phi=0..Pi);

5.2 Graphing in Three Dimensions • 123

To plot a sphere in spherical coordinates, specify the radius, perhaps 1,
let θ run around the equator, and let φ run from the North Pole (φ = 0)
to the South Pole (φ = π).

> sphereplot(1, theta=0..2*Pi, phi=0..Pi,
> scaling=constrained);

For more information on constrained versus unconstrained plotting,
see 5.1 Graphing in Two Dimensions.

The sphereplot command also accepts parametrized plots, that is,
functions that define the radius and both angle-coordinates in terms of two
parameters, for example, s and t. The syntax is similar to a parametrized
plot in Cartesian (ordinary) coordinates. See this section, page 121.

sphereplot([r-expr, theta-expr, phi-expr],

parameter1=range, parameter2=range)

Here r = exp(s) + t, θ = cos(s+ t), and φ = t2.

> sphereplot([exp(s)+t, cos(s+t), t^2],
> s=0..2*Pi, t=-2..2);

124 • Chapter 5: Plotting

Cylindrical Coordinates
Specify a point in the cylindrical coordinate system using the three
coordinates r, θ, and z. Here r and θ are polar coordinates (see section 5.1)
in the xy-plane and z is the usual Cartesian z-coordinate.

Figure 4.3 The Cylindrical Coordinate System

rθ

0

z

y

x

You can plot a function in cylindrical coordinates by using the
cylinderplot command in the plots package.

> with(plots):

You can plot graphs in cylindrical coordinates by using the following
syntax.

cylinderplot(r-expr, angle=range, z=range)

Here is a three-dimensional version of the spiral previously shown in
5.1 Graphing in Two Dimensions.

> cylinderplot(theta, theta=0..4*Pi, z=-1..1);

5.2 Graphing in Three Dimensions • 125

To plot a cone in cylindrical coordinates, let r equal z and let θ vary
from 0 to 2π.

> cylinderplot(z, theta=0..2*Pi, z=0..1);

The cylinderplot command also accepts parametrized plots. The
syntax is similar to that of parametrized plots in Cartesian (ordinary)
coordinates. See this section, page 121.

cylinderplot([r-expr, theta-expr, z-expr],

parameter1=range, parameter2=range)

The following is a plot of r = st, θ = s, and z = cos(t2).

> cylinderplot([s*t, s, cos(t^2)], s=0..Pi, t=-2..2);

Refining Plots
To create a smoother or more precise plot, calculate more points. Use the
grid option

grid=[m, n]

where m is the number of points for the first coordinate, and n is the
number of points for the second coordinate.

126 • Chapter 5: Plotting

> plot3d(sin(x)*cos(y), x=0..3*Pi, y=0..3*Pi, grid=[50,50]);

In the next example, a large number of points (100) for the first co-
ordinate (theta) makes the spiral look smooth. However, the function
does not change in the z-direction. Thus, a small number of points (5) is
sufficient.

> cylinderplot(theta, theta=0..4*Pi, z=-1..1, grid=[100,5]);

The default grid is approximately 25 by 25 points.

Shading and Lighting Schemes
Two methods for shading a surface in a three-dimensional plot are avail-
able.

• One or more distinctly colored light sources illuminate the surface

• The color of each point is a direct function of its coordinates

Maple has many preselected light source configurations, which give aes-
thetically pleasing results. You can choose from these light sources
through the context-sensitive menu or with the lightmodel option. For
coloring the surface directly, many predefined coloring functions are also
available through the menus or with the shading option.

5.3 Animation • 127

Simultaneous use of light sources and direct coloring can complicate
the resulting coloring. Use either light sources or direct coloring. Here is
a surface colored with zgrayscale shading and no lighting.

> plot3d(x*y^2/(x^2+y^4), x=-5..5,y=-5..5,
> shading=zgrayscale, lightmodel=none);

The same surface illuminated by lighting scheme light1 and no
shading follows.

> plot3d(x*y^2/(x^2+y^4), x=-5..5,y=-5..5,
> shading=none, lightmodel=light1);

The plots appear in black and white in this book. Try them in Maple
to see the effects in color.

5.3 Animation

Graphing is an excellent way to represent information. However, static
plots do not always emphasize certain graphical behavior, such as the
deformation of a bouncing ball, as effectively as their animated counter-
parts.

128 • Chapter 5: Plotting

A Maple animation is a number of plot frames displayed in sequence,
similar to the action of movie frames. The animate command is used for
animations and is defined in the plots package. To access the command,
use the short name after invoking the with(plots) command.

Animation in Two Dimensions
You can specify a two-dimensional animation by using this syntax.

animate(plotcommand, plotargs, t=a..b,...)

animate(plotcommand, plotargs, t=L,...)

• plotcommand - Maple procedure that generates a 2-D or 3-D plot

• plotargs - represents arguments to the plot command

• t - name of the parameter on which the animation is made

• a,b - real constants giving the range of the animation

• L - list of real or complex constants

The following is an example of an animation.

> with(plots):

Warning, the name changecoords has been redefined

> animate(plot, [sin(x*t), x=-10..10], t=1..2);

xxxx

xxxx

xxxx

xxxx

Playing an Animation To play an animation:

1. Select the plot by clicking it. The Maple worksheet Animation menu
item is displayed.

2. From the Animation menu, select Play.

5.3 Animation • 129

Specifying Frames By default, a two-dimensional animation consists of
sixteen plots (frames). If the motion is not smooth, you can increase the
number of frames. Note that computing many frames may require a lot
of time and memory. The following command can be pasted into Maple
to produce an animation with 50 frames.

> animate(plot, [sin(x*t), x=-10..10,] t=1..2, frames=50);

The usual plot options are also available. Enter the following example
into Maple to view the animation.

> animate(plot, [sin(x*t), x=-10..10], t=1..2,
> frames=50, numpoints=100);

You can plot any two-dimensional animation as a three-dimensional
static plot. For example, try plotting the animation of sin(xt) above as a
surface.

> plot3d(sin(x*t), x=-10..10, t=1..2, grid=[50,100],
> orientation=[135,45], axes=boxed , style=HIDDEN);

–10

10

x

1

2
t

–1

0

1

Selecting to use an animation or a plot may be a subjective preference,
but it also depends on the concepts that the animation or plot is supposed
to convey.

Animating Parametrized Graphs Animating parametrized graphs is
also possible. For more information on parametrized graphs, see sec-
tion 5.1.

130 • Chapter 5: Plotting

> animate(plot,[[a*cos(u), sin(u), u=0..2*Pi]], a=0..2);

By using the coords option, animate uses a coordinate system other
than the Cartesian (ordinary) system.

> animate(plot, [theta*t, theta=0..8*Pi, coords=polar], t=1..4);

To view the actual animations, enter the commands for the animations
in Maple.

Animation in Three Dimensions
You can use the animate command as follows.

animate(plotcommand, plotargs, t=a..b,...)

animate(plotcommand, plotargs, t=L,...)

• plotcommand - Maple procedure that generates a 2-D or 3-D plot

• plotargs - represents arguments to the plot command

• t - name of the parameter on which the animation is made

5.3 Animation • 131

• a,b - real constants giving the range of the animation

• L - list of real or complex constants

The following is an example of a three-dimensional animation.

> animate(plot3d, [cos(t*x)*sin(t*y),
> x=-Pi..Pi, y=-Pi..Pi], t=1..2);

Specifying Frames By default, a three-dimensional animation consists
of eight plots (frames). As with two-dimensional animations, the frames
option determines the number of frames.

> animate(plot3d, [cos(t*x)*sin(t*y), x=-Pi..Pi, y=-Pi..Pi], t=1..2,
> frames=16);

Section 5.2 describes three-dimensional parametrized plots. You can
also animate these.

> animate(plot3d,[[s*time, t-time, s*cos(t*time)],
> s=1..3, t=1..4], time=2..4, axes=boxed);

12
2 2–3

2 2 2

2 2 2 2

To animate a function in a coordinate system other than the Carte-
sian, use the coords option. Enter the following examples into Maple to

132 • Chapter 5: Plotting

view the animations. For spherical coordinates, use coords=spherical.

> animate(plot3d, [(1.3)^theta * sin(t*phi), theta=-1..2*Pi,
> phi=0..Pi], t=1..8, coords=spherical);

For cylindrical coordinates, use coords=cylindrical.

> animate(plot3d, [sin(theta)*cos(z*t), theta=1..3, z=1..4],
> t=1/4..7/2, coords=cylindrical);

For a list of the coordinate systems in Maple, refer to the ?plots,changecoords
help page.

5.4 Annotating Plots

You can add text annotation to plots. The option title prints the spec-
ified title in the plot window, centered, and near the top.

> plot(sin(x), x=-2*Pi..2*Pi, title="Plot of Sine");

Plot of Sine

–1

–0.5

0

0.5

1

–6 –4 –2 2 4 6x

Important: When specifying the title, you must place double quotes (")
around the text. Maple uses double quotes to delimit strings. Text that
appears between double quotes is not processed further. To specify the
font, style, and size of the title, use the titlefont option.

> with(plots):

Warning, the name changecoords has been redefined

> sphereplot(1, theta=0..2*Pi, phi=0..Pi,
> scaling=constrained, title="The Sphere",
> titlefont=[HELVETICA, BOLD, 24]);

5.4 Annotating Plots • 133

The Sphere

Labeling a Plot
You can label a plot using the following options.

• The labels option enables you to specify the labels on the axes

• The labelsfont option allows you to control the label font and style

• The labeldirections option enables you to place axis labels either
vertically or horizontally.

Note that the labels do not have to match the variables in the expression
you are plotting.

> plot(x^2, x=0..3, labels=["time","velocity"],
> labeldirections=[horizontal,vertical]);

0

2

4

6

8

ve
lo

ci
ty

0.5 1 1.5 2 2.5 3

time

Printing Labels You can print labels only if your plot displays axes. For
three-dimensional graphs, there are no axes by default. You must use the
axes option.

134 • Chapter 5: Plotting

> plot3d(sin(x*y), x=-1..1, y=-1..1,
> labels=["length", "width", "height"], axes=FRAMED);

–1

1
length

–1

1
width

–0.8

0.8

height

To add a text legend to your plot, use the legend option.

> plot([sin(x), cos(x)], x=-3*Pi/2..3*Pi/2, linestyle=[1,4],
> legend=["The Sine Function", "The Cosine Function"]);

The Sine Function
The Cosine Function

–1

–0.5

0.5

1

–4 –2 2 4x

5.5 Composite Plots

Maple allows you to display several plots simultaneously after assigning
names to the individual plots. Since plot structures are usually large, end
the assignments with colons (rather than semicolons).

> my_plot := plot(sin(x), x=-10..10):

You can save the plot for future use, as you would any other expression.

Displaying an Assigned Plot To display the plot in the first example,
use the display command defined in the plots package.

5.5 Composite Plots • 135

> with(plots):

> display(my_plot);

–1

–0.5

0

0.5

1

–10 –8 –6 –4 –2 2 4 6 8 10
x

The display command can draw a union of multiple plots. Simply
give a list of plots.

> a := plot([sin(t), exp(t)/20, t=-Pi..Pi]):
> b := polarplot([sin(t), exp(t), t=-Pi..Pi]):

> display([a,b]);

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

This technique allows you to display plots of different types in the
same axes. You can also display three-dimensional plots and animations.

> c := sphereplot(1, theta=0..2*Pi, phi=0..Pi):

> d := cylinderplot(0.5, theta=0..2*Pi, z=-2..2):
> display([c,d], scaling=constrained);

136 • Chapter 5: Plotting

Enter the previous definition of b and the following Maple commands
to view an animation and a plot in the same axes.

> e := animate(plot, [m*x, x=-1..1], m=-1..1):
> display([b,e]);

Displaying Animations Simultaneously If you display two or more an-
imations together, ensure that they have the same number of frames.
Enter the following example into Maple to view two animations simulta-
neously.

> f := animate(plot3d, [sin(x+y+t), x=0..2*Pi, y=0..2*Pi], t=0..5,
> frames=20):
> g := animate(plot3d, [t, x=0..2*Pi, y=0..2*Pi], t=-1.5..1.5,
> frames=20):
> display([f,g]);

Placing Text in Plots
The title and labels options to the plotting commands allow you to
put titles and labels on your graphs. The textplot and textplot3d com-
mands allow you to specify the exact positions of the text. The plots

package contains these two commands.

> with(plots):

You can use textplot and textplot3d as follows.

textplot([x-coord, y-coord, "text"]);

textplot3d([x-coord, y-coord, z-coord, "text"]);

For example,

5.6 Special Types of Plots • 137

> a := plot(sin(x), x=-Pi..Pi):

> b := textplot([Pi/2, 1.25, "Local Maximum"]):
> c := textplot([-Pi/2, -1.25, "Local Minimum"]):
> g := textplot([Pi/2, 1, "X"]):
> h := textplot([-Pi/2, -1, "X"]):
> display([a,b,c,g,h]);

X

X

Local Minimum

Local Maximum

–1

–0.5

0

0.5

1

–3 –2 –1 1 2 3
x

For details on controlling the placement of text, refer to the ?plots,textplot
help page. To specify the font for textplot and textplot3d, use the font
option. In the following plot, the origin, a saddle point, is labelled P .

> d := plot3d(x^2-y^2, x=-1..1, y=-1..1):
> e := textplot3d([0, 0, 0, "P"],
> font=[HELVETICA, OBLIQUE, 22], color=white):
> display([d,e], orientation=[68,45]);

P

5.6 Special Types of Plots

The plots package contains many routines for producing special types
of graphics. This section provides example commands for plotting the
following.

138 • Chapter 5: Plotting

• Implicity defined functions

• Inequalities

• Plots with logarithmic scales

• Density functions

• Contours as in a topographical map

• Conformal plots of complex functions

• Vector fields

• Curves in three-dimensional space

• Objects of type Matrix

• Root loci

• Vectors in two and three-dimensional space

• Plots in the visualization component of the Student package

For further explanation of a particular plot command, refer to ?plots,command .

> with(plots):

Plot implicitly defined functions by using implicitplot.

> implicitplot(x^2+y^2=1, x=-1..1, y=-1..1, scaling=
> constrained);

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1
x

5.6 Special Types of Plots • 139

The following is a plot of the region satisfying the inequalities x+y <
5, 0 < x, and x ≤ 4.

> inequal({x+y<5, 0<x, x<=4}, x=-1..5, y=-10..10,
> optionsexcluded=(color=yellow));

–10

–5

5

10

–1 1 2 3 4 5

Here the vertical axis has a logarithmic scale.

> logplot(10^x, x=0..10);

1.

.1e2

.1e3

.1e4

.1e5
1e+05
1e+06
1e+07
1e+08
1e+09
1e+10

2 4 6 8 10
x

A semilogplot has a logarithmic horizontal axis.

> semilogplot(2^(sin(x)), x=1..10);

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1. 2. 4. 7. .1e2
x

140 • Chapter 5: Plotting

Maple can also create plots where both axes have logarithmic scales.

> loglogplot(x^17, x=1..7);

1.
.1e2
.1e3
.1e4
.1e5

1e+05
1e+06
1e+07
1e+08
1e+09
1e+10
1e+11
1e+12
1e+13
1e+14

2. 4. 7.
x

In a densityplot, lighter shading indicates a larger function value.

> densityplot(sin(x*y), x=-1..1, y=-1..1);

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

Along the following curves, sin(xy) is constant, as in a topographical
map.

> contourplot(sin(x*y),x=-10..10,y=-10..10);

–10

–5

0

5

10

y

–10 –5 5 10
x

5.6 Special Types of Plots • 141

A rectangular grid in the complex plane becomes the following graph
when you map it by z 7→ z2.

> conformal(z^2, z=0..2+2*I);

0

2

4

6

8

–4 –2 2 4

The fieldplot command draws the given vector for many values of
x and y. That is, it plots a vector field, such as a magnetic field.

> fieldplot([y*cos(x*y), x*cos(x*y)], x=-1..1, y=-1..1);

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

Maple can draw curves in three-dimensional space.

> spacecurve([cos(t),sin(t),t], t=0..12);

142 • Chapter 5: Plotting

Here Maple inflates the previous spacecurve to form a tube.

> tubeplot([cos(t),sin(t),t], t=0..4*Pi, radius=0.5);

The matrixplot command plots the values of a object of type Matrix.

> A := LinearAlgebra[HilbertMatrix](8):
> B := LinearAlgebra[ToeplitzMatrix]([1,2,3,4,-4,-3,-2,-1],
> symmetric):
> matrixplot(A+B, heights=histogram, axes=frame,
> gap=0.25, style=patch);

2
4

6
8

row

2
4

6
8

column

–4
–2

0
2
4

The following is a demonstration of a root locus plot.

> rootlocus((s^5-1)/(s^2+1), s, -5..5, style=point,
> adaptive=false);

5.6 Special Types of Plots • 143

–1

–0.5

0

0.5

1

–1.5 –1 –0.5 0 0.5 1 1.5

The arrow command plots arrows or vectors in two or three dimen-
sions.

> plots[arrow]([<2, 1>, <3, 2>], [<2, 5>, <1, 4>], difference,
> scaling=constrained);

1

2

3

4

5

1 1.5 2 2.5 3

For a listing of other available plot types, enter ?plots at the Maple
prompt.

Visualization Component of the Student Package
The Student package is a collection of subpackages designed to as-
sist with the teaching and learning of standard undergraduate math-
ematics. There are many routines for displaying functions, computa-
tions, and theorems. For example, in the Student[Calculus1] sub-
package, the visualization routines are designed to assist in the under-
standing of basic calculus concepts. The following is an example of the
Student[Calculus1][DerivativePlot] command.

The DerivatePlot(f(x),x=a..b) command plots an expression and
its derivatives.

> with(Student[Calculus1]):
> f := proc() evalf(sqrt(rand()/10^12)) end proc:
> colors := proc() COLOR(RGB, f(), f(), f()) end proc:

144 • Chapter 5: Plotting

> DerivativePlot(sin(0.98*x), x=0..10, order=1..20,
> derivativecolors=colors);

f(x)
1st derivative
20th derivative

Derivatives of Various Order of
f(x) = sin(.98*x)

on the Interval [0, 10]

–1
–0.5

0

0.5
1

2 4 6 8 10x

For a complete list of visualization routines in the Student subpack-
ages, refer to the ?Student help page and select a subpackage link.

5.7 Manipulating Graphical Objects

The plottools package contains commands for creating graphical ob-
jects and manipulating their plots. Use with(plottools) to access the
commands using the short names.

> with(plottools):

Using the display Command
The objects in the plottools package do not automatically display. You
must use the display command, defined in the plots package.

> with(plots):
> display(dodecahedron(), scaling=constrained, style=patch);

5.7 Manipulating Graphical Objects • 145

Sphere Before manipulating the following sphere, assign a name.

> s1 := sphere([3/2,1/4,1/2], 1/4, color=red):

Note: In the sphere example, the assignment ends with a colon (:). If
you use a semicolon (;), Maple displays a large plot structure.
To display the plot, use the display command.

> display(s1, scaling=constrained);

Place a second sphere in the picture and display the axes.

> s2 := sphere([3/2,-1/4,1/2], 1/4, color=red):
> display([s1, s2], axes=normal, scaling=constrained);

146 • Chapter 5: Plotting

0.4

0.6–0.4
–0.2

0
0.2

0.4
1.3

1.4
1.5

1.6
1.7

Cones You can also make cones with the plottools package.

> c := cone([0,0,0], 1/2, 2, color=khaki):
> display(c, axes=normal);

0.5
1
1.5
2

–0.4
–0.2

0.2
0.4

–0.4
–0.2

0.2
0.4

Rotation Experiment using Maple object rotation capabilities.

> c2 := rotate(c, 0, Pi/2, 0):
> display(c2, axes=normal);

–0.4
–0.2

0.2
0.4

–0.4
–0.2

0.2
0.4

–2
–1.5

–1
–0.5

Translation You can also translate objects.

> c3 := translate(c2, 3, 0, 1/4):
> display(c3, axes=normal);

5.7 Manipulating Graphical Objects • 147

–0.2

0.2
0.4
0.6

–0.4
–0.2

0
0.2

0.41
1.5

2
2.5

3

Hemisphere The hemisphere command makes a hemisphere. You can
specify the radius and the coordinates of the center. Otherwise, leave an
empty set of parentheses to accept the defaults.

> cup := hemisphere():
> display(cup);

> cap := rotate(cup, Pi, 0, 0):
> display(cap);

Dodecahedron All the sides of the dodecahedron mentioned earlier in
this section are pentagons. If you raise the midpoint of each pentagon

148 • Chapter 5: Plotting

by using the stellate command, the term for the resulting object is
stellated dodecahedron.

> a := stellate(dodecahedron()):
> display(a, scaling=constrained, style=patch);

> stelhs := stellate(cap, 2):
> display(stelhs);

Instead of stellating the dodecahedron, you can cut out, for example,
the inner three quarters of each pentagon.

> a := cutout(dodecahedron(), 3/4):
> display(a, scaling=constrained, orientation=[45, 30]);

5.8 Code for Color Plates • 149

> hedgehog := [s1, s2, c3, stelhs]:
> display(hedgehog, scaling=constrained,
> style=patchnogrid);

5.8 Code for Color Plates

Generating impressive graphics in Maple may require only a few lines of
code as shown by the examples in this section. However, other graphics
require many lines of code. Code for the color plates that do not have code
included in this section can be found in the Maple Application Center.

There are two ways to access the Maple Application Center.

• Open your Internet browser of choice and enter http://www.mapleapps.com

• From the Help menu, select Maple on the Web, and Maple Ap-
plication Center.

To access color plate code not included:

1. Go to the Maple Application Center.

2. Scroll to the bottom of the page. In the Maple Tools section, click
Maple Color Plates. The code is available in both HTML and Maple
Worksheet formats.

Hundreds of graphics, including animations, are also available in the
Maple Graphics Gallery and in the Maple Animation Gallery. To ac-
cess these galleries, go to the Maple Application Center and click Maple
Graphics.

150 • Chapter 5: Plotting

Note: On some computers, the numpoints options value may need to
be decreased to generate the plot.

1. Dirichlet Problem for a Circle

> with(plots):
> setoptions3d(scaling=constrained, projection=0.5,
> style=patchnogrid):
> f1 := (x, y) -> 0.5*sin(10*x*y):
> f2 := t -> f1(cos(t), sin(t)):
> a0 := evalf(Int(f2(t), t=-Pi..Pi)/Pi):
> a := seq(evalf(Int(f2(t)*cos(n*t), t=-Pi..Pi)/Pi), n=1..50):
> b := seq(evalf(Int(f2(t)*sin(n*t), t=-Pi..Pi)/Pi), n=1..50):
> L := (r, s) -> a0/2+sum(’r^n*(a[n]*cos(n*s)+b[n]*sin(n*s))’,
> ’n’=1..50):
> q := plot3d([r*cos(s), r*sin(s), L(r, s)], r=0..1, s=0..2*Pi,
> color=[L(r, s), -L(r, s), 0.2], grid=[29, 100],
> numpoints=10000):
> p := tubeplot([cos(t), sin(t), f2(t), t=-Pi..Pi,
> radius=0.015], tubepoints=70, numpoints=1500):
> display3d({q, p}, orientation=[3, 89], lightmodel=light3);

2. Mandelbrot Set

The Mandelbrot Set is one of the most complex objects in mathemat-
ics given the chaotic nature that surrounds the image. Code for this
graphic is available at the Maple Application Center.

3. Origami Bird

The Origami Bird can be displayed as a simple graphic as well as a
Maple animation. Code for the graphic and the animation are avail-
able at the Maple Application Center.

4. Conchoid

Code for this and other seashells is available at the Maple Application
Center.

5. Gauss Map Graphed on a Torus

> with(plots):
> sp := [rho*cos(2*Pi*t), rho*sin(2*Pi*t), 0, radius=b]:
> pc := n -> [(rho-r*cos(2*Pi*t))*cos(2*Pi/(n+t)),
> (rho-r*cos(2*Pi*t))*sin(2*Pi/(n+t)),
> -r*sin(2*Pi*t)]:
> rho, r, b := 3, 1.1, 1:
> s := spacecurve({seq(pc(k), k=1..50)}, t=0..1, thickness=2,
> color=blue, view=[-4.4..4.4, -4.4..4.4, -2.2..2.2]):
> s2 := tubeplot(sp, t=0..1, tubepoints=150,
> view=[-4.4..4.4, -4.4..4.4, -2.2..2.2], style=PATCHNOGRID,
> color=cyan):

5.8 Code for Color Plates • 151

> display({s,s2}, scaling=CONSTRAINED, orientation=[50,65],
> transparency=0.8, shading=ZHUE, lightmodel=light1);

6. Moebius Strip

> moebius := plot3d([4+x*cos(1/2*y), y, x*sin(1/2*y)],
> x=-Pi..Pi, y=-0..2*Pi, coords=cylindrical, style=patchnogrid,
> grid=[60,60], orientation=[35,135], lightmodel=light4,
> shading=zhue, scaling=constrained, transparency=0.3):
> plots[display](moebius);

7. Icosahedron

> with(geom3d):
> icosahedron(p1, point(o, 0, 0, 0), 1):
> stellate(p2, p1, 4):
> p := draw(p2):
> q := plottools[homothety](p,3):
> plots[display]([p,q], scaling=constrained, style=patchnogrid,
> lightmodel=light4, shading=xyz, orientation=[-107,81]);

To view other variations, change the height value in the stellate

command.

8. Parameterized Surface of Revolution

> r1 := 2 + sin(7*t):
> z1 := r1*cos(s):
> r2 := 8+r1*sin(s):
> plot3d([r2*sin(t), r2*cos(t), z1], s=0..2*Pi, t=0..2*Pi,
> grid=[80, 80], axes=none, style=patchnogrid, lightmodel=light1,
> shading=XYZ, scaling=constrained, orientation=[100,50]);

9. Snowmen

The Snowmen graphic is an animation. Code for this animation is
available at the Maple Application Center.

10. Function of Two Variables in Cartesian Coordinates

> plot3d({sin(x^2+y^2), 2*cos(x^3+y^3)}, x=-3..3, y=-3..3,
> style=patch, grid=[70, 70], axes=none, shading=zgreyscale,
> style=patchnogrid, scaling=constrained, orientation=[50,30],
> lightmodel=light1);

152 • Chapter 5: Plotting

5.9 Interactive Plot Builder

Maple allows you to build plots interactively. The interactive plot builder
is invoked by using the context-sensitive menu or the plots[interactive]
command.

