
PHYS 410/555 Computational Physics

Solution of Non Linear Equations (a.k.a. Root Finding)

(Reference Numerical Recipes, 9.0, 9.1, 9.4)

• We will consider two cases

1. f(x) = 0 “1-dimensional”

2. f(x) = 0 “d-dimensional”

x ≡ [x1, x2, . . . , xd]

f ≡ [f1(x1, x2, . . . , xd), . . . , fd(x1, x2, . . . , xd)]

1. Solving Nonlinear Equations in One Variable

• We have briefly discussed bisection (binary search), will consider

one other technique: Newton’s method (Newton-Raphson method).

Preliminaries

• We want to find one or more roots of

f(x) = 0 (1)

We first note that any nonlinear equation in one unknown can be

cast in this canonical form.

1

• Definition: Given a canonical equation, f(x) = 0, the residual of

the equation for a given x-value is simply the function f evaluated

at that value.

• Iterative technique: Assume f(x) = 0 has a root at x = x⋆; then

consider sequence of estimates (iterates) of x⋆, x(n)

x(0) → x(1) → x(2) → · · · → x(n) → x(n+1) → · · · → x⋆

• Associated with the x(n) are the corresponding residuals

r(0) → r(1) → · · · → r(n) → r(n+1) → · · · → 0

‖ ‖ ‖ ‖ ‖

f(x(0)) f(x(1)) f(x(n)) f(x(n+1)) f(x⋆)

Locating a root ≡ Driving the residual to 0

• Convergence: When we use an iterative technique, we have to

decide when to stop the iteration. For root finding case, it is

natural to stop when

|δx(n)| ≡ |x(n+1) − x(n)| ≤ ǫ (2)

where ǫ is a prescribed convergence criterion.

2

• A better idea is to use a “relativized” δx

|δx(n)|
|x(n+1)| ≤ ǫ (3)

but we should “switch over” to “absolute” form (2) if |x(n+1)|

becomes “too small” (examples in on-line code).

• Motivation: Small numbers often arise from “unstable processes”

(numerically sensitive), e.g. f(x + h) − f(x) as h → 0, or from

“zero crossings” in periodic solutions etc.—in such cases may not

be possible and/or sensible to achieve stringent relative conver-

gence criterion

3

Newton’s method

• Requires “good” initial guess, x(0); “good” depends on specific

nonlinear equation being solved

• Refer to Numerical Recipes for more discussion; we will assume

that we have a good x(0), and will discuss one general technique

for determining good initial estimate later.

• First consider a rather circuitous way of solving the “trivial” equa-

tion

ax = b −→ f(x) = ax − b = 0 (4)

Clearly, f(x) = 0 has the root

x⋆ =
b

a
(5)

4

• Consider, instead, starting with some initial guess, x(0), with resid-

ual

r(0) ≡ f(x(0)) ≡ ax(0) − b (6)

Then we can compute an improved estimate, x(1), which is actually

the solution, x⋆, via

x(1) = x(0) − δx(0) = x(0) − r(0)

f ′(x(0))
= x(0) − f(x(0))

f ′(x(0))
(7)

“Proof”:

x(1) = x(0) − r(0)

a
= x(0) − ax(0) − b

a
=

b

a
(8)

5

• Graphically, we have

f(x)

xx (0)

f(x)(0)

Rise = f(x) = r(0) (0)

Run = x − x (1)(0)

Slope = a = df/dx(x) = Rise / Run(0)

ax − b

x = x(1) *

6

• Summary

x(1) = x(0) − δx(0) (9)

where δx(0) satisfies

f ′(x(0))δx(0) = f(x(0)) (10)

or

f ′(x(0))δx(0) = r(0) (11)

• Equations (9-10) immediately generalize to non-linear f(x) and,

in fact, are precisely Newton’s method.

