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Outline
e generalized harmonic coordinates
— definition & utility in GR

— a numerical evolution scheme based on this form of the field
eguations

— choosing the slicing/spatial gauge
— constraint damping

— some details of the numerical code

e early simulation results

— merger of an eccentric black hole binary



Numerical relativity using generalized harmonic
coordinates — a brief overview

Formalism

— the Einstein equations are re-expressed in terms of generalized harmonic
coordinates

= add source functions to the definition of harmonic coordinates to be able to choose
arbitrary slicing/gauge conditions

— add constraint damping terms to aid in the stable evolution of black hole
spacetimes

Numerical method

— equations discretized using finite difference methods
— dlrectly discretize the metric; i.e. not reduced to first order form

— use adaptive mesh refinement (AMR) to adequately resolve all relevant
spatial/temporal length scales (still need supercomputers in 3D)

— use (dynamical) excision to deal with geometric singularities that occur inside of
black holes

— add numerical dissipation to eliminate high-frequency instabilities that otherwise
tend to occur near black holes

— use a coordinate system compactified to spatial infinity to place the physically
correct outer boundary conditions



Generalized Harmonic Coordinates

e Generalized harmonic coordinates introduce a set of

arbitrary source functions HY into the usual definition of
harmonic coordinates

 \When this condition (specifically its gradient) Is
substituted for certain terms in the Einstein eguations,
and the HY are promoted to the status of indepenaent
functions, the principle part of the equation for each
metric element reduces to a simple wave equation
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Generalized Harmonic Coordinates

The claim then is that a solution to the coupled Einstein-harmonic
equations
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which include (arbitrary) evolution equations for the source
functions, plus addition matter evolution equations, will also be a
solution to the Einstein equations provided the harmonic constraints
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and their first time derivative are satisfied at the initial time.
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An evolution scheme based upon this
decomposition

e The idea (following Garfinkle [PRD 65, 044029 (2002)]; see
also Szilagyi & Winicour [PRD 68, 041501 (2003)]) Is to
construct an evolution scheme based directly upon the
preceding equations

— one can view the source functions as being analogous to the
lapse and shift in an ADM style decomposition, encoding the 4
coordinate degrees of freedom

— the system of equations is manifestly hyperbolic (if the metric is
non-singular and maintains a definite signature)

— the ”constraint” equations are the generalized harmonic
coordinate conditions



A 3D numerical code based upon this scheme

e Attractive features for a numerical code

— wave nature of each equation suggests that it will be straight-forward
to discretize using standard AMR technigues developed for hyperbolic
eguations

— the fact that the principle part of each equation is a wave equation
suggests a simple, direct discretization scheme (leapfrog) :

e no first order quantities are introduced, i.e. the fundamental discrete
variables are the metric elements

e the resulting system of equations has the minimal number of constraints
possible (4) for a general, Cauchy-based Einstein gravity code

— simpler to control “constraint violating modes” when present

e an additional numerical Issue we wanted to explore with this code Is
the use of a spatially compactified coordinate system to apply
correct asymptotically flat boundary conditions



Coordinate Issues

e The source functions encode the coordinate
degrees of freedom of the spacetime

— how does one specify HY to achieve a particular
slicing/spatial gauge?

— what class of evolutions equations for /¥ can be used
that will not adversely affect the well posedness of
the system of equations?



Specifying the spacetime coordinates

e A way to gain insight into how a given /¢ could affect the
coordinates Is to appeal to the ADM metric decomposition
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Specifying the spacetime coordinates

e Therefore, H*(H’) can be chosen to drive « (S') to
desired values

— for example, the following slicing conditions are all designed to
keep the lapse from “collapsing”, and have so far proven useful

In removing some of the coordinate problems with harmonic
time slicing
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Constraint Damping

e Following a suggestion by C. Gundlach (based on earlier
work by Brodbeck et al [J. Math. Phys. 40, 909 (1999)])
modify the Einstein equations in harmonic form as

follows:
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where

e For positive K, Gundlach et al have shown that all
constraint-violations with finite wavelength are damped
for linear perturbations around flat spacetime



