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The Null Quasi-Spherical ansatz

The NQS coordinates (z, 7,9, ) satisfy:
e The 3-surfaces z = const. are null,

e The 2-surfaces (z,r) = const. are isometric to standard

2-spheres of radius r,
e The coordinates (¥, ) are standard spherical polars

General NQS metric:
ds® = —2udz(dr +vdz)+ 2[r0© + Bdr + Jdz|?

where © = % (d¥ +1isinvdy) and § = % (B —1p?)

7= (0 —iv?).
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NQS tetrad
{ = g—r_l(BD — 06Dy =1 D
— or v v) —- r
n = u *(D,—vD,)
_ 0 i 0
mo = \/1§7° (819 ~ sind 890)

The S? derivative operator 0 (edth) acts on a spin-s field
1 0 i 0
on = —sin”J — in~ %
! V2 i ((919 sin v 8@) (sin™*9m)

div 8 = 083 + 04 is the divergence of a vector field on S?, and
rD, =10, — Vg =10, — (30 + 30),
rD, =10, -V, =10, — (70 + 40) are S?-covariant operators.
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Define the auxiliary variables H, J, K, Q, QT in terms of the

metric parameters:
= u (2 —divp)
= v(2—-divg) +divy

v03 — Oy

O =N o =T
I

= 1D,8—rD,y+7~

QF = u '(Q=+0u)
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Hypersurface Equations

The Einstein tensor components Gy, Gy, Gepn, and G, give

equations involving only derivatives tangent to the null

hypersurfaces:
. 2|19061% + r*Gu
__ 1 _
rD.H = (2 div 3 > div i H
rD,Q- = (08— uH)Q 4+ Q 983+ 2008 + udH — Hou + 2r°Gypm,
rD,J = —(1—-divB)J +u—2u|QT)? — u div(Q") — ur’Ge,
rD, K = (% div 3 +1i curlﬁ) K — %5&] + %U5Q+ + iu(Q‘")2

1 2

- /




4 N

The NQS evolution algorithm

Begin with the primary field S on a null hypersurface z = 2z, and
progressively solve the hypersurface constraint equations, viewed as
radial ODE’s for the metric parameters:

1. Gy gives H, and thus u = (2 —div3)/H

G, gives Q7 , and thus QQ and QT

Gy, gives J

Gomm gives K

Solving an elliptic system on S? determines ~, v from J, K

. 0
Determine a—f from @, 3,~

No oo W N

. Evolve (8 to the next null hypersurface
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/Eliminating v from the definitions of J and K gives an elliptic
system for the vector field v restricted to the 2-sphere

(z,7) = const.

o5 . 08
> —avs W= 5T an g

Oy + — K.

The right hand side is known from solving the hypersurface
constraint equations, so we have an elliptic system for v. The

remaining metric parameter v is then determined, by

J — divy
2 —div3

Vv =

The primary field 3 is evolved using Q:

.98

\\ "9z

5’v

=Q+r —|—V'yﬁ Vgy —7.




/The Bianchi I1

symmetric tensor Fj; gives equations for the components
Frms Frm, Fnn (in NP notation with k = 0)

(conservation law) identity Fab;b =0 for a

0 = Remem,
Dy(Frnm) = 2p+p—28) Fum+ 0 Fum

+ D Fom + (71— 7) Foum,s

Dy(Fy) 2Re(p — 2¢) Fup, — Re p Frm

+ D Frm + D From + Re((28 4 27 — 7) Fomm) -

If p# 0 and F},,, = F},, = 0 on a boundary surface transverse to
the null hypersurface, then Fi,,; = Fy,,m = F,n = 0 everywhere on

the null hypersurface. Thus the constraint (subsidiary) equations

\ire propagated by the evolution. /
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The Einstein components G,,,,, G, vield the evolution (%)

Boundary (Subsidiary) Equations

relations:
rD, (J/u) = v>rD,(J/(w))+ (3] —v)J/u
+2u" ' K|? = Vorv — Av + ur* Gy,
rD,QT = (fvfrDT +J+ 0y — 056) QF — KQT

+ 2u” D, (udv) — (2 + 1 curl B)dv
+ 20K +0.J — 2u"'0u J — 2ur*G,,,,

These equations constrain the boundary conditions for the fields
J/u and Q. At non-boundary points they provide compatibility

\i)nditions on the z-derivatives.
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Free Boundary Data

The Hypersurface Equations require boundary data (initial
conditions) for H,Q~,J, K.

The Boundary Equations constrain the z-evolution of the
boundary data for J/u and Q.

The z-evolution of 3 is determined everwhere from ().

Consequently, the boundary data for u, i are unconstrained
(free).

u determines the starting sphere for the “next” null

hypersurface, hence u represents gauge freedom.

K describes the outgoing radiation (ingoing shear) and is free

geometric data.

/
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Aspects of the Numerical Methods

8th order Runge-Kutta for the radial integration of the null
hypersurface constraint ODEs, with 256 radial steps, rescaled
to reach Z7.

