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Spacetimes, singularities, censorship

Consider spacetimes (V, go3), signature — + +- - - +.

Raﬁ — %Rgaﬁ — Taﬁ

assume (V, go3) maximal, globally hyperbolic, energy

conditions

Singularity theorems = generic spacetimes are causally
geodesically incomplete (singular), but give no information
about the nature of the singularities.

The strong Cosmic Censorship Conjecture states that generic
maximal globally hyperbolic spacetimes are inextendible.



BKL proposal

e Belinskit, Khalatnikov and Lifshitz (BKL) proposal: heuristic

scenario for generic cosmological singularities

e The singularity is spacelike: observers near the singularity can’t

have communicated in the past; silence holds — particle

horizons shrink to zero.

e The singularity is local: spatial derivatives are dynamically

insignificant near the singularity
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BKL proposal - cont.

non-stiff matter is dynamically insignificant near the singularity

The singularity is oscillatory in case matter is non-stiff and

D < 11 and non-oscillatory otherwise.

non-oscillatory — AVTD — asymptotically Kasner along

generic timelines

oscillatory — Kasner epochs interspersed with bounces which

change the Kasner parameters according to BKL map.



Silent, oscillatory
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Dynamical systems approach

Use scale invariant (Hubble normalized) frame variables:
e first order form of evolution equations
e classify fixed point sets, attractors etc.

e natural formulation of BKL proposal

e asymptotic dynamical system (silent boundary system)

- Consider G5 case on T with nonzero twist.
- Use RNPL to study evolution numerically.

- The silent boundary system governs the evolution for generic

timelines.
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Example: Kasner

ds? = —dt? + t?Pdz? + t29dy? + t*"dz*

Vacuum (R,3 = 0) implies the Kasner relations: p+q+1r =1,

p? + ¢° +r? = 1 = sphere intersected by plane = unit circle in
¥, % plane, Sy = 3(g+7) =1, - = L(q 7).

Permutations of p, q,r < 27/3 rotations of ¥-plane.

Flat Kasner solutions correspond to (p,q,7) = (1,0,0) and
permutations thereof < special points 17,75, T3 in the Kasner
circle, (—1,0), (3, +¥%2).

The Kasner circle £ = {¥3 + X2 =1}



Kasner — cont.

Rescaled Weyl tensor components

1
5+=§((1+2+)2+—22_), E_=—-(1-22)%_

1
3
Weyl scalar 7; = 48(E% + £2)

Kretschmann scalar Ra@,ﬂsRo‘m‘s ~ t747; blows up as t \, 0 =

nonflat Kasners are inextendible.
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Example: Bianchi

e spatially homogenous models = Einstein equations become
ODE’s.

e (lassify according to isometry group

e “generic’ Bianchi models have oscillatory singularity

(b)
(a) Kasner billiard — Bianchi IX — Mixmaster
(b) Taub-NUT has Cauchy horizon — extendible.

Banff



Example: Bianchi with stiff fluid

2_

0 0.5 1 1.5 2
>+

Stable region for Bianchi IX with stiff fluid.
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BKL map

14w
14 u+u?
B —
14 u+u?
u + u?

p

q

T =
1+ u+ u?

BKL observed that the (chaotic!) map

u—1 uw>1
l/u O<u<l1

is a good model for the asymptotic dynamics of the Kasner

exponents in the case of Bianchi IX.
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Hierarchy of cosmological models

orbit dimension || system

Bianchi or K-S

Surface symmetry or Gs

Gy
Go
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Example: Gowdy

e Generic Gowdy spacetimes have AVTD singularity, cosmic

censorship holds (Ringstrom, 2004)).
e AVTD solutions for Gowdy

P(t,z) = k(2)t + ¢(x) + e “u(t, z)
Q(t,x) = q(x) + e ' [Y(w) + w(t, v)]

where € > 0, u,w — 0ast —ooand 0 < k < 1.

e spikes form in generic Gowdy (Berger and Garfinkle, 1998))
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Chaos in superstring cosmology

(Damour and Henneaux, 2001; Damour et al., 2003))

e The singular (BKL) limit of D-dimensional gravity, including
dilaton and form fields can be represented as a geodesic billiard
in hyperbolic space, cf. Misner-Chitre model for Mixmaster.

e The billiard table is the Weyl chamber of a Lorentzian
Kac-Moody algebra.

e Low-energy bosonic sector of superstring/M-theory models
gives D = 11 dimensional gravity coupled to dilaton and p-form

fields.

e The billiards corresponding to the D = 10 string theories (M,
ITA, IIB, I, HO, HE) are of arithmetical type.
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Dynamical systems approach: connection variables

Introduce a group-invariant orthonormal frame { e, }4=0.1,2.3, With
eo timelike, align e, with one of the Killing fields.

The nonzero connection variables for GG, are:

e O, the volume expansion rate, H := %@,

® 0.,0_, 0x, 02; shear

n_ and ny, commutation functions, giving the spatial

connection on T,
11, the acceleration of the integral curves of e,

q,r; deceleration parameter and logarithmic spatial Hubble

gradient,

N~19; and e,'9, are nontrivial derivatives on coordinate

scalars.
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Hubble normalized variables

(N_l,Ell): (N_l,ell)/H
(S.,N.,U) = (0. ,n._, u)/H.

