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Hyperbolic tetrad formulation of the Einstein equations for numerical relativity
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The tetrad-based equations for vacuum gravity published by Estabrook, Robinson, and Wahlquist are sim-
plified and adapted for numerical relativity. We show that the evolution equations as partial differential equa-
tions for the Ricci rotation coefficients constitute a rather simple first-order symmetrizable hyperbolic system,
not only for the Nester gauge condition on the acceleration and angular velocity of the tetrad frames considered
by Estabrooket al, but also for the Lorentz gauge condition of van Putten and Eardley and for a fixed gauge
condition. We introduce a lapse function and a shift vector to allow general coordinate evolution relative to the
timelike congruence defined by the tetrad vector field.
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I. INTRODUCTION Most of the recent tetrad formalisms assume that the tet-
rads are tied to the physically defined flow of a fluid, prima-

Gravitational wave detection is soon to become a realityrily in the context of cosmology or of interior metrics of
However, the scientific community has not yet been able taotating stars. Here, we advocate that a tetrad formalism may
calculate gravitational waveforms from the most likely be useful even in vacuum black hole spacetimes. The vari-
source, namely the violent and dynamic merger phase ddbles in a tetrad formalism are the connection coefficients
binary black hole collisiongl]. We hope to contribute to this (often called the Ricci rotation coefficientshe tetrad vector
effort with detailed small-scale studies. Our first such studycomponents, and, typically, the tetrad components of the
of 1D colliding gravitational plane waveg] indicated that Weyl tensor or the Riemann tensor. The spatial coordinates
two important factors which improve the accuracy and staare often assumed from the start to be comoving with the
bility of the numerical calculations are the hyperbolicity of timelike congruence generated by the tetrad field. In dealing
the equations and evolving variables which are related tquith black hole event horizons, however, it is important to
physical quantities. As a way to generalize our results tallow general choices of coordinates. We do this by introduc-
black hole spacetimes and higher dimensions, we are invesag a lapse function and a shift vector defined relative to the
tigating a tetrad approach based on the formalism publishedongruence world linesee also van Putten and Eard|&}).
by Estabrook, Robinson, and Wahlqui&RW) [3]. In this The ERW formulation is a quasi-FOSH#irst order sym-
paper, we present a modified version of the formalismmetric hyperboli¢ system. We use the term “quasi” because
adapted for numerical relativity. Subsequent papers wilthe directional derivatives along the spatial tetrad legs con-
present our numerical results. tain partial time derivativegalso sed8]). The basic quasi-

The standard approach to vacuum numerical relativity is #0SH structure of the equations involves the Weyl tensor
3+1 decomposition, of the type introduced by Arnowitt, De- components as variables. The quasi-FOSH system also in-
ser, and Misner[4]. The 3+1 formulations slice four- cludes equations derived from the Nester gauge conditions
dimensional spacetime into three-dimensional spacelike hy9]. These equations evolve the acceleration of the congru-
persurfacegsee[5] for a recent review They evolve the ence world linesa, and the angular velocity of the spatial
spatial metric and extrinsic curvature of the hypersurfacesetrad vectors relative to Fermi-Walker transpest, The tet-
which are expressed in a coordinate basis. The evolution gad components, and w, are gauge quantities since the
the coordinates is described by a lapse function and shifpacetime orientation of the tetrad is not fixed by the space-
vector, which may or may not be dynamic. time geometry. Botta andw are orthogonal te,, and there-

A tetrad formulation uses orthonormal basis vectorsfore have only the three spatial tetrad components. In addi-
e, (=0, 1, 2, 3), which describe local Lorentz frames.tion to evolution equations, the Nester gauge conditions
The spacetime metric, the dot product of the basis vectors, isrovide equations which constrain the spatial dependence of
everywhere the Minkowski metrig,;=¢€,- €;=17,5- The  thea, and thew, at any given time.
timelike vector field of the orthonormal frames, defines a ERW'’s formalism can be modified to give a particularly
preferred timelike congruence, to which it is tangent. Thesimple quasi-FOSH system, as suggested by Estabrook and
spatial triad vectors in a particular rotational orientation withWahlquist(EW) [10], by eliminating the Weyl tensor com-
respect tog, aree;, €,, ande;. The dual basis of orthonor- ponents as separate variables, and adding the Nester con-
mal one-forms ise* such that(e®, eg)=453 and e e’ straint equations to the evolution equations.

=5*P. As Estabrook and Wahlquist point ojf], these tet- In this paper, we discuss the derivation of the EW formal-
rad frames are natural for measuring observable physicabm in a way which is perhaps more accessible to those fa-
guantities. miliar with standard tensor analysis, as opposed to Cartan
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differential form analysis. What distinguishes the EW for- acceleration and angular velocity. van Putten and Eardley use
malism is that the basic quasi-FOSH structure involves onlythe Lorentz gauge condition to obtain second-order wave
the connection coefficients. Most of the tetrad formulationsequations for the connection coefficients. van Putten gives a
in the literature include the Weyl tensor or the Riemann tenfirst-order form of these equations, involving the Riemann
sor to get a simple quasihyperbolic structure. Unless on&ensor as well as the connection coefficients, for his numeri-
adds the constraints to the Einstein equations in the particul&@l implementation in 1D Gowdy wave vacuum spacetime
way we present in this paper, the quasihyperbolic systerﬁlG]- The van Putten—Eardley formulation allows for com-
involving only the connection coefficients is quite compli- Pleteé freedom in the choice of spacetime foliation.