Effect of constraint damping

e Axisymmetric simulation of
a Schwarzschild black hole

Left and right simulations
use /dentical parameters
except for the use of
constraint damping
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An early result — merger of an eccentric
binary system

Initial data

— at this stage | am most interested in the dynamics of binary systems in general
relativity, and not with trying to produce an initial set-up that mimics a particular
astrophysical scenario

— hence, use boosted scalar field collapse to set up the binary

— choice for initial geometry and scalar field profile:
e gspatial metric and its first time derivative is conformally flat

= maximal (gives initial value of lapse and time derivative of conformal factor) and
harmonic (gives initial time derivatives of lapse and shift)

e Hamiltonian and Momentum constraints solved for initial values of the conformal factor
and shift, respectively

— advantages of this approach
e “simple” in that initial time slice is singularity free
= all non-trivial initial geometry is driven by the scalar field—when the scalar field
amplitude is zero we recover Minkowski spacetime

— disadvantages
e ad-hoc in choice of parameters to produce a desired binary system

= uncontrollable amount of “junk” initial radiation (scalar and gravitational) in the
spacetime; though a// present initial data schemes suffer from this



An early result — merger of an eccentric
binary system

e (Gauge conditions:
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— Note: this is strictly speaking not spatial harmonic gauge, which
IS defined in terms of the “vector” components of the source
function

VAV H, =&

—é/@th,

e Constraint damping term



Orbit
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e |nitially:

— equal mass components
— eccentricity e ~ 0.25

— coordinate separation of black holes — 16M » Final black hole:
— proper distance between horizons ~ 20M - M,~ 1.85M
— velocity of each black hole ~0.12 — Kerr parameter a — 0.7

— spin angular momentum = 0 — error ~10% ??



Lapse function «

All animations. z=0 Slice, time in units of the mass of a single, initial black hole



Scalar field #.r, uncompactified coordinates




Scalar field 4.r, compactified (code) coordinates

X=tan(xz/2),y=tan(yx/2),Z =tan(zx/?2)




Apparent horizons

Coordinate shape of apparent horizons, viewed from directly above the orbital plane



Gravitational waves

Real component of the Newman-Penrose scalar ,,.r,
uncompactified coordinates



Summary of computation

e base grid resolution 483

— 9 levels of 2:1 mesh refinement (effective finest grid
resolution of 122882%)

— so far:

e —60,000 time steps on finest level

e total of around 70,000 CPU hours, first on 48 nodes of UBC’s
vnp4 cluster, then switched to 128 nodes of Westgrid’s

Beowulf cluster

— maximum total memory usage — 20GB, disk usage —
400GB (and this Is very infrequent output!)



Sample mesh structure (different though similar simulation!)
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Scalar field ¢ . r, z=0 slice



Sample mesh structure (different though similar simulation!)

Scalar field ¢ . r, z=0 slice



Sample mesh structure (different though similar simulation!)
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Sample mesh structure (different though similar simulation!)
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Scalar field ¢ . r, z=0 slice



Summary

e All indications suggest that this scheme is capable of long term, stable evolutions of
binary black hole systems

e Caveats

— almost prohibitively expensive to run, though working on code optimizations plus finding
“good” AMR parameters

— simple gauge conditions within the harmonic formalism have worked remarkably well for the
cases studied so far; though no guarantees that this will continue to be the case for unequal
mass ratios, large initial spins, etc...

— still “tricky” getting the evolution pushed through the merger point

= indications are this is just a resolution/AH-finder-robustness problem, though because of the “curse of
dimensionality” former point is a concern

« \What physics can one hope to extract from these simulations in the near future?

— very broad initial survey of the qualitative features of the last stages of binary mergers

e pick a handful of orbital parameters (mass ratio, eccentricity, initial separation, individual black hole
spins) widely separated in parameters space

= try to understand the general features of the emitted waves, the total energy radiated, and range of
final spins as a function of the initial parameters, plus surprises?
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