Using the Graphical User Interface To Activate Interactive Plot Builder
The following provides instructions for using the graphical user interface
to build plots.

To activate the interactive plot builder:

1. Right-click the output of an executed Maple input command. A pop-
up menu appears.

2. Select Plots, PlotBuilder. The Interactive Plot Builder dialog
appears.

3. From the check box list, select a plot type. For example, for a two-
dimensional plot, select the 2-D plot check box.

4. To continue, click Next. Based on the check box selection, the cor-
responding dialog opens. For example, if you selected the 2-D plot
check box, the 2-D Plot dialog appears.

5. From the various drop-down fields, select the appropriate feature for
your plot. For example, to create a dash-line plot, click the dash
option from the Line drop-down list.

Note: To reset the plot options in the plot dialog, click the Reset
button. To return to a previous dialog, click the Back button.

6. Once you have selected various options, click the Plot button. Maple
generates the plot and displays it in the worksheet. The Maple com-
mand, including options you selected, are displayed in the worksheet.

Using the Command-Line Interactive Plot Builder The plots[interactive]
command is part of the plots package. To build plots, use the interactive
command followed by the expression in parentheses. Follow the instruc-
tions in the subsequently displayed dialogs.

> with(plots):
> interactive(sin(x)+1);

After executing the command, the Interactive Plot Builder dialog
is displayed. Form this point, the instructions for using the graphical user
interface apply, beginning with step 3 in the previous procedure.

5.10 Conclusion • 153

5.10 Conclusion

This chapter examined Maple two- and three-dimensional plotting capa-
bilities, involving explicitly, parametrically, and implicitly given functions.
Cartesian, polar, spherical, and cylindrical are a few of the many coor-
dinate systems that Maple can handle. Furthermore, you can animate a
graph and shade it in a variety of ways for a clearer understanding of its
nature.

Use the commands found in the plots package to display various
graphs of functions and expressions. Some of the special plot types that
you can create using these commands include contour, density, and loga-
rithmic plots. The commands within the plottools package create and
manipulate objects. Such commands, for instance, allow you to translate,
rotate, and even stellate a graphical object. The interactive plot builder
facilitates specifying and displaying plots by providing a graphical user
interface.

154 • Chapter 5: Plotting

6 Evaluation and
Simplification

Expression manipulation serves many purposes, for example, converting
output expressions into a familiar form to check answers or into a specific
form needed by certain Maple routines. The issue of simplification is diffi-
cult in symbolic mathematics. What is simple in one context may not be
in another context—each individual context can have its own definition
of a simple form.

Working with Expressions in Maple
Maple provides a set of tools for working with expressions, for performing
both mathematical and structural manipulations.

• Mathematical manipulations correspond to a standard mathematical
process, for example, factoring a polynomial, or rationalizing the de-
nominator of a rational expression.

• Structural manipulation tools allow you to access and modify parts of
the Maple data structures that represent expressions and other types
of objects.

In This Chapter
• Mathematical manipulations

• Assumptions

• Structural manipulations

• Evaluation rules

155

156 • Chapter 6: Evaluation and Simplification

6.1 Mathematical Manipulations

Solving equations by hand usually involves performing a sequence of al-
gebraic manipulations. You can also perform these steps using Maple.

> eq := 4*x + 17 = 23;

eq := 4x+ 17 = 23

To solve this equation, you must subtract 17 from both sides of the
equation. Subtract the equation 17=17 from eq. Enclose the unnamed
equation in parentheses.

> eq - (17 = 17);

4x = 6

Divide through by 4. Note that you do not have to use 4=4 in this
case.

> % / 4;

x =
3

2

The following sections focus on more sophisticated manipulations.

Expanding Polynomials as Sums
Sums are generally easier to comprehend than products, so you may find it
useful to expand a polynomial as a sum of products. The expand command
has this capability.

> poly := (x+1)*(x+2)*(x+5)*(x-3/2);

poly := (x+ 1) (x+ 2) (x+ 5) (x− 3

2
)

> expand(poly);

x4 +
13

2
x3 + 5x2 − 31

2
x− 15

The expand command expands the numerator of a rational expres-
sion.

6.1 Mathematical Manipulations • 157

> expand((x+1)*(y^2-2*y+1) / z / (y-1));

x y2

z (y − 1)
− 2

x y

z (y − 1)
+

x

z (y − 1)
+

y2

z (y − 1)
− 2

y

z (y − 1)

+
1

z (y − 1)

Note: To convert an expression containing fractions into a single rational
expression and then cancel common factors, use the normal command. See
this section, page 165.

Expansion Rules The expand command also recognizes expansion rules
for many standard mathematical functions.

> expand(sin(2*x));

2 sin(x) cos(x)

> ln(abs(x^2)/(1+abs(x)));

ln(
|x|2

1 + |x|
)

> expand(%);

2 ln(|x|)− ln(1 + |x|)

The combine command recognizes the same rules but applies them
in the opposite direction. For information on combining terms, see this
section, page 164.

You can specify subexpressions that you do not want to expand, as
an argument to expand.

> expand((x+1)*(y+z));

x y + x z + y + z

> expand((x+1)*(y+z), x+1);

(x+ 1) y + (x+ 1) z

158 • Chapter 6: Evaluation and Simplification

You can expand an expression over a special domain.

> poly := (x+2)^2*(x-2)*(x+3)*(x-1)^2*(x-1);

poly := (x+ 2)2 (x− 2) (x+ 3) (x− 1)3

> expand(poly);

x7 + 2x6 − 10x5 − 12x4 + 37x3 + 10x2 − 52x+ 24

> % mod 3;

x7 + 2x6 + 2x5 + x3 + x2 + 2x

However, using the Expand command is more efficient.

> Expand(poly) mod 3;

x7 + 2x6 + 2x5 + x3 + x2 + 2x

When you use Expand with mod, Maple performs all intermediate cal-
culations in modulo arithmetic. You can also write your own expand sub-
routines. For more details, refer to the ?expand help page.

Collecting the Coefficients of Like Powers
An expression like x2+2x+1−ax+ b− cx2 is easier to read if you collect
the coefficients of x2, x, and the constant terms, by using the collect

command.

> collect(x^2 + 2*x + 1 - a*x + b - c*x^2, x);

(1− c)x2 + (2− a)x+ b+ 1

The second argument to the collect command specifies on which
variable it should base the collection.

> poly := x^2 + 2*y*x - 3*y + y^2*x^2;

poly := x2 + 2 y x− 3 y + y2 x2

> collect(poly, x);

6.1 Mathematical Manipulations • 159

(1 + y2)x2 + 2 y x− 3 y

> collect(poly, y);

y2 x2 + (2x− 3) y + x2

You can collect on variables or unevaluated function calls.

> trig_expr := sin(x)*cos(x) + sin(x) + y*sin(x);

trig_expr := sin(x) cos(x) + sin(x) + y sin(x)

> collect(trig_expr, sin(x));

(cos(x) + 1 + y) sin(x)

> DE := diff(f(x),x,x)*sin(x) - diff(f(x),x)*sin(f(x))
> + sin(x)*diff(f(x),x) + sin(f(x))*diff(f(x),x,x);

DE := (d2

dx2 f(x)) sin(x)− (d
dx f(x)) sin(f(x)) + sin(x) (d

dx f(x))

+ sin(f(x)) (d2

dx2 f(x))

> collect(DE, diff);

(−sin(f(x)) + sin(x)) (
d

dx
f(x)) + (sin(x) + sin(f(x))) (

d2

dx2
f(x))

You cannot collect on sums or products.

> big_expr := z*x*y + 2*x*y + z;

big_expr := z x y + 2 y x+ z

> collect(big_expr, x*y);

Error, (in collect) cannot collect y*x

160 • Chapter 6: Evaluation and Simplification

Instead, make a substitution before you collect. In the preceding case,
substituting a dummy name for x*y, then collecting on the dummy name
produces the desired result.

> subs(x=xyprod/y, big_expr);

z xyprod + 2 xyprod + z

> collect(%, xyprod);

(z + 2) xyprod + z

> subs(xyprod=x*y, %);

(z + 2) y x+ z

Section 6.3 Structural Manipulations explains the use of the subs
command.

If you are collecting coefficients of more than one variable simulta-
neously, two options are available, the recursive and distributed forms.
The recursive form initially collects in the first specified variable, then in
the next, and so on. The default is the recursive form.

> poly := x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;

poly := y x+ z x y + y x2 − z y x2 + x+ z x

> collect(poly, [x,y]);

(1− z) y x2 + ((1 + z) y + 1 + z)x

The distributed form collects the coefficients of all variables at the
same time.

> collect(poly, [x,y], distributed);

(1 + z)x+ (1 + z) y x+ (1− z) y x2

The collect command does not sort the terms. Use the sort com-
mand to sort. See this section, page 171.

6.1 Mathematical Manipulations • 161

Factoring Polynomials and Rational Functions
To write a polynomial as a product of terms of smallest possible degree,
use the factor command.

> factor(x^2-1);

(x− 1) (x+ 1)

> factor(x^3+y^3);

(x+ y) (x2 − y x+ y2)

You can also factor rational functions. The factor command factors
both the numerator and the denominator, then removes common terms.

> rat_expr := (x^16 - y^16) / (x^8 - y^8);

rat_expr :=
x16 − y16

x8 − y8

> factor(rat_expr);

x8 + y8

> rat_expr := (x^16 - y^16) / (x^7 - y^7);

rat_expr :=
x16 − y16

x7 − y7

> factor(rat_expr);

(x+ y) (x2 + y2) (x4 + y4) (x8 + y8)

x6 + y x5 + y2 x4 + y3 x3 + y4 x2 + y5 x+ y6

Specifying the Algebraic Number Field The factor command factors a
polynomial over the ring implied by the coefficients. The following poly-
nomial has integer coefficients, so the terms in the factored form have
integer coefficients.

> poly := x^5 - x^4 - x^3 + x^2 - 2*x + 2;

162 • Chapter 6: Evaluation and Simplification

poly := x5 − x4 − x3 + x2 − 2x+ 2

> factor(poly);

(x− 1) (x2 − 2) (x2 + 1)

In this next example, the coefficients include
√
2. Note the differences

in the result.

> expand(sqrt(2)*poly);

√
2x5 −

√
2x4 −

√
2x3 +

√
2x2 − 2

√
2x+ 2

√
2

> factor(%);

√
2 (x2 + 1) (x+

√
2) (x−

√
2) (x− 1)

You can explicitly extend the coefficient field by giving a second ar-
gument to factor.

> poly := x^4 - 5*x^2 + 6;

poly := x4 − 5x2 + 6

> factor(poly);

(x2 − 2) (x2 − 3)

> factor(poly, sqrt(2));

(x2 − 3) (x+
√
2) (x−

√
2)

> factor(poly, { sqrt(2), sqrt(3) });

(x+
√
2) (x−

√
2) (x+

√
3) (x−

√
3)

You can also specify the extension by using RootOf. Here RootOf(x^2-2)
represents any solution to x2 − 2 = 0, that is either

√
2 or −

√
2.

6.1 Mathematical Manipulations • 163

> factor(poly, RootOf(x^2-2));

(x2 − 3) (x+RootOf(_Z 2 − 2)) (x− RootOf(_Z 2 − 2))

For more information on performing calculations in an algebraic num-
ber field, refer to the ?evala help page.

Factoring in Special Domains Use the Factor command to factor an
expression over the integers modulo p for some prime p. The syntax is
similar to that of the Expand command.

> Factor(x^2+3*x+3) mod 7;

(x+ 4) (x+ 6)

The Factor command also allows algebraic field extensions.

> Factor(x^3+1) mod 5;

(x+ 1) (x2 + 4x+ 1)

> Factor(x^3+1, RootOf(x^2+x+1)) mod 5;

(x+RootOf(_Z 2 +_Z + 1))

(x+ 4RootOf(_Z 2 +_Z + 1) + 4) (x+ 1)

For details about the algorithm used, factoring multivariate polyno-
mials, or factoring polynomials over an algebraic number field, refer to
the ?Factor help page.

Removing Rational Exponents
In general, it is preferred to represent rational expressions without frac-
tional exponents in the denominator. The rationalize command re-
moves roots from the denominator of a rational expression by multiplying
by a suitable factor.

> 1 / (2 + root[3](2));

1

2 + 2(1/3)

164 • Chapter 6: Evaluation and Simplification

> rationalize(%);

2

5
− 1

5
2(1/3) +

1

10
2(2/3)

> (x^2+5) / (x + x^(5/7));

x2 + 5

x+ x(5/7)

> rationalize(%);

(x2 + 5) (x(6/7) − x(12/7) − x(4/7) + x(10/7) + x(2/7) − x(8/7) + x2)
/

(x3 + x)

The result of rationalize is often larger than the original.

Combining Terms
The combine command applies a number of transformation rules for var-
ious mathematical functions.

> combine(sin(x)^2 + cos(x)^2);

1

> combine(sin(x)*cos(x));

1

2
sin(2x)

> combine(exp(x)^2 * exp(y));

e(2x+y)

> combine((x^a)^2);

x(2 a)

To see how combine arrives at the result, give infolevel[combine]

a positive value.

6.1 Mathematical Manipulations • 165

> infolevel[combine] := 1;

infolevel combine := 1

> expr := Int(1, x) + Int(x^2, x);

expr :=

∫

1 dx+

∫

x2 dx

> combine(expr);

combine: combining with respect to linear
combine: combining with respect to linear
combine: combining with respect to linear
combine: combining with respect to cmbpwr
combine: combining with respect to power
combine: combining with respect to power
combine: combining with respect to power
combine: combining with respect to cmbplus
combine: combining with respect to cmbpwr
combine: combining with respect to power
combine: combining with respect to cmbpwr
combine: combining with respect to power
combine: combining with respect to power
combine: combining with respect to power

∫

x2 + 1 dx

The expand command applies most of these transformation rules in the
other direction. See this section, page 156.

Factored Normal Form
If an expression contains fractions, convert the expression into one large
fraction, and cancel common factors in the numerator and denominator.
The normal command performs this process, which often leads to simpler
expressions.

> normal(x + 1/x);

x2 + 1

x

166 • Chapter 6: Evaluation and Simplification

> expr := x/(x+1) + 1/x + 1/(1+x);

expr :=
x

x+ 1
+

1

x
+

1

x+ 1

> normal(expr);

x+ 1

x

> expr := (x^2 - y^2) / (x-y)^3;

expr :=
x2 − y2

(x− y)3

> normal(expr);

x+ y

(x− y)2

> expr := (x - 1/x) / (x-2);

expr :=
x− 1

x
x− 2

> normal(expr);

x2 − 1

x (x− 2)

Use the second argument expanded if you want normal to expand the
numerator and the denominator.

> normal(expr, expanded);

x2 − 1

x2 − 2x

The normal command acts recursively over functions, sets, and lists.

> normal([expr, exp(x+1/x)]);

6.1 Mathematical Manipulations • 167

[
x2 − 1

x (x− 2)
, e(

x2+1
x

)]

> big_expr := sin((x*(x+1)-x)/(x+2))^2
> + cos((x^2)/(-x-2))^2;

big_expr := sin(
(x+ 1)x− x

x+ 2
)2 + cos(

x2

−x− 2
)2

> normal(big_expr);

sin(
x2

x+ 2
)2 + cos(

x2

x+ 2
)2

Note from the previous example that normal does not simplify
trigonometric expressions, only rational polynomial functions.

A Special Case Normal may return an expression in expanded form
that is not as simple as the factored form.

> expr := (x^25-1) / (x-1);

expr :=
x25 − 1

x− 1

> normal(expr);

1 + x2 + x+ x11 + x12 + x4 + x3 + x5 + x16 + x7 + x6 + x14 + x19

+ x17 + x15 + x18 + x9 + x8 + x10 + x24 + x22 + x23 + x21 + x20

+ x13

To cancel the common (x− 1) term from the numerator and the de-
nominator without expanding the numerator, use factor. See this section,
page 161.

> factor(expr);

(x4 + x3 + x2 + x+ 1) (x20 + x15 + x10 + x5 + 1)

168 • Chapter 6: Evaluation and Simplification

Simplifying Expressions
The results of Maple simplification calculations can be very complicated.
The simplify command tries to find a simpler expression by applying a
list of manipulations.

> expr := 4^(1/2) + 3;

expr :=
√
4 + 3

> simplify(expr);

5

> expr := cos(x)^5 + sin(x)^4 + 2*cos(x)^2
> - 2*sin(x)^2 - cos(2*x);

expr := cos(x)5 + sin(x)4 + 2 cos(x)2 − 2 sin(x)2 − cos(2x)

> simplify(expr);

cos(x)4 (cos(x) + 1)

Simplification rules are recognized for trigonometric expressions, loga-
rithmic and exponential expressions, radical expressions, expressions with
powers, RootOf expressions, and various special functions.

If you specify a particular simplification rule as an argument to the
simplify command, then it uses only that simplification rule (or that
class of rules).

> expr := ln(3*x) + sin(x)^2 + cos(x)^2;

expr := ln(3x) + sin(x)2 + cos(x)2

> simplify(expr, trig);

ln(3x) + 1

> simplify(expr, ln);

ln(3) + ln(x) + sin(x)2 + cos(x)2

6.1 Mathematical Manipulations • 169

> simplify(expr);

ln(3) + ln(x) + 1

For a list of built-in simplification rules, refer to the ?simplify help
page.

Simplification with Assumptions
Maple may not perform a simplification as you would. Although you know
that a variable has special properties, Maple treats the variable in a more
general way.

> expr := sqrt((x*y)^2);

expr :=
√

x2 y2

> simplify(expr);

√

x2 y2

The option assume=property specifies that simplify assume that
all the unknowns in the expression have that property.

> simplify(expr, assume=real);

|x y|

> simplify(expr, assume=positive);

x y

You can also use the general assume facility to place assumptions on
individual variables. See 6.2 Assumptions.

Simplification with Side Relations
Sometimes you can simplify an expression using your own special-purpose
transformation rule. The simplify command allows you do to this by
means of side relations .

> expr := x*y*z + x*y + x*z + y*z;

170 • Chapter 6: Evaluation and Simplification

expr := x y z + x y + x z + y z

> simplify(expr, { x*z=1 });

x y + y z + y + 1

You can give one or more side relations in a set or list. The simplify
command uses the given equations as additional allowable simplifications.

Specifying the order in which simplify performs the simplification
provides another level of control.

> expr := x^3 + y^3;

expr := x3 + y3

> siderel := x^2 + y^2 = 1;

siderel := x2 + y2 = 1

> simplify(expr, {siderel}, [x,y]);

y3 − x y2 + x

> simplify(expr, {siderel}, [y,x]);

x3 − y x2 + y

• In the first case, Maple makes the substitution x2 = 1 − y2 in the
expression, then attempts to make substitutions for y2 terms. Not
finding any, it stops.

• In the second case, Maple makes the substitution y2 = 1 − x2 in the
expression, then attempts to make substitutions for x2 terms. Not
finding any, it stops.

The simplify routine is based on Gröbner basis manipulations of
polynomials. For more information, refer to the ?simplify,siderels

help page.

6.1 Mathematical Manipulations • 171

Sorting Algebraic Expressions
Maple prints the terms of a polynomial in the order the polynomial was
first created. To sort the polynomial by decreasing degree, use the sort

command.

> poly := 1 + x^4 - x^2 + x + x^3;

poly := 1 + x4 − x2 + x+ x3

> sort(poly);

x4 + x3 − x2 + x+ 1

Note that sort reorders algebraic expressions in place, replacing the
original polynomial with the sorted copy.

> poly;

x4 + x3 − x2 + x+ 1

Sorting Multivariate Polynomials You can sort multivariate polynomi-
als in two ways, by total degree or by lexicographic order.

• The default method is total degree, which sorts terms into descending
order of degree.

• If two terms have the same degree, it sorts those terms by lexico-
graphic order (in other words, [a,b] specifies that a comes before b
and so forth).

> sort(x+x^3 + w^5 + y^2 + z^4, [w,x,y,z]);

w5 + z4 + x3 + y2 + x

> sort(x^3*y + y^2*x^2, [x,y]);

x3 y + x2 y2

> sort(x^3*y + y^2*x^2 + x^4, [x,y]);

x4 + x3 y + x2 y2

172 • Chapter 6: Evaluation and Simplification

Note that the order of the variables in the list determines the ordering of
the expression.

> sort(x^3*y + y^2*x^2, [x,y]);

x3 y + x2 y2

> sort(x^3*y + y^2*x^2, [y,x]);

y2 x2 + y x3

To sort the entire expression by lexicographic ordering, use the plex
option with the sort command.

> sort(x + x^3 + w^5 + y^2 + z^4, [w,x,y,z], plex);

w5 + x3 + x+ y2 + z4

Again, the order of the unknowns in the call to sort determines the
ordering.

> sort(x + x^3 + w^5 + y^2 + z^4, [x,y,z,w], plex);

x3 + x+ y2 + z4 + w5

The sort command can also sort lists. See 6.3 Structural Manip-
ulations.

Converting Between Equivalent Forms
You can write many mathematical functions in several equivalent forms.
For example, you can express sin(x) in terms of the exponential func-
tion. The convert command can perform this and many other types of
conversions. For more information, refer to the ?convert help page.

> convert(sin(x), exp);

−1

2
I (e(x I) − 1

e(x I)
)

> convert(cot(x), sincos);

6.1 Mathematical Manipulations • 173

cos(x)

sin(x)

> convert(arccos(x), ln);

−I ln(x+
√

−x2 + 1 I)

> convert(binomial(n,k), factorial);

n!

k! (n− k)!

The parfrac argument indicates partial fractions.

> convert((x^5+1) / (x^4-x^2), parfrac, x);

x+
1

x− 1
− 1

x2

You can also use convert to find a fractional approximation to a
floating-point number.

> convert(.3284879342, rational);

19615

59713

Note that conversions are not necessarily mutually inverse.

> convert(tan(x), exp);

−I ((e(x I))2 − 1)

(e(x I))2 + 1

> convert(%, trig);

−I ((cos(x) + sin(x) I)2 − 1)

(cos(x) + sin(x) I)2 + 1

The simplify command reveals that this expression is sin(x)/ cos(x),
that is, tan(x).

174 • Chapter 6: Evaluation and Simplification

> simplify(%);

sin(x)

cos(x)

You can also use the convert command to perform structural manip-
ulations on Maple objects. See 6.3 Structural Manipulations.

6.2 Assumptions

There are two means of imposing assumptions on unknowns.

• To globally change the properties of unknowns, use the assume facility.

• To perform a single operation under assumptions on unknowns, use
the assuming command.

The assume facility and assuming command are discussed in the follow-
ing subsections. For more information on these commands, refer to the
?assume and ?assuming help pages.

The assume Facility
The assume facility is a set of routines for dealing with properties of
unknowns. The assume command allows improved simplification of sym-
bolic expressions, especially with multiple-valued functions, for example,
the square root.

> sqrt(a^2);

√
a2

Maple cannot simplify this, as the result is different for positive and
negative values of a. Stating an assumption about the value of a allows
Maple to simplify the expression.

> assume(a>0);
> sqrt(a^2);

a~

The tilde (~) on a variable indicates that an assumption has been
made about it. New assumptions replace old ones.

6.2 Assumptions • 175

> assume(a<0);
> sqrt(a^2);

−a~

Using the about Command Use the about command to get information
about the assumptions on an unknown.

> about(a);

Originally a, renamed a~:
is assumed to be: RealRange(-infinity,Open(0))

Using the additionally Command Use the additionally command
to make additional assumptions about unknowns.

> assume(m, nonnegative);
> additionally(m<=0);
> about(m);

Originally m, renamed m~:
is assumed to be: 0

Many functions make use of the assumptions on an unknown. The
frac command returns the fractional part of a number.

> frac(n);

frac(n)

> assume(n, integer);
> frac(n);

0

The following limit depends on b.

> limit(b*x, x=infinity);

signum(b)∞

176 • Chapter 6: Evaluation and Simplification

> assume(b>0);
> limit(b*x, x=infinity);

∞

Command Operation Details You can use infolevel to have Maple
report the details of command operations.

> infolevel[int] := 2;

infolevel int := 2

> int(exp(c*x), x=0..infinity);

int/cook/nogo1:
Given Integral
Int(exp(c*x),x = 0 .. infinity)
Fits into this pattern:
Int(exp(-Ucplex*x^S1-U2*x^S2)*x^N*ln(B*x^DL)^M*cos(C1*x^R)/
((A0+A1*x^D)^P),x = t1 .. t2)
Definite integration: Can’t determine if the integral is convergent.
Need to know the sign of --> -c
Will now try indefinite integration and then take limits.
int/indef1: first-stage indefinite integration
int/indef2: second-stage indefinite integration
int/indef2: applying derivative-divides
int/indef1: first-stage indefinite integration
int/definite/contour: contour integration

lim
x→∞

e(c x) − 1

c

The int command must know the sign of c (or rather the sign of -c).

> assume(c>0);
> int(exp(c*x), x=0..infinity);

int/cook/nogo1:
Given Integral
Int(exp(x),x = 0 .. infinity)
Fits into this pattern:
Int(exp(-Ucplex*x^S1-U2*x^S2)*x^N*ln(B*x^DL)^M*cos(C1*x^R)/
((A0+A1*x^D)^P),x = t1 .. t2)
int/cook/IIntd1:
--> U must be <= 0 for converging integral
--> will use limit to find if integral is +infinity
--> or - infinity or undefined

6.2 Assumptions • 177

∞

Logarithms are multiple-valued. For general complex values of x, ln(ex)
is different from x.

> ln(exp(3*Pi*I));

π I

Therefore, Maple does not simplify the following expression unless it
is known to be correct, for example, when x is real.

> ln(exp(x));

ln(ex)

> assume(x, real);
> ln(exp(x));

x~

Testing the Properities of Unknowns You can use the is command to
directly test the properties of unknowns.

> is(c>0);

true

> is(x, complex);

true

> is(x, real);

true

In this next example, Maple still assumes that the variable a is nega-
tive.

> eq := xi^2 = a;

178 • Chapter 6: Evaluation and Simplification

eq := ξ2 = a~

> solve(eq, {xi});

{ξ =
√
−a~ I}, {ξ = −I

√
−a~}

To remove assumptions that you make on a name, simply unassign
the name. However, the expression eq still refers to a~.

