PHYS 410/555 Computational Physics
Solution of Non Linear Equations (a.k.a. Root Finding)
(Reference Numerical Recipes, 9.0, 9.1, 9.4)

e We will consider two cases

1. f(z)=0 “I-dimensional”
2. f(x)=0 “d-dimensional”
X = |11, To, . . ., T4]
f=[filry, 20, .., 24), ..., falx1, 29, ..., 2q)]

1. Solving Nonlinear Equations in One Variable

e We have briefly discussed bisection (binary search), will consider

one other technique: Newton's method (Newton-Raphson method).
Preliminaries
e We want to find one or more roots of
flz) =0 (1)

We first note that any nonlinear equation in one unknown can be

cast in this canonical form.

e Definition: Given a canonical equation, f(x) = 0, the residual of
the equation for a given x-value is simply the function f evaluated

at that value.

e [terative technique: Assume f(x) = 0 has a root at z = x*; then

consider sequence of estimates (iterates) of z*, (")

2)

B () N) RN () B RS) B

e Associated with the (™) are the corresponding residuals

N T(TH—l)

I I I I
f®) f@W) fa) flatmh)

Locating a root = Driving the residual to 0

e Convergence: When we use an iterative technique, we have to
decide when to stop the iteration. For root finding case, it is

natural to stop when

02| = [z — 2] < e (2)

where € is a prescribed convergence criterion.

2

e A better idea is to use a “relativized” oz

92
Ja 0] = ¢ ¥

but we should “switch over” to “absolute” form (2) if ‘I<n+1)‘

becomes “too small” (examples in on-line code).

e Motivation: Small numbers often arise from “unstable processes”
(numerically sensitive), e.g. f(z +h) — f(z) as h — 0, or from
“zero crossings’ in periodic solutions etc.—in such cases may not
be possible and/or sensible to achieve stringent relative conver-

gence criterion

Newton's method

e Requires “good” initial guess, z'?); “good” depends on specific

nonlinear equation being solved

e Refer to Numerical Recipes for more discussion; we will assume
that we have a good z(Y), and will discuss one general technique

for determining good initial estimate later.

e First consider a rather circuitous way of solving the “trivial” equa-

tion

ar=b — flx)=ar—b=0 (4)

Clearly, f(z) = 0 has the root

e Consider, instead, starting with some initial guess, 20 with resid-

ual

r = f(20) = az® — b (6)

Then we can compute an improved estimate, z(!), which is actually

the solution, x*, via

(0) (0)
©_ 0 s " o f@)
T T ox x Py~ T () (7)

e Graphically, we have

)4 Slope = a = dfdx(x®) = Rise / Run

f(x)

ax—b

. Rise = f(x@) = r©

x @D = x* 'x©

Run =x© - x@®

e Summary

2+ = 20) _ 5,00 (9)
where 520 satisfies
f(@)6z = f(2) (10)
or
()52 = 70 (11)

e Equations (9-10) immediately generalize to non-linear f(x) and,

in fact, are precisely Newton's method.

e For a general nonlinear function, f(x), we have, graphically

f(x) A
T T S ——
f(x (1)) =r .
f(x@)=r®@ |
~ 2@ %@ XD O Ty

e Newton's method for f(x) = 0: Starting from some initial guess

n+1)

x(o), generate iterates ! via
2t — () 5..(0) (12)
f’(a:(”))éa:(”) —) = f(x(”)) (13)
or more compactly
(n)
ety _ oy S(@™)
T =z () (14)

e Convergence: When Newton's method converges, it does so rapidly;
expect number of significant digits (accurate digits) in 2" to

roughly double at each iteration (quadratic convergence)

e Example: "Square Roots”
fx)=2"-a=0 — 2"=+/a (15)