cated. We do not claim that the EW system is simpler or AN example of using orthonormal frames in spatial hyper-
more elegant than those involving the Wey! or Riemann tenSurfaces is the Ashtekar formulatigwith subsequent modi-
sor; however, it has fewer variables and fewer constrainfications [17—21. Ashtekar follows a 3-1 split in the sense
modes, which may be advantageous in 3D codes. that his variables are defined relative to a hypersurface. How-

After deriving the EW formalism, we proceed to extend it 8Ver: his description of the geometry of the hyper;urface isin
into a form useful for vacuum numerical relativity. We con- terms of orthonormal triads instead of the metric. He uses

sider two gauge conditions other than the Nester gaug€omplex variables to give a compact formalism, requiring

which also give quasi-FOSH systems of equations. These af8€ Use of reality constraints to recover real spacetime. As
the Lorentz gauge used by van Putten and Eardigyand a subseqqently modified by Yoneda and Shmk;u, Ashtequ’s
fixed gauge, where, andew, are fixed functions of time and formu_lauon bepom_es a FOSH system of part|a_l differential

space. Additionally, we allow for a completely arbitrary re- €duations. Shinkai and Yoneda2,23 have published nu-

lationship between the congruence and the hypersurface. Fprerical studies using this formulation in 1D plane wave
nally, we analyze the true hyperbolicity of the equationsVacuum spacetime.

when expressed in terms of partial derivatives. The partial

differential system contains evolution equations for eighteen Il. VARIABLES

nongauge connection coefficients, six gauge quantitfes )
dynamic gauge condition is chogetthree components of a 1 roughout this paper, lower case Greek letters denote
vector describing the velocity of the congruence relative to>Pacetime indice€0-3), and lower case Latin letters denote
the hypersurface, and nine components of the spatial tetrd@{!ly SPatial indices1-3). The letters in the beginning of the
vectors projected into &= const hypersurface. These last 2Phabets, &, B, v, 6, €) and(a, b, ¢, d, &, ) denote tetrad
twelve variables, together with our lapse function and shifindices. Mid-alphabet letters\( ., ») and(i, j, k, 1) denote
vector (which we do not evolve completely determine the coordinate indices. Repeated indices are summed in all
sixteen tetrad vector components. The flux Jacobian of th&2S€S- i !

partial differential system of equations has a complete set of For an orthonormal tetrad of basis vector fields, there are

eigenvectors and real eigenvalues, thus satisfying the r(_{,\_/_venty-four distingt connection co_efficients. These_ coeffi-
quirement for hyperbolicity as per LeVequiél]. Further- cients are scalar fields under coordinate transformations, and

more, these equations are symmetrizable hyperbolic as d&'¢ defined as
fined by Lindblom and Sche¢l2].

Tetrad formulations for general relativity other than ERW Fapy=€aVy €=—T g0y, @
and EW include those by Friedri¢t3], Jantzen, Carini, and
Bini [14], van Elst and Uggl&15], Choquet-Bruhat and York with V the covariant derivative operator. Thg,;, are the
[8], and van Putten and EardI¢y]. Except for EW, all of —Same as Ricci rotation coefficien(ee Wald 24]). They can
these Systems include the Wey| or Riemann tensor Compd]e written in terms of commutators of the basis vectors:
nents as fundamental variables. Friedrich’s paper is a defini-

tive discussion of hyperbolicity for both tetrad anét B rep- 1 5

resentations. Janzten, Carini, and Bini give an extensive Faﬁy_§{<e [ .8s1) 15, + (€%, [€s.8,]) 755
historical review of the tetrad and+3L approaches. They 5

provide a unified framework for the two approaches in what —(€’[e3,8,]) Msa}- 2

they call “gravitoelectromagnetism,” in which, however,

they only consider comoving spatial coordinates. van Elst Just as in the 31 formalisms, it is convenient to make a
and Uggla’s formalism applies only to nonrotating congru-space-time split in the tetrad formulation. Here, however, the
ences and orthogonal hypersurface slicings. Also, they do n&plit is relative to the timelike congruence defined by the
bring the equations into a quasi-FOSH form. The main emietrad rather than the constant-t spacelike hypersurface. The
phasis of Choquet-Bruhat and York’s paper is a tetrad formuconnection coefficients can then be relabeled as 3D quanti-
lation for fluids, where the congruence is aligned with theties with spatial triad indiceésee Wahlquisf25] and ERW.

fluid flow lines, and the spatial coordinates are comovinglo begin,

with the congruence. The acceleration of the congruence

world lines is given by the acceleration of the fluid, and the Kba=T"a00" (3
angular velocity variablegour w,'s) are fixed functions.

