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Finite differencing second order systems describing black hole spacetimes
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Keeping Einstein’s equations in second order form can be appealing for computational efficiency,
because of the reduced number of variables and constraints. Stability issues emerge, however, which are
not present in first order formulations. We show that a standard discretization of the second order
‘‘shifted’’ wave equation leads to an unstable semidiscrete scheme if the shift parameter is too large. This
implies that discretizations obtained using integrators such as Runge-Kutta, Crank-Nicholson, and
leapfrog are unstable for any fixed value of the Courant factor. We argue that this situation arises in
numerical relativity, particularly in simulations of spacetimes containing black holes, and discuss several
ways of circumventing this problem. We find that the first order reduction in time based on Arnowitt-
Deser-Misner-type variables is very effective.
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1To show this, one has to use the identities D�D� � D�D�,
�u;D0u�h � 0, �u;D�v�h � ��D
u; v�h, the proofs of which
can be found in [6]. Note that the continuum limit of expression
(4) is not given by expression (2). Whereas the latter is equiva-
lent to
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R
��2

t ��2
x�dx, the first is only

equivalent to it for j�j< 1.
I. INTRODUCTION

In recent years there has been growing interest in dis-
cretizing the second order Einstein’s equations, in the
harmonic gauge or its generalization, without reducing
the system to first order form [1–3]. The reduction process
requires the introduction of auxiliary variables approxi-
mating first derivatives of the fields and the introduction
of additional constraints. Whereas there are clear advan-
tages in keeping the system of equations in second order
form, including the fact that local well-posedness of the
continuum Cauchy problem has been shown [4] and the
expectation that in general this would lead to smaller
numerical errors [5], we point out difficulties that can arise
when a standard discretization is used.

After analyzing a toy model problem that captures the
essential difficulty, and pointing out its relevance to nu-
merical relativity, we discuss different solutions to this
problem. The first order reduction in time based on the
introduction of an ‘‘Arnowitt-Deser-Misner’’ (ADM)-type
variables seems to be the most attractive of these solutions.

II. THE SHIFTED WAVE EQUATION

We start with the wave equation in one spatial dimen-
sion, �~t~t � �~x ~x, and perform a Galilean change of coor-
dinates, t � ~t, x � ~x� �~t, where � is a constant. This
leads to

�tt � 2��tx � �1� �2��xx; (1)

which we will refer to as the shifted wave equation. By
performing a first order differential reduction to first order,
we see that the characteristic variables and speeds are �t �
��x ��x, �� 1. The variable � is also a characteristic
variable, the speed of which is undetermined (it depends on
the details of the reduction and one can choose what one
pleases). The initial value problem for this system is well-
posed for any value of �. In fact, an energy estimate can be
obtained by noting that the quantity
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Z
���t � ��x�

2 ��2
x�dx (2)

is positive definite in �t, �x and is conserved for any �.
We introduce the grid xj � jh, where h is the space step,

and the grid function �j�t� approximating ��t; xj�.
Leaving time continuous, the standard second order accu-
rate approximation of Eq. (1) is

d2�j

dt2
� 2�D0

d�j

dt
� �1� �2�D�D��j; (3)

where hD�uj � uj�1 � uj, hD�uj � uj � uj�1, and
2D0 � D� �D�. Consider the discrete quantity

��t;�t�h � �1� �2��D��;D���h; (4)

where �u; v�h �
P

jujvjh. For j�j< 1, this expression is
positive definite in �t, D�� and is conserved.1 As in the
continuum case, the energy estimate follows. The semi-
discrete system is stable.