7

• For a general nonlinear function, f(x), we have, graphically

f(x)

x

f(x) = r(0) (0)

f(x) = r(1) (1)

f(x) = r(2) (2)

x (0)x (1)x (2)x (3)

8

• Newton’s method for f(x) = 0: Starting from some initial guess

x(0), generate iterates x(n+1) via

x(n+1) = x(n) − δx(n) (12)

f ′(x(n))δx(n) = r(n) ≡ f(x(n)) (13)

or more compactly

x(n+1) = x(n) − f(x(n))

f ′(x(n))
(14)

• Convergence: When Newton’s method converges, it does so rapidly;

expect number of significant digits (accurate digits) in x(n) to

roughly double at each iteration (quadratic convergence)

9

• Example: “Square Roots”

f(x) = x2 − a = 0 −→ x⋆ =
√

a (15)

Application of (14) yields

x(n+1) = x(n) − x(n)2 − a

2x(n)

=
2x(n)2 −

(

x(n)2 − a
)

2x(n)

=
x(n)2 + a

2x(n)

which we can write as

x(n+1) =
1

2

(

x(n) +
a

x(n)

)

(16)

• Try it manually, compute
√

2 = 1.414 2135 6237 using 12-digit

arithmetic (hand calculator)

Iterate Sig. Figs

x(0) = 1.5 1

x(1) = 1
2
(1.5 + 2.0/1.5) = 1.416 6666 6667 3

x(2) = 1
2
(1.416 · · · + 2.0/1.416 · · ·) = 1.414 2156 8628 6

x(3) = 1
2
(1.4142 · · · + 2.0/1.4142 · · ·) = 1.414 2135 6238 11

10

Alternate Derivation of Newton’s Method (Taylor series)

• Again, let x⋆ be a root of f(x) = 0, then

0 = f(x⋆) = f(x(n)) + (x⋆ − x(n))f ′(x(n)) + O((x⋆ − x(n))2) (17)

Neglecting the higher order terms, we have

0 ≈ f(x(n)) + (x⋆ − x(n))f ′(x(n)) (18)

Now, treating the last expression as an equation, and replacing

x(n) with the new iterate, x(n+1), we obtain

0 = f(x(n)) + (x(n+1) − x(n))f ′(x(n)) (19)

or

x(n+1) = x(n) − f(x(n))

f ′(x(n))
(20)

as previously.

11

2. Newton’s Method for Systems of Equations

• We now want to solve

f(x) = 0 (21)

where

x = (x1, x2, . . . , xd) (22)

f = (f1(x), f2(x), . . . , fd(x)) (23)

• Example (d = 2):

sin(xy) =
1

2
(24)

y2 = 6x + 2 (25)

In terms of our canonical notation, we have

x ≡ (x, y) (26)

f ≡ (f1(x), f2(x)) (27)

f1(x) = f1(x, y) = sin(xy) − 1

2
(28)

f2(x) = f2(x, y) = y2 − 6x − 2 (29)

12

• The method is again iterative, we start with some initial guess,

x(0), then generate iterates

x(0) → x(1) → x(2) → · · · → x(n) → x(n+1) → · · · → x⋆

where x⋆ is a solution of (21)

• Note: The task of determining a good initial estimate x(0) in the

d-dimensional case is even more complicated than it is for the

case of a single equation—again we will assume that x(0) is a

good initial guess, and that f(x) is sufficiently well-behaved that

Newton’s method will provide a solution (i.e. will converge).

• As we did with the scalar (1-d) case, with any estimate, x(n), we

associate the residual vector, r(n), defined by

r(n) ≡ f(x(n)) (30)

• The analogue of f ′(x) in this case is the Jacobian matrix, J, of

first derivatives. Specifically, J has elements Jij given by

Jij =
∂fi

∂xj
(31)

13

• For our current example we have

f1(x, y) = sin(xy) − 1

2

f2(x, y) = y2 − 6x − 2

J =















∂f1/∂x ∂f1/∂y

∂f2/∂x ∂f2/∂y















=















y cos(xy) x cos(xy)

−6 2y















• We can now derive the multi-dimensional Newton iteration, by

considering a multivariate Taylor series expansion, paralleling what

we did in the 1-d case:

0 = f(x⋆) = f(x(n)) + J[x(n)] · (x⋆ − x(n)) + O((x⋆ − x(n))2) (32)

where the notation J[x(n)] means we evaluate the Jacobian matrix

at x = x(n).