> eq;

ξ2 = a~

You must remove the assumption on a inside eq before you remove
the assumption on a. First, remove the assumptions on a inside eq.

> eq := subs(a=’a’, eq);

eq := ξ2 = a

Then, unassign a.

> a := ’a’;

a := a

If you require an assumption to hold for only one evaluation, then you
can use the assuming command, described in the following subsection.
When using the assuming command, you do not need to remove the
assumptions on unknowns and equations.

The assuming Command
To perform a single evaluation under assumptions on the name(s) in an
expression, use the assuming command. Its use is equivalent to imposing
assumptions by using the assume facility, evaluating the expression, then
removing the assumptions from the expression and names. This facili-
tates experimenting with the evaluation of an expression under different
assumptions.

> about(a);

6.2 Assumptions • 179

a:
nothing known about this object

> sqrt(a^2) assuming a<0;

−a

> about(a);

a:
nothing known about this object

> sqrt(a^2) assuming a>0;

a

You can evaluate an expression under an assumption on all names in
an expression

> sqrt((a*b)^2) assuming positive;

a b~

or assumptions on specific names.

> ln(exp(x)) + ln(exp(y)) assuming x::real, y::complex;

x~ + ln(ey)

Using the Double Colon In the previous example, the double colon (::)
indicates a property assignment. In general, it is used for type checking.
For more information, refer to the ?type help page.

180 • Chapter 6: Evaluation and Simplification

6.3 Structural Manipulations

Structural manipulations include selecting and changing parts of an ob-
ject. They use knowledge of the structure or internal representation of an
object rather than working with the expression as a purely mathemati-
cal expression. In the special cases of lists and sets, selecting an element
is straightforward. The concept of what constitutes the parts of a gen-
eral expression is more difficult. However, many of the commands that
manipulate lists and sets also apply to general expressions.

> L := { Z, Q, R, C, H, O };

L := {O, R, Z, Q, C, H}

> L[3];

Z

Mapping a Function onto a List or Set
To apply a function or command to each of the elements rather than to
the object as a whole, use the map command.

> f([a, b, c]);

f([a, b, c])

> map(f, [a, b, c]);

[f(a), f(b), f(c)]

> map(expand, { (x+1)*(x+2), x*(x+2) });

{x2 + 3x+ 2, x2 + 2x}

> map(x->x^2, [a, b, c]);

[a2, b2, c2]

If you give map more than two arguments, it passes the extra argu-
ment(s) to the function.

6.3 Structural Manipulations • 181

> map(f, [a, b, c], p, q);

[f(a, p, q), f(b, p, q), f(c, p, q)]

> map(diff, [(x+1)*(x+2), x*(x+2)], x);

[2x+ 3, 2x+ 2]

Using the map2 Command The map2 command is closely related to map.
Whereas map sequentially replaces the first argument of a function, the
map2 command replaces the second argument to a function.

> map2(f, p, [a,b,c], q, r);

[f(p, a, q, r), f(p, b, q, r), f(p, c, q, r)]

You can use map2 to list all the partial derivatives of an expression.

> map2(diff, x^y/z, [x,y,z]);

[
xy y

x z
,
xy ln(x)

z
, −xy

z2
]

You can use map2 in conjunction with the map command. For an ex-
ample, see the ?map help page.

Using the seq Command You can use the seq command to generate
sequences resembling the output from map. In this example, seq generates
a sequence by applying the function f to the elements of a set and a list.

> seq(f(i), i={a,b,c});

f(a), f(b), f(c)

> seq(f(p, i, q, r), i=[a,b,c]);

f(p, a, q, r), f(p, b, q, r), f(p, c, q, r)

Another example is Pascal’s Triangle.

> L := [seq(i, i=0..5)];

182 • Chapter 6: Evaluation and Simplification

L := [0, 1, 2, 3, 4, 5]

> [seq([seq(binomial(n,m), m=L)], n=L)];

[[1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0],

[1, 3, 3, 1, 0, 0], [1, 4, 6, 4, 1, 0], [1, 5, 10, 10, 5, 1]]

> map(print, %);

[1, 0, 0, 0, 0, 0]

[1, 1, 0, 0, 0, 0]

[1, 2, 1, 0, 0, 0]

[1, 3, 3, 1, 0, 0]

[1, 4, 6, 4, 1, 0]

[1, 5, 10, 10, 5, 1]

[]

Using the add and mul Commands The add and mul commands work
like seq except that they generate sums and products, respectively, in-
stead of sequences.

> add(i^2, i=[5, y, sin(x), -5]);

50 + y2 + sin(x)2

Note: The map, map2, seq, add, and mul commands can also act on
general expressions.

Choosing Elements from a List or Set
You can select certain elements from a list or a set, if you have a boolean-
valued function that determines which elements to select. The following
boolean-valued function returns true if its argument is larger than three.

> large := x -> is(x > 3);

large := x → is(3 < x)

6.3 Structural Manipulations • 183

Use the select command to choose the elements in a list or set that
satisfy large.

> L := [8, 2.95, Pi, sin(9)];

L := [8, 2.95, π, sin(9)]

> select(large, L);

[8, π]

Using the remove Command The remove command removes the ele-
ments from L that satisfy large and displays as output the remaining
elements.

> remove(large, L);

[2.95, sin(9)]

Using the selectremove Command To perform operations of both the
select and remove commands simultaneously, use the selectremove

command.

> selectremove(large, L);

[8, π], [2.95, sin(9)]

Using the type Command Use the type command to determine the
type of an expression.

> type(3, numeric);

true

> type(cos(1), numeric);

false

The syntax of select here passes the third argument, numeric, to
the type command.

184 • Chapter 6: Evaluation and Simplification

> select(type, L, numeric);

[8, 2.95]

For more information on types and using select and remove on a
general expression, see this section, pages 190–196.

Merging Two Lists
Sometimes you need to merge two lists. Here is a list of x-values and a
list of y-values.

> X := [seq(ithprime(i), i=1..6)];

X := [2, 3, 5, 7, 11, 13]

> Y := [seq(binomial(6, i), i=1..6)];

Y := [6, 15, 20, 15, 6, 1]

To plot the y-values against the x-values, construct a list of lists: [
[x1,y1], [x2,y2], ...]. That is, for each pair of values, construct a
two-element list.

> pair := (x,y) -> [x, y];

pair := (x, y) → [x, y]

Using the zip Command The zip command can merge the lists X and
Y according to the binary function pair.

> P := zip(pair, X, Y);

P := [[2, 6], [3, 15], [5, 20], [7, 15], [11, 6], [13, 1]]

> plot(P);

6.3 Structural Manipulations • 185

2
4
6
8

10
12
14
16
18
20

2 4 6 8 10 12

If the two lists have different length, then zip returns a list the size
of the shorter one.

> zip((x,y) -> x.y, [a,b,c,d,e,f], [1,2,3]);

[a, 2 b, 3 c]

You can specify a fourth argument to zip. Then zip returns a list
the size of the longer input list, using the fourth argument for the missing
values.

> zip((x,y) -> x.y, [a,b,c,d,e,f], [1,2,3], 99);

[a, 2 b, 3 c, 99 d, 99 e, 99 f]

> zip(igcd, [7657,342,876], [34,756,213,346,123], 6!);

[1, 18, 3, 2, 3]

The zip command can also merge vectors. For more information, refer
to the ?zip help page.

Sorting Lists
A list is a fundamental order-preserving data structure in Maple. The
elements in a list remain in the order used in creating the list. You can
create a copy of a list sorted in another order by using the sort command.
The sort command sorts lists, among other things, in ascending order.
It sorts a list of numbers in numerical order.

> sort([1,3,2,4,5,3,6,3,6]);

186 • Chapter 6: Evaluation and Simplification

[1, 2, 3, 3, 3, 4, 5, 6, 6]

The sort command also sorts a list of strings in lexicographic order.

> sort(["Mary", "had", "a", "little", "lamb"]);

[“Mary”, “a”, “had”, “lamb”, “little”]

Session Dependent Machine Addresses If a list contains both numbers
and strings, or expressions different from numbers and strings, sort uses
the machine addresses, which are session dependent.

> sort([x, 1, "apple"]);

[1, x, “apple”]

> sort([-5, 10, sin(34)]);

[10, sin(34), −5]

Note that to Maple, π is not numeric.

> sort([4.3, Pi, 2/3]);

[π,
2

3
, 4.3]

You can specify a boolean function to define an ordering for a list.
The boolean function must take two arguments and return true if the
first argument precedes the second. You can use this to sort a list of
numbers in descending order.

> sort([3.12, 1, 1/2], (x,y) -> evalb(x>y));

[3.12, 1,
1

2
]

Using the is Command The is command can compare constants like
π and sin(5) with pure numbers.

> bf := (x,y) -> is(x < y);

6.3 Structural Manipulations • 187

bf := (x, y) → is(x < y)

> sort([4.3, Pi, 2/3, sin(5)], bf);

[sin(5),
2

3
, π, 4.3]

You can also sort strings by length.

> shorter := (x,y) -> evalb(length(x) < length(y));

shorter := (x, y) → evalb(length(x) < length(y))

> sort(["Mary", "has", "a", "little", "lamb"], shorter);

[“a”, “has”, “lamb”, “Mary”, “little”]

Sorting Mixed List of Strings and Numbers Maple does not have a
built-in method for sorting lists of mixed strings and numbers, other than
by machine address. To sort a mixed list of strings and numbers, you can
do the following.

> big_list := [1,"d",3,5,2,"a","c","b",9];

big_list := [1, “d”, 3, 5, 2, “a”, “c”, “b”, 9]

Make two lists from the original, one consisting of numbers and one
consisting of strings.

> list1 := select(type, big_list, string);

list1 := [“d”, “a”, “c”, “b”]

> list2 := select(type, big_list, numeric);

list2 := [1, 3, 5, 2, 9]

Then sort the two lists independently.

> list1 := sort(list1);

188 • Chapter 6: Evaluation and Simplification

list1 := [“a”, “b”, “c”, “d”]

> list2 := sort(list2);

list2 := [1, 2, 3, 5, 9]

Finally, stack the two lists together.

> sorted_list := [op(list1), op(list2)];

sorted_list := [“a”, “b”, “c”, “d”, 1, 2, 3, 5, 9]

Note: The sort command can also sort algebraic expressions. See
6.1 Mathematical Manipulations.

The Parts of an Expression
To manipulate the details of an expression, you must select the individ-
ual parts. Three easy cases for doing this involve equations, ranges, and
fractions.

Using the lhs and rhs Commands The lhs command selects the left-
hand side of an equation.

> eq := a^2 + b^ 2 = c^2;

eq := a2 + b2 = c2

> lhs(eq);

a2 + b2

The rhs command similarly selects the right-hand side.

> rhs(eq);

c2

The lhs and rhs commands also work on ranges.

> lhs(2..5);

6.3 Structural Manipulations • 189

2

> rhs(2..5);

5

> eq := x = -2..infinity;

eq := x = −2..∞

> lhs(eq);

x

> rhs(eq);

−2..∞

> lhs(rhs(eq));

−2

> rhs(rhs(eq));

∞

Using the numer and demom Commands The numer and denom com-
mands extract the numerator and denominator, respectively, from a frac-
tion.

> numer(2/3);

2

> denom(2/3);

3

> fract := (1+sin(x)^3-y/x) / (y^2 - 1 + x);

190 • Chapter 6: Evaluation and Simplification

fract :=
1 + sin(x)3 − y

x
y2 − 1 + x

> numer(fract);

x+ sin(x)3 x− y

> denom(fract);

x (y2 − 1 + x)

Using the whattype, op, and nops Commands Consider the expression

> expr := 3 + sin(x) + 2*cos(x)^2*sin(x);

expr := 3 + sin(x) + 2 cos(x)2 sin(x)

The whattype command identifies expr as a sum.

> whattype(expr);

+

Use the op command to list the terms of a sum or, in general, the
operands of an expression.

> op(expr);

3, sin(x), 2 cos(x)2 sin(x)

The expression expr consists of three terms. Use the nops command
to count the number of operands in an expression.

> nops(expr);

3

You can select, for example, the third term as follows.

> term3 := op(3, expr);

6.3 Structural Manipulations • 191

term3 := 2 cos(x)2 sin(x)

The expression term3 is a product of three factors.

> whattype(term3);

∗

> nops(term3);

3

> op(term3);

2, cos(x)2, sin(x)

Retrieve the second factor in term3 in the following manner.

> factor2 := op(2, term3);

factor2 := cos(x)2

It is an exponentiation.

> whattype(factor2);

^

The expression factor2 has two operands.

> op(factor2);

cos(x), 2

The first operand is a function and has only one operand.

> op1 := op(1, factor2);

op1 := cos(x)

> whattype(op1);

192 • Chapter 6: Evaluation and Simplification

function

> op(op1);

x

The name x is a symbol.

> whattype(op(op1));

symbol

Since you did not assign a value to x, it has only one operand, namely
itself.

> nops(x);

1

> op(x);

x

You can represent the result of finding the operands of the operands
of an expression as a picture called an expression tree . The following is
an expression tree for expr.

x

x
2cos

x
2^sin

sin*3

+

The operands of a list or set are the elements.

6.3 Structural Manipulations • 193

> op([a,b,c]);

a, b, c

> op({d,e,f});

e, d, f

This section (page 180) describes how the map command applies a
function to all the elements of a list or set. The functionality of map

extends to general expressions.

> map(f, x^2);

f(x)f(2)

The select and remove commands, described in this section (pages 182–
184) also work on general expressions.

> large := z -> evalb(is(z>3) = true);

large := z → evalb(is(3 < z) = true)

> remove(large, 5+8*sin(x) - exp(9));

8 sin(x)− e9

Maple has many commands that can be used as the boolean function
in a call to select or remove. The has command determines whether an
expression contains a certain subexpression.

> has(x*exp(cos(t^2)), t^2);

true

> has(x*exp(cos(t^2)), cos);

true

Some of the solutions to the following set of equations contain
RootOfs.

194 • Chapter 6: Evaluation and Simplification

> sol := { solve({ x^2*y^2 = b*y, x^2-y^2 = a*x },
> {x,y}) };

sol := {{y = 0, x = 0}, {y = 0, x = a}, {
x = RootOf(_Z 6 − b2 − a_Z 5),

y =
b

RootOf(_Z 6 − b2 − a_Z 5)2
}}

To select solutions, use select and has.

> select(has, sol, RootOf);

{{x = RootOf(_Z 6 − b2 − a_Z 5),

y =
b

RootOf(_Z 6 − b2 − a_Z 5)2
}}

You can also select or remove subexpressions by type. The type com-
mand determines if an expression is of a certain type.

> type(3+x, ‘+‘);

true

In this example, the select command passes its third argument, ‘+‘,
to type.

> expr := (3+x) * x^2 * sin(1+sqrt(Pi));

expr := (3 + x)x2 sin(1 +
√
π)

> select(type, expr, ‘+‘);

3 + x

The hastype command determines if an expression contains a subex-
pression of a certain type.

> hastype(sin(1+sqrt(Pi)), ‘+‘);

true

6.3 Structural Manipulations • 195

Use the combination select(hastype,...) to select the operands of
an expression that contain a certain type.

> select(hastype, expr, ‘+‘);

(3 + x) sin(1 +
√
π)

To find the subexpressions of a certain type rather than the operands
that contain them, use the indets command.

> indets(expr, ‘+‘);

{3 + x, 1 +
√
π}

The two RootOfs in sol above are of type RootOf. Since the two
RootOfs are identical, the set that indets returns contains only one ele-
ment.

> indets(sol, RootOf);

{RootOf(_Z 6 − b2 − a_Z 5)}

Not all commands are their own type, as is RootOf, but you can
use the structured type specfunc(type, name). This type matches the
function name with arguments of type type.

> type(diff(y(x), x), specfunc(anything, diff));

true

You can use this to find all the derivatives in a large differential equa-
tion.

> DE := expand(diff(cos(y(t)+t)*sin(t*z(t)), t))
> + diff(x(t), t);

196 • Chapter 6: Evaluation and Simplification

DE := −sin(t z(t)) sin(y(t)) cos(t) (d
dt y(t))

− sin(t z(t)) sin(y(t)) cos(t)

− sin(t z(t)) cos(y(t)) sin(t) (d
dt y(t))

− sin(t z(t)) cos(y(t)) sin(t) + cos(t z(t)) cos(y(t)) cos(t) z(t)

+ cos(t z(t)) cos(y(t)) cos(t) t (d
dt z(t))

− cos(t z(t)) sin(y(t)) sin(t) z(t)

− cos(t z(t)) sin(y(t)) sin(t) t (d
dt z(t)) + (d

dt x(t))

> indets(DE, specfunc(anything, diff));

{ d

dt
x(t),

d

dt
y(t),

d

dt
z(t)}

The following operands of DE contain the derivatives.

> select(hastype, DE, specfunc(anything, diff));

−sin(t z(t)) sin(y(t)) cos(t) (d
dt y(t))

− sin(t z(t)) cos(y(t)) sin(t) (d
dt y(t))

+ cos(t z(t)) cos(y(t)) cos(t) t (d
dt z(t))

− cos(t z(t)) sin(y(t)) sin(t) t (d
dt z(t)) + (d

dt x(t))

DE has only one operand that is itself a derivative.

> select(type, DE, specfunc(anything, diff));

d

dt
x(t)

Maple recognizes many types. For a list, refer to the ?type help page.
For more information on structured types, such as specfunc, refer to the
?type,structured help page.

Substitution
Often you want to substitute a value for a variable (that is, evaluate an
expression at a point). For example, if you need to solve the problem, “If
f(x) = ln(sin(xecos(x))), find f ′(2),” then you must substitute the value 2
for x in the derivative. The diff command finds the derivative.

6.3 Structural Manipulations • 197

> y := ln(sin(x * exp(cos(x))));

y := ln(sin(x ecos(x)))

> yprime := diff(y, x);

yprime :=
cos(x ecos(x)) (ecos(x) − x sin(x) ecos(x))

sin(x ecos(x))

Use the eval command to substitute a value for x in yprime.

> eval(yprime, x=2);

cos(2 ecos(2)) (ecos(2) − 2 sin(2) ecos(2))

sin(2 ecos(2))

The evalf command returns a floating-point approximation of the
result.

> evalf(%);

−0.1388047428

The command makes syntactical substitutions, not mathematical sub-
stitutions. This means that you can make substitutions for any subexpres-
sion.

> subs(cos(x)=3, yprime);

cos(x e3) (e3 − x sin(x) e3)

sin(x e3)

But you are limited to subexpressions as Maple identifies them.

> expr := a * b * c * a^b;

expr := a b c ab

> subs(a*b=3, expr);

a b c ab

198 • Chapter 6: Evaluation and Simplification

The expr expression is a product of four factors.

> op(expr);

a, b, c, ab

The product a*b is not a factor in expr. You can make the substitution
a*b=3 in three ways: solve the subexpression for one of the variables,

> subs(a=3/b, expr);

3 c (
3

b
)b

use a side relation to simplify,

> simplify(expr, { a*b=3 });

3 c ab

or use the algsubs command, which performs algebraic substitutions.

> algsubs(a*b=3, expr);

3 c ab

Note that in the first case all occurrences of a have been replaced by
3/b. Whereas, in the second and third cases both variables a and b remain
in the result.

You can make several substitutions with one call to subs.

> expr := z * sin(x^2) + w;

expr := z sin(x2) + w

> subs(x=sqrt(z), w=Pi, expr);

z sin(z) + π

The subs command makes the substitutions from left to right.

> subs(z=x, x=sqrt(z), expr);

6.3 Structural Manipulations • 199

√
z sin(z) + w

If you give a set or list of substitutions, subsmakes those substitutions
simultaneously.

> subs({ x=sqrt(Pi), z=3 }, expr);

3 sin(π) + w

Note that in general you must explicitly evaluate the result of a call
to subs.

> eval(%);

w

Use the subsop command to substitute for a specific operand of an
expression.

> expr := 5^x;

expr := 5x

> op(expr);

5, x

> subsop(1=t, expr);

tx

The zeroth operand of a function is typically the name of the function.

> expr := cos(x);

expr := cos(x)

> subsop(0=sin, expr);

sin(x)

200 • Chapter 6: Evaluation and Simplification

For information about the operands of an expression, see this section,
pages 188–193.

Changing the Type of an Expression
To convert an expression to another type, use the convert command.
Consider the Taylor series for sin(x).

> f := sin(x);

f := sin(x)

> t := taylor(f, x=0);

t := x− 1

6
x3 +

1

120
x5 +O(x6)

For example, you cannot plot a series, you must use convert(...,

polynom) to convert it into a polynomial approximation first.

> p := convert(t, polynom);

p := x− 1

6
x3 +

1

120
x5

Similarly, the title of a plot must be a string, not a general expression.
You can use convert(..., string) to convert an expression to a string.

> p_txt := convert(p, string);

p_txt := “x-1/6*x^3+1/120*x^ 5”

> plot(p, x=-4..4, title=p_txt);

x–1/6*x^3+1/120*x^5

–1.5

–1

–0.5
0

0.5

1

1.5

–4 –3 –2 –1 1 2 3 4
x

6.3 Structural Manipulations • 201

The cat command concatenates all its arguments to create a new
string.

> ttl := cat(convert(f, string),
> " and its Taylor approximation ",
> p_txt);

ttl := “sin(x) and its Taylor approximation x-1/6*x^\
3+1/120*x^5”

> plot([f, p], x=-4..4, title=ttl);

sin(x) and its Taylor approximation x–1/6*x^3+1/120*x^5

–1.5

–1

–0.5
0

0.5

1

1.5

–4 –3 –2 –1 1 2 3 4
x

You can also convert a list to a set or a set to a list.

> L := [1,2,5,2,1];

L := [1, 2, 5, 2, 1]

> S := convert(L, set);

S := {1, 2, 5}

> convert(S, list);

[1, 2, 5]

The convert command can perform many other structural and math-
ematical conversions. For more information, refer to the ?convert help
page.

202 • Chapter 6: Evaluation and Simplification

6.4 Evaluation Rules

In a symbolic mathematics program such as Maple you encounter the
issue of evaluation. If you assign the value y to x, the value z to y, and
the value 5 to z, then to what should x evaluate?

Levels of Evaluation
Maple, in most cases, does full evaluation of names. That is, when you use
a name or symbol, Maple checks if the name or symbol has an assigned
value. If it has a value, Maple substitutes the value for the name. If this
value itself has an assigned value, Maple performs a substitution again,
and so on, recursively, until no more substitutions are possible.

> x := y;

x := y

> y := z;

y := z

> z := 5;

z := 5

Maple evaluates x fully. That is, Maple substitutes y for x, z for y,
and then 5 for z.

> x;

5

You can use the eval command to control the level of evaluation of
an expression. If you call eval with one argument, then eval evaluates
that argument fully.

> eval(x);

5

A second argument to eval specifies how far you want to evaluate the
first argument.

6.4 Evaluation Rules • 203

> eval(x, 1);

y

> eval(x, 2);

z

> eval(x, 3);

5

The main exceptions to the rule of full evaluation are special data
structures like tables, matrices, and procedures, and the behavior of local
variables inside a procedure.

Last-Name Evaluation
The data structures array, table, matrix, and proc have a special eval-
uation behavior called last-name evaluation.

> x := y;

x := y

> y := z;

y := z

> z := array([[1,2], [3,4]]);

z :=

[

1 2
3 4

]

Maple substitutes y for x and z for y. Because evaluation of the last
name, z, produces an array, one of the four special structures, z is un-
evaluated.

> x;

z

204 • Chapter 6: Evaluation and Simplification

Maple uses last-name evaluation for arrays, tables, matrices, and pro-
cedures to retain compact representations of unassigned table entries (for
example, T[3]) and unevaluated commands (for example, sin(x)). For
more information on last-name evaluation, refer to the ?last_name_eval
help page. You can force full evaluation by calling eval explicitly.

> eval(x);

[

1 2
3 4

]

> add2 := proc(x,y) x+y; end proc;

add2 := proc(x, y)x+ y end proc

> add2;

add2

You can force full evaluation by using eval or print.

> eval(add2);

proc(x, y)x+ y end proc

Note that full evaluation of Maple library procedures, by default, sup-
presses the code in the procedure. To illustrate this, examine the erfi

command.

> erfi;

erfi

> eval(erfi);

proc(x::algebraic) . . . end proc

Set the interface variable verboseproc to 2, and then try again.

> interface(verboseproc=2);
> eval(erfi);

6.4 Evaluation Rules • 205

proc(x::algebraic)

optionsystem, ‘Copyright (c) 1996 Waterloo Maple\
Inc . All rights reserved .‘;

try return _Remember(’procname’(args))

catch :
end try;
if nargs 6= 1 then

error “expecting 1 argument, got %1”, nargs

elif type(x, ’complex(float)’) then evalf(’erfi ’(x))

elif type(x, ’∞’) then

if type(x, ’cx_infinity ’) thenundefined + undefined ∗ I
elif type(x, ’undefined ’) then

NumericTools : −ThrowUndefined (x)

elif type(x, ’extended_numeric ’) thenx

elif type(<(x), ’∞’) then∞+∞∗ I
elseCopySign(I, =(x))
end if

elif type(x, ’undefined ’) then

NumericTools : −ThrowUndefined (x, ’preserve ’ = ’axes ’)

elif type(x, ‘ ∗ ‘) and member(I, {op(x)}) then erf(−I ∗ x) ∗ I
elif type(x, ’complex(numeric)’) and csgn(x) < 0 then

− erfi(−x)

eliftype(x, ‘ ∗ ‘) and type(op(1, x), ’complex(numeric)’)

and csgn(op(1, x)) < 0then − erfi(−x)

elif type(x, ‘ + ‘) and traperror(sign(x)) = −1 then − erfi(−x)

else ’erfi ’(x)

end if
end proc

The default value of verboseproc is 1.

> interface(verboseproc=1);

The ?interface help page explains the possible settings of verboseproc
and the other interface variables.

One-Level Evaluation
Local variables of a procedure use one-level evaluation. That is, if you
assign a local variable, then the result of evaluation is the value most

206 • Chapter 6: Evaluation and Simplification

recently assigned directly to that variable.