On the other hand, if j�j> 1, there does not exist a
positive definite quantity from which one can derive a
discrete energy estimate. A closer look at Eq. (3) reveals
that there might be a problem with the highest frequency
(and those nearby), due to the fact that D0 is unable to see
it, D0��1�j � 0. Consequently, at this frequency Eq. (3)
appears to be elliptic. It is not difficult to show that the
semidiscrete problem admits solutions that grow exponen-
tially without bound in h. Inserting �j�t� � est ��j into
-1  2005 The American Physical Society
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Eq. (3), we obtain

~s2 ��j � ~s�� ��j�1 � ��j�1�

� �1� �2�� ��j�1 � 2 ��j � ��j�1�;

where ~s � sh. For ��j � ��1�j, we get ~s2 � 4��2 � 1�.
Hence, the grid function

�j�t� � e2
���������
�2�1

p
t=h��1�j (5)

is a solution of Eq. (3), the growth of which cannot be
bounded independently of h. Notice that this analysis also
applies to the first order in time, second order in space
system

d�j

dt
�T;

dTj

dt
�2�D0Tj��1��2�D�D��j: (6)

In particular, this shows that schemes such as the forward
Euler, backward Euler, Runge-Kutta, Crank-Nicholson,
and leapfrog methods applied to either Eq. (3) or system
(6) are unstable if j�j> 1. The scheme is also unstable for
j�j � 1. However, in this case the instability is less severe
(the system admits linearly growing frequency dependent
solutions).

A toy model problem similar to the shifted wave equa-
tion was considered by Alcubierre and Schutz [7], who
proved instability for an implicit scheme and proposed
using causal differencing [8–11] to eliminate the instabil-
ity. Our semidiscrete analysis leads to a more general
result, namely, that the instability is due to the spatial
discretization and does not depend on the time integration.
Furthermore, it is important to realize that this type of
instability does not appear in fully first order systems. In
these cases, one can handle high values of the character-
istic speeds by choosing a sufficiently small Courant factor
(and possibly adding artificial dissipation in the variable
coefficient case). Whenever causal differencing has been
applied to first order systems, it has not brought substantial
improvements [9,10].

Before discussing how we propose to fix this problem,
we show how it can arise in discretizations of second order
systems of Einstein’s equations. For concreteness, we con-
sider formulations having the principal part determined by
a wave operator of the form g��@�@�, where g�� is the
inverse four-metric of spacetime. Precisely, this operator
appears in the (generalized) harmonic gauge [12]. We keep
the system in second order form and use the standard
spatial discretization. Assuming that the coordinates are
chosen such that the t � const slices are spacelike, i.e.,
gtt < 0, one can expect the instability to arise whenever the
spatial coordinates are such that an xi � const hypersur-
face is also spacelike, i.e., gii < 0 (no sum). Again, to the
highest grid frequency this problem appears to be elliptic.
Interestingly, the last condition, gii < 0, is a requirement
for excision, a technique often used in numerical relativity
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to eliminate the black hole singularity from the computa-
tional domain. This shows that, when discretizing second
order systems describing spacetimes containing black
holes, one has to ponder over the discretization.

Another instance in which this type of instability can
arise is when rigidly corotating coordinates are used. These
coordinates are introduced to attempt to keep a binary
black hole system at a fixed coordinate location [13,14].
At large distances the semidiscrete wave operator effec-
tively becomes elliptic for the highest frequencies.

We now go back to the model equation (3) and discuss
several methods to overcome the instability that occurs for
j�j> 1, without reducing the spatial derivative.

Method 1.—We know that the addition of artificial
dissipation can sometimes stabilize otherwise unstable
schemes. If we modify system (6) as follows,

d�j

dt
� Tj � �h3�D�D��

2�j;

dTj

dt
� 2�D0Tj � �1� �2�D�D��j � �h3�D�D��

2Tj;

(7)

we see that the von Neumann condition, which is only a
necessary condition for stability, is satisfied for sufficiently
large values of the dissipation parameter (for example,
� * 0:385 for j�j � 2). However, such a great amount
of dissipation demands high resolution to prevent exces-
sive damping and requires a rather small Courant factor.
For fourth order Runge-Kutta (4RK) in the j�j � 2 case,
we need k=h & 0:289, where k is the time step.

Method 2.—Perhaps the simplest solution is to replace
the one-sided operators D� in Eq. (3) with the centered
one, D0. This amounts to discretizing the second spatial
derivatives with the D2

0 operator instead of D�D�, as
suggested in [15,16], leading to a scheme with a five point
stencil instead of three. With such discretization the dis-
crete version of (2), with the replacement @x ! D0, is
conserved and a von Neumann stability analysis gives a
Courant limit of

���
8

p
=�1� j�j� for 4RK.