Dropping higher order terms, and replacing x⋆ with x(n+1), we

have

0 = f(x(n)) + J[x(n)](x(n+1) − x(n)) (33)

14

Defining δx(n) via

δx(n) ≡ −(x(n+1) − x(n)) (34)

the d-dimensional Newton iteration is given by

x(n+1) = x(n) − δx(n) (35)

where the update vector, δx(n), satisfies the d × d linear system

J[x(n)] δx(n) = f(x(n)) (36)

• Again note that the Jacobian matrix, J[x(n)], has elements

Jij[x
(n)] =

∂fi

∂xj

∣

∣

∣

∣

∣

∣

∣

x=x(n)

(37)

• At each step of the Newton iteration, the linear system (36) can, of

course, be solved using an appropriate linear solver (e.g. general,

tridiagonal, or banded).

15

General Structure of a Multidimensional Newton Solver

x: Solution vector

res: Residual vector

J: Jacobian matrix

dx: Update vector

x = x(0)

do while ‖dx‖2 > ǫ

do i = 1 , neq

res(i) = fi(x)

do j = 1 , neq

J(i,j) = [∂fi/∂xj](x)

end do

end do

dx = solve(J dx = res)

x = x - dx

end do

16

Finite Difference Example: Non-Linear BVP

• Consider the nonlinear two-point boundary value problem

u(x)xx + (uux)
2 + sin(u) = F (x) (38)

which is to be solved on the interval

0 ≤ x ≤ 1 (39)

with the boundary conditions

u(0) = u(1) = 0 (40)

• As we did for the case of the linear BVP, we will approximately

solve this equation using O(h2) finite difference techniques. As

usual we introduce a uniform finite difference mesh:

xj ≡ (j − 1)h j = 1, 2, · · ·N h ≡ (N − 1)−1 (41)

17

• Then, using the standard O(h2) approximations to the first and

second derivatives

ux(xj) =
uj+1 − uj−1

2h
+ O(h2) (42)

uxx(xj) =
uj+1 − 2uj + uj−1

h2
+ O(h2) (43)

the discretized version of (38-40) is

uj+1 − 2uj + uj−1

h2
+ (uj)

2




uj+1 − uj−1

2h





2

+ sin(uj) − Fj = 0 ;

j = 2 . . . N − 1 (44)

u1 = 0 (45)

uN = 0 (46)

Note that we have cast the discrete equations in the canonical

form f(u) = 0

• In order to apply Newton’s method to the algebraic equations (45-

46), we must compute the Jacobian matrix elements of the system.

• We first observe that due to the “nearest-neighbor” couplings of

the unknowns uj via the approximations (42-43), the Jacobian

matrix is tridiagonal in this case.

18

• For the interior grid points, j = 2 . . . N , corresponding to rows

2 . . . N of the matrix, we have the following non-zero Jacobian

elements:

Jj , j = − 2

h2
+ 2uj





uj+1 − uj−1

2h





2

+ cos(uj) (47)

Jj , j−1 =
1

h2
− (uj)

2 uj+1 − uj−1

2h2
(48)

Jj , j+1 =
1

h2
+ (uj)

2 uj+1 − uj−1

2h2
(49)

• For the boundary points, j = 1 and j = N , corresponding to the

first and last row, respectively, of J, we have

J1,1 = 1 (50)

J1,2 = 0 (51)

and

JN,N = 1 (52)

JN,N−1 = 0 (53)

19

• Note that these last expressions correspond to the “trivial” equa-

tions

f1 = u1 = 0 (54)

fN = uN = 0 (55)

which have associated residuals

r
(n)
1 = u

(n)
1 (56)

r
(n)
N = u

(n)
N (57)

• Observe that if we initialize u
(0)
1 = 0 and u

(0)
N = 0, then we will

automatically have δu
(n)
1 = δu

(n)
N = 0, which will yield u

(n)
1 = 0

and u
(n)
N = 0 as desired.