FFT and projection to spin-weighted spherical harmonics used
to minimise polar problems and to compute angular

derivatives. Resolution is L = 7,15 or 31.

Preconditioned conjugate gradient method to solve the elliptic

system on S? for ~.

4th order Runge-Kutta for the time evolution with timestep
Az = 0.05.

/

11



-

Infalling radial coordinate

Use a radial grid variable n =0, ...,n, = 256 and the

Schwarzschild radius function

r=r(z,n) = 2M¢ (exp(—z/4M)¢(f(n)/2M)),

where ¢(z) := (x — 1)e®, x > 0. Then n = const. defines infalling

radial curves.

Compactify It by ne —n = O(r~1/2), with

f(n) = fr(v)/(1 -v)%,

where v = n/ns, f1 monotone on [0, 1].

-

12



/ run_160: |rg | \

\ N n
e
TR

"
UK
TS

Figure 1: Evolution of 38 for 0 < z < 55. Observe that the in-
falling grid tracks the dynamical evolution. n = 0 is the past horizon

!: 2M, n = 256 is future null infinity Z. /
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Kruskal—Szekeres coordinates
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Figure 2: Schwarzschild spacetime in Kruskal-Szekeres coordinates.
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Refine code parameters:

Numerical convergence tests

e radial resolution n., = 128,256, 512,1024, shows 8-th order

accuracy in radial integrations;
e angular resolution L = 7,15, 31;

e timestep Az = 0.01,0.05,0.1, shows 4-th order accuracy in
timestep;

or vary initial field strength §(z = 0):
e weak field run_150, with 1% of the total energy as radiation
e intermediate field run_160, with 20% radiation

e strong field run_170, with 50% radiation

-
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(run_352 & 452) —run_552: [6(rB) |, 5 2z=1

Log, ol 6(rp) |
~10

—-15

0 64 128 192 206

Figure 3: Convergence of 3 with increasing radial resolution: weak
field solutions with ns, = 256,512 compared to ns = 1024. The

error decreases by approximately a factor of 2% on doubling the radial
resolution.
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/ (run_442 & 452) —run_462: [d6(rB) |, 2z=1 \

Log,ql 6(rp) |

Figure 4: Convergence of 3 with decreasing time step: weak field
solutions for Az = 0.1,0.05, compared against Az = 0.025. Where
the error is not dominated by the radial discretisation error, the

curves show a decrease in error which is consistent with 4th order

convergence. /
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R —10:40:
run_150, 160 & 170: |r°G__|,.,, 2z=10:40:10
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Figure 5: Effect of spectral resolution on constraint quantity
172G nlg2 at times z = 10, 20, 30, 40, for strong (top 4 curves), inter-
mediate (middle 4 curves) and weak (bottom 4 curves) fields.
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Accuracy Conclusions

For the data studied (pure [ = 2 initial 8 with Gaussian profile
centered at r = 20M ), the solutions are

e relatively insensitive to the timestep Az;
e improved by increasing n.g;

e fundamentally limited by the spectral resolution: L = 15
corresponds to solving the L = 10-truncated Einstein

equations.

-
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Geometric consistency tests

e Evaluate the constraint equations
— Gpn = Gy = 0 (“subsidiary” equations)
— G (“trivial” equation).

e Test the Trautman-Bondi mass loss formula (for d%m Bondi)-

e Test peeling behaviour ¥, = O(r*=?) for the Weyl curvature
components Vi, k£ =0,...,4.

20



/ Hawking and Bondi Mass

The Hawking mass of the (z,7) = const. 2-spheres is

1
mp(z,7) = 3r (1 — 877{ HJ)
S2

where the integral is over the unit 2-sphere and

2 U

1
HJ = 74 L2 div B)(divy — v(2 — div 3))
52 S
The Bondi mass of the null hypersurface is

mp(z) = Tlgglo mp(r,z)

and the Trautman-Bondi mass-loss formula is

-

— — — i H|K|?.
dZmB(Z) 167’(’ TLI%O SQ(Z,T) | ’
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Trautman-Bondi mass decay

run_160: Error in mass decay rate

d(mg)/dz error

d

ferentiation, and from the Trautman-Bondi mass-loss formula.

-

Figure 6: Difference between 7-mp(2) calculated by numerical dif-

~
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Example: Peeling obstruction

~

Under generic asymptotic behaviour (r3 bounded at scri), we find
that ¥g = O(r~?), not O(r—°) as predicted by the peeling

hypothesis.

4
run_160: | r ‘I'o |e§10

L4
run_802: [r°¥,/|,_,

Figure 7: Comparison of r*¥, shows peeling and non-peeling be-

\haviour

/
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Website demonstrations

. rf3 for run_150, z = 0..55 — (a) 2D plot with mpeg; (b) 3D

surface plot

. spectral decay for (a) run_150 with [ = 0..15, (b) run_170 with
[ = 0..10, to estimate relative accuracy by |l = 10| : |l = 2|

. Hawking mass for run_170

. dm/dz for run_170

. Weyl spinor r° ¥ for run_160, run_802
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