At first glance, this method appears to be very effective.
It suppresses the exponentially growing mode (5) and it
allows for a rather large time step. However, the fact that
D0 is blind to the highest frequency means that the discrete
conserved quantity is unable to capture it and, as discussed
in greater detail in [17], the method is not robust in the
sense that a perturbation of the equation by lower order
terms can trigger (exponentially growing) numerical insta-
bilities. Although it is possible that artificial dissipation
may cure this problem, this needs to be explored. Whatever
the case may be, a five point stencil is likely to unduly
complicate the treatment of boundaries.

Method 3.—Another alternative is to rewrite Eq. (1) as

@t� � �@x���; @t� � �@x�� @2x�; (8)
-2



2In this case with 4RK and sixth order dissipation, one needs
� * 0:081 and k=h & 0:303 for j�j � 2. Surprisingly, when
going from second to fourth order accuracy, this system allows
for a larger Courant factor.

BRIEF REPORTS PHYSICAL REVIEW D 71, 027501 (2005)
where we have introduced the variable � � @t�� �@x�.
The standard second order accurate discretization now
gives
�
d
dt

� �D0

�
�j � �j;

�
d
dt

� �D0

�
�j � D�D��j:

(9)

Note that in terms of the original second order system this
spatial discretization corresponds to

d2�j

dt2
� 2�D0

d�j

dt
� �2D2

0�j � D�D��j; (10)

which has a five point stencil. Incidentally, for large � it is
not possible to construct a centered, second order accurate,
three point stencil, stable approximation of the second
order equation (1), without performing a first order reduc-
tion in time. System (9) is stable for any value of �, as it
conserves the discrete quantity

��;��h � �D��;D���h: (11)

With 4RK and for large �, it has a Courant limit compa-
rable to that of method 2. In particular, for j�j � 2 we get
the condition k=h & 0:803. Furthermore, the numerical
speeds of propagation associated with system (9) are closer
to the exact ones than those of method 2.

Both the continuum system and approximation (9) are
conservative, hence nondissipative. They admit a con-
served energy. If the advective terms (the terms multiplied
by �) in the semidiscrete system (9) are approximated with
one-sided operators D��1�

h
2D�� rather than D0, assum-

ing �> 1, we are trading a conservative scheme with one
which is dissipative. Although in the variable coefficient
case this may be effective in obtaining stability, in this
particular case, with 4RK and � � 2, the scheme requires
k=h & 0:332, which is less than half what is needed by the
centered approximation.

Finally, we point out that, in the fourth order accurate
case, @x ! D0�1�

1
6h

2D�D��, @2x ! D�D��1�
1
12 h

2D�D��, the results of this paper remain qualitatively
unchanged. For j�j> 1 the standard discretization of (1) is
unstable, unless a copious amount of artificial dissipation is
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added to the scheme,2 whereas the discretization of (8) is
stable for any value of the shift parameter.
III. CONCLUSION

Our analysis demonstrates that when using formulations
which are second order in space one has to exercise cau-
tion, even in the absence of boundaries. We find that the
instability discussed in [7], which motivated the introduc-
tion of causal differencing, is due to the mixing of the D0

and D�D� operators in the spatial discretization and there-
fore only appears with second order in space systems. The
fact that it arises already at the semidiscrete level, as in
Eq. (3), shows that no time integrator can fix it, not even
implicit ones. One can expect such instability to arise in
numerical relativity simulations based on standard spatial
discretization of fully second order systems near black
holes and at large distances from the center of a rigidly
rotating coordinate system.

We believe that a simple and effective method of elim-
inating the instability consists in rewriting the system in
ADM form before discretizing it, as in (9). When this is
done, the resulting approximation, which is still centered,
is stable for any value of the parameter �. It is straightfor-
ward to prove stability using the discrete energy method
and higher order accurate schemes can be easily con-
structed. Interestingly, the structure of system (8) is similar
to commonly used first order in time, second order in space
formulations of Einstein’s equations, such as the
Baumgarte-Shapiro-Shibata-Nakamura system [18,19].
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