> test:=proc()
> local x, y, z;
> x := y;
> y := z;
> z := 5;
> x;
> end proc:
> test();

y

Compare this evaluation with the similar interactive example in this
section on page 202. Full evaluation within a procedure is rarely neces-
sary and can lead to inefficiency. If you require full evaluation within a
procedure, use eval.

Commands with Special Evaluation Rules

The assigned and evaln Commands The functions assigned and
evaln evaluate their arguments only to the level at which they become
names.

> x := y;

x := y

> y := z;

y := z

> evaln(x);

x

The assigned command checks if a name has a value assigned to it.

> assigned(x);

true

6.4 Evaluation Rules • 207

The seq Command The seq command for creating expression sequences
does not evaluate its arguments. Therefore, seq can use a variable with
an assigned value as a counting variable.

> i := 2;

i := 2

> seq(i^2, i=1..5);

1, 4, 9, 16, 25

> i;

2

Contrast this with the behavior of sum.

> sum(i^2, i=1..5);

Error, (in sum) summation variable previously assigned,
second argument evaluates to 2 = 1 .. 5

You can solve this problem by using right single quotes, as shown in
the next section.

Quotation and Unevaluation
The Maple language supports the use of quotes to delay evaluation one
level. Surrounding a name in right single quotes (’) prevents Maple from
evaluating the name. Hence, right single quotes are referred to as uneval-
uation quotes.

> i := 4;

i := 4

> i;

4

> ’i’;

208 • Chapter 6: Evaluation and Simplification

i

Use this method to avoid the following problem.

> i;

4

> sum(i^2, i=1..5);

Error, (in sum) summation variable previously assigned,
second argument evaluates to 4 = 1 .. 5

> sum(’i^2’, ’i’=1..5);

55

> i;

4

Full evaluation of a quoted expression removes one level of quotes.

> x := 0;

x := 0

> ’’’x’+1’’;

’’x’ + 1’

> %;

’x’ + 1

> %;

x+ 1

> %;

6.4 Evaluation Rules • 209

1

Important: Quoting an expression delays evaluation, but does not pre-
vent automatic simplifications and arithmetic.

> ’1-1’;

0

> ’p+q-i-p+3*q’;

4 q − i

If you enclose a simple variable in right single quotes, the result is the
name of the variable. You can use this method to unassign a variable.

> x := 1;

x := 1

> x;

1

> x := ’x’;

x := x

> x;

x

However, in general, you must use evaln.

> i := 4;

i := 4

> a[i] := 9;

a4 := 9

210 • Chapter 6: Evaluation and Simplification

Note that ’a[i]’ is a[i] not a[4].

> ’a[i]’;

ai

You must use evaln to unassign a[i].

> evaln(a[i]);

a4

> a[i] := evaln(a[i]);

a4 := a4

Using Quoted Variables as Function Arguments
Some Maple commands use names as a way to return information in
addition to the standard return value. The divide command assigns the
quotient to the global name, q.

> divide(x^2-1, x-1, ’q’);

true

> q;

x+ 1

Use a quoted name to ensure that you are not passing a variable with
an assigned value into the procedure. You can avoid the need for quotes
if you ensure that the name you use has no previously assigned value.

> q := 2;

q := 2

> divide(x^2-y^2, x-y, q);

Error, wrong number (or type) of parameters in function
divide

6.4 Evaluation Rules • 211

> q := evaln(q);

q := q

> divide(x^2-y^2, x-y, q);

true

> q;

x+ y

Note: The rem, quo, irem, and iquo commands behave in a similar
manner.

Concatenation of Names
Concatenation is a way to form new variable names based on others.

> a||b;

ab

The concatenation operator, “||”, in a name causes evaluation of the
right-hand side of the operator, but not the left.

> a := x;

a := x

> b := 2;

b := 2

> a||b;

a2

> c := 3;

212 • Chapter 6: Evaluation and Simplification

c := 3

> a||b||c;

a23

If a name does not evaluate to a single symbol, Maple does not eval-
uate a concatenation.

> a := x;

a := x

> b := y+1;

b := y + 1

> new_name := a||b;

new_name := a||(y + 1)

> y := 3;

y := 3

> new_name;

a4

You can use concatenated names to assign and create expressions.

> i := 1;

i := 1

> b||i := 0;

b1 := 0

You must use right single quotes.

6.5 Conclusion • 213

> sum(’a||k’ * x^k, k=0..8);

a0 + a1 x+ a2 x2 + a3 x3 + a4 x4 + a5 x5 + a6 x6 + a7 x7

+ a8 x8

If you do not use right single quotes, Maple evaluates a||k to ak.

> sum(a||k * x^k, k=0..8);

ak + ak x+ ak x2 + ak x3 + ak x4 + ak x5 + ak x6 + ak x7

+ ak x8

You can also use concatenation to form title strings for plots.

6.5 Conclusion

In this chapter, you have seen how to perform many kinds of expression
manipulations, from adding two equations to selecting individual parts of
a general expression. In general, no rule specifies which form of an expres-
sion is the simplest. The commands in this chapter allow you to convert
an expression to many forms, often the ones you would consider simplest.
If not, you can use side relations to specify your own simplification rules,
or assumptions to specify properties of unknowns.

You have also seen that Maple, in most cases, uses full evaluation
of variables. Some exceptions exist, which include last-name evaluation
for certain data structures, one-level evaluation for local variables in a
procedure, and delayed evaluation for names in right single quotes.

214 • Chapter 6: Evaluation and Simplification

7 Solving Calculus Problems

This chapter provides examples of how Maple can help you present and
solve problems from calculus.

In This Chapter
• Introductory Calculus

• Ordinary Differential Equations

• Partial Differential Equations

7.1 Introductory Calculus

This section contains examples of how to illustrate ideas and solve prob-
lems from calculus. The Student[Calculus1] package contains many
commands that are especially useful in this area.

The Derivative
This section illustrates the graphical meaning of the derivative: the slope
of the tangent line. Then it shows you how to find the set of inflection
points for a function.

Define the function f :x 7→ exp(sin(x)) in the following manner.

> f := x -> exp(sin(x));

f := x → esin(x)

Find the derivative of f evaluated at x0 = 1.

> x0 := 1;

215

216 • Chapter 7: Solving Calculus Problems

x0 := 1

p0 and p1 are two points on the graph of f .

> p0 := [x0, f(x0)];

p0 := [1, esin(1)]

> p1 := [x0+h, f(x0+h)];

p1 := [1 + h, esin(1+h)]

The NewtonQuotient command from the Student[Calculus] pack-
age finds the slope of the secant line through p0 and p1.

> with(Student[Calculus1]):

Use NewtonQuotient command to find the expression for the slope.

> m := NewtonQuotient(f(x), x=x0, h=h);

m :=
esin(1+h) − esin(1)

h

If h = 1, the slope is

> eval(%, h=1);

esin(2) − esin(1)

The evalf command gives a floating-point approximation.

> evalf(%);

0.162800903

As h tends to zero, the secant slope values seem to converge.

> slopes := seq(NewtonQuotient(f(x), x=1.0, h=1.0/10^i),
> i=0..5);

slopes := 0.1628009030, 1.182946800, 1.246939100,

1.252742000, 1.253310000, 1.253300000

The following is the equation of the secant line.

7.1 Introductory Calculus • 217

> y - p0[2] = m * (x - p0[1]);

y − esin(1) =
(esin(1+h) − esin(1)) (x− 1)

h

The isolate command converts the equation to slope–intercept form.

> isolate(%, y);

y =
(esin(1+h) − esin(1)) (x− 1)

h
+ esin(1)

You must convert the equation to a function.

> secant := unapply(rhs(%), x);

secant := x → (esin(1+h) − esin(1)) (x− 1)

h
+ esin(1)

You can now plot the secant and the function for different values of
h. First, make a sequence of plots.

> S := seq(plot([f(x), secant(x)], x=0..4,
> view=[0..4, 0..4]),
> h=[1.0, 0.1, .01, .001, .0001, .00001]):

The display command from the plots package can display the plots
in sequence, that is, as an animation.

> with(plots):

Warning, the name changecoords has been redefined

> display(S, insequence=true, view=[0..4, 0..4]);

218 • Chapter 7: Solving Calculus Problems

xxx

xxx

In the limit as h tends to zero, the slope is

> Limit(m, h=0);

lim
h→0

esin(1+h) − esin(1)

h

The value of this limit is

> value(%);

esin(1) cos(1)

This answer is, of course, the value of f ′(x0). To see this, first define
the function f1 to be the first derivative of f . Since f is a function, use
D.

Important: The D operator computes derivatives of functions, while
diff computes derivatives of expressions. For more information, refer
to the ?operators,D help page.

> f1 := D(f);

f1 := x → cos(x) esin(x)

As expected, f1(x0) equals the previous limit.

> f1(x0);

esin(1) cos(1)

7.1 Introductory Calculus • 219

In this case, the second derivative exists.

> diff(f(x), x, x);

−sin(x) esin(x) + cos(x)2 esin(x)

Define the function f2 to be the second derivative of f .

> f2 := unapply(%, x);

f2 := x → −sin(x) esin(x) + cos(x)2 esin(x)

When you plot f and its first and second derivatives, f is increasing
whenever f1 is positive, and f is concave down whenever f2 is negative.

> plot([f(x), f1(x), f2(x)], x=0..10);

–2

–1

0

1

2

2 4 6 8 10
x

The graph of f has an inflection point where the second derivative
changes sign, and the second derivative can change sign at the values of
x where f2(x) is zero.

> sol := { solve(f2(x)=0, x) };

220 • Chapter 7: Solving Calculus Problems

sol :=

{

arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

 , −arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

+ π,

arctan(−1

2

√
5− 1

2
,
1

2

√

−2− 2
√
5),

arctan(−1

2

√
5− 1

2
, −1

2

√

−2− 2
√
5)

}

Two of these solutions are complex.

> evalf(sol);

{0.6662394321, 2.475353222,
−1.570796327 + 1.061275064 I,

−1.570796327− 1.061275064 I}
In this example, only the real solutions are of interest. Use the select

command to select the real constants from the solution set.

> infl := select(type, sol, realcons);

infl :=

arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

 , −arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

+ π

> evalf(infl);

{0.6662394321, 2.475353222}

Observe that f2 actually does change sign at these x-values. The set
of inflection points is given by the following.

> { seq([x, f(x)], x=infl) };

7.1 Introductory Calculus • 221

arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

 , e

2 1/2
√
5−1/2

√
−2+2

√
5

√

1+4
(1/2

√
5−1/2)2

−2+2
√
5

,

−arctan

2

1

2

√
5− 1

2
√

−2 + 2
√
5

+ π, e

2 1/2
√
5−1/2

√
−2+2

√
5

√

1+4
(1/2

√
5−1/2)2

−2+2
√
5

> evalf(%);

{[0.6662394321, 1.855276958],
[2.475353222, 1.855276958]}

Since f is periodic, it has, of course, infinitely many inflection points.
You can obtain these by shifting the two inflection points above horizon-
tally by integer multiples of 2π.

A Taylor Approximation
This section illustrates how you can use Maple to analyze the error term
in a Taylor approximation. The following is Taylor’s formula.

> taylor(f(x), x=a);

f(a) + D(f)(a) (x− a) +
1

2
(D(2))(f)(a) (x− a)2 +

1

6
(D(3))(f)(a)

(x− a)3 +
1

24
(D(4))(f)(a) (x− a)4 +

1

120
(D(5))(f)(a) (x− a)5+

O((x− a)6)

You can use it to find a polynomial approximation of a function f
near x = a.

> f := x -> exp(sin(x));

f := x → esin(x)

> a := Pi;

222 • Chapter 7: Solving Calculus Problems

a := π

> taylor(f(x), x=a);

1− (x− π) +
1

2
(x− π)2 − 1

8
(x− π)4 +

1

15
(x− π)5 +O((x− π)6)

Before you can plot the Taylor approximation, you must convert it
from a series to a polynomial.

> poly := convert(%, polynom);

poly := 1− x+ π +
1

2
(x− π)2 − 1

8
(x− π)4 +

1

15
(x− π)5

Plot the function f along with poly.

> plot([f(x), poly], x=0..10, view=[0..10, 0..3]);

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10
x

The expression (1/6!)f (6)(ξ)(x−a)6 gives the error of the approxima-
tion, where ξ is some number between x and a. The sixth derivative of f
is

> diff(f(x), x$6);

−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x)

The use of the sequence operator $ in the previous command allows
you to abbreviate the calling sequence. Otherwise, you are required to

7.1 Introductory Calculus • 223

enter , x six times to calculate the sixth derivative. Define the function
f6 to be that derivative.

> f6 := unapply(%, x);

f6 := x → −sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x)

The following is the error in the approximation.

> err := 1/6! * f6(xi) * (x - a)^6;

err :=
1

720
(−sin(ξ) esin(ξ) + 16 cos(ξ)2 esin(ξ) − 15 sin(ξ)2 esin(ξ)

+ 75 sin(ξ) cos(ξ)2 esin(ξ) − 20 cos(ξ)4 esin(ξ) − 15 sin(ξ)3 esin(ξ)

+ 45 sin(ξ)2 cos(ξ)2 esin(ξ) − 15 sin(ξ) cos(ξ)4 esin(ξ)

+ cos(ξ)6 esin(ξ))(x− π)6

The previous plot indicates that the error is small (in absolute value)
for x between 2 and 4.

> plot3d(abs(err), x=2..4, xi=2..4,
> style=patch, axes=boxed);

2

4

x

2

4
xi

0

0.16

To find the size of the error, you need a full analysis of the expression
err for x between 2 and 4 and ξ between a and x, that is, on the two
closed regions bounded by x = 2, x = 4, ξ = a, and ξ = x. The curve

command from the plottools package can illustrate these two regions.

224 • Chapter 7: Solving Calculus Problems

> with(plots): with(plottools):

Warning, the name changecoords has been redefined
Warning, the name arrow has been redefined

> display(curve([[2,2], [2,a], [4,a], [4,4], [2,2]]),
> labels=[x, xi]);

2

2.5

3

3.5

4

xi

2 2.5 3 3.5 4
x

The partial derivatives of err help you find extrema of err inside the
two regions. Then you must to check the four boundaries. The two partial
derivatives of err are

> err_x := diff(err, x);

err_x :=
1

120
(−sin(ξ) esin(ξ) + 16 cos(ξ)2 esin(ξ)

− 15 sin(ξ)2 esin(ξ) + 75 sin(ξ) cos(ξ)2 esin(ξ) − 20 cos(ξ)4 esin(ξ)

− 15 sin(ξ)3 esin(ξ) + 45 sin(ξ)2 cos(ξ)2 esin(ξ)

− 15 sin(ξ) cos(ξ)4 esin(ξ) + cos(ξ)6 esin(ξ))(x− π)5

> err_xi := diff(err, xi);

err_xi :=
1

720
(−cos(ξ) esin(ξ) − 63 sin(ξ) cos(ξ) esin(ξ)

+ 91 cos(ξ)3 esin(ξ) − 210 sin(ξ)2 cos(ξ) esin(ξ)

+ 245 sin(ξ) cos(ξ)3 esin(ξ) − 35 cos(ξ)5 esin(ξ)

− 105 sin(ξ)3 cos(ξ) esin(ξ) + 105 sin(ξ)2 cos(ξ)3 esin(ξ)

− 21 sin(ξ) cos(ξ)5 esin(ξ) + cos(ξ)7 esin(ξ))(x− π)6

The two partial derivatives are zero at a critical point.

7.1 Introductory Calculus • 225

> sol := solve({err_x=0, err_xi=0}, {x, xi});

sol := {ξ = ξ, x = π}

The error is zero at this critical point.

> eval(err, sol);

0

Collect a set of critical values. The largest critical value then bounds
the maximal error.

> critical := { % };

critical := {0}

The partial derivative err_xi is zero at a critical point on either of
the two boundaries at x = 2 and x = 4.

> sol := { solve(err_xi=0, xi) };

sol := {arctan(RootOf(%1, index = 2),

RootOf(_Z 2 +RootOf(%1, index = 2)2 − 1)), arctan(

RootOf(%1, index = 5),

RootOf(_Z 2 +RootOf(%1, index = 5)2 − 1)), arctan(

RootOf(%1, index = 6),

RootOf(_Z 2 +RootOf(%1, index = 6)2 − 1)), arctan(

RootOf(%1, index = 1),

RootOf(_Z 2 +RootOf(%1, index = 1)2 − 1)), arctan(

RootOf(%1, index = 4),

RootOf(_Z 2 +RootOf(%1, index = 4)2 − 1)), arctan(

RootOf(%1, index = 3),

RootOf(_Z 2 +RootOf(%1, index = 3)2 − 1)),
1

2
π}

%1 := −56− 161_Z + 129_Z 2 + 308_Z 3 + 137_Z 4

+ 21_Z 5 +_Z 6

226 • Chapter 7: Solving Calculus Problems

> evalf(sol);

{−1.570796327 + 0.8535664710 I, 1.570796327,

−1.570796327 + 1.767486929 I,

−1.570796327 + 3.083849212 I,

−1.570796327 + 2.473801030 I, 0.6948635283,

−0.3257026605}
Check the solution set by plotting the function.

> plot(eval(err_xi, x=2), xi=2..4);

–0.2

0

0.2

0.4

0.6

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
xi

Two solutions to err_xi=0 seem to exist between 2 and 4 where solve
found none: π/2 is less than 2. Thus, you must use numerical methods. If
x = 2, then ξ must be in the interval from 2 to a.

> sol := fsolve(eval(err_xi, x=2), xi, 2..a);

sol := 2.446729125

At that point the error is

> eval(err, {x=2, xi=sol});

0.07333000221 (2− π)6

Add this value to the set of critical values.

> critical := critical union {%};

critical := {0, 0.07333000221 (2− π)6}

7.1 Introductory Calculus • 227

If x = 4 then ξ must be between a and 4.

> sol := fsolve(eval(err_xi, x=4), xi, a..4);

sol := 3.467295314

At that point, the error is

> eval(err, {x=4, xi=sol});

−0.01542298119 (4− π)6

> critical := critical union {%};

critical :=
{0, 0.07333000221 (2− π)6, −0.01542298119 (4− π)6}

At the ξ = a boundary, the error is

> B := eval(err, xi=a);

B := − 1

240
(x− π)6

The derivative, B1, of B is zero at a critical point.

> B1 := diff(B, x);

B1 := − 1

40
(x− π)5

> sol := { solve(B1=0, x) };

sol := {π}

At the critical point the error is

> eval(B, x=sol[1]);

0

> critical := critical union { % };

228 • Chapter 7: Solving Calculus Problems

critical :=
{0, 0.07333000221 (2− π)6, −0.01542298119 (4− π)6}

At the last boundary, ξ = x, the error is

> B := eval(err, xi=x);

B :=
1

720
(−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x))(x− π)6

Again, find where the derivative is zero.

> B1 := diff(B, x);

B1 :=
1

720
(−cos(x) esin(x) − 63 sin(x) cos(x) esin(x)

+ 91 cos(x)3 esin(x) − 210 sin(x)2 cos(x) esin(x)

+ 245 sin(x) cos(x)3 esin(x) − 35 cos(x)5 esin(x)

− 105 sin(x)3 cos(x) esin(x) + 105 sin(x)2 cos(x)3 esin(x)

− 21 sin(x) cos(x)5 esin(x) + cos(x)7 esin(x))(x− π)6 +
1

120
(

−sin(x) esin(x) + 16 cos(x)2 esin(x) − 15 sin(x)2 esin(x)

+ 75 sin(x) cos(x)2 esin(x) − 20 cos(x)4 esin(x) − 15 sin(x)3 esin(x)

+ 45 sin(x)2 cos(x)2 esin(x) − 15 sin(x) cos(x)4 esin(x)

+ cos(x)6 esin(x))(x− π)5

> sol := { solve(B1=0, x) };

sol := {π}

Check the solution by plotting.

7.1 Introductory Calculus • 229

> plot(B1, x=2..4);

0

0.2

0.4

0.6

0.8

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
x

The plot of B1 indicates that a solution between 2.1 and 2.3 exists.
The solve command cannot find that solution. Use numerical methods
again.

> fsolve(B1=0, x, 2.1..2.3);

2.180293062

Add the numerical solution to the set of symbolic solutions.

> sol := sol union { % };

sol := {2.180293062, π}

The following is the set of extremal errors at the ξ = x boundary.

> { seq(B, x=sol) };

{0, 0.04005698601 (2.180293062− π)6}

Enlarge the set of large errors.

> critical := critical union %;

critical := {0, 0.07333000221 (2− π)6,

−0.01542298119 (4− π)6,

0.04005698601 (2.180293062− π)6}
Add the error at the four corners to the set of critical values.

230 • Chapter 7: Solving Calculus Problems

> critical := critical union
> { eval(err, {xi=2, x=2}),
> eval(err, {xi=2, x=4}),
> eval(err, {xi=4, x=2}),
> eval(err, {xi=4, x=4}) };

critical := {0, 0.07333000221 (2− π)6,
1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(2− π)6,
1

720
(−sin(2) esin(2)

+ 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2) + 75 sin(2) cos(2)2 esin(2)

− 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(4− π)6, −0.01542298119 (4− π)6,

0.04005698601 (2.180293062− π)6,
1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(4− π)6,
1

720
(−sin(2) esin(2)

+ 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2) + 75 sin(2) cos(2)2 esin(2)

− 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(2− π)6}
Find the maximum of the absolute values of the elements of critical.

First, map the abs command onto the elements of critical.

> map(abs, critical);

7.1 Introductory Calculus • 231

{0, 0.07333000221 (2− π)6,− 1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(2− π)6,− 1

720
(−sin(2) esin(2)

+ 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2) + 75 sin(2) cos(2)2 esin(2)

− 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(4− π)6, 0.01542298119 (4− π)6,− 1

720
(

−sin(2) esin(2) + 16 cos(2)2 esin(2) − 15 sin(2)2 esin(2)

+ 75 sin(2) cos(2)2 esin(2) − 20 cos(2)4 esin(2) − 15 sin(2)3 esin(2)

+ 45 sin(2)2 cos(2)2 esin(2) − 15 sin(2) cos(2)4 esin(2)

+ cos(2)6 esin(2))(2− π)6,− 1

720
(−sin(4) esin(4)

+ 16 cos(4)2 esin(4) − 15 sin(4)2 esin(4) + 75 sin(4) cos(4)2 esin(4)

− 20 cos(4)4 esin(4) − 15 sin(4)3 esin(4)

+ 45 sin(4)2 cos(4)2 esin(4) − 15 sin(4) cos(4)4 esin(4)

+ cos(4)6 esin(4))(4− π)6,

0.04005698601 (2.180293062− π)6}
Find the maximal element. The max command expects a sequence of

numbers, so you must use the op command to convert the set of values
into a sequence.

> max_error := max(op(%));

max_error := 0.07333000221 (2− π)6

Approximately, this number is

> evalf(max_error);

0.1623112756

232 • Chapter 7: Solving Calculus Problems

You can now plot f , its Taylor approximation, and a pair of curves
indicating the error band.

> plot([f(x), poly, f(x)+max_error, f(x)-max_error],
> x=2..4,
> color=[red, blue, brown, brown]);

0.5

1

1.5

2

2.5

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
x

The plot shows that the actual error stays well inside the error esti-
mate.

The Integral
The integral of a function can be considered as a measure of the area
between the x-axis and the graph of the function. The definition of the
Riemann integral relies on this graphical interpretation of the integral.

> f := x -> 1/2 + sin(x);

f := x → 1

2
+ sin(x)

For example, the ApproximateInt command with method = left,
partition = 6, and output = plot specified, from the Student[Calculus1]
package draws the graph of f along with 6 boxes. The height of each box
is the value of f evaluated at the left-hand side of the box.

> with(Student[Calculus1]):

> ApproximateInt(f(x), x=0..10, method=left, partition=6,
> output=plot);

7.1 Introductory Calculus • 233

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 10]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.839071529

 Area: 6.845601763

–1

–0.5

0.5

1

1.5

2 4 6 8 10
x

Change output = plot to output = sum to calculate the area of the
boxes.

> ApproximateInt(f(x), x=0..10, method=left, partition=6,
> output=sum);

5

3

(

5
∑

i=0

(
1

2
+ sin(

5

3
i))

)

Approximately, this number is

> evalf(%);

6.845601766

The approximation of the area improves as you increase the number
of boxes. Increase the number of boxes to 12 and calculate the value of
ApproximateInt for each of these boxes.

> seq(evalf(ApproximateInt(f(x), x=0..10, method=left,
> partition=n^2)), n=3..14);

6.948089404, 6.948819108, 6.923289158, 6.902789477,

6.888196449, 6.877830055, 6.870316621, 6.864739771,

6.860504866, 6.857222009, 6.854630209, 6.852550664

Use the option output = animation to create an animation for the
left Riemann sum.

234 • Chapter 7: Solving Calculus Problems

> ApproximateInt(f(x), x=0..4*Pi, method=left, partition=6,
> output=animation, iterations=7);

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185309
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185308
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185308
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185311
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185308
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185309
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 4*Pi]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.283185307

 Area: 6.283185309
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10 12
x

In the limit, as the number of boxes tends to infinity, you obtain the
definite integral.

> Int(f(x), x=0..10);

∫ 10

0

1

2
+ sin(x) dx

The value of the integral is

> value(%);

−cos(10) + 6

and in floating-point numbers, this value is approximately

> evalf(%);

6.839071529

The indefinite integral of f is

> Int(f(x), x);

7.1 Introductory Calculus • 235

∫

1

2
+ sin(x) dx

> value(%);

1

2
x− cos(x)

Define the function F to be the antiderivative.

> F := unapply(%, x);

F := x → 1

2
x− cos(x)

Choose the constant of integration so that F (0) = 0.

> F(x) - F(0);

1

2
x− cos(x) + 1

> F := unapply(%, x);

F := x → 1

2
x− cos(x) + 1

If you plot F and the left-boxes together, F increases faster when the
corresponding box is larger, that is, when f is bigger.

> with(plots):
> display([plot(F(x), x=0..10, color=blue, legend="F(x)"),
> ApproximateInt(f(x), x=0..10, partition=14,
> method=left, output=plot)]);

236 • Chapter 7: Solving Calculus Problems

F(x)
f(x)

An Approximation of the Integral of
f(x) = 1/2+sin(x)

on the Interval [0, 10]
Using a Left-endpoint Riemann Sum

Approximate Value: 6.839071529

 Area: 6.954499888
–1

–0.5

0

0.5

1

1.5

2 4 6 8 10
x

By specifying method = right or method = midpoint when using
the ApproximateInt command, you can draw and sum boxes evaluated
at the right-hand side or at the midpoint of the box.