Choquet-Bruhat and York do briefly mention the vacuumwhere the symmetric part df,, is the rate of strain of the
case, in which their system is quasi-FOSH for arbitrary givencongruence, and the antisymmetric part,
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1
QaE Egachbm (4) Nkd

. - — ] ode DIFUA

is the vorticity of the congruence. 2 ,=0, the congruence

is hypersurface orthogonal, aiqg, , is the traditional extrin- nl [ep e,

sic curvature of the orthogonal hypersurface. Note that the

sign of K, here is the same as in ERW and Wald, but op- .

posite to that of Misner, Thorne, and Whe€]26]. zk B, D
The spatial tetrad connection coefficients can be ex-

pressed more compactly as a two-index quantity defined by FIG. 1. Decomposition o€, into a vector tangent to the hyper-
surface,B,, and a vector parallel to the congruenég, e,. Dis-

1 placements of the spatial coordinate’, relative to the congruence

Npa= Esacdfcdb. (5) world line equalg“dt, wheregk is our tetrad shift vector. Displace-
ments ofx® relative to the hypersurface normmalare N“dt, where
N is the 3+1 shift vector.

Aqs e

The diagonal componenthl;;, N,,, andN5;, describe the

twists of the spatial triads along the 1, 2, or 3 directions, o . )
respectively. The combinatiomé,,+ Ny, of the nondiagonal We find it simpler to use as variables not the sixtagn
dom. It is sometimes convenient to represent the antisymMine the tetrad vector components: nig, the coordinate

metric part ofNy, by its own symbol components of projections of the spatial tetrad vectors into
the hypersurface; thred,, which measure the tilts of the
1 spatial tetrad vectors relative to the hypersurface andnaire
Na= Esachbc- (6) nus the tetrad components of the 3-velocity of the hypersur-
face frame relative to the tetrad frame; the tetrad lapse func-
The acceleration of the congruence is tion « and the three coordinate components of the tetrad shift
vector B, which describe the evolution of the coordinates
a,=I"400, (7) relative to the tetrad congruence. In this paper we evolve the

B'; and theA, as dynamic variables, but takeand thes* to
and the angular velocity of the spacelike triads relative tdbe fixed functions of the coordinates. Eventually we may

Fermi propagated axes is want to expand the hyperbolic system to include dynamic
equations for the lapse and the shift.
1 In a 3+1 formalism, the lapse functioN is the rate of
Wa= Esabcrcbo' ® change of proper time with respect to coordinate time along

the hypersurface normal, and the shift vedtéris the rate of

There are nin&,, and nineN,,, giving eighteen primary  displacement of the spatial coordinates with respect to coor-
variables to be evolved. The thrag and threew, are gauge dinate time relative to the hypersurface normal, such that the
quantities, which, in this paper, are evolved by either thecoordinate velocity of the normal world lingx*/dt=—N¥.
Nester or Lorentz gauge, or kept fixed. Our tetrad lapse functiow is the rate of change of proper

Numerical calculations are performed with a particulartime with respect to coordinate time along the tetrad congru-
choice of coordinatex”. Hyperbolic evolution consists in ence, and our tetrad shift vect@ is the rate of displace-
calculating variables on the spacelike hypersurfaces charagent of the spatial coordinates relative to the tetrad congru-
terized byx°=t, from an initial state specified by values of ence world lines per unit coordinate time. For simple
the variables on an earlier spacelike hypersurfdcet;. Let ~ comoving coordinates, the spatial coordinates are constant
% denote the transformation matrix between coordinate balong the congruence, agf=0. However, comoving coor-

sis vectors and the tetrad basis vectors: dinates are not desirable in black hole calculations, since
with a finite acceleration tetrad world lines will be continu-
e,=\e,. 9) ously advected inward across the event horizon. The tetrad

lapse must be chosen so that the constant-time hypersurfaces
From Eq.(9), we obtain directional derivatives along the remain spacelike, which is equivalent to the condition
tetrad directions in terms of the partial derivatives along theAaAa<1.
coordinate directions, The projection ofe, into the hypersurface is done along
the congruence world lines, such that
17

D,=\‘— (10)

“oxm €,=A&t+B,. (11

The A}, are the coordinate components of the tetrad basisigure 1 shows how these various vectors are related from
vectors. The coordinate metric is constructed from these tethe point of view of a frame at rest with respect to the hy-
rad vector components &g*= »*# \* Ng- persurface.
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The directional derivative along a spatial tetrad directionthe necessary steps to obtain the true hyperbolic form in Sec.
is IV. Furthermore, we call the “constraint” equations pre-
sented in this section quasiconstraint equations, as is done in

3 9 [8], because although they contain only spatial directional
Da_AaDO’LBaﬁ’ (12 derivatives, these spatial directionals contain time partials
[see Eq.(14)]. The details of converting the quasiconstraint
and the directional derivative along the congruence is gquations into true constraint equations are given in Appen-
ix A.
1 (9 J In both the tetrad and-81 approaches, there is an order-
Do=— | 5~ k% : (13)  ing ambiguity inherent in the derivation of a first order hy-

perbolic evolution system from the Einstein equations. In
first order 3+1 formalisms, the spatial derivatives of the

Plugging Ed.(13) into Eq. (12), we get metric are independent variablds;,; (which equal%ajhk,,

0 A g whereh,, is the spatial metric Index reordering of the Rie-
Daz(B';— = k>—k+ == (14  mann tensor is an interchange of spatial partial derivatives
gx< a ot such that
Comparing Eqs(13) and(14) with Eq. (10), we can read off JiDji =, Dik - (19)

the tetrad vector components. They are
Exploiting this freedom leads to a wide variety of hyperbolic

l _ B_k formulations[27]. The standard energy and momentum con-
)\8 )\‘(‘, a a straint equations can also be added to the evolution system to
= _ get additional hyperbolic or nonhyperbolic structures. In the
@ 0 . ' context of a tetrad approach, the connection coefficients are
Aa Aa Aa (Bk— Aa k) given in terms of the commutation relations, Eg). To de-
a a o B rive integrability conditions from Eq2) is messy. We find it

