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e Second-order systems in GR

e Definitions of hyperbolicity

e Finite differencing



Gauge, constraints, and different
formulations

Each gauge freedom generates one constraint.

Ingredients of a formulation of the Einstein
equations:

e \Well-posedness depends on the gauge choice.

e It can be achieved by adding constraints

e ...and introducing redundant variables and
their definition constraints.

Historical confusion between introducing some
redundant variables to obtain hyperbolicity, and
reducing to first order to prove it.



Some formulations
ADM: 2nd order, 12 variables v;; and Kj;
KST: 1st order, 18 auxiliary variables
diij = Vij k
NOR: 2nd order, 3 redundant variables
fi =V ik

BSSN: 2nd order, K;; — (K, A;;), vij — (&, 7).
plus I ~ f;.

“BSSN-C": BSSN with algebraic constraints
trd;; = 0 and det#;; = 1 imposed continu-
ously: equivalent in the principal part to a vari-
ant of NOR.

Z4: 2nd order, redundant variables Z# ~ [xH.
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Reduction to first order

CG & Martin-Garcia

Matrix notation: w is a vector of variables. Not
all variables have second space derivatives:

u=(v,w), u= 00v+ dw -+ lower order terms

Reduction d; = v ; is possible only for

v = Ajv;+ Ayw+ 0.
w = BYv,;;+ Bbw,; + l.0.

(Counterexample v = v".)

Parameterise all ambiguities v; or d;, and d; ;
or djyz-. Hyperbolicity of the second-order sys-
tem should be defined independently of these
reduction parameters.

Evolution of auxiliary constraints v; — d; and

d; j—d;; closes = we can restrict to the second

order system.



Strong hyperbolicity

Definition: Second order system strongly hy-
perbolic & there is a reduction that is strongly
hyperbolic.

Theorem: &
B Bgf Bim
A:(AQ A?>

is uniformly diagonalisable for all n;, where A? =
tn; etc.

Lemma: < second order system has a com-
plete set of characteristic variables of the form
w + Ov.

Lemma: < pseudo-differential reduction strongly
hyperbolic



Idea of proof

A particular choice of reduction parameters gives
the principal part
v ~ 0
BYdy; + Bbw,
dj =~ (53214]{ + i/,LEjZk> dk,i + Agw,i
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With d; = (dn,d4), the principal part neglecting
transverse derivatives is

W~ By + BSwn, 4+ BpPdg,
dn ~ AVdpn + Aown +  APdp,
WA ipes"Pdg

The lower diagonal block is diagonalisable with
eigenvalues +u. Then the entire matrix is di-
agonalisable if (and in fact only if) the upper
diagonal block A is diagonalisable. (We choose
w large enough so that +u are not eigenvalues
of A.)



Symmetric hyperbolicity
Definition: Second order system symmetric
hyperbolic < there is a reduction that is sym-

metric hyperbolic.

Theorem: < (1)

(HA)T = HA
for all n;, and (2)
H>0
where
([ K L™ ([ K L

Theorem: < second order system admits a
conserved energy e quadratic in (w,v;) and
conserved in the sense that

é — QZSZ,Z'



Idea of proof

Step 1:
(HA)T =HA
IS necessary for
(HP)T = HP?

for any first-order reduction (with principal part
PY).

Step 2: We can find reduction parameters,
which depend on H, such that this condition
IS also sufficient.

Step 3: The energy for the second-order sys-
tem is also the energy for the reduction (with

v; > d;).



Constraint evolution

Theorem: Vector of constraints
¢c=Cv 4+ Chw;+1.0. =0

compatible with the evolution equations, and
main system strongly hyperbolic =

Constraint system strongly hyperbolic, and char-
acteristic variables in the direction n; given by

c~0Opu—+0y...

where the u are some of the characteristic vari-
ables of the main system (and c and u have the
same speed).



Finite differencing

e Interior: Semidiscrete version of some sym-
metric hyperbolic systems is unstable when
using standard centered differences: shifted
wave equation with 8 > 1 using (¢, ¢) but
not (M, ¢). Z4 but not NOR/BSSN.

e Boundaries: Summation by parts operators
do not give a conserved semi-discrete en-
ergy even for the shifted wave equation in
(N,¢p) form (too many separate summa-
tions by part required).

e Ad-hoc finite differencing methods give sta-
ble excision and timelike boundaries for the
shifted wave equation with 2nd and 4th or-
der accuracy (Calabrese & CG, in progress).

10



First order or second order?

Astrophysics simulations so far only in BSSN.

In testbeds, first-order formulations seem
to require fine-tuning of parameters.

First order allows “standard” finite differ-
encing treatment of excision, outer, and
multipatch boundaries, using summation by
parts and projection methods.

Second order simpler and probably more
accurate (phase error, error growth from
non-principal terms) but require

— stable heuristic boundary treatments,

— stable overlapping multipatch schemes.
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