Mixed Partial Derivatives
This section describes the D operator for derivatives and gives an example
of a function whose mixed partial derivatives are different.

Consider the following function.

> f := (x,y) -> x * y * (x^2-y^2) / (x^2+y^2);

f := (x, y) → x y (x2 − y2)

x2 + y2

The function f is not defined at (0, 0).

> f(0,0);

Error, (in f) numeric exception: division by zero

At (x, y) = (r cos(θ), r sin(θ)) the function value is

> f(r*cos(theta), r*sin(theta));

r2 cos(θ) sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2

As r tends to zero so does the function value.

> Limit(%, r=0);

7.1 Introductory Calculus • 237

lim
r→0

r2 cos(θ) sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2

> value(%);

0

Thus, you can extend f as a continuous function by defining it to be
zero at (0, 0).

> f(0,0) := 0;

f(0, 0) := 0

The above assignment places an entry in f ’s remember table.

Note: A remember table is a hash table in which the arguments to a
procedure call are stored as the table index, and the result of the proce-
dure call is stored as the table value. For more information, refer to the
?remember help page and the Maple Advanced Programming Guide.

Here is the graph of f .

> plot3d(f, -3..3, -3..3);

The partial derivative of f with respect to its first parameter, x, is

> fx := D[1](f);

fx := (x, y) → y (x2 − y2)

x2 + y2
+ 2

x2 y

x2 + y2
− 2

x2 y (x2 − y2)

(x2 + y2)2

This formula does not hold at (0, 0).

238 • Chapter 7: Solving Calculus Problems

> fx(0,0);

Error, (in fx) numeric exception: division by zero

Therefore, you must use the limit definition of the derivative.

> fx(0,0) := limit((f(h,0) - f(0,0))/h, h=0);

fx(0, 0) := 0

At (x, y) = (r cos(θ), r sin(θ)) the value of fx is

> fx(r*cos(theta), r*sin(theta));

r sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

r2 cos(θ)2 + r2 sin(θ)2
+ 2

r3 cos(θ)2 sin(θ)

r2 cos(θ)2 + r2 sin(θ)2

− 2
r3 cos(θ)2 sin(θ) (r2 cos(θ)2 − r2 sin(θ)2)

(r2 cos(θ)2 + r2 sin(θ)2)2

> combine(%);

3

4
r sin(3 θ)− 1

4
r sin(5 θ)

As the distance r from (x, y) to (0, 0) tends to zero, so does |fx(x, y)−
fx(0, 0)|.

> Limit(abs(% - fx(0,0)), r=0);

lim
r→0

∣

∣

∣

∣

−3

4
r sin(3 θ) +

1

4
r sin(5 θ)

∣

∣

∣

∣

> value(%);

0

Hence, fx is continuous at (0, 0).
By symmetry, the same arguments apply to the derivative of f with

respect to its second parameter, y.

> fy := D[2](f);

7.1 Introductory Calculus • 239

fy := (x, y) → x (x2 − y2)

x2 + y2
− 2

x y2

x2 + y2
− 2

x y2 (x2 − y2)

(x2 + y2)2

> fy(0,0) := limit((f(0,k) - f(0,0))/k, k=0);

fy(0, 0) := 0

Here is a mixed second derivative of f .

> fxy := D[1,2](f);

fxy := (x, y) → x2 − y2

x2 + y2
+ 2

x2

x2 + y2
− 2

x2 (x2 − y2)

(x2 + y2)2

− 2
y2

x2 + y2
− 2

y2 (x2 − y2)

(x2 + y2)2
+ 8

x2 y2 (x2 − y2)

(x2 + y2)3

Again, the formula does not hold at (0, 0).

> fxy(0,0);

Error, (in fxy) numeric exception: division by zero

The limit definition is

> Limit((fx(0,k) - fx(0,0))/k, k=0);

lim
k→0

− 1

> fxy(0,0) := value(%);

fxy(0, 0) := −1

The other mixed second derivative is

> fyx := D[2,1](f);

fyx := (x, y) → x2 − y2

x2 + y2
+ 2

x2

x2 + y2
− 2

x2 (x2 − y2)

(x2 + y2)2

− 2
y2

x2 + y2
− 2

y2 (x2 − y2)

(x2 + y2)2
+ 8

x2 y2 (x2 − y2)

(x2 + y2)3

240 • Chapter 7: Solving Calculus Problems

At (0, 0), you must use the limit definition.

> Limit((fy(h, 0) - fy(0,0))/h, h=0);

lim
h→0

1

> fyx(0,0) := value(%);

fyx(0, 0) := 1

Note that the two mixed partial derivatives are different at (0, 0).

> fxy(0,0) <> fyx(0,0);

−1 6= 1

The mixed partial derivatives are equal only if they are continuous.
As you can see in the plot of fxy, it is not continuous at (0, 0).

> plot3d(fxy, -3..3, -3..3);

Maple can help you with many problems from introductory calculus.
For more information, refer to the ?Student[Calculus1] help page.

7.2 Ordinary Differential Equations

Maple provides you with tools for solving, manipulating, and plotting
ordinary differential equations and systems of differential equations.

7.2 Ordinary Differential Equations • 241

The dsolve Command
The most commonly used command for investigating the behavior of or-
dinary differential equations (ODEs) in Maple is dsolve. You can use
this general-purpose command to obtain both closed form and numerical
solutions to a wide variety of ODEs. This is the basic syntax of dsolve.

dsolve(eqns, vars)

• eqns is a set of differential equations and initial values

• vars is a set of variables with respect to which dsolve solves

The following example is a differential equation and an initial condi-
tion.

> eq := diff(v(t),t)+2*t = 0;

eq := (
d

dt
v(t)) + 2 t = 0

> ini := v(1) = 5;

ini := v(1) = 5

Use dsolve to obtain the solution.

> dsolve({eq, ini}, {v(t)});

v(t) = −t2 + 6

If you omit some or all of the initial conditions, then dsolve returns
a solution containing arbitrary constants of the form _Cnumber .

> eq := diff(y(x),x$2) - y(x) = 1;

eq := (
d2

dx2
y(x))− y(x) = 1

> dsolve({eq}, {y(x)});

{y(x) = ex_C2 + e(−x)_C1 − 1}

242 • Chapter 7: Solving Calculus Problems

To specify initial conditions for the derivative of a function, use the
following notation.

D(fcn)(var_value) = value

(D@@n)(fcn)(var_value) = value

• D notation represents the derivative

• D@@n notation represents the nth derivative

Here is a differential equation and some initial conditions involving the
derivative.

> de1 := diff(y(t),t$2) + 5*diff(y(t),t) + 6*y(t) = 0;

de1 := (
d2

dt2
y(t)) + 5 (

d

dt
y(t)) + 6 y(t) = 0

> ini := y(0)=0, D(y)(0)=1;

ini := y(0) = 0, D(y)(0) = 1

Again, use dsolve to find the solution.

> dsolve({de1, ini}, {y(t)});

y(t) = −e(−3 t) + e(−2 t)

Additionally, dsolve may return a solution in parametric form,
[x=f(_T), y(x)=g(_T)], where _T is the parameter.

The explicit Option Maple may return the solution to a differential
equation in implicit form.

> de2 := diff(y(x),x$2) = (ln(y(x))+1)*diff(y(x),x);

de2 :=
d2

dx2
y(x) = (ln(y(x)) + 1) (

d

dx
y(x))

> dsolve({de2}, {y(x)});

7.2 Ordinary Differential Equations • 243

{y(x) = _C1 },

{

∫ y(x) 1

_a ln(_a) + _C1
d_a − x−_C2 = 0

}

Use the explicit option to search for an explicit solution for the first
result.

> dsolve({de2}, {y(x)}, explicit);

{y(x) = _C1 },
{

y(x) = RootOf

(

−
∫ _Z 1

_f ln(_f) + _C1
d_f + x+_C2

)}

However, in some cases, Maple may not be able to find an explicit
solution. There is also an implicit option to force answers to be returned
in implicit form.

The method=laplace Option Applying Laplace transform methods to
differential equations often reduces the complexity of the problem. The
transform maps the differential equations into algebraic equations, which
are much easier to solve. The difficulty is in the transformation of the
equations to the new domain, and especially the transformation of the
solutions back.

The Laplace transform method can handle linear ODEs of arbitrary
order, and some cases of linear ODEs with non-constant coefficients, pro-
vided that Maple can find the transforms. This method can also solve
systems of coupled equations.

Consider the following problem in classical dynamics. Two weights
with masses m and αm, respectively, rest on a frictionless plane joined by
a spring with spring constant k. What are the trajectories of each weight
if the first weight is subject to a unit step force u(t) at time t = 1? First,
set up the differential equations that govern the system. Newton’s Second
Law governs the motion of the first weight, and hence, the mass m times
the acceleration must equal the sum of the forces that you apply to the
first weight, including the external force u(t).

> eqn1 :=
> alpha*m*diff(x[1](t),t$2) = k*(x[2](t) - x[1](t)) + u(t);

eqn1 := αm (
d2

dt2
x1(t)) = k (x2(t)− x1(t)) + u(t)

244 • Chapter 7: Solving Calculus Problems

Similarly for the second weight.

> eqn2 := m*diff(x[2](t),t$2) = k*(x[1](t) - x[2](t));

eqn2 := m (
d2

dt2
x2(t)) = k (x1(t)− x2(t))

Apply a unit step force to the first weight at t = 1.

> u := t -> Heaviside(t-1);

u := t → Heaviside(t− 1)

At time t = 0, both masses are at rest at their respective locations.

> ini := x[1](0) = 2, D(x[1])(0) = 0,
> x[2](0) = 0, D(x[2])(0) = 0 ;

ini := x1(0) = 2, D(x1)(0) = 0, x2(0) = 0, D(x2)(0) = 0

Solve the problem using Laplace transform methods.

> dsolve({eqn1, eqn2, ini}, {x[1](t), x[2](t)},
> method=laplace);

{

x2(t) =
1

2
(−2αm+ t2 k + t2 k α− 2 t k − 2 t k α+ k + αk

+ 2α cosh(

√
%1 (t− 1)

αm
)m)Heaviside(t− 1)

/

(k

(1 + α)2m)− 2
α (−1 + cosh(

√
%1 t

αm
))

1 + α
, x1(t) =

1

2
(2m

− 2 cosh(

√
%1 (t− 1)

αm
)m+ t2 k + t2 k α− 2 t k − 2 t k α

+ k + αk)Heaviside(t− 1)
/

(km (1 + α)2) + (

e(−
√
%1 t
αm

) + e(−
√
%1 t
αm

) α+ e(
√
%1 t
αm

) + e(
√
%1 t
αm

) α+ 2α

− 2α cosh(

√
%1 t

αm
))/(1 + α)

}

%1 := −αmk (1 + α)

7.2 Ordinary Differential Equations • 245

Evaluate the result at values for the constants.

> ans := eval(%, {alpha=1/10, m=1, k=1});

ans := {x2(t) =
50

121

(
9

10
+

11

10
t2 − 11

5
t+

1

5
cosh(

1

10

√
−11

√
100 (t− 1)))

Heaviside(t− 1) +
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t), x1(t)

=
50

121

(
31

10
− 2 cosh(

1

10

√
−11

√
100 (t− 1)) +

11

10
t2 − 11

5
t)

Heaviside(t− 1) + e(−1/10
√
−11

√
100 t) + e(1/10

√
−11

√
100 t)

+
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t)}

You can turn the above solution into two functions, say y1(t) and
y2(t), as follows. First evaluate the expression x[1](t) at the solution to
select the x1(t) expression.

> eval(x[1](t), ans);

50

121
(
31

10
− 2 cosh(

1

10

√
−11

√
100 (t− 1)) +

11

10
t2 − 11

5
t)

Heaviside(t− 1) + e(−1/10
√
−11

√
100 t) + e(1/10

√
−11

√
100 t)

+
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t)

Then convert the expression to a function by using unapply.

> y[1] := unapply(%, t);

y1 := t → 50

121

(
31

10
− 2 cosh(

1

10

√
−11

√
100 (t− 1)) +

11

10
t2 − 11

5
t)

Heaviside(t− 1) + e(−1/10
√
−11

√
100 t) + e(1/10

√
−11

√
100 t)

+
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t)

You can also perform the two steps at once.

246 • Chapter 7: Solving Calculus Problems

> y[2] := unapply(eval(x[2](t), ans), t);

y2 := t → 50

121

(
9

10
+

11

10
t2 − 11

5
t+

1

5
cosh(

1

10

√
−11

√
100 (t− 1)))

Heaviside(t− 1) +
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t)

Plot the two functions.

> plot([y[1](t), y[2](t)], t=-3..6);

0

2

4

6

8

10

12

14

–2 2 4 6
t

Instead of using dsolve(..., method=laplace), you can use the
Laplace transform method by hand. The inttrans package defines the
Laplace transform and its inverse (and many other integral transforms).

> with(inttrans);

[addtable , fourier , fouriercos , fouriersin, hankel , hilbert ,

invfourier , invhilbert , invlaplace , invmellin, laplace ,

mellin, savetable]

The Laplace transforms of the two differential equations eqn1 and
eqn2 are

> laplace(eqn1, t, s);

αm (s2 laplace(x1(t), t, s)−D(x1)(0)− s x1(0)) =

k (laplace(x2(t), t, s)− laplace(x1(t), t, s)) +
e(−s)

s

and

7.2 Ordinary Differential Equations • 247

> laplace(eqn2, t, s);

m (s2 laplace(x2(t), t, s)−D(x2)(0)− s x2(0)) =

k (laplace(x1(t), t, s)− laplace(x2(t), t, s))

Evaluate the set consisting of the two transforms at the initial condi-
tions.

> eval({%, %%}, {ini});

{αm (s2 laplace(x1(t), t, s)− 2 s) =

k (laplace(x2(t), t, s)− laplace(x1(t), t, s)) +
e(−s)

s
,

m s2 laplace(x2(t), t, s) =

k (laplace(x1(t), t, s)− laplace(x2(t), t, s))}
You must solve this set of algebraic equations for the Laplace trans-

forms of the two functions x1(t) and x2(t).

> sol := solve(%, { laplace(x[1](t),t,s),
> laplace(x[2](t),t,s) });

sol := {laplace(x1(t), t, s) =
(ms2 + k) (2αms2 es + 1)

es s3m (k + αms2 + αk)
,

laplace(x2(t), t, s) =
k (2αms2 es + 1)

es s3m (k + αms2 + αk)
}

Maple has solved the algebraic problem. You must take the inverse
Laplace transform to get the functions x1(t) and x2(t) .

> invlaplace(%, s, t);

248 • Chapter 7: Solving Calculus Problems

{

x2(t) = k

(

1

2
(−2αm+ t2 k + t2 k α− 2 t k − 2 t k α+ k

+ αk + 2α cosh(

√
%1 (t− 1)

αm
)m)Heaviside(t− 1)

/

(k2 (1 + α)2)− 2
αm (−1 + cosh(

√
%1 t

αm
))

k (1 + α)

)

/m, x1(t) =

e(−
√

%1 t
αm

) + e(
√
%1 t
αm

) − 2
α cosh(

√
%1 t

αm
)

1 + α

−
Heaviside(t− 1) cosh(

√
%1 (t− 1)

αm
)

k (1 + α)2
+ (

1

2
kHeaviside(t− 1) (1 + α) t2

− kHeaviside(t− 1) (1 + α) t+Heaviside(t− 1)m

+
1

2
Heaviside(t− 1) k +

1

2
Heaviside(t− 1)αk

+ 2αmk + 2α2mk)
/

(mk (1 + α)2)

}

%1 := −αmk (1 + α)

Evaluate at values for the constants.

> eval(%, {alpha=1/10, m=1, k=1});

7.2 Ordinary Differential Equations • 249

{x2(t) =
50

121

(
9

10
+

11

10
t2 − 11

5
t+

1

5
cosh(

1

10

√
−11

√
100 (t− 1)))

Heaviside(t− 1) +
2

11
− 2

11
cosh(

1

10

√
−11

√
100 t), x1(t)

= e(−1/10
√
−11

√
100 t) + e(1/10

√
−11

√
100 t)

− 2

11
cosh(

1

10

√
−11

√
100 t)

− 100

121
Heaviside(t− 1) cosh(

1

10

√
−11

√
100 (t− 1))

+
5

11
Heaviside(t− 1) t2 − 10

11
Heaviside(t− 1) t

+
155

121
Heaviside(t− 1) +

2

11
}

As expected, you get the same solution as before.

The type=series Option The series method for solving differential
equations finds an approximate symbolic solution to the equations in
the following manner. Maple finds a series approximation to the equa-
tions. It then solves the series approximation symbolically, using exact
methods. This technique is useful when Maple standard algorithms fail,
but you still want a symbolic solution rather than a purely numeric so-
lution. The series method can often help with nonlinear and high-order
ODEs.

When using the series method, Maple assumes that a solution of the
form

xc

(∞
∑

i=0

aix
i

)

exists, where c is a rational number.
Consider the following differential equation.

> eq := 2*x*diff(y(x),x,x) + diff(y(x),x) + y(x) = 0;

eq := 2x (
d2

dx2
y(x)) + (

d

dx
y(x)) + y(x) = 0

Solve the equation.

> dsolve({eq}, {y(x)}, type=series);

250 • Chapter 7: Solving Calculus Problems

y(x) = _C1
√
x(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4−

1

1247400
x5 +O(x6)) + _C2

(1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5 +O(x6))

Use rhs to select the solution, then convert it to a polynomial.

> rhs(%);

_C1
√
x(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400

x5 +O(x6)) + _C2

(1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5 +O(x6))

> poly := convert(%, polynom);

poly := _C1
√
x

(1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400
x5)

+ _C2 (1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5)

Plot the solution for different values of the arbitrary constants _C1

and _C2.

> [seq(_C1=i, i=0..5)];

[_C1 = 0, _C1 = 1, _C1 = 2, _C1 = 3, _C1 = 4, _C1 = 5]

> map(subs, %, _C2=1, poly);

7.2 Ordinary Differential Equations • 251

[1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

2%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

3%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

4%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5,

5%1 + 1− x+
1

6
x2 − 1

90
x3 +

1

2520
x4 − 1

113400
x5]

%1 :=
√
x (1− 1

3
x+

1

30
x2 − 1

630
x3 +

1

22680
x4 − 1

1247400
x5)

> plot(%, x=1..10);

–4

–3

–2

–1
0

1

2

3

2 4 6 8 10x

The type=numeric Option Although the series methods for solving
ODEs are well understood and adequate for finding accurate approxi-
mations of the dependent variable, they do exhibit some limitations. To
obtain a result, the resultant series must converge. Moreover, in the pro-
cess of finding the solution, Maple must calculate many derivatives, which
can be expensive in terms of time and memory. For these and other rea-
sons, alternative numerical solvers have been developed.

Here is a differential equation and an initial condition.

> eq := x(t) * diff(x(t), t) = t^2;

eq := x(t) (
d

dt
x(t)) = t2

252 • Chapter 7: Solving Calculus Problems

> ini := x(1) = 2;

ini := x(1) = 2

The output from the dsolve command with the numeric option is a
procedure that returns a list of equations.

> sol := dsolve({eq, ini}, {x(t)}, type=numeric);

sol := proc(x_rkf45) . . . end proc

The solution satisfies the initial condition.

> sol(1);

[t = 1., x(t) = 2.]

> sol(0);

[t = 0., x(t) = 1.82574790049820024]

Use the eval command to select a particular value from the list of
equations.

> eval(x(t), sol(1));

2.

You can also create an ordered pair.

> eval([t, x(t)], sol(0));

[0., 1.82574790049820024]

The plots package contains a command, odeplot, for plotting the
result of dsolve(..., type=numeric).

> with(plots):

7.2 Ordinary Differential Equations • 253

> odeplot(sol, [t, x(t)], -1..2);

1.8

2

2.2

2.4

2.6

2.8

x

–1 –0.5 0 0.5 1 1.5 2
t

For the syntax of odeplot, refer to the ?plots,odeplot help page.
Here is a system of two ODEs.

> eq1 := diff(x(t),t) = y(t);

eq1 :=
d

dt
x(t) = y(t)

> eq2 := diff(y(t),t) = x(t)+y(t);

eq2 :=
d

dt
y(t) = x(t) + y(t)

> ini := x(0)=2, y(0)=1;

ini := x(0) = 2, y(0) = 1

In this case, the solution-procedure yields a list of three equations.

> sol1 := dsolve({eq1, eq2, ini}, {x(t),y(t)},
> type=numeric);

sol1 := proc(x_rkf45) . . . end proc

> sol1(0);

[t = 0., x(t) = 2., y(t) = 1.]

254 • Chapter 7: Solving Calculus Problems

> sol1(1);

[t = 1., x(t) = 5.58216755967155986,

y(t) = 7.82688931187210280]

Use the odeplot command to plot y(t) against x(t),

> odeplot(sol1, [x(t), y(t)], -3..1, labels=["x","y"]);

–4

–2

0

2

4

6

8

y

2 3 4 5 6
x

x(t) and y(t) against t,

> odeplot(sol1, [t, x(t), y(t)], -3..1,
> labels=["t","x","y"], axes=boxed);

–3

1
t

2

6
x

–4

8

y

or any other combination.

Important: Use caution when using numeric methods because errors can
accumulate in floating-point calculations. Universal rules for preventing
this effect do not exist; no software package can anticipate all conditions.
The solution is to use the startinit option to make dsolve (or rather
the procedure which dsolve returns) begin at the initial value for every
calculation at a point (x, y(x)).

7.2 Ordinary Differential Equations • 255

You can specify which algorithm dsolve(..., type=numeric) uses
when solving your differential equation. Refer to the ?dsolve,numeric

help page.

Example: Taylor Series
In its general form, a series method solution to an ODE requires the
forming of a Taylor series about t = 0 for some function f(t). Thus, you
must be able to obtain and manipulate the higher order derivatives of
your function, f ′(t), f ′′(t), f ′′′(t), and so on.

Once you have obtained the derivatives, substitute them into the Tay-
lor series representation of f(t).

> taylor(f(t), t);

f(0) + D(f)(0) t+
1

2
(D(2))(f)(0) t2 +

1

6
(D(3))(f)(0) t3+

1

24
(D(4))(f)(0) t4 +

1

120
(D(5))(f)(0) t5 +O(t6)

As an example, consider Newton’s Law of Cooling:

dθ

dt
= − 1

10
(θ − 20), θ(0) = 100.

Using the D operator, enter the above equation into Maple.

> eq := D(theta) = -1/10*(theta-20);

eq := D(θ) = − 1

10
θ + 2

> ini := theta(0)=100;

ini := θ(0) = 100

First obtain the required number of higher derivatives. Determine this
number from the order of your Taylor series. If you use the default value
of Order that Maple provides,

> Order;

6

then you must generate derivatives up to order

256 • Chapter 7: Solving Calculus Problems

> dev_order := Order - 1;

dev_order := 5

Use seq to generate a sequence of the higher order derivatives of
theta(t).

> S := seq((D@@(dev_order-n))(eq), n=1..dev_order);

S := (D(5))(θ) = − 1

10
(D(4))(θ), (D(4))(θ) = − 1

10
(D(3))(θ),

(D(3))(θ) = − 1

10
(D(2))(θ), (D(2))(θ) = − 1

10
D(θ),

D(θ) = − 1

10
θ + 2

The fifth derivative is a function of the fourth derivative, the fourth
a function of the third and so on. Therefore, if you make substitutions
according to S, you can express all the derivatives as functions of theta.
For example, the third element of S is the following.

> S[3];

(D(3))(θ) = − 1

10
(D(2))(θ)

Substituting according to S on the right-hand side, yields

> lhs(%) = subs(S, rhs(%));

(D(3))(θ) = − 1

1000
θ +

1

50

To make this substitution on all the derivatives at once, use the map

command.

> L := map(z -> lhs(z) = eval(rhs(z), {S}), [S]);

L := [(D(5))(θ) =
1

100
(D(3))(θ), (D(4))(θ) =

1

100
(D(2))(θ),

(D(3))(θ) =
1

100
D(θ), (D(2))(θ) =

1

100
θ − 1

5
,

D(θ) = − 1

10
θ + 2]

7.2 Ordinary Differential Equations • 257

You must evaluate the derivatives at t = 0.

> L(0);

[(D(5))(θ)(0) =
1

100
(D(3))(θ)(0),

(D(4))(θ)(0) =
1

100
(D(2))(θ)(0),

(D(3))(θ)(0) =
1

100
D(θ)(0), (D(2))(θ)(0) =

1

100
θ(0)− 1

5
,

D(θ)(0) = − 1

10
θ(0) + 2]

Generate the Taylor series.

> T := taylor(theta(t), t);

T := θ(0) + D(θ)(0) t+
1

2
(D(2))(θ)(0) t2 +

1

6
(D(3))(θ)(0)

t3 +
1

24
(D(4))(θ)(0) t4 +

1

120
(D(5))(θ)(0) t5 +O(t6)

Substitute the derivatives into the series.

> subs(op(L(0)), T);

θ(0) + (− 1

10
θ(0) + 2) t+ (

1

200
θ(0)− 1

10
) t2+

(− 1

6000
θ(0) +

1

300
) t3 + (

1

240000
θ(0)− 1

12000
) t4+

(− 1

12000000
θ(0) +

1

600000
) t5 +O(t6)

Evaluate the series at the initial condition and convert it to a poly-
nomial.

> eval(%, ini);

100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5 +O(t6)

> p := convert(%, polynom);

258 • Chapter 7: Solving Calculus Problems

p := 100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5

You can now plot the response.

> plot(p, t=0..30);

–20

0

20

40

60

80

100

5 10 15 20 25 30
t

This particular example has the following analytic solution.

> dsolve({eq(t), ini}, {theta(t)});

θ(t) = 20 + 80 e(−1/10 t)

> q := rhs(%);

q := 20 + 80 e(−1/10 t)

Thus, you can compare the series solution with the actual solution.

> plot([p, q], t=0..30);

–20

0

20

40

60

80

100

5 10 15 20 25 30
t

Instead of finding the Taylor series by hand, you can use the series

option of the dsolve command.