(15 is much easier to approach the question of ordering ambigu-
_ ) ity from the symmetries of the Riemann tensor, especially
kThe 3+1 lapse functionN, and shift vector Components, since these symmetries are explicit when the indices are all
N¥, can be expressed in terms af 8%, Ay, andB; by  yp or down, and it is trivial to raise and lower indices with
constructingg" and g'* from the tetrad vector components the Minkowski metric. We do not consider a whole range of
usingg”’=7*# N4 \j. With the relations schemes as do Kidder, Scheel, and Teuko|&4, but rather

) a particular scheme which leads to a simpler hyperbolic

1 N structure than the others. To focus on the quasi-FOSH struc-
g'=—— and gk=— — (16) : g
N2 N2’ ture of the equations, we present only the principal terms
here. The second order source terms are given in Appendix
we get A.
The Riemann tensor projected onto a tetrad is
o
N= m, 17) Rapys=€a  (Vy Vo= VoVy = Ve e)€5
K = Dyraﬁﬁ_ D(?Faﬁy+ Faeyreﬁﬁ_ Fasﬁreﬁy
ok @ A B3 . .
N'=p TIAA, (18) +T (T €5=T¢5), (20)

The tetrad lapse is smaller than the Blapse due to the time WhereD,, represents directional derivatives along the tetrad

dilation of the tetrad observer in the rest frame of the hyperdirections. The antisymmetry &, on the second pair of
surface. indices is explicit in Eq(20). The antisymmetry on the first

pair is also trivial because of the antisymmetrylofs, on
lll. THE TETRAD EQUATIONS the first two indices. However, the Riemann identities

In this section, we present the evolution and constraint Ragys=Rysaps (21)
equations for the connection coefficients defined in Sec. Il in
terms of directional derivative operators along the tetrad di- Ragyst Raspyt Raysp=0 (22
rections. The structure of the equations in this form is decep-
tively simple. One has to keep in mind that partial differen-lead to new Riemann constraints, which we exploit in the
tial equations are solved in numerical relativity, so thefollowing.
directional derivatives have to be expanded into partial de- First we derive all the possible quasiconstraint equations,
rivatives using Eqs(13) and (14). In terms of directional noting the use of Eq. 14.7 from Misner, Thorne, and
derivatives, the equations are quasi-FOSH. We will preseniVheeler. The energy quasiconstraint equation is
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Goo= R12151 Ro323t R3131~2D 3N, . (23

An analogous quasiconstraint equation §y is derived us-
ing the cyclic identity, Eq(22), on Oabc:
0=Roa15t Rozz1t Ro137~2 Da2a. (24)

The momentum quasiconstraint equations are obtained fro
GOa: 0:

Go1= Ro212T Ro3a1s

~ —D1(Kaot Kgg) + DKyt D3Kyg, (25)
Go2= Ro121t Roazs

~ = Da(KtKgg) + DKo+ D3Kos, (26)
Go3= Ro1art Rozaz

~ —D3(Kt Kzp) + DKzt DoKas. (27)

Similar quasiconstraint equations involviiy, are derived
solely from Eq.(21) applied to spatial indices of the Rie-
mann tensor:

Ri1215~ R1312~ D1(Npo+ N3z) =DyN3p—D3Nyg,  (28)
R2321~ Ro123~ D2(N13+N3z) =D 1Ny — D3Nz,  (29)
R3130~ Razar~D3(N13+ N3y —D1N3g;—DoNgp.  (30)

We now to turn to evolution equations. By using E2[1)

in the momentum quasi-constraint equations, we calculatﬁ,]

evolutionequations for the nondiagonal componentiNgjf .

For example, interchanging the first and second pairs of in

dices in Eq.(27) as shown below gives evolution equations
for N,; andNy,:

Go3= Ro131+ Razo2

~—D0N21—D2w1—D3K11+ D1K31, (31)
Go3= Ra101T Rozs2
~DoNiot Diwy+DoKsy—D3Ky,. (32

Evolution equations for the diagonal componentdNgf are
obtained solely from applications of E(1):

R2301~ Ro123~ DoN11+ D@+ DoKg— DKy, (33
R3100~ Ro2s1r~ DoNpot Dows+ D3Kip— DKy,  (34)
R1205~ Roz12~ DoNgst D3wz+ D 1K= DoKys. (35

Evolution equations foK,, are obtained from the Ein-
stein equations. As is done elsewhé&see for exampl§28]),

a multiple of the energy quasiconstraint equation times the

spatial metric can be subtracted from #g, evolution equa-

tions. In the formulation we are presenting, this amounts to

subtracting a multiple of Eq.23) from the diagonal spatial
components of the Ricci tensor, since our metric is jafst

PHYSICAL REVIEW D 67, 084017 (2003

The same type of procedure in-3 formulations affects the
evolution equations for the nondiagonal as well as the diag-
onal components df ,;,, since the spatial metric there is, in
general, nondiagonal. The number we choose to multiply the
energy quasiconstraint equation by is 1, to bring the evolu-
tion equations for the diagon#,, into the same form as
those for the nondiagonal components. With the aid of Eq.