• This is an example of the general procedure we have seen previ-

ously for imposing Dirichlet conditions; namely the conditions are

implemented as “trivial” (linear) equations (but it is, of course,

absolutely crucial to implement them properly in this fashion!)

20

• Testing procedure: We adopt the same technique used for the

linear BVP case—we specify u(x), then compute the function

F (x) that is required to satisfy (38); F (x) is then supplied as

input to the code, and we ensure that as h → 0 we observe second

order convergence of the computed finite difference solution û(x)

to the continuum solution u(x).

• Example: Taking

u(x) = sin(4πx) ≡ sin(ωx) (58)

then

F (x) = uxx + (uux)
2 + sin(u) (59)

= −ω2 sin(ωx) + ω2 sin2(ωx) cos2(ωx) + sin(sin(ωx))

• We note that due to the nonlinearity of the system, we will actually

find multiple solutions, depending on how we initialize the Newton

iteration; this is illustrated with the on-line code nlbvp1d.

21

3. Determining Good Initial Guesses: Continuation

• It is often the case that we will want to solve nonlinear equations

of the form

N(x; p̄) = 0 (60)

where we have adopted the notation N(· · ·) to emphasize that

we are dealing with a nonlinear system. Here x = (x1, x2 . . . xd)

is, as previously, a vector of unknowns, with x = x⋆ a solution

of (60).

• The quantity p̄ in (60) is another vector, of length m, which

enumerates any additional parameters (generally adjustable) that

enter into the problem; these could include: coupling constants,

rate constants, “perturbation” amplitudes etc.

• The nonlinearity of any particular system of the form (60) may

make it very difficult to compute x⋆ without a good initial estimate

x(0); in such cases, the technique of continuation often provides

the means to generate such an estimate.

22

• Continuation: The basic idea underlying continuation is to “sneak

up” on the solution by introducing an additional parameter, ǫ (the

continuation parameter), so that by continuously varying ǫ from 0

to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already

have a solution.

to

2. The problem of interest.

23

• Schematically we can sketch the following picture:

"Solution space"

ε = 0

ε = 1

x
❉
0

x
❉
1 x

❉
=

• Note that we thus consider a family of problems

Nǫ(x; p̄) = 0 (61)

with corresponding solutions

xǫ = x⋆
ǫ (62)

24

• The efficacy of continuation generally depends on two crucial

points:

1. N0(x; p̄) has a known or easily calculable root at x⋆
0.

2. Can often choose ∆ǫ judiciously (i.e. sufficiently small) so that

x⋆
ǫ−∆ǫ

is a “good enough” initial estimate for

Nǫ(x; p̄) = 0

25

• Again, schematically, we have

ε = 0

ε = 1

where we note that we may have to adjust (adapt) ∆ǫ as the

continuation proceeds.

26

Continuation: Summary and Comments

• Solve sequence of problems with ǫ = 0, ǫ2, ǫ3 . . . 1 using previous

solution as initial estimate for each ǫ 6= 0.

• Will generally have to tailor idea on a case-by-case basis.

• Can often identify ǫ with one of the pi (intrinsic problem parame-

ters) per se.

• The first problem, N0(x, p̄) = 0, can frequently be chosen to

be linear, and therefore “easy” to solve, modulo sensitivity/poor

conditioning.

• For time-dependent problems, time evolution often provides “nat-

ural” continuation; ǫ → t, and we can use x⋆(t−∆t) as the initial

estimate x(0)(t).

27