7.2 Ordinary Differential Equations • 259

> dsolve({eq(t), ini}, {theta(t)}, ’series’);

θ(t) =

100− 8 t+
2

5
t2 − 1

75
t3 +

1

3000
t4 − 1

150000
t5 +O(t6)

When You Cannot Find a Closed Form Solution
In some instances, you cannot express the solution to a linear ODE in
closed form. In such cases, dsolve may return solutions containing the
data structure DESol. DESol is a place holder representing the solution
of a differential equation without explicitly computing it. Thus, DESol
is similar to RootOf, which represents the roots of an expression. This
allows you to manipulate the resulting expression symbolically prior to
attempting another approach.

> de := (x^7+x^3-3)*diff(y(x),x,x) + x^4*diff(y(x),x)
> + (23*x-17)*y(x);

de :=

(x7 + x3 − 3) (d2

dx2 y(x)) + x4 (d
dx y(x)) + (23x− 17) y(x)

The dsolve command cannot find a closed form solution to de.

> dsolve(de, y(x));

y(x) = DESol

(

{

(d2

dx2 _Y(x)) +
x4 (d

dx _Y(x))

x7 + x3 − 3
+

(23x− 17)_Y(x)

x7 + x3 − 3

}

,

{_Y(x)}

)

You can now try another method on the DESol itself. For example, find
a series approximation.

> series(rhs(%), x);

260 • Chapter 7: Solving Calculus Problems

_Y(0) + D(_Y)(0)x− 17

6
_Y(0)x2+

(−17

18
D(_Y)(0) +

23

18
_Y(0))x3+

(
289

216
_Y(0) +

23

36
D(_Y)(0))x4+

(
289

1080
D(_Y)(0)− 833

540
_Y(0))x5 +O(x6)

The diff and int commands can also operate on DESol.

Plotting Ordinary Differential Equations
You cannot solve many differential equations analytically. In such cases,
plotting the differential equation is advantageous.

> ode1 :=
> diff(y(t), t$2) + sin(t)^2*diff(y(t),t) + y(t) = cos(t)^2;

ode1 := (
d2

dt2
y(t)) + sin(t)2 (

d

dt
y(t)) + y(t) = cos(t)2

> ic1 := y(0) = 1, D(y)(0) = 0;

ic1 := y(0) = 1, D(y)(0) = 0

First, attempt to solve this ODE analytically by using dsolve.

> dsolve({ode1, ic1}, {y(t)});

The dsolve command returned nothing, indicating that it could not
find a solution. Try Laplace methods.

> dsolve({ode1, ic1}, {y(t)}, method=laplace);

Again, dsolve did not find a solution. Since dsolve was not successful,
try the DEplot command found in the DEtools package.

> with(DEtools):

DEplot is a general ODE plotter which you can use with the following
syntax.

7.2 Ordinary Differential Equations • 261

DEplot(ode, dep-var, range, [ini-conds])

• ode is the differential equation to plot

• dep-var is the dependent variable

• range is the range of the independent variable

• ini-conds is a list of initial conditions

The following is a plot of the function satisfying both the differential
equation ode1 and the initial conditions ic1 above.

> DEplot(ode1, y(t), 0..20, [[ic1]]);

0.2

0.4

0.6

0.8

1

y(t)

0 5 10 15 20
t

You can refine the plot by specifying a smaller stepsize.

> DEplot(ode1, y(t), 0..20, [[ic1]], stepsize=0.2);

0.2

0.4

0.6

0.8

1

y(t)

0 5 10 15 20
t

If you specify more than one list of initial conditions, DEplot plots a
solution for each.

> ic2 := y(0)=0, D(y)(0)=1;

262 • Chapter 7: Solving Calculus Problems

ic2 := y(0) = 0, D(y)(0) = 1

> DEplot(ode1, y(t), 0..20, [[ic1], [ic2]], stepsize=0.2);

0.2

0.4

0.6

0.8

1

1.2

1.4

y(t)

5 10 15 20
t

DEplot can also plot solutions to a set of differential equations.

> eq1 := diff(y(t),t) + y(t) + x(t) = 0;

eq1 := (
d

dt
y(t)) + y(t) + x(t) = 0

> eq2 := y(t) = diff(x(t), t);

eq2 := y(t) =
d

dt
x(t)

> ini1 := x(0)=0, y(0)=5;

ini1 := x(0) = 0, y(0) = 5

> ini2 := x(0)=0, y(0)=-5;

ini2 := x(0) = 0, y(0) = −5

The system {eq1, eq2} has two dependent variables, x(t) and y(t),
so you must include a list of dependent variables.

7.2 Ordinary Differential Equations • 263

> DEplot({eq1, eq2}, [x(t), y(t)], -5..5,
> [[ini1], [ini2]]);

–60

–40

–20

0

20

40

60

y

–60 –40 –20 20 40 60
x

Note: DEplot also generates a direction field, as above, whenever it is
meaningful to do so. For more details on how to plot ODEs, refer to the
?DEtools,DEplot help page.

DEplot3d is the three-dimensional version of DEplot. The basic syn-
tax of DEplot3d is similar to that of DEplot. For details, refer to the
?DEtools,DEplot3d help page. The following is a three-dimensional plot
of the system plotted in two dimensions above.

> DEplot3d({eq1, eq2}, [x(t), y(t)], -5..5,
> [[ini1], [ini2]]);

–4
–2

0
2

4
t

–60
–40

–20
0

20
40

60
x(t)

–40
–20

0
20
40

y(t)

The following is an example of a plot of a system of three differential
equations.

> eq1 := diff(x(t),t) = y(t)+z(t);

eq1 :=
d

dt
x(t) = y(t) + z(t)

264 • Chapter 7: Solving Calculus Problems

> eq2 := diff(y(t),t) = -x(t)-y(t);

eq2 :=
d

dt
y(t) = −y(t)− x(t)

> eq3 := diff(z(t),t) = x(t)+y(t)-z(t);

eq3 :=
d

dt
z(t) = x(t) + y(t)− z(t)

These are two lists of initial conditions.

> ini1 := [x(0)=1, y(0)=0, z(0)=2];

ini1 := [x(0) = 1, y(0) = 0, z(0) = 2]

> ini2 := [x(0)=0, y(0)=2, z(0)=-1];

ini2 := [x(0) = 0, y(0) = 2, z(0) = −1]

The DEplot3d command plots two solutions to the system of differ-
ential equations {eq1, eq2, eq3}, one solution for each list of initial
values.

> DEplot3d({eq1, eq2, eq3}, [x(t), y(t), z(t)], t=0..10,
> [ini1, ini2], stepsize=0.1, orientation=[-171, 58]);

–1

2

x

–1
2

y
–1

2

z

Discontinuous Forcing Functions
In many practical instances the forcing function to a system is discontin-
uous. Maple provides many ways to describe a system in terms of ODEs
and include descriptions of discontinuous forcing functions.

7.2 Ordinary Differential Equations • 265

The Heaviside Step Function Using the Heaviside function allows you
to model delayed and piecewise-defined forcing functions. You can use
Heaviside with dsolve to find both symbolic and numeric solutions.

> eq := diff(y(t),t) = -y(t)*Heaviside(t-1);

eq :=
d

dt
y(t) = −y(t)Heaviside(t− 1)

> ini := y(0) = 3;

ini := y(0) = 3

> dsolve({eq, ini}, {y(t)});

y(t) = 3 e((−t+1)Heaviside(t−1))

Convert the solution to a function that can be plotted.

> rhs(%);

3 e((−t+1)Heaviside(t−1))

> f := unapply(%, t);

f := t → 3 e((−t+1)Heaviside(t−1))

> plot(f, 0..4);

0.5

1

1.5

2

2.5

3

0 1 2 3 4

Solve the same equation numerically.

266 • Chapter 7: Solving Calculus Problems

> sol1 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol1 := proc(x_rkf45) . . . end proc

Use the odeplot command from the plots package to plot the solution.

> with(plots):

> odeplot(sol1, [t, y(t)], 0..4);

0.5

1

1.5

2

2.5

3

y

0 1 2 3 4
t

The Dirac Delta Function You can use the Dirac delta function in
a manner similar to the Heaviside function above to produce impulsive
forcing functions.

> eq := diff(y(t),t) = -y(t)*Dirac(t-1);

eq :=
d

dt
y(t) = −y(t)Dirac(t− 1)

> ini := y(0) = 3;

ini := y(0) = 3

> dsolve({eq, ini}, {y(t)});

y(t) = 3 e(−Heaviside(t−1))

Convert the solution to a function that can be plotted.

7.2 Ordinary Differential Equations • 267

> f := unapply(rhs(%), t);

f := t → 3 e(−Heaviside(t−1))

> plot(f, 0..4);

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

0 1 2 3 4

However, the numeric solution does not see the nonzero value of
Dirac(0).

> sol2 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol2 := proc(x_rkf45) . . . end proc

Use odeplot from plots to plot the numeric solution.

> with(plots, odeplot);

[odeplot]

> odeplot(sol2, [t,y(t)], 0..4);

268 • Chapter 7: Solving Calculus Problems

2

2.5

3

3.5

4

y

0 1 2 3 4
t

Piecewise Functions The piecewise command allows you to construct
complicated forcing functions by approximating sections of it with ana-
lytic functions, and then taking the approximations together to represent
the whole function. First, look at the behavior of piecewise.

> f:= x -> piecewise(1<=x and x<2, 1, 0);

f := x → piecewise(1 ≤ x and x < 2, 1, 0)

> f(x);

{

1, if , 1− x ≤ 0 and x− 2 < 0;
0, otherwise.

Note that the order of the conditionals is important. The first condi-
tional that returns true causes the function to return a value.

> plot(f, 0..3);

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Thus, you can use this piecewise function as a forcing function.

7.2 Ordinary Differential Equations • 269

> eq := diff(y(t),t) = 1-y(t)*f(t);

eq :=
d

dt
y(t) = 1− y(t)

({

1, if 1− t ≤ 0 and t− 2 < 0;
0, otherwise.

)

> ini := y(0)=3;

ini := y(0) = 3

> sol3 := dsolve({eq, ini}, {y(t)}, type=numeric);

sol3 := proc(x_rkf45) . . . end proc

Use the odeplot command in the plots package to plot the result.

> with(plots, odeplot):

> odeplot(sol3, [t, y(t)], 0..4);

3

4

5

6

7

y

0 1 2 3 4
t

The DEtools package contains commands that can help you investi-
gate, manipulate, plot, and solve differential equations. For details, refer
to the ?DEtools help page.

Interactive ODE Analyzer
The dsolve[interactive](odesys,options) command launches a graph-
ical user interface for the investigation and solution of ODE and ODE
systems.

270 • Chapter 7: Solving Calculus Problems

If odesys is not given in the call to dsolve[interactive], then
odesys can be entered by using the interface; otherwise, the input equa-
tions are examined and used as a starting point for the application (these
equations can be changed from within the graphical user interface).

For details about the command and interface, see ?dsolve,interactive
and ?worksheet,interactive,dsolveinterface.

7.3 Partial Differential Equations

Partial differential equations (PDEs) are in general very difficult to solve.
Maple provides a number of commands for solving, manipulating, and
plotting PDEs. Some of these commands are in the standard library, but
most of them reside in the PDEtools package.

The pdsolve Command
The pdsolve command can solve many partial differential equations. This
is the basic syntax of the pdsolve command.

pdsolve(pde, var)

• pde is the partial differential equation

• var is the variable with respect to which pdsolve solves

The following is the one-dimensional wave equation.

> wave := diff(u(x,t), t,t) - c^2 * diff(u(x,t), x,x);

wave := (
∂2

∂t2
u(x, t))− c2 (

∂2

∂x2
u(x, t))

To solve for u(x,t), first load the PDEtools package.

> with(PDEtools):
> sol := pdsolve(wave, u(x,t));

sol := u(x, t) = _F1(c t+ x) + _F2(c t− x)

Note the solution is in terms of two arbitrary functions, _F1 and _F2.
To plot the solution you need a particular set of functions.

7.3 Partial Differential Equations • 271

> f1 := xi -> exp(-xi^2);

f1 := ξ → e(−ξ2)

> f2 := xi -> piecewise(-1/2<xi and xi<1/2, 1, 0);

f2 := ξ → piecewise(
−1

2
< ξ and ξ <

1

2
, 1, 0)

Substitute these functions into the solution.

> eval(sol, {_F1=f1, _F2=f2, c=1});

u(x, t) = e(−(t+x)2) +

({

1 −t+ x <
1

2
and t− x <

1

2
0 otherwise

)

Use the rhs command to select the solution.

> rhs(%);

e(−(t+x)2) +

({

1 −t+ x <
1

2
and t− x <

1

2
0 otherwise

)

The unapply command converts the expression to a function.

> f := unapply(%, x,t);

f := (x, t) →

e(−(t+x)2) + piecewise(−t+ x <
1

2
and t− x <

1

2
, 1, 0)

Plot the solution.

> plot3d(f, -8..8, 0..5, grid=[40,40]);

272 • Chapter 7: Solving Calculus Problems

Changing the Dependent Variable in a PDE
The following is the one-dimensional heat equation.

> heat := diff(u(x,t),t) - k*diff(u(x,t), x,x) = 0;

heat := (
∂

∂t
u(x, t))− k (

∂2

∂x2
u(x, t)) = 0

Try to find a solution of the form X(x)T (t) to this equation. Use the
aptly named HINT option of pdsolve to suggest a course of action.

> pdsolve(heat, u(x,t), HINT=X(x)*T(t));

(u(x, t) = X(x) T(t))&where

[{ d
dt T(t) = k_c1T(t),

d2

dx2 X(x) = _c1X(x)}]

The result here is correct, but difficult to read.
Alternatively, use product separation of variables with pdsolve (by

specifying HINT=‘*‘) and then solve the resulting ODEs (by specifying
the ’build’ option).

> sol := pdsolve(heat, u(x,t), HINT=‘*‘, ’build’);

sol := u(x, t) = e(
√_c1 x)_C3 e(k_c1 t)_C1 +

_C3 e(k_c1 t)_C2

e(
√_c1 x)

Evaluate the solution at specific values for the constants.

> S := eval(rhs(sol), {_C3=1, _C1=1, _C2=1, k=1, _c[1]=1});

7.3 Partial Differential Equations • 273

S := ex et +
et

ex

You can plot the solution.

> plot3d(S, x=-5..5, t=0..5);

Check the solution by evaluation with the original equation.

> eval(heat, u(x,t)=rhs(sol));

%1_C3 k_c1 e
(k_c1 t)_C1 +

_C3 k_c1 e
(k_c1 t)_C2

%1

− k (_c1%1_C3 e(k_c1 t)_C1 +
_C3 e(k_c1 t)_C2 _c1

%1
) = 0

%1 := e(
√_c1 x)

> simplify(%);

0 = 0

Plotting Partial Differential Equations
The solutions to many PDEs can be plotted with the PDEplot command
in the PDEtools package.

> with(PDEtools):

You can use the PDEplot command with the following syntax.

PDEplot(pde, var, ini, s=range)

• pde is the PDE

• var is the dependent variable

274 • Chapter 7: Solving Calculus Problems

• ini is a parametric curve in three-dimensional space with parameter s

• range is the range of s

Consider this partial differential equation.

> pde := diff(u(x,y), x) + cos(2*x) * diff(u(x,y), y) = -sin(y);

pde := (
∂

∂x
u(x, y)) + cos(2x) (

∂

∂y
u(x, y)) = −sin(y)

Use the curve given by z = 1 + y2 as an initial condition, that is,
x = 0, y = s, and z = 1 + s2.

> ini := [0, s, 1+s^2];

ini := [0, s, 1 + s2]

PDEplot draws the initial-condition curve and the solution surface.

> PDEplot(pde, u(x,y), ini, s=-2..2);

–2

2
x

–2

2
y

1

7

u(x,y)

To draw the surface, Maple calculates these base characteristic curves.
The initial-condition curve is easier to see here than in the previous plot.

> PDEplot(pde, u(x,y), ini, s=-2..2, basechar=only);

7.3 Partial Differential Equations • 275

–2

2
x

–2

2
y

1

5

u(x,y)

With the basechar=true option, PDEplot draws both the character-
istic curves and the surface, as well as the initial-condition curve which is
always present.

> PDEplot(pde, u(x,y), ini, s=-2..2, basechar=true);

–2

2
x

–2

2
y

1

7

u(x,y)

Many plot3d options are available. Refer to the ?plot3d,options

help page. The initcolor option sets the color of the initial value curve.

> PDEplot(pde, u(x,y), ini, s=-2..2,
> basechar=true, initcolor=white,
> style=patchcontour, contours=20,
> orientation=[-43,45]);

276 • Chapter 7: Solving Calculus Problems

–2

2
x

–2

2

y

1

7

u(x,y)

7.4 Conclusion

This chapter has demonstrated how Maple can be used to aid in the inves-
tigation and solution of problems using calculus. You have seen how Maple
can visually represent concepts, such as the derivative and the Riemann
integral; help analyze the error term in a Taylor approximation; and ma-
nipulate and solve ordinary and partial differential equations, numerically
as well as symbolically.

8 Input and Output

Maple provides convenient ways to import and export raw numerical data
and graphics. It presents individual algebraic and numeric results in for-
mats suitable for use in FORTRAN, C, or the mathematical typesetting
system LATEX. You can export the entire worksheet as a file in any of the
following formats: HTML or HTML with MathML, LATEX, Maple Input,
Maple Text, Maplet application, Plain Text, or Rich Text Format. You
can cut and paste results, and export either single expressions or entire
worksheets.

This chapter discusses the most common aspects of exporting and
importing information to and from files. It introduces how Maple inter-
acts with the file system on your computer, and how Maple can begin
interacting with other software.

In This Chapter
• Reading Files

• Writing Data to a File

• Exporting Worksheets

• Printing Graphics

8.1 Reading Files

The two most common cases for reading files are to obtain data and to
retrieve Maple commands stored in a text file.

• The first case is often concerned with data generated from an ex-
periment. You can store numbers separated by whitespace and line
breaks in a text file, then read them into Maple for study. You can

277

278 • Chapter 8: Input and Output

accomplish these operations by using the Maple ExportMatrix and
ImportMatrix commands.

• The second case concerns reading commands from a text file. Perhaps
you have received a worksheet in text format, or you have written a
Maple procedure by using a text editor and have stored it in a text
file. You can cut and paste commands into Maple or you can use the
read command.

The following section discusses the second case.

Reading Columns of Numbers from a File
If you generate data outside Maple, you must read it into Maple before
you can manipulate it. Often such external data is in the form of columns
of numbers in a text file. The file data.txt below is an example.

0 1 0

1 .5403023059 .8414709848

2 -.4161468365 .9092974268

3 -.9899924966 .1411200081

4 -.6536436209 -.7568024953

5 .2836621855 -.9589242747

6 .9601702867 -.2794154982

The ImportMatrix command reads columns of numbers. Use ImportMatrix
as follows.

ImportMatrix("filename", delimiter=string)

• filename is the name of the file to read

• string is the character that separates the entries in the file. The default
value of string is a tab, represented by using "\t". In data.txt, the
entries are separated by spaces, so the value of string is " "

> L := ImportMatrix("data.txt", delimiter="\t");

L :=

0 1 0
1 0.5403023059 0.8414709848
2 −0.4161468365 0.9092974268
3 −0.9899924966 0.1411200081
4 −0.6536436209 −0.7568024953
5 0.2836621855 −0.9589242747
6 0.9601702867 −0.2794154982

8.1 Reading Files • 279

For example, you can plot the third column against the first. Use the
convert command to select the first and the third entries in each column.

> convert(L[[1..-1],[1,3]], listlist);

[[0, 0], [1, 0.8414709848], [2, 0.9092974268],

[3, 0.1411200081], [4, −0.7568024953],

[5, −0.9589242747], [6, −0.2794154982]]

The plot command can plot lists directly.

> plot(%);

–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6
0.8

1 2 3 4 5 6

To select the second column of numbers, you can use the fact that
L[5,2] is the second number in the fifth sublist.

> L[5,2];

−0.6536436209

You need the following data.

> L[1..-1, 2];

1
0.5403023059
−0.4161468365
−0.9899924966
−0.6536436209
0.2836621855
0.9601702867

Convert this data to a list, and then find the mean.

280 • Chapter 8: Input and Output

> convert(L[1..-1,2],list);

[1, 0.5403023059, −0.4161468365, −0.9899924966,

−0.6536436209, 0.2836621855, 0.9601702867]

> stats[describe,mean](%) ;

0.1034788321

You can also perform calculations on your matrix L using the
LinearAlgebra package.

> LinearAlgebra[Transpose](L) . L;

[91. , 1.30278930720000119 , −6.41489848119999984]

[1.30278930720000119 , 3.87483111270157598 ,

−0.109078174475632172]

[−6.41489848119999984 , −0.109078174475632172 ,

3.12516888746710864]

For more information regarding options for use with ImportMatrix,
refer to the ?ImportMatrix help page.

Reading Commands from a File
Some Maple users find it convenient to write Maple programs in a text
file with a text editor, and then import the file into Maple. You can paste
the commands from the text file into your worksheet or you can use the
read command.

When you read a file with the read command, Maple treats each line
in the file as a command. Maple executes the commands and displays the
results in your worksheet but it does not, by default, place the commands
from the file in your worksheet. Use the read command with the following
syntax.

read "filename";

For example, the file ks.tst contains the following Maple commands.

S := n -> sum(binomial(n, beta)

* ((2*beta)!/2^beta - beta!*beta), beta=1..n);

S(19);

8.2 Writing Data to a File • 281

When you read the file, Maple displays the results but not the commands.

> read "ks.tst";

S := n →
n
∑

β=1

binomial(n, β) (
(2β)!

2β
− β!β)

1024937361666644598071114328769317982974

Inserting Commands If you set the interface variable echo to 2, Maple
inserts the commands from the file into your worksheet.

> interface(echo=2);
> read "ks.tst";

> S := n -> sum(binomial(n, beta)
> * ((2*beta)!/2^beta - beta!*beta), beta=1..n);

S := n →
n
∑

β=1

binomial(n, β) (
(2β)!

2β
− β!β)

> S(19);

1024937361666644598071114328769317982974

The read command can also read files in Maple internal format. See
8.2 Writing Data to a File.

8.2 Writing Data to a File

After using Maple to perform a calculation, you may want to save the
result in a file. You can then process the result later, either with Maple
or with another program.

Writing Columns of Numerical Data to a File
If the result of a Maple calculation is a long list or a large array of num-
bers, you can convert it to a Matrix and write the numbers to a file in a
structured manner.

282 • Chapter 8: Input and Output

The ExportMatrix Command The ExportMatrix command writes
columns of numerical data to a file, allowing you to import the num-
bers into another program. You can use the ExportMatrix command
with the following syntax.

ExportMatrix("filename", data)

• filename is the string containing the name of the file to which
ExportMatrix writes the data

• data is a Matrix

Note: A list, vector, list of lists, or table-based matrix can be converted
to a Matrix by using the Matrix constructor. For more information, refer
to the ?Matrix help page.

> L:=LinearAlgebra[RandomMatrix](5);

L :=

−66 −65 20 −90 30
55 5 −7 −21 62
68 66 16 −56 −79
26 −36 −34 −8 −71
13 −41 −62 −50 28

> ExportMatrix("matrixdata.txt", L):

If the data is a Vector or any object that can be converted to type
Vector, then ExportVector can be used. Lists and table-based vectors
can be converted by using the Vector constructor. For more information,
refer to the ?Vector help page.

> L := [3, 3.1415, -65, 0];

L := [3, 3.1415, −65, 0]

> V := Vector(L);

V :=

3
3.1415
−65
0

8.2 Writing Data to a File • 283

> ExportVector("vectordata.txt", V):

You can extend these routines to write more complicated data, such
as complex numbers or symbolic expressions. For more information, refer
to the ?ExportMatrix and ?ExportVector help pages.

Saving Expressions in the Maple Internal Format
If you construct a complicated expression or procedure, you can save it
for future use in Maple. If you save the expression or procedure in the
Maple internal format, then Maple can retrieve it efficiently. Use the save
command to write the expression to a filename ending with the characters
“.m”. Use the save command with the following syntax.

save nameseq, "filename.m";

• nameseq is a sequence of names; you can save only named objects.
The save command saves the objects in filename.m

• .m indicates that save writes the file using the Maple internal format

Consider the following.

> qbinomial := (n,k) -> product(1-q^i, i=n-k+1..n) /
> product(1-q^i, i=1..k);

qbinomial := (n, k) →

n
∏

i=n−k+1

(1− qi)

k
∏

i=1

(1− qi)

> expr := qbinomial(10, 4);

expr :=
(1− q7) (1− q8) (1− q9) (1− q10)

(1− q) (1− q2) (1− q3) (1− q4)

> nexpr := normal(expr);

nexpr := (q6 + q5 + q4 + q3 + q2 + q + 1) (q4 + 1) (q6 + q3 + 1)

(q8 + q6 + q4 + q2 + 1)

You can save these expressions to the file qbinom.m.

284 • Chapter 8: Input and Output

> save qbinomial, expr, nexpr, "qbinom.m";

The restart command clears the three expressions from memory.
Thus expr evaluates to its own name.

> restart:
> expr;

expr

Use the read command to retrieve the expressions that you saved in
qbinom.m.

> read "qbinom.m";

Now expr has its value again.

> expr;

(1− q7) (1− q8) (1− q9) (1− q10)

(1− q) (1− q2) (1− q3) (1− q4)

For more information on the read command, see 8.1 Reading Files.

Converting to LATEX Format
TEX is a program for typesetting mathematics, and LATEX is a macro
package for TEX. The latex command converts Maple expressions to
LATEX format. You can perform conversion to LATEX by using the latex

command. Thus, you can use Maple to solve a problem, then convert the
result to LATEX code that can be included in a LATEX document. Use the
latex command in the following manner.

latex(expr, "filename")

• expr can be any mathematical expression. Maple-specific expressions,
such as procedures, are not translatable

• filename is optional, and specifies that Maple writes the translated
output to the file you specified. If you do not specify a filename, Maple
writes the output to the default output stream (your session)

• latex writes the LATEX code corresponding to the Maple expression
expr to the file filename. If filename exists, latex overwrites it. If you

8.2 Writing Data to a File • 285

omit filename, latex prints the LATEX code on the screen. You can
cut and paste from the output into your LATEX document.