I?“21), we derive sample evolution equations g, below:

R12= — Rio20t Ri325= — Rigoot Rasis

~DoKa1—Doa;— D3Ny +DyNgy, (36)
R12= — Rao10t Rizz3
~DoK12~ D18~ DoNgpt D3Ny, (37)
R11~Goo= ~ Ro101~ Raszs
~DoK11—Dya;—DoNg;+ D3Ny . (38)

If the gauge quantities, and w, are fixed functions of
time, then the quasi-FOSH structure is now complete and is
represented by the following system of eighteen equations
for the nineK,, and nineN,y:

DoKab—Dadp—€acdDcNap=S_Kap, (39

DoNap+Dawpt€acdD cKgp=S_Nap, (40)
whereS K,, andS_N,, are source terms quadratic in the
connection coefficient variable€See Appendix B.
Alternatively, one can implement a dynamic gauge. Both
e Nester gauge used by ERW and EW and the Lorentz
gauge used by van Putten and Eardley result in evolution
equations fom, andw, which, when added to Eq&39) and
(40), form a quasi-FOSH system.

The Nester gauge conditions [®] are defined for an
arbitrary number of dimensions. In 4D spacetime, the Nester

conditions state that two 1—forr‘rﬁand6|, whose tetrad com-
ponents are

aazr 7 aazsaﬁyﬁ F'BY61 (41)

a y!

are closed. This implies vanishing exterior derivatives so
that, in tetrad component form, the Nester conditions are

V45— Vs0,=0, (42)

V.05~ Vs0,=0. (43

The Nester conditions result in six evolution equations,
Doap—DcKep=—(we—2Q)Nep+ (TrN) wp,

Dowp+DNep=— (0= 20)Kep— (TrN)a,, (44

and six quasiconstraint equations,

€abPp(@c—2 ne)=2(TrK)Qa—(TrN)(az—2n,)

+(ag—2 Nng)Nga,
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eabDp(wc—2 Qo)== (TrN)w,+ (wg—204)Nyq. O 0 0 0 0 0 1 0
(45 00 0 0 0 0 o0 1
The Lorentz gauge condition {i7] is V", s=0, where 60 0 0 -1 0 00O
® o= op,. For fixede and g, the w,,; are the compo- ) 0 0 O 0 0O -1 0 O
nents of connection 1-form&see Wald[24]). Expressed in Mpiock= 00 -1 0 0 o o0 ol
terms ofl" .4, the Lorentz gauge condition is
O o0 o0 -1 o0 0O 0 O
5 s 1 0 O 0 0 0 0O
Y =
Dol g+ Tag T 55=0. (46) L0001 0 0 0 0 00
o . . (51)
The Lorentz gauge results in six evolution equations:
Doap—DcKep=(ac—=2 no)Kep—(TrK)ay, 0 00 0 0 -1 0 O]
0O 00 O 1 O 0
Dowy+DeNep=— (2.2 NoNep—(TrK)wp,  (47) 0 00 0 0 0 0
5 0O 00 O O O -1 0
and no additional constraint equations. Note that the princi- Mbiock= 0O 1.0 0 0 O o ol
pal terms in Eq.47) are identical to those for the Nester
gauge evolution equations, E@i4). -1 00 0 0 O 0 0
The evolution equations expressed in terms of directional 0O 00 -1 0 O 0O O
derivatives, Eqs(39), (40), and(with a dynamic gauge(44) 0 01 0 0 O 0 0
or (47), can be written in a condensed notation, - = (52)
Dog+M?Dag=S, (48) IV. HYPERBOLIC STRUCTURE OF THE COORDINATE
EQUATIONS

where q is a vector of the twenty-four variables _ . . .
Nay, Kap, 84, and w,. FurthermoreM? are three sparse The beautiful quasi-FOSH tetrad formulation with con-

24X 24 matrices whose only nonzero elements are, and  Stant coefficients given in Eq#48) to (52) is not so simple,

Sis a vector of source terms. If one orders the variables sg' SC beautiful, when expressed in terms of coordinates.
that However, we proceed to show that the coordinate equations

are still quite manageable and are, indeed, symmetrizable
hyperbolic.
Substituting Eqs(13) and (14) into Eq. (48), we express

9=(N11,N21,N31,81,K11,K21,K31,1,N12,N22, N3z, 8, the tetrad evolution equations in terms of partial derivatives

K12 ’ K221K32!w2 ’ N13!N23!N331a3 ’ K131K231 K331w3)1 along coordinate directions:
(49)
then theM? matrices have a simple block diagonal structure. aq
Each is composed of three identicak8 blocks, respec- TDoq+ Mf"B",f1 —=S (53
tively: 2
o 0 0 O 0O 0 0 7
where
0O 0 O O 0 0 -1 0
0O 0 0 O 1 0 0
0O 0 0 0 -1 0 O O
MBiock= : T=[1+MA], (54)
o¢ 0O 0o 0-1 0 O O O
0O 0 1 O 0O 0 O O i . i . . )
andl is the identity matrix. For clarity of notation, we 1B,
0 -10 0 0 0 0 O represent the partials in E¢L3). The T matrix has a block
L1 0 0 0 0 0 0 q diagonal structure composed of three identical 8 entries