State vector:

X =(ENY 3 8, %, Ny, N))Y' =(EhHeY .

To write evolution equations, need deceleration parameter ¢ and
logarithmic spatial Hubble gradient 7,

(q+1):=—=N""0In(H) ,
r:=—FE"'"9,In(H) ,
where ¢ and r satisfy the integrability condition

N7 o —E ' 0pg=(q+22)r—(r—U) (g +1) .
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Hubble normalized system of equations for G5

Constraints:

(r — U) — F,'0, In(14 >4)

1=3%2 +35+3%2 + N, +%2 + N?

(1+32)U=—-3(NyZ_ —N_3,)
0= (E1'0, —r+ V3N, )2y .
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Hubble normalized evolution equations for G

C'1+2,)0E,"
C'14+20)0:(1+2y)

C ' 14 X4) 02
C'14+2.)0:%_ + Ei" 0.Ny

"A+ 30Ny + Er1" 0,3
'14+3)0: 2« — FE1" 0,N_

-
-

C'1+X,)0:N_ — E1' 0,2«

= (¢+2%4) Br
= (q—2)(1+34) +3%3
= (¢q—2—-3%, +V32.) %,
=(q—2)S_ + (r —U) Nx +2V3%%
— 2v/3N? — /332
= (q+22 )Ny +(r—U)Z_
=(g—2—2V3Z_ )2y
— (r—U +2V3Nx)N_
= (¢ + 2%+ +2V3Y_) N_
—(r—U —2V3Ny) 2y ,
1

where ¢: =223 +22 + 23 +2) - (E1' 0, —r+U)U .
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The silent boundary

Observe numerically that £, — 0 exponentially as t — co.

The unphysical boundary of the phase space with E,! = 0 is
called the silent boundary. The spatial derivative in the Hubble

normalized system is of the form E,'0,. Therefore going to the

silent boundary corresponds to collapse of the light cones.

The dynamics on the silent boundary gives an asymptotic

dynamical system, the SB system.

The SB system is equivalent to a spatially self-similar model.
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Gowdy — non-oscillatory singularity

Setting > = 0 gives the Gowdy subcase.

The solution approaches stable arc, except for the spike

timelines.

Orbit of asymptotic Gowdy system Orbit of the full Gowdy system
2r -
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Bianchi VI* | /9 and the G, silent boundary

*

Z1/9
(b) The G> silent boundary system: exceptional SSS Type-_1 V]I

(a) The exceptional Bianchi type VI system

Banff



32 -

(G and silent boundary system

‘ 2

i

Projections onto the (X3 _)-plane of a typical timeline for (a) the

() (b)

full G2 system, and (b) its restriction to the silent boundary.
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Spike timelines

N_, 39,2 are unstable on I

zero crossings of unstable variables <+ “spiky features”
Yo cannot cross zero for generic solution

Y.« spikes “false” (gauge) spikes

N_ spikes “true” (physical) spikes

Ei'o,N_ o B! [awN_ Lt N_ k(x| e~ 2-R@IE

where k()
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A spike timeline

‘ 2
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Weyl tensor

e Timelines (x,t) are non-spike or spike.
e For non-spike timelines F;19,Y — 0

e Each timeline revisits the Kasner circle I, where ¥3 + 32 =1,
NX :N_:EX :EQZO

e On I only the rescaled Weyl tensor components £, and £_ are

non-vanishing, so the rescaled Kretschmann scalar is
T =48(E3 +&2).
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Weyl tensor cont.

For spike timelines, get contributions to Weyl tensor from
E'90,N_ and E,'90,% in £« and H_ respectively.

Thus, in addition to &1, £ we have £, and H_ active at K
(but not simultaneously!).

Therefore expect the rescaled Kretschmann scalar
T = 8(EapE™ — HasH*P) be be nonzero for a sequence of

times even along spike timelines.

This supports cosmic censorship for generic G2 spacetimes.
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Concluding remarks

The dynamical systems approach using Hubble normalized
variables gives a natural asymptotic dynamical system, the
silent boundary system, and allows the analysis of the

asymptotic dynamics in terms of attractors.

In Bianchi IX, the Bianchi II attractor explains the BKL map
(Kasner billiard) oscillatory asymptotic behavior.

Gowdy has a stable attractor in K — so is AVTD and
censorship holds.

For the GG system, the silent boundary system explains the
BKL map oscillatory asymptotic behavior.

The G5 silent boundary system (and therefore generic timelines

of G3) revisits the Kasner circle infinitely often — censorship
holds.



Concluding remarks - cont.

Next candidate for rigorous proof of censorship: G2KG = G5
with scalar field.

Construct spike solutions for G2KG.

Asymptotic expansions near the silent boundary?

Verify “asymptotic silence” numerically for U(1) and G

models?

Role of “spikes” in stringy gravity?
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