> latex(a/b);

{\frac {a}{b}}

> latex(Limit(int(f(x), x=-n..n), n=infinity));

\lim _{n\rightarrow \infty }\int _{-n}^{n}\!f
\left(x \right) {dx}

The latex command:

• Produces code suitable for LATEX math mode. However, it does not
produce the command for entering and leaving math mode, and it
does not attempt any line breaking or alignment.

• Can translate most types of mathematical expressions, including in-
tegrals, limits, sums, products, and matrices. You can expand the
capabilities of latex by defining procedures with names of the form
‘latex/functionname‘. Such a procedure formats calls to the func-
tion called functionname. You must produce the output of such for-
matting functions with the printf command.

• Uses the writeto command to redirect the output when you specify
a filename.

• Does not generate the commands that LATEX requires to put the type-
setting system into mathematics mode (for example, $...$).

The following example shows the generation of LATEX for an equation for
an integral and its value.

Note: Int, the inert form of int, prevents the evaluation of the left-hand
side of the equation that Maple is formatting.

> Int(1/(x^4+1),x) = int(1/(x^4+1),x);

∫

1

x4 + 1
dx =

1

8

√
2 ln(

x2 + x
√
2 + 1

x2 − x
√
2 + 1

) +
1

4

√
2 arctan(x

√
2 + 1)

+
1

4

√
2 arctan(x

√
2− 1)

286 • Chapter 8: Input and Output

> latex(%);

\int \! \left({x}^{4}+1 \right) ^{-1}{dx}=1/8
\,\sqrt {2}\ln \left({\frac {{x}^{2}+x\sqrt
{2}+1}{{x}^{2}-x\sqrt {2}+1}} \right) +1/4\,
\sqrt {2}\arctan \left(x\sqrt {2}+1 \right) +
1/4\,\sqrt {2}\arctan \left(x\sqrt {2}-1
\right)

Section 8.3 Exporting Worksheets describes how you can save an
entire worksheet in LATEX format.

8.3 Exporting Worksheets

You can save your worksheets by selecting Save or Save As from the File
menu. By selecting Export As from the File menu, you can also export
a worksheet in the following formats: HTML or HTML with MathML,
LATEX, Maple Input, Maplet application, Maple Text, Plain Text, and Rich
Text Format. (Maple automatically appends an appropriate extension.)
This allows you to process a worksheet outside Maple.

HTML and HTML with MathML
The .html file that Maple generates can be loaded into any HTML
browser. MathML is the Internet standard, sanctioned by the World Wide
Web Consortium (W3C), for the communication of structured mathemat-
ical formulae between applications. For more information about MathML,
refer to the ?MathML help page.

Translation of Maple Worksheets to HTML or HTML with MathML

• Animations are converted to animated GIFs.

• Embedded images and plots are converted to GIFs.

• HTML - Formatted mathematical output are converted to GIFs, with
each line of mathematical notation corresponding to a separate GIF.

• HTML with MathML - Formatted mathematical output is encoded
by using the MathML version 2.0 standard (default selection) or by
using the MathML version 1.0 standard (optional selection).

• Hidden content is not exported.

8.3 Exporting Worksheets • 287

• Hyperlinks to help pages are converted to plain text in HTML.

• Hyperlinks in worksheets are converted to links to HTML files. The
links are renamed to be compatible with HTML. For example, a link
in a Maple worksheet to a file named example.mws is converted to an
html link to the file example.html.

• Page breaks that are entered manually in Maple are not exported to
HTML.

• Sketch output is converted to GIF.

• Spreadsheets are converted to HTML tables.

• Worksheet styles are approximated by HTML style attributes on a
text-object-by-text-object basis.

Maple worksheets that are exported to HTML translate into multiple
documents when using frames. If the frames feature is not selected, only
one page that contains the worksheet contents is created.

Exporting As HTML or HTML with MathML To export a Maple work-
sheet in HTML(HyperText Markup Language) format:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select HTML as a file type.

4. Specify a path and folder for the file.

5. Enter a filename.

6. Click Export. The HTML Options dialog opens.

7. In the Image Subdirectory field, enter the pathname for the di-
rectory where exported images are to be saved. Images in an HTML
document cannot be saved in the HTML file. Each image is saved in
its own GIF file. If the directory that you specified does not exist, it
is created for you. All image directories are relative to the document.
The default directory is images, and it is located under the same di-
rectory that was selected for the HTML document. For example, if the
HTML document is saved in /u/mydocs, the default image directory
will be /u/mydocs/images. An Image Subdirectory of "" causes
the images to be saved in the same directory as the HTML file.

288 • Chapter 8: Input and Output

8. To export the worksheet as an HTML document with frames, select
the Use Frames check box.

9. You can export mathematical expressions in various forms. Select
GIF images, MathML1.0, MathML2.0, or MathML2.0 with
WebEQ.

10. Click OK.

Example of Export to HTML Format The following is a Maple work-
sheet exported as HTML. Notice that other HTML documents (including
a table of contents), which were created by the export process, are called
within it.

<html>

<head>

<title>tut1.htm</title>

</head>

<basefont size=3>

<frameset cols="25%,*">

<frame src="tut1TOC.htm" name="TableOfContents">

<frame src="tut11.htm" name="Content">

<noframes>

Sorry, this document requires that your browser support

frames.

This link

will take you to a non-frames presentation of the document.

</noframes>

</frameset>

</basefont>

</html>

The following is a portion of the tut11.htm file called in the above
tut1.htm file.

Calculation

</p>

<p align=left>

Look at the integral

<img src="tut11.gif" width=120 height=60 alt="[Maple Math]"

align=middle>

. Notice that its integrand,

<img src="tut12.gif" width=89 height=50 alt="[Maple Math]"

8.3 Exporting Worksheets • 289

align=middle>

, depends on the parameter

<img src="tut13.gif" width=13 height=32 alt="[Maple Math]"

align=middle>

.

</p>

<p align=left>

Give the integral a name so that you

can refer to it later.

</p>

<p align=left>

<tt>> </tt>

expr := Int(x^2 * sin(x-a),

x);

</p>

<p align=center>

</p>

<p align=left>

The value of the integral is

an anti-derivative

 of the integrand.

</p>

LATEX
The .tex file that Maple generates is ready for processing by LATEX. All
distributions of Maple include the necessary style files.

Translation of Maple Worksheets to LATEX The following is a descrip-
tion of what happens when you export the worksheet.

• Displayed mathematics is translated into LATEX 2e, using line-breaking
algorithms to conform to the document width requested by the user.

• Hidden content is not exported.

• Images and sketches are not exported.

• Maple character styles are mapped directly onto LATEX 2e macro calls.

• Maple paragraph styles are mapped onto LATEX environments.

• Maple section headings are mapped onto LATEX sections and subsec-
tions.

290 • Chapter 8: Input and Output

• Maple plots are rewritten in separate postscript files and links to those
files are inserted in the LATEX document.

• Maple spreadsheets are converted to LATEX tables.

Exporting As LATEX To export a Maple worksheet to LATEX format:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select LaTeX as a file type.

4. Specify a path and folder for the file.

5. Enter a filename. Maple automatically appends a .tex extension.

6. Click Export.

Example of Export to LATEX Format The following is a portion of a
Maple worksheet exported as LATEX.

\begin{verbatim}

%% Source Worksheet: tut1.mws

\documentclass{article}

\usepackage{maple2e}

\DefineParaStyle{Author}

\DefineParaStyle{Heading 1}

\DefineParaStyle{Maple Output}

\DefineParaStyle{Maple Plot}

\DefineParaStyle{Title}

\DefineCharStyle{2D Comment}

\DefineCharStyle{2D Math}

\DefineCharStyle{2D Output}

\DefineCharStyle{Hyperlink}

\begin{document}

\begin{maplegroup}

\begin{Title}

An Indefinite Integral

\end{Title}

\begin{Author}

by Author Name

\end{Author}

8.3 Exporting Worksheets • 291

\end{maplegroup}

\section{Calculation}

Look at the integral

\mapleinline{inert}{2d}{Int(x^2*sin(x-a),x);}{%

$\int x^{2}\,\mathrm{sin}(x - a)\,dx$%

}. Notice that its integrand,

\mapleinline{inert}{2d}{x^2*sin(x-a);}{%

$x^{2}\,\mathrm{sin}(x - a)$%

}, depends on the parameter

\mapleinline{inert}{2d}{a;}{%

a%

}.

By default, the LATEX style files are set for printing the .tex file using
the dvips printer driver. You can change this behavior by specifying an
option to the \usepackage LATEX command in the preamble of your .tex
file.

Section 8.4 Printing Graphics describes how to save graphics di-
rectly. You can include such graphics files in your LATEX document by
using the \mapleplot LATEX command.

Maple Input
Export a Maple worksheet as Maple Input so that it can be loaded into
a command-line version of Maple.

Translation of Maple Worksheets to Maple Input The Maple Export
as Maple Input facility translates a Maple worksheet into a .mpl file.
The following describes what happens to various worksheet elements.

• Animations, embedded images and plots, hidden content, page breaks,
sketches, spreadsheets, worksheet styles, page numbers, contents of
collapsed sections, output, and standard math elements are all ig-
nored.

• Hyperlinks are converted to plain text. The visible text of the link is
present but information about the path is lost.

• Maple input, text, and standard math input regions are maintained.

• Text is preceded by the (#) character.

292 • Chapter 8: Input and Output

Important:When exporting a worksheet as Maple Input, your worksheet
must contain explicit semicolons and not auto-inserted ones. The resulting
exported .mpl file will not run in command-line Maple with auto-inserted
semicolons.

Exporting As Maple Input Format To export a worksheet as Maple
Input:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select Maple Input as a file type.

4. Specify a path and folder for the file.

5. Enter a filename.

6. Click Export.

Maplet Application
The Maple Export As Maplet facility translates a Maple worksheet
into a .maplet file.

Translation of Maple Worksheets to Maplet Applications The follow-
ing describes what happens to various worksheet elements.

• Animations, embedded images and plots, hidden content, page breaks,
sketches, spreadsheets, worksheet styles, page numbers, contents of
collapsed sections, output, and standard math elements are all ig-
nored.

• Hyperlinks are converted to plain text. The visible text of the link is
present but information about the path is lost.

• Maple input, text, and standard math input regions are maintained.

• Text is preceded by the (#) character.

Important: When exporting a worksheet as a Maplet application, your
worksheet must contain explicit semicolons and not auto-inserted ones.
The resulting exported .maplet file will not run in command-line Maple
with auto-inserted semicolons.

8.3 Exporting Worksheets • 293

Export As A Maplet Application To export a worksheet as a Maplet
application:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select Maplet as a file type.

4. Specify a path and folder for the file.

5. Enter a filename.

6. Click Export.

The Maplet application can be displayed by using the MapletViewer.

Maple Text
Maple text is specially marked text that retains the worksheet’s distinc-
tion between text, Maple input, and Maple output. Thus, you can export
a worksheet as Maple text, send the text file by email, and the recipient
can import the Maple text into a Maple session and regenerate most of
the structure of your original worksheet.

Translation of Maple Worksheets to Maple Text When a Maple work-
sheet is translated into a Maple text file, the following describes what
happens to various worksheet elements.

• Maple Input is preceded by a greater-than sign and a space (>).

• Text is preceded by a pound sign and a space (#).

• Page break objects inserted manually in Maple are not supported
when exported as Maple Text.

• Hidden content is not exported.

• Graphics are not exported.

• Special symbols (and all output) are displayed in character-based
typesetting.

294 • Chapter 8: Input and Output

Exporting As Maple Text To export a worksheet as Maple text:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select Maple Text as a file type.

4. Specify a path and folder for the file.

5. Enter a filename.

6. Click Export

Example of Export to Maple Text Format The following is a portion
of a Maple worksheet exported as Maple text.

An Indefinite Integral

Calculation

Look at the integral Int(x^2*sin(x-a),x);. Notice that its

integrand, x^2*sin(x-a);, depends on the parameter a;.

Give the integral a name so that you can refer to it later.

> expr := Int(x^2 * sin(x-a), x);

/

| 2

expr := | x sin(x - a) dx

|

/

The value of the integral is an anti-derivative of the

integrand.

> answer := value(%);

Opening A Worksheet in Maple Text Format To open a worksheet in
Maple text format (as in the previous example):

1. From the File menu, select Open. The Open dialog appears.

2. Select Text as file type.

3. Double-click the desired file. The Text Format Choice dialog opens.

4. Select Maple Text.

5. Click OK.

8.3 Exporting Worksheets • 295

Plain Text
Export a Maple worksheet as plain text so that you can open the text file
in another application.

Translation of Maple Worksheets to Plain Text When a Maple work-
sheet is translated to Plain Text, the following describes what happens to
various worksheet elements.

• Maple Input is preceded by a greater-than sign and a space (>).

• Text is preceded by nothing.

• Page break objects insert manually in Maple are not supported when
export as plain text.

• Hidden content is not exported.

• Graphics are not exported.

• Special symbols like integral signs and exponents are dislayed in
character-based typesetting.

Exporting As Plain Text To export a worksheet as plain text:

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select Plain Text as a file type.

4. Specify a path and folder for the file.

5. Enter a filename. Maple automatically appends a .txt extension.

6. Click Export.

Example of Export to Plain Text Format The following is a portion of
a Maple worksheet exported in plain text format.

An Indefinite Integral

Calculation

Look at the integral Int(x^2*sin(x-a),x);. Notice that its

integrand, x^2*sin(x-a);, depends on the parameter a;.

Give the integral a name so that you can refer to it later.

> expr := Int(x^2 * sin(x-a), x);

296 • Chapter 8: Input and Output

/

| 2

expr := | x sin(x - a) dx

|

/

The value of the integral is an anti-derivative of the

integrand.

> answer := value(%);

RTF
The .rtf file that Maple generates can be loaded into any word processor
that supports RTF.

Translation of Maple Worksheets to Rich Text Format The following
describes what happens to various worksheet elements.

• Graphical, that is, non-textual items such as Plots, Standard Math,
and Standard Math Input and Output, images, and Sketch output in
the worksheet are converted to static images in the RTF file. Each
line of math is converted to a separate image.

• Hidden content is not exported.

• Manual page breaks are translated to an RTF page break object.

• Page numbers are translated to RTF page numbers.

• Spreadsheet cells in the Maple worksheet are exported, along with the
column and row headers, and converted to RTF tables.

• Standard Math and Standard Math Input are baseline aligned in
Microsoft r© Word.

• Worksheet styles are approximated by RTF styles.

Exporting As RTF Format To export a Maple worksheet in RTF (Rich
Text Format):

1. Open the worksheet to export.

2. From the File menu, select Export As. The Export As dialog
opens.

3. Select Rich Text Format as a file type.

8.3 Exporting Worksheets • 297

4. Specify a path and folder for the file.

5. Enter a filename.

6. Click Export.

Example of Export to RTF Format The following is a portion of a
Maple worksheet exported as RTF.

{\rtf1\ansi\ansicpg1252\deff0\deflang1033

{\fonttbl

{\f0 Times New Roman}

{\f1 Symbol}

{\f2 Courier New}

}

{\colortbl

\red205\green205\blue205;

\red255\green0\blue0;

\red0\green0\blue0;

\red0\green0\blue255;

}

{\stylesheet

{\s0 \widctlpar}

{\s1\qr footer_header}

{*\cs12\f2\fs24\cf1\i0 \b \ul0 \additive Maple Input}

{*\cs13\f0\fs24\cf2\i0 \b0 \ul0 \additive 2D Comment}

{*\cs14\f0\fs24\cf1\i0 \b0 \ul0 \additive 2D Input}

{*\cs15\f0\fs24\cf3\i0 \b0 \ul0 \additive 2D Output}

XML
Because Maple worksheets (.mw files) are saved in an XML-based format,
you can display the structure of a Maple worksheet in XML applications.

Loading XML Files as Worksheets You can use the graphical user inter-
face to open an existing.xml document as a worksheet to modify content
or to change the file’s appearance.

1. From the File menu, select Open. The Open dialog appears.

2. Select Maple Worksheet as XML to display all XML files.

3. From the Files list, select the XML file.

4. Click OK.

298 • Chapter 8: Input and Output

8.4 Printing Graphics

On most platforms, Maple by default displays graphics directly in the
worksheet as inline plots . You can use the plotsetup command to
change this behavior.

Note: Plots created with the default thickness of 0 are sometimes
too faint for professionally published documents. It is recommended
that you increase plot line thickness to 3 before submitting documents
for professional printing. For information about this feature, see the
?plot[options] help page.

Displaying Graphics in Separate Windows
To display graphics in separate windows on your screen, use the following
command.

> plotsetup(window);

With your plot in a separate window, you can print it through the File
menu as you would print any other worksheet.

The plotsetup command has the following general syntax.

plotsetup(DeviceType, plotoutput="filename",

plotoption="options")

• DeviceType is the graphics device that Maple must use

• filename is the name of the output file

• options is a string of options that the graphics driver recognizes

Sending Graphics in PostScript Format to a File
To send graphics in PostScript format to the file myplot.ps, use the
following command.

> plotsetup(postscript, plotoutput="myplot.ps");

Consequently, the plot that the following plot command generates does
not appear on the screen but is sent to the file myplot.ps.

> plot(sin(x^2), x=-4..4);

8.5 Conclusion • 299

Graphics Suitable for HP LaserJet
Maple can also generate graphics in a form suited to an HP LaserJet
printer. Maple sends the graph that the following plot3d command gen-
erates to the file myplot.hp.

> plotsetup(hpgl, plotoutput="myplot.hp",
> plotoptions=laserjet);
> plot3d(tan(x*sin(y)), x=-Pi/3..Pi/3, y=-Pi..Pi);

To print more than one plot, you must change the plotoutput option
between each plot. Otherwise, the new plot overwrites the previous one.

> plotsetup(plotoutput="myplot2.hp");
> plot(exp@sin, 0..10);

When you are finished exporting graphics, use the following command
to once again display graphics in your worksheet.

> plotsetup(inline);

For a description of the plotting devices supported in Maple, refer to
the ?plot,device help page.

8.5 Conclusion

In this chapter, you have seen a number of Maple elementary input and
output facilities: how to print graphics, how to save and retrieve individual
Maple expressions, how to read and write numerical data, and how to
export a Maple worksheet as a LATEX or HTML document.

In addition, Maple has many low-level input and output commands,
such as fprintf, fscanf, writeline, readbytes, fopen, and fclose.
Refer to the corresponding help pages for details.

300 • Chapter 8: Input and Output

9 Maplet User Interface
Customization System

By using the Maplets package, you can create windows, dialogs, and
other visual interfaces that interact with a user to provide the power of
Maple. Users can perform calculations, or plot functions without using
the worksheet interface. This chapter is intended primarily for Maplet
application users. Some information may be helpful to Maplet application
authors.

In This Chapter
• Example Maplet

• Terminology

• How to Start the Maplets Package

• How to Invoke a Maplet Application from the Maple Worksheet

• How to Close a Maplet Application

• How to Work With Maplet Applications and the Maple Window

• How to Activate a Maplet Application Window

• How to Terminate and Restart a Maplet Application

• How to Use Graphical User Interface Shortcuts

301

302 • Chapter 9: Maplet User Interface Customization System

9.1 Example Maplet Application

As a Maplet application author, you can create an interface that requests
user input. For example, you can create an integration Maplet application
with the following appearance and components.

9.2 Terminology

Maplet Application A Maplet application is a collection of elements,
including, but not limited to, windows, their associated layouts, dialogs,
and actions. A Maplet application differs from windows and dialogs in
that it contains windows and dialogs.

9.3 How to Start the Maplets Package • 303

Maplet Application Author A programmer who uses Maple code to
write a Maplet application.

Maplet Application User Someone who interacts with a Maplet appli-
cation.

Layout Layout defines how elements within a Maplet application are
displayed.

Window A window is a Maplet application element. A window should
not be thought of as a Maplet application, but rather as one element
within a Maplet application. A Maplet application can contain more than
one window. Each window can contain many elements that control the
layout and function of the window.

Dialog A dialog is a Maplet application element. Unlike a window, which
can contain elements, for example, buttons or layout elements, a dialog
element has a predefined structure. An author can specify options for a
dialog, but cannot add elements.

9.3 How to Start the Maplets Package

If you receive a Maple worksheet with Maplet application code, you must
first invoke the Maplets package. Press the Enter key after these two
possible execution groups:

> restart:
> with(Maplets[Elements]);

9.4 How to Invoke a Maplet Application from
the Maple Worksheet

To start a maplet, press the Enter key after the last colon (:), semicolon
(;), or anywhere in an execution group to execute the Maplet application
code. In the following example, the Maplet application is written as one
execution group. You can press Enter anywhere in the execution group
to execute the code:

304 • Chapter 9: Maplet User Interface Customization System

> mymaplet := Maplet ([
> ["Hello World", Button("OK", Shutdown())]
>]):
> Maplets[Display](mymaplet);

In the following example, the Maplet application is written as two ex-
ecution groups. The application must be defined before using the Display
command.

> with(Maplets[Elements]):
> my2maplet := Maplet ([
> ["Hello World #2", Button("OK", Shutdown())]
>]):
> Maplets[Display](my2maplet);

9.5 How to Close a Maplet Application

If the Maplet application contains a cancel button, click Cancel. Other-
wise, click the appropriate Close icon for your platform. For example:

In UNIX:

1. Click the - icon in the upper left corner of the Maplet application
window title bar. A drop-down list box appears.

Note: The icon varies with window manager.

2. Select Close.

In Windows:

• Click the X icon in the upper right corner of the Maplet application
window title bar. The Maplet application closes.

9.6 How to Work With Maplet Applications and
the Maple Window (Modality)

When a Maplet application is running, the Maple worksheet is inaccessi-
ble. If you move the cursor across the worksheet, an icon (clock in UNIX
(depending on your window manager), hourglass in Windows) appears,
indicating that the worksheet is inaccessible. The Maplet application must
be closed or allowed to complete an action before the Maple worksheet
can be accessed.

9.7 How to Activate a Maplet Application Window • 305

9.7 How to Activate a Maplet Application
Window

1. Click an input field in the Maplet application. The input field appears
highlighted.

2. Enter the appropriate expression, numbers, or text as required.

9.8 How to Terminate and Restart a Maplet
Application

With long computations, you may choose to stop the computation.

1. To terminate the current Maplet application process, click the X (or
appropriate close icon for your platform) on the Maplet application
title bar.

2. To restart the terminated application, run the Maplet application by
using the lastmaplet tool.

> Maplets[Display](lastmaplet);

9.9 How to Use Graphical User Interface
Shortcuts

Drop-down List Boxes
Some Maplet applications contain drop-down list boxes.

1. Enter the first character of any item in the list. The list automatically
moves to an item that begins with the character entered.

2. Continue to enter the character until the desired selection is high-
lighted.

Note that this shortcut does not apply to editable drop-down lists created
with the ComboBox element.

306 • Chapter 9: Maplet User Interface Customization System

SPACE BAR and TAB Key
You can use the mouse to click a Cancel or OK button in a Maplet
application. You can also use the Tab key and Space Bar.

1. Using the Tab key, position the cursor at the Cancel or OK button.

2. Press the Space Bar. The command is entered.

9.10 Conclusion

For more information on the Maplet User Interface Customization Sys-
tem, enter ?maplets at the Maple prompt or refer to the Maple Intro-
ductory Programming Guide.

9.11 General Conclusion

This book aims to supply you with a good base of knowledge from which
to further explore Maple. In this role, it focuses on the interactive use
of Maple. Maple is a complete language and provides complete facilities
for programming. The majority of Maple commands are coded in the
Maple language, as this high-level, mathematically oriented language is
superior to traditional computer languages for such tasks. The Maple
Introductory Programming Guide introduces you to programming in
Maple.