(50 which are
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! 0 0 0 0 —-As A, A
0 1 0 0 A; 0 —A;, A,
O 0 1 0 _A2 Al O A3
. o 0 0 1 —-A, —A, —A; O e
block™] o0 A, —-A, -A; 1 0 0 o0 9
-A; 0O A, —-A, O 1 0 o
A, —-A; 0 —A; 0 0 1 0
A, A, A, O O 0O 0 1]
We now multiply Eq.(53) by T~ to give
d
Doq+ C*BX —qk=T’18, (56)
ox
where
Cl=T M2 (57)

T~ 1is straightforward to calculate, since it is a block diagonal matrix with each block equal to the inva@gsg.pin Eq. (55),
where

o1 0 0 0 0 A; —-A, —A]
0 1 0 0 —-A; 0 A
0 0 1 0 A, —-A, 0
. 1 0 0 0 1 A A, A 8
1-AA 0 —-A; A, A

1
A;, 0 —-A, A, O
-A, A, 0 A; O
-A, -A, -A; 0 O

o O r O
o r O O
[
B O O 0o 9 » »
w N

The system given in Eq56) is hyperbolic according to For Eq.(56) to also be symmetrizable by the definition of
the definition given in11] if any linear combinatiorb, C*  Lindblom and Schedl12], a positive definite symmetric ma-
of C!, C?, andC? can be diagonalized with a complete set of trix must be found which multiplies th€* matrices to give
eigenvectors and real eigenvalues. The linear combinatioaymmetric matrices. The obvious candidate for such a sym-

for propagation in the* coordinate direction haba=Bg. metrizer isT, sinceT C?=M? by Eq.(57), and theM? ma-
Solving the eigensystem of the combineck 8 matrix in  trices are symmetricT is real and symmetric so a necessary
MATHEMATICA gives for the eigenvalues and sufficient condition for it to be positive definite is that all
its eigenvalues are positivi29]. This requires thath,A,
b-AT Vb-b—(bXA)-(bXA) <1 , _ . ,
1A A . (59 Note that our saying the system is hyperbolic is contin-

gent on the evolution of thB'.; being hyperbolic. This is

. . discussed further in Sec. V.
whereb and A are the 3-vectors in the spatial orthonormal

frame with componentls, andA,, respectively. The dot and
cross products are the standard vector operations, and t
upper or lower signs on the square root are for left or right-
propagating(relative tob) modes. The eigenvalues are real The commutators of the orthonormal basis vectors are
as long asA- A=A, A,<1. The eigenvectorggiven in Ap-

pendix B form a complete set. The lapse and shift hidden in [ex.e3]= Vo= Vpe,=(I'},—T'2p)e, .
the D, operator modify the eigenvalues in a trivial waul-

tiply by the lapsen, then subtract the shif§*), but have no  Expressed in terms of tetrad components and partial deriva-
effect on the eigenvectors. tives,

f& EVOLUTION AND CONSTRAINT EQUATIONS FOR A,
AND B

(60)
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N DN . 9By K k k
[e..€s]=| NG &x_“_)\g ) o (61) &capBa Eszch_(TrN)Bc+8cabAa(8bdfdef
k
. . . +
Expanding Eq(61) and collecting terms gives KooBa), (67
K K k k s
NI ENT N AR eatBay — 20T Nocham (THRDAC T eearfte
Cat o Tagxk TPat TPk [ gxk
X (—aptepgrwghr+ KpghAg)- (68)
RN V) SO VA
+{ A, Wﬂxag—hﬁ 0 _)\5(9)('( e (62 Note that if A,=0, the constraint of Eq(68) is satisfied

automatically, and Eq67) can be used to calculate all of the

_ _ N,p, from the B
Doing the same in Eq60), we get

VI. THE INITIAL VALUE PROBLEM

[(I‘Oﬁa—roaﬁ))\5+(Fcﬁa—rcaﬁ))\‘é]ik Initial conditions for the variables must be chosen so all
2 relevant constraints are satisfied on the initial hypersurface.
J This is most easily accomplished if the initial tetrad is ori-
+[(r0Ba_r0aB))\to+(FCBa_rcaﬁ))\tC]__ ented so the tetrad congruence is orthogonal to the initial
at hypersurface. Thentl,=0 andA,=0 initially. The initial
(63 B'; are the components of an orthonormal triad of vectors
lying in the initial hypersurface, related to the inverse of the

Set Eqs(62) and (63) equal, and let the index=0 and the  SPatial metric of the hypersurface hif = BB, . One way to

index =a. Simplifying, we obtain evolution equations for construct consistent initial conditions is to solve the initial
BX andA,: value problem using standard+3 methods for the spatial

metric and the extrinsic curvature. Construct orthonormal
triad fields by a Gramm-Schmidt orthogonalization proce-

D.BX B_Ia a_lgk 1 (ﬁ_ﬁ )Bk dure, orienting theB, vector along thex! coordinate direc-
0Pal o g a lot TRITa tion, andB, in the x*—x? plane, for instance. Find thi,;,
from the commutators of th8, 3-vectors using Eq(67).
K K TheK,,, are simply the projections of the coordinate compo-
=~ eabcwpBe— KacBe, (64 hents of the extrinsic curvature as found from thel3nitial

value problem along the orthonormal triad vectors. This pro-
Bg cedure is guaranteed to give consistent initial conditions for
DoAa=a53— apcwpAc— KacAc— — (65  the tetrad vectors, as long as the spatial coordinates are ba-
« sically Cartesian, i.e., there are no spatial coordinate singu-
larities. The initial acceleration and angular velocity of the
where L in Eq. (64) is the Lie derivative. For fixed lapse tetrad are arbitrary, except in the context of the Nester gauge.
and shift, the evolution of both thBX and theA, is just  In this case, the initial angular velocity, and the initial
advection along the congruence world lines and trivially hy-a,—2 n, must have vanishing exterior derivatives. How-
perbolic. ever, there is no guarantee that there are not large twists of
The congruence can always be chosen to be orthogonal the initial triad vectors, possibly leading to large gauge tran-
the initial hypersurface, s&,=0 initially. However,A, will sients in the context of one of the dynamical gauge condi-
not remain zero during the subsequent evolution unless thions.
condition A more elegant and, likely, a better-behaved choice for the
initial spatial triad is to require that it satisfy the 3D Nester
P gauge conditions in the hypersurface. These conditions are
B,—loga=a, (66)  that the 3D one-forng ,, whose triad components aFg®,,
X has zero exterior derivative, and that the trace of khg
matrix vanish, i.e.Nj;+Nys+Ngz=0. For simple topolo-
is satisfied at all times. For either the fixed or the dynamicgies, the first condition is equivalent to the condition that
gauge conditions o, considered here, the evolution Bf, ~ 2n,=e ., N, be the gradient of a scalar. Finding a solution
and/ora, is inconsistent with Eq(66), except possibly for for the B which satisfies these conditions is, in general, a
very special initial conditions. nontrivial elliptic problem(see[30] and[31]). However, the
Repeating the same process as above, but with the indesituation is much simpler for conformally flat 3-geometries.
a=a and the inde3=Db, we obtain constraint equations for Taking Cartesian basis vectors in the conformal geometry,
B'; andA,: the conformalN,, are zero. If the conformal factor which

ax’
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generates the physical metricéé”, the conformal transfor- Knowing what these special initial conditions are requires
mation simply rescales tHg¥ by a factore 2”. The physical ~knowing the whole future solution ahead of time, and thus is
n, equal— 2D, (the gradient of a scalgrand the symmet- not practical.

ric part of N, is still zero. The 3D Nester condition is sat-  Both of these issues will probably best be addressed by
isfied. extending the symmetrizable hyperbolic system to allow for
a dynamic lapse, to keep,A, small, and a dynamic shift, to
VIL. DISCUSSION control grid stretching.
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introduced allow for a completely arbitrary evolution of the
coordinates with minimal complication of the formalism. .
Furthermore, since the variables evolved are defined relativaPPENDIX A SOURCE TERMS OF TETRAD EVOLUTION

to the orthonormal frames, the metric is the Minkowski met- AND QUASI-CONSTRAINT EQUATIONS

ric and there are no nonlinearities in the equations associated The tetrad energy quasiconstraint equation’ derived from
with the inverse metric. The system of equations based og, =0, is

coordinate derivatives is symmetrizable hyperbolic, though

admittedly more complicated than the quasi-FOSH system 1 )

based on directional derivatives. Finally, the variables — 2DaNa==2®ala+NeaNeat 5 (KegKae= (TrK)

Nab, Kap, 85 and w, are all scalars, so derivatives of the

shift only appear in the evolution equations &lf. We have —NegNge— (TrN)?). (A1)
successfully implemented this tetrad formalism for 1D col-
liding gravitational plane wavg$82], where it results in sub-
stantially better accuracy and stability compared with ou

The tetrad momentum quasiconstraint equations, obtained
rfrom Gpa=0, are

calculations in th 31 frame_zwork[Z]. _ D (K g+ Kag) — DKo~ DaKys
There are still important issues to be worked out in order
to apply this tetrad formalism to 3D black hole codes. First, =2&1pcdp Qe+ e1pcKpdNge— 2K 1cNe, (A2)
one must deal with the complications that arise when evolv-
ing the congruence as well as the hypersurface. The congru- Do(Ky1+Kazg) =D 1Ko~ D3Kyps

ence stays timelike as long as the acceleration is bounded;

however, in order for the hypersurfaces to remain spacelike, = 222008 e T 25oKpaNae ™ 2K zoNe, - (A3)

the ci)nd|t|onAaAa<1 must be satisfied at all times. If Da(Kyy+ Kyp) — D1Kay— DKy
A A,=1, the system breaks down completely. The hypersur-
faces become null, causing the+3 lapse to blow up. In =2&3pcp et e3pcKpdNge— 2K3eNe . (A4)

addition, the coordinate equations become sing(dae Ap- . ) )
pendix B. A,A, can be kept small by an adjustment of the Analogous quasiconstraint equations o andN,, are

lapse as the calculation proceeds. Such a resetting of the _

lapse invalidates theorems which bound the growth of the 2Dafla= 28,00 4Ny, (A5)
solution based on the symmetrizable hyperbolic structure of D (Np+ Nag) — DoN1p— DaNys

the system, but does not affect other advantages of the hy-

perbolic formulation, such as dealing with boundary condi- =—2&1pcwpct 2K 10— 1pcN1pNe1

tions.