Index

!, 8
I (

√
−1), 14

π, 12
~, 58
%, 8
->, 19
:, 28
:=, 18
;, 6, 28
?, 5
$, 222
_C, 76
", 32
@, 242, 256
\, 8
||, 22, 32, 211
_EnvAllSolutions, 56
~, 174

about, 175
absolute value, 9
accessing

list items, 26
package commands, 80
range of subexpressions, 40
subexpressions, 40

accuracy, floating-point, 12–13
adaptive plotting, 118
add, 182
adding

restrictions to solve, 47
additionally, 175
Advanced Programming Guide,

2
algcurves, 82
algebraic substitution, 41
algsubs, 41, 198

animate, 128–131
coords, 130, 131
frames, 129, 131

animations, 217
cylindrical coordinates, 132
displaying, 128
frames of, 129, 131, 136
parametric, 2-D, 129
parametric, 3-D, 131
playing, 128
in polar coordinates, 130
in spherical coordinates, 132
two-dimensional, 128

annotations, 132, 136
antiderivatives, 68, 94, 232, 235
applying

commands to lists (map), 38
commands to multiple expres-

sions (map), 38
functions to sets, 25
operations to lists, 39
procedures to lists, 47
simplification rules, 33

approximate vs. exact results, 10–
11

ApproximateInt, 93–94, 232–234,
236

approximations
floating-point, 10, 12–14
series, 66

arbitrary precision integers, 8
arithmetic

basic, 6
exact, 10
finite rings and fields, 15
modulo, 15

array, 27, 28

307

308 • Index

arrays, 27–31
declaring 1-D, 27
declaring 2-D, 28, 29
definition, 27
evaluating, 30, 203
mapping onto, 38
printing, 28
selecting elements from 1-D

arrays, 27
selecting elements from 2-D

arrays, 28
viewing contents, 28

arrow, 143
arrow notation, 19
assign, 51–53
assigned, 206
assigning to names, 18, 51
assignment operator, 20
assignments

invalid, 20
multiple, 22
naming, 18
of sets of equations, 51
valid names, 19

assume, 70, 174–177
additionally, 175
integer, 175
nonnegative, 175

assuming, 178
assumptions, 70

on names, 58, 70
removing, 70, 178
setting, 174–175
viewing, 175

audience, 1
automatic simplification, 17
axes, 133, 134
axis labels, 133

base n numbers
converting to, 14

basic arithmetic, 6
basis, 95
Bessel functions, 16
binary numbers

converting to, 14
binomial function, 16
boundary conditions, 73

calculations
exact vs. floating point, 6

calculus, 65–71, 87, 215–240
Calculus1 commands

ApproximateInt, 93–94, 232–
234, 236

Hint, 90–92
NewtonQuotient, 216
Roots, 92
Rule, 89–92
Tangent, 92
Understand, 90

capitalization, 12
case sensitivity, 12
cat, 32
catastrophic cancellation, 12
changing variables, 30
circles, plotting, 106, 109
classic worksheet, 3
classical dynamics, 243
coeff, 62
coefficients

collecting, 61
extracting, 62, 63
polynomial, 62

collect, 61, 158
distributed, 160

colon, 28
color functions, 126
combinat, 82
combine, 164

expr, 37
power, 37

Index • 309

combining
powers, 37
products, 37
sums, 37

combstruct, 82
comma delimited expressions, see

expression sequences
command-line version, 3
commands, see specific command

names
separating, 6
terminating, 6

common denominator, 36, 165
complex numbers, 14
complex roots, 54
computations

integer, 7–9
referring to previous, 8
symbolic, 16

concatenation, 201, 211–213
expression sequences, 22
operator, 22
strings, 32

conditions
initial, 242, 274

cone, 146
cones, plotting, 125
conformal, 141
constants, 12

factoring, 41
of integration, 235

constrained scaling, in plots, 107
content, multivariate polynomial,

64
context, 82
continuation character, 8
continuity, extending by, 237
contourplot, 140
convert, 36, 279

base, 14
binary, 14

exp, 36, 172
factorial, 172
hex, 14
list, 36, 201, 279
ln, 172
parfrac, 173
polynom, 200, 222
rational, 173
set, 36, 201
sincos, 172
string, 200
trig, 36

converting
between data structures, 36
between temperature scales,

36
between types, 36
between units, 36
degrees to radians, 36
expressions, 36
expressions to functions, 49
expressions to LATEX, 284
floating-point to rational, 36
radians to degrees, 36
rational to partial fractions,

36
series to polynomials, 36, 66,

67, 200, 222
solution set to list, 46
to floating-point, 13
to lists, 47, 279
to lists and sets, 201
to strings, 200
trigonometric to exponential,

36
coordinates

cylindrical, 124
polar, 108, 130
spherical, 121
viewing, 104

counting, 40

310 • Index

CurveFitting, 82, 118
customer feedback, 2
cutout, 148
cylinderplot, 124
cylindrical coordinates, 124
cylindrical coordinates, animations,

132

D, 236, 242, 255
data points, plotting, 116
data types, 21
decimal forms, 10
decimal numbers, 12–14
declaring arrays

one-dimensional, 27
two-dimensional, 28, 29

decomposition, polynomial, 64
defining

discontinuous functions, 111
functions, 19
functions, with arrow nota-

tion, 52
functions, with unapply, 49,

72
defining arrays

one-dimensional, 27
two-dimensional, 28, 29

definite integrals, 69, 234
degree, 62
degree of polynomial, 62, 63
delaying evaluation, 207
denom, 39, 189
denominators, 39, 189

common, 36, 165
isolate, 39

densityplot, 140
DEplot, 260
DEplot3d, 263
derivatives, 17, 68, 215

limit definition of, 216
partial, 224, 237

describe, 99
DESol, 259
determining number of elements

(nops), 23, 25
DEtools, 83
dialog, see Maplet,dialog
Diff, 68, 89
diff, 196
diffalg, 83
differential equations

ordinary, 71, 241
partial, 270
solving, 51
systems of, 76

differentiating
expressions in a list, 38

differentiation, 17, 89
difforms, 83
Digits, 13
digits

in floating-point calculations,
default, 13

in floating-point calculations,
setting, 13

in floating-point calculations,
setting globally, 13

maximum length of floating-
point approximations, 12

maximum length of integers,
8

Dirac, 16, 73, 266
Dirac delta function, 16, 73, 266
discontinuous functions

defining, 111
plotting, 57, 111

display, 134, 144, 217
displaying

animations, 128
ditto operator, 8
divide, 62
division

Index • 311

integer quotient, 9
integer remainder, 9
polynomial, 18, 61

dodecahedron, 147
Domains, 83
double quotes, 32
dsolve, 71–77, 241

explicit, 243
implicit, 243
method=laplace, 244
startinit, 254
type=numeric, 252
type=series, 249

e (exponential function), 11
echo, 281
eigenvalues, 97
eigenvectors, 97
empty_list, 26
empty_set, 26
equations

left-hand side, 39
right-hand side, 39
solving, 43, 54
solving systems of, 44

error functions, 16
errors

floating-point, 14
relative, 12

eval, 45, 46, 62, 71, 72, 197, 202
evalf, 10, 13, 216
evalm, 30
evaln, 206
evaluating

arrays, 30, 203
local variables, 206
matrices, 203
procedures, 203
tables, 203

evaluation, 202–213
and quoting, 207

and substitution, 199
assigned, 206
at a point, 45
delayed, 207
evaln, 206
forcing full, 204
full, 202
last-name, 203
levels of, 202
numerical, 10, 13
one-level, 206
to a name, 206

exact arithmetic, 10
exact numbers, analytic descrip-

tion, 12
exact vs. approximate results, 10–

11
exp, 12
Expand, 158
expand, 17, 35, 156

vs. simplify, 35–36
expanded normal form, 37
expanding

modulo m, 158
polynomials, 35

explicit functions, plotting, 104
exponential function, 11, 16
exporting

as Maple text, 293
as Maplet application, 292
as plain text, 295
HTML with MathML, 287
LATEX, 290
RTF, 296

ExportMatrix, 282
ExportVector, 282
expression sequences, 21
expression trees, 192
expressions

accessing subexpressions, 40

312 • Index

comma delimited, see expres-
sion sequences

converting, 36
converting to functions, 49
exact, 6
expanding, 17
extracting subexpressions, 40
factoring, 17
identification of, 190
indeterminates of, 195
multiple assignments, 22
multiple, applying commands

to, 38
naming, 18, 51
naming multiple, 22
number of parts, 40
operands of, 190
querying contents, 193
solving, assumptions, 44
substituting, 30
types of, 194
unevaluated, 15, 207

extending by continuity, 237
ExternalCalling, 83
extracting

1-D array elements, 27
2-D array elements, 28
coefficients, 62
list items, 26
range of subexpressions, 40
set items, 46
subexpressions, 40

Factor, 163
factor, 17, 34

vs. solve, 63
factored normal form, 36, 165
factorial

integer, 9
factoring, 63, 161–163

constants, 41

expressions, 17
fractions, 34
integers, 9
modulo p, 163
polynomials, 34

feasible, 102
fieldplot, 141
files

reading columns from, 278
reading commands from, 280
reading data from, 278
writing columns to, 281

FileTools, 83
finance, 83
finding

basis, 95
limits, 65
roots, 43, 54–56, 58

floating-point accuracy, 12–13
floating-point approximations, 12–

14
maximum length, 12

floating-point arithmetic, forcing,
13

floating-point conversions, 13
floating-point errors, 14
floating-point numbers

default accuracy of, 13
vs. rational numbers, 10–11

frac, 175
fractional part function, 16
fractions

on common denominator, 36
denominator, 39
denominators of, 189
expanded normal form, 37
factored normal form, 36
factoring, 34
numerator, 39
numerators of, 189
on common denominator, 165

Index • 313

partial, 173
fsolve, 54–56, 226

avoid, 54
complex, 54
limitations, 55
maxsols, 54
specifying range, 56

full evaluation, 202
functional operator, 19
functions

applying to sets, 25
arguments of, 20
assigning, 19
Bessel, 16
binomial, 16
defining, 19
defining with arrow notation,

52
defining with unapply, 49, 72
Dirac delta, 16
discontinuous, plotting, 57
error, 16
exponential, 11, 16
extending by continuity, 237
fractional part, 16
from expressions, 49
general mathematical, 15–16
Heaviside step, 16
hyperbolic trigonometric, 16
hypergeometric, 16
inverse trigonometric, 16
Legendre’s elliptic integral,

16
logarithmic base 10, 16
Meijer G, 16
natural logarithmic, 16
piecewise-defined, 268
Riemann Zeta, 16
round to the nearest integer,

16
square root, 16

trigonometric, 16
truncate to the integer part,

16

Gaussian integers, 15
GaussInt, 83
generating random numbers, 99
genfunc, 83
geom3d, 83
geometry, 83
Getting Started Guide, 1
graphical interface

versions, 3
graphical objects, 144
graphics

devices, 298
in separate windows, 298
inline, 298
printing, 298

graphing, 103
three-dimensional, 119

greatest common divisor, 64
of integers, 9

Groebner, 83
group, 83

has, 193
hastype, 194
heat equation, 272
Heaviside, 244, 265
Heaviside step function, 16, 265
help pages, accessing, 5
hemisphere, 147
hexidecimal numbers, converting

to, 14
Hint, 90–92
histograms, 100, 142
HP LaserJet, 299
HTML

exporting as, 287
hyperbolic trigonometric functions,

16

314 • Index

hypergeometric function, 16

imaginary numbers, 14
implicitplot, 138
ImportMatrix, 278
impulse function, 73, 266
indefinite integrals, 68, 234
indeterminates, 195
indets, 195
inequal, 139
infinite domains, plotting, 105
infolevel, 164, 176
initial conditions, 71, 242, 274
inline plots, 298
Int, 68

limitations, 69
integer computations, 7–9
integers, 7

arbitrary precision, 8
calculations with, 7
commands for, 9
factorial, 9
factoring, 9
greatest common divisor, 9
maximum length, 8
modulo arithmetic, 9
roots, 9
solving for, 58
square root function, 9

integrals, 68, 94, 232
constants of, 235
definite, 69, 234
indefinite, 68, 234
left Riemann sum, 233
Riemann, 232

integration Maplet application, 302
interactive plot builder, 152
interface

echo, 281
verboseproc, 204

interpolation

polynomial, 64
intersect, 24
Introductory Programming Guide,

2, 306
inttrans, 83, 246
inverse trigonometric functions,

16
invlaplace, 247
irrational numbers, 11
is, 177, 186
isolate, 217
isolate, left-hand side or right-

hand side, 39
isolve, 58

joining points in plots, 117
joining strings, 32

kernel, 79

laplace, 246
Laplace transforms, 243, 246

inverse, 247
LATEX

description, 284
exporting as, 290
generating code, 284

least common multiple, 64
left-hand side, 39, 188
Legendre’s elliptic integral func-

tions, 16
legends, 134
length

floating-point approximations,
maximum, 12

integers, maximum, 8
length, 32, 187
levels of evaluation, 202
lexicographical sorting, 60
lhs, 39, 188
library, 80
LibraryTools, 83

Index • 315

liesymm, 83
lighting schemes, 126
lightmode, 126
Limit, 65, 90, 94
limits, 65, 90, 218
line styles, 115, 116
linear algebra, 94
linear optimization, 101
LinearAlgebra, 84, 94–96
LinearFunctionalSystems, 84
list items, selecting, 26
lists

applying operations to, 39
applying procedures to, 47
converting to, 201
creating, 23
definition, 23
elements of, 23
empty, 26
mapping onto, 38
merging, 184
operands of, 192
operations on, 25–27
properties, 23
selecting from, 182
sorting, 185
unordered (sets), 24

ListTools, 84
local variables, evaluating, 206
logarithm, natural, 12
logarithmic function base 10, 16
loglogplot, 140
logplot, 139
LREtools, 84

manual
audience, 1
conventions, 2
customer feedback, 2
set, 1

map, 25, 38, 39, 47, 180

map2, 181
Maple Advanced Programming

Guide, 2
Maple Animation Gallery, 149
Maple Application Center, 149
Maple Getting Started Guide,

1
Maple Graphics Gallery, 149
Maple Introductory Program-

ming Guide, 2, 306
Maple text

exporting as, 293
Maplet

activating, 305
application author, 302
application user, 303
applications, 2, 3, 84, 301
closing, 304
ComboBox, 305
dialog, 303
Display command, 304
drop-down lists, 305
Elements, 304
exporting as, 292
input field, 305
integration example, 302
layout, 303
restarting, 305
shortcuts for, 305–306
terminating, 305
window, 303
working with, 304

Maplets

package, 84, 301, 306
mapping

onto expressions, 193
onto lists, 180
onto sets, 180

mathematical functions, 15–16
MathML, 287
MathML, 84

316 • Index

Matlab, 84, 96–97
matrices

evaluating, 203
Transpose, 280

Matrix, 36, 97
matrixplot, 142
MatrixPolynomialAlgebra, 84
max, 231
maximize, 101
maximum length

floating-point approximations,
12

integers, 8
maximum, of a set, 9
mean, 99
Meijer G function, 16
member, 25
merging lists, 184
minimum, of a set, 9
minus, 26
mod, 15

expanding, 158
factoring, 163

modp, 15
mods, 15
modulo arithmetic, 9, 15
msolve, 58
mul, 182
multiple assignments, 22, 97
multiple curves in plots, 114
multiple expressions

applying commands to, 38
multiple plots, 134
multiple solutions, 47
multivariate polynomial, 64

names, 19–20
assigning to, 18
assumptions, 70
with assumptions, 58
prepending, 22

protected, 20
valid and invalid, 19

naming expressions, 18, 51
multiple, 22

natural logarithmic function, 12,
16

networks, 84
Newton’s Law of Cooling, 255
NewtonQuotient, 216
nops, 23, 25, 40, 190
norm of a polynomial, 64
normal, 36

expanded, 37, 166
notation

subscript, 26
numapprox, 84
number

of elements, determining, 23,
25

of operands, determining, 40
of parts, determining, 40

number systems, other, 14
numbers

complex, 14
exact, analytic description, 12
floating-point, 12–14
imaginary, 14
irrational, 11
random, 99
rational vs. floating-point, 10–

11
numer, 39, 189
numerator

isolate, 39
numerators, 189
numerical

ODEs, 251
solutions, 54

numtheory, 84

object

Index • 317

graphical, 144
odeplot, 252, 266, 267
ODEs, 71, 241

dsolve, 241
initial conditions, 242
Laplace transform method,

243
numerical, 251
plotting, 260
series type, 249

one-level evaluation, 206
op, 40, 190, 231
operands

number of, 40, 190
of expressions, 190
of lists and sets, 192
selecting, 190

operations
on sets and lists, 25

operators
assignment, 20
concatenation, 22
functional, 19

optimization, linear, 101
Order, 66, 255
order term, 66
ordered lists, 23
ordering solution set, 48
ordinary differential equations, 241
Ore_algebra, 84
OrthogonalSeries, 84
orthopoly, 85
output

suppressing, 28

package commands, accessing, 80
package names

algcurves, 82
combinat, 82
combstruct, 82
context, 82

CurveFitting, 82
DEtools, 83
diffalg, 83
difforms, 83
Domains, 83
ExternalCalling, 83
FileTools, 83
finance, 83
GaussInt, 83
genfunc, 83
geom3d, 83
geometry, 83
Groebner, 83
group, 83
inttrans, 83
LibraryTools, 83
liesymm, 83
LinearAlgebra, 84, 94–96
LinearFunctionalSystems, 84
ListTools, 84
LREtools, 84
Maplets, 84, 301–306
MathML, 84
Matlab, 84, 96–97
MatrixPolynomialAlgebra, 84
networks, 84
numapprox, 84
numtheory, 84
Ore_algebra, 84
OrthogonalSeries, 84
orthopoly, 85
padic, 85
PDEtools, 85
plots, 85
plottools, 85
PolynomialTools, 85
powseries, 85
process, 85
RandomTools, 85
RationalNormalForms, 85
RealDomain, 85

318 • Index

ScientificConstants, 85
ScientificErrorAnalysis, 85
simplex, 85, 101–102
Slode, 85
Sockets, 86
SolveTools, 86
Spread, 86
stats, 86, 98–100
StringTools, 86
Student, 86
Student[Calculus1], 86–94
Student[LinearAlgebra], 86
SumTools, 86
tensor, 86
TypeTools, 86
Units, 87
VariationalCalculus, 87
VectorCalculus, 87
Worksheet, 87
XMLTools, 87

packages, 80
list of, 82
loading, 80
using commands from, 80

padic, 85
parametric plots

2-D, 106
3-D, 121
cylinders, 125
in polar coordinates, 110
spheres, 123

parametric solutions, 44
partial derivatives, 224, 237

limit definition of, 238
mixed, 239

partial differential equations, 270
partial fractions, 173
Pascal’s Triangle, 181
PDEplot, 274–276
PDEs, 270

initial conditions, 274

plotting, 273
PDEtools, 85
pi, 12
piecewise, 111, 268
plain text

exporting as, 295
playing animations, 128
plex, 60
plot

color, 115, 116
discont, 111, 113
labeldirections, 133
labels, 133
labelsfont, 133
legend, 134
linestyle, 115
numpoints, 118
scaling=constrained, 107
style=line, 117
symbol, 117
symbolsize, 117
title, 132, 200
titlefont, 133

plot3d, 119, 121
axes, 133
grid, 125
lightmodel, 126, 127
shading, 126
style=hidden, 120

plots
3-D default shading, 120
annotations, 132, 136
color functions, 126
colors, specifying, 116
cones, 125
constrained vs. unconstrained

scaling, 107
density, 140
displaying, 134
gray-scale, 127
legends, 134

Index • 319

lighting schemes, 126
line styles, 115
modifying attributes, 104
point styles, specifying, 117
ranges of, 120
refining 2-D, 118
refining 3-D, 125
rotating, 119, 146
setting scale, 106
shading, 126
shell, 122
spheres, 122
spiral (3-D), 124, 126
text, 136
titles, 132, 200, 213
translating, 146
viewing coordinates, 104

plots, 85
animate, 128, 130
arrow, 143
cylinderplot, 124
sphereplot, 122

plotsetup, 298
plotting, 103

adaptive algorithm for, 118
animations, 127, 217
circles, 106, 109
commands in main library,

103
commands in packages, 103
conformal, 141
contours, 140
curves in 3-D space, 141
cylinders, 124, 125
discontinuous functions, 57,

111
explicit functions, 104, 119
histograms, 100
implicit functions, 138
in separate windows, 298
inequalities, 139

infinite domains, 105
inline, 298
interactive plot builder, 152
joining points, 117
lists of numbers, 279
Matrices, 142
multiple curves, 114
multiple plots, 134
objects, 144
ODEs, 260
on logarithmic axes, 139, 140
parametric curves, 106
parametric surfaces, 121, 123
PDEs, 273
points, 116
polar coordinates, 108
printing, 298
professional publishing, 104,

298
root loci, 142
series, 200
shaded surface, 120
singularities, 112
space curves, 141
specifying frames, 129, 131
specifying range, 105
spheres, 123
spherical coordinates, 121
spirals, 109
surfaces, 119
tangent, 92
tangent function, 113
three-dimensional, 119
to files, 298
topographical maps, 140
tubes, 142
vector fields, 141
visualization component, 143

plottools, 85, 144
pointplot, 116, 117
points, plotting, 116

320 • Index

polar coordinates, 108
and explicit functions, 108
and parametric functions, 110
animations, 130

polar plots, 108
polarplot, 109
polynomial division, 18
polynomials, 59–64

coefficients of, 62
collecting coefficients, 61
collecting terms, 61, 158
decomposition, 64
definition, 59
degree of, 62, 63
dividing, 18, 61
expanding, 35, 156
factoring, 161
interpolation, 64
sorting, 60–61
sorting elements, 171–172

PolynomialTools, 85
position in list, specifying, 26
PostScript, 298
powseries, 85
precision

floating-point approximations,
12

integers, 8
preface, 1
prepending names, 22
previous computations, referring

to, 8
primality tests, 9
prime number test, 9
primitive part of multivariate poly-

nomial, 64
print, 28
printing

graphics, 298
procedures, 204

professional publishing, 104,
298

procedures
evaluating, 203
printing, 204

process, 85
protected names, 20
pseudo-remainder, 64

quo, 61
quotation mark, 207
quotient

integer division, 9
polynomials, 61

random, 99
random number generation, 99
random polynomial, 64
RandomTools, 85
range, 99
rational expressions

expanded normal form, 37
factored normal form, 36

rational functions
factoring, 161

rational numbers, 7–10
vs. floating-point numbers, 10–

11
rationalize, 163
RationalNormalForms, 85
read, 280
reading

code, 280
columns, 278
commands, 280
files, 280

RealDomain, 85
reciprocal polynomial, 64
recurrence relations, solving, 59
reference pages (online), see help

pages, accessing

Index • 321

refining 2-D plots, 118
refining 3-D plots, 125
relative error, 12
rem, 61
remainder

integer division, 9
remainder of polynomials, 61
remember tables, 237
remove, 183
removing assumptions, 178
repeated composition operator,

242, 256
reserved names, 20
restart, 284
restricting solutions, 47, 102
resultant of two polynomials, 64
results

exact vs. approximate, 10–11
exact vs. floating-point, 6, 10

rhs, 39, 188
Riemann

integrals, 232
sums, 93, 233
Zeta function, 16

right-hand side, 39, 188
rootlocus, 142
RootOf, 53, 193

removing, 53
Roots, 92
roots

complex, 54
finding, 43, 54
floating-point, 54
integer, 58
of integers, 9
of polynomials, 63
specifying range, 56
surd, 9
transcendental equations, 55

rotate, 146
rotating 3-D plots, 119

round to the nearest integer func-
tion, 16

round-off errors, 254
RowSpace, 96
rsolve , 59
RTF

exporting as, 296
Rule, 89–92

save, 283
saving

arrays of numbers, 281
lists of numbers, 281
Matrix, 281

scale, in plots, 106
ScientificConstants, 85
ScientificErrorAnalysis, 85
select, 183

has, 194
hastype, 195
realcons, 220
type, 194

selecting
1-D array elements, 27
2-D array elements, 28
from lists and sets, 182
list items, 26
operands, 190
real constants, 220
subexpressions, 190, 193

selectremove, 183
semicolon, 6, 28
semilogplot, 139
separating commands, 6
seq, 181, 207, 256
sequence operator, 222
series, 249

converting to polynomials, 200
creating, 18
order term, 66

series, 18, 66

322 • Index

series approximations of functions,
66–68

set items, extracting, 46
sets, 24

applying functions to, 25
converting to, 201
definition, 24
difference in, 26
empty, 26
intersection of, 24
mapping onto, 38
minus, 26
operands of, 192
operations on, 25–27
properties, 24
selecting from, 182
solution, 44
union of, 24

shading, 126
shell plots, 122
side relations, 34, 41, 198
simplex, 85, 101–102
simplification, 33–36

automatic, 17
by expanding, 35
limitations, 35
specifying identities, 41
specifying rules, 34
with side relations, 34, 41

simplification rules, applying, 33
simplify, 33, 41, 168–170

limitations, 35
side relations, 34
type, 33
vs. expand, 35–36
with assumptions, 169
with side relations, 169, 198

simplifying
RootOf expressions, 53

sine animation, 128
singularities, plotting, 112

Slode, 85
Sockets, 86
solution sets, 44

ordering, 48
solutions

floating-point, 54
numerical, 54
restricting, 47
verifying, 45–47

solve, 43, 44, 225
assumptions, 44
limitations, 55
specifying restrictions, 47
vs. factor, 63

SolveTools, 86
solving

differential equations, 51
equation sets, 43
equations, 43, 47, 54
expressions, assumptions, 44
inequalities, 47
for integers, 58
modulo m, 58
numerically, 54
recurrence relations, 59
systems of equations, 44, 48
transcendental equations, 55
variable sets, 43
and verifying, 45–47

sort, 60, 171–172, 185
plex, 60

sorting
algebraic expression elements,

171–172
by length, 187
by total degree, 171
by total order, 60
by your own order, 186
lexicographically, 60, 172, 186
lists, 185
numerically, 185

Index • 323

by total order, 60
space curves, 141
spacecurve, 141
specfunc, 195
specifying

element position, 26
identities for simplifying, 41
plot range, 105

specifying restrictions
to solve, 47

sphere, 145
sphereplot, 122, 123
spheres, plotting, 121, 123
spherical coordinates, 121

animations, 132
spirals, plotting, 109, 124, 126
Spread, 86
sqrt, 11
square root function, 11, 16

of integers, 9
square-free factorization, 64
squaring function, 20
standard deviation, 99
standard worksheet, 3
startinit, 254
statement separators, 28
stats, 86, 98–100
stellate, 148
strings, 32

accessing substrings, 32
concatenating, 32, 201
definition, 32
extracting substrings, 32
indexing, 32
joining, 32

StringTools, 86
Student, 81, 86

Calculus1, 86–94
LinearAlgebra, 86
visualization component, 143

Student[Calculus1], 86–94, 215,
232, 240

Student[LinearAlgebra], 86
subexpressions, extracting, 40
subs, 30, 47, 70, 197, 198
subscript notation, 26
subsop, 199
substituting

expressions, 30
for product of unknowns, 41

substitution, 30, 196
algebraic, 41
of operands, 199

sum, 207
summation, 17
SumTools, 86
suppressing output, 28
surd, 9
symbolic computations, 16
systems of differential equations,

76
systems of equations

solving, 44

tables, 31
definition, 31
evaluating, 203

Tangent, 92
tangent function, plotting, 113
tangent, plotting, 92
Taylor series, 200, 221, 232, 255,

257
tensor, 86
terminating commands, 6
test, prime number, 9
TEX, 284
text, exporting, 295
textplot, 136
textplot3d, 136
tilde, 58, 174
titles

324 • Index

of graphics, 132, 200, 213
transcendental equations

roots, 55
solving, 55

translate, 146
Transpose, 95, 280
trigonometric functions, 16
truncate to the integer part func-

tion, 16
tubeplot, 142
type, 183, 194

specfunc, 195
types, 21–33
typesetting, 284
TypeTools, 86

unapply, 49–51, 72, 217
unassigning, 209
Understand, 90
unevaluated expressions, 15, 207
union, 24, 71
Units, 87
unordered lists (sets), 24

value, 65, 68
variables

changing, 30
VariationalCalculus, 87
vector fields, 141
VectorCalculus, 87
vectors, 95

transpose of, 95
verboseproc, 204
verifying solutions, 45–47, 72
version

classic worksheet, 3
command-line, 3
standard worksheet, 3

viewing array contents, 28
viewing coordinates, 104

wave equation, 270

whattype, 190
with, 80
Worksheet, 87
worksheet

classic, 3
graphical interface, 3
standard, 3
versions, 3

worksheets
saving, 286

XML structure, 297
XMLTools, 87

zip, 184