Second, attaining a stationary solution at late times for +2n1(Ngzt+ Ngg), (AB)

general 3D black hole numerical calculations may be prob-

lematic in a tetrad formulation. Such solutions are potentially D2(N11t+ Ngg) =D 1N2i=DsNos

desirable for long-term stability. With bounded acceleration, =—285pc0pc+ 2K — £9pcNopNeo
congruence world lines just outside the apparent horizon will

necessarily cross the horizon and be trapped by the black +2n3(N13+N3g), (AT)
hole. World lines further out may actually accelerate outward

relative to a static or stationary observer. While a shift ad- D3(N11F Nzz) =Dy N3y~ DoNg,

Jus_ted just right may keep grl(_d stretching un_der control in =~ 2eawpQot 2K O,

spite of this, the adjustment will have to be time-dependent

except for very special initial conditions on the congruence. —&3pcNapNea+2n3(N+ Noy). (A8)
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To obtain the true constraint equations from these quasi-APPENDIX B: DETAILS OF COORDINATE EQUATIONS
constraint equations, Eq12) must be substituted for each
appearance dD,. Then Eq.(56) must be used to eliminate
the terms involvingD, that have been introduced. The true
constraints are only needed to check accuracy as the soluti
evolves, once consistent initial data is obtained.

The sources foK ,, andN,, evolution Egs(39) and(40)
are

In this appendix, we expand E@56). Because of the
block diagonal structure of th&* andM? matrices, it is only
necessary to work with one set of eight variables. We will let
?He free indexd=1, 2, or 3(for the first, second, and third
set of eight variables in the vectqy, i.e.

da=(N1g,N2q,Nzq,a4,K14,Koq,Kzq,09).  (B1)
S_Kap=aa@pt+ epcd(—Nac@gt Kacwg) + €acdKcbwq ) ] ] o .
1 So as to include a nonzero shift with minimal notation, we
+ 5eadEpce KacKre = NgcNre) + (Tr N)Ngp useD, to represent the partial derivatives in E3). Then

2 we can write Eq(56) as
—NcaNep = KacKept20pQ5, (A9)
_ Do+ [ ChiockBi + ChiockB5+ Coi kBg]%:Sd:
S _Ngp=—aawp+epcd Kacg T Nacwy) +eacaNepwy o¢ o¢ O3 gxk
+ & aaebeNack re— (TTN)K gt NogK oo~ KacNo €2
+2a,Q),. (A10)  where
|
A, -A, A, 0O O O 0 —17
A, A, O -A, 0O 0O 1 0
A, 0O A, A, 0O -1 0 0
o 1 0 As -A, A, 1 0 0 0 | .
I-AAl 0O 0 0 1 A -A, —-A; 0
0 0 -1 0 A, A, 0 —A,
O 1 0 0 A; 0 A A
-1 0 0 0 0 Ay -A, A
A, A, O A, O 0O -1 07
A, A, A, O O 0 0 -1
0 A; A, -A, 1 0 0
1 -A; O A, A, O 1 0 0
Cg'ock:m o o0 1 0 A, A, 0 Al (B4)
0 0 0 1 -A A, —A; O
-1 0 0 0 0 Ay A, -A
L0 -1 0 0 -A; 0 A A
A, O A -A, O 1 0 07
0 As A, A, -1 0 0 0
-A, A, A, 0 0O 0 0 -1
1 A, —A, 0 A, 0o 1 o0
C:glock:— ' (BS)
I-AAl 0 -1 0 0 A, 0 A -A,
1 0 0 0 0 Ay A A
0 0 0 1 -A -A, A; O
L0 0 -1 0 A, -A 0 A

and
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" AsS Kog—Ay S Kag+S Nyg—A; S wg ]
—AsS Kig+A; S Kag+S Nog—A, S_wyg
ALS Kig—A; S Kog+S Nag—As S wyg

1 S ag+A; S KigtA, S Kog+As; S Kag
STTCAA| AS ag+S Kig—As S Nagt+ A, S Nag
AsS ag+S Kog+As S Nyg—A; S Nag
AsS ag+S Kag—A, S Nig+A; S Nog
| —A1S Nig—A, S Npg—Az S Nag+S_wg ]

(B6)

The expressions foB_Nig, S Nyg, S Nag, S Kig, S Kyg, S_Kszq in Eq. (B6) are obtained from EqgA9) and (A10).
Those for S a4 andS_wq are from either Eqs44) or Egs.(47).

The eight eigenvectors of the arbitrary linear combinatignCf,,., consist of four pairs of left and right-propagating
modes. Each pair can be chosen to involve only one of the four vari#lesK,q, Ksq, w4. For propagation in theX
coordinate directionba=B§. As in Sec. IV, we simplify notation by using and A to denote the 3-vectors in the spatial
orthonormal frame with components, and A,. Then thewy eigenvectors, normalized soq=b-b=|b|2, haveN,4=[b
X (bx A)Jp*+ by \|b[>—[bx A[?, andag=0. TheK 4 eigenvectors, normalized 36,4=|b|?, haveNp 4= €[ bX (bX A)],

+be\[b|?—[bx A[%) andag=—([bX (bXA)],*b,v|b]?—[bXA[?). The upper sign on the square root corresponds to the
upper sign in Eq(59) for the eigenvalues. Note that,, is zero in theK 4 eigenvectors.
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