Application of (14) yields

oy _ w2 —a
x = '’ — 5 ()
2(M? <x<”>2 . a)
B 22(n)
B 2’ +a
g0
which we can write as
1 a
(1) _ = (.(n)
t 9 <3§' * x(”)) (16)

e Try it manually, compute /2 = 1.414 2135 6237 using 12-digit

arithmetic (hand calculator)

[terate Sig. Figs

0 =15

) =1(1.542.0/1.5) = 1.416 6666 6667

1
2

(1416 - -+ +2.0/1.416 - - -) = 1.414 2156 8628

N[

22 —

2@ =1(1.4142- - +2.0/1.4142---) = 1.414 2135 6238

10

Alternate Derivation of Newton’s Method (Taylor series)
e Again, let 2 be a root of f(x) =0, then
0= fa") = fla™) + (@ = 2™) f'(a™) + O((z" — ™)) (17)
Neglecting the higher order terms, we have
0~ Fa) + (@ —) () 18)

Now, treating the last expression as an equation, and replacing

2" with the new iterate, (") we obtain
0= f(a) + (20 — o) f(al®) (19)
or
B fr(ztm)

as previously.

11

2. Newton’s Method for Systems of Equations

e \We now want to solve

where

X = (x1,To, ..., %q)

f= (fl(X>7 f2(X>7 SR fd(x)>

e Example (d =2):

1
sin(zy) = 5
y2 = 6z + 2

In terms of our canonical notation, we have

X = (2,9)
f = (fix), fa(x))
fix) = file,y) = sinfay) -

fox) = fola,y) =y — 62 —2

12

(21)

(22)

(23)

e The method is again iterative, we start with some initial guess,

x| then generate iterates

n+1) *

H...%X(n)%x< %...%X

where x* is a solution of (21)

e Note: The task of determining a good initial estimate x() in the
d-dimensional case is even more complicated than it is for the
case of a single equation—again we will assume that x(¥ s a
good initial guess, and that f(x) is sufficiently well-behaved that

Newton's method will provide a solution (i.e. will converge).

e As we did with the scalar (1-d) case, with any estimate, x(™, we

associate the residual vector, vV defined by
ri = f(x™) (30)

e The analogue of f/(x) in this case is the Jacobian matrix, J, of

first derivatives. Specifically, J has elements .J;; given by

_Ofi

Jij =
J (%j

(31)

13

e For our current example we have

1

filz,y) = sin(zy) — 5

folz,y) = y* — 62 —2

0fi/0z 0f1/0y ycos(zy) xcos(zy)

Of2/0x 0 fs/0y —6 2y

e We can now derive the multi-dimensional Newton iteration, by
considering a multivariate Taylor series expansion, paralleling what

we did in the 1-d case:
0 = £(x*) = £(x™) + I - (x* —x) + O((x* —x")?) (32

where the notation J[x(™)] means we evaluate the Jacobian matrix

at x = x("),

Dropping higher order terms, and replacing x* with x"*1, we

have

0 = f(x™) + J[x™)(x"+D) — xm) (33)

14

Defining 6x™ via
ox" = —(x+D) — x()) (34)
the d-dimensional Newton iteration is given by
x(D) — () _ 55 (1) (35)
where the update vector, ox(™ satisfies the d x d linear system
J[X(n)} 5x(™ — f(x(n)) (36)

e Again note that the Jacobian matrix, J[x(”)], has elements

7 = 91 (37)

axj x=x(n)

e At each step of the Newton iteration, the linear system (36) can, of
course, be solved using an appropriate linear solver (e.g. general,

tridiagonal, or banded).

15

General Structure of a Multidimensional Newton Solver

X: Solution vector
res: Residual vector
J: Jacobian matrix
dx: Update vector

do while ||dx||2 > €
do i =1, neq
res(i) = fi(x)
do j =1, neq

3G, 9) = [0 /0] (%)

end do

end do

dx = solve(J dx = res)

x =x-dx

end do

16

Finite Difference Example: Non-Linear BVP
e Consider the nonlinear two-point boundary value problem
w(T) e + (ut,)? +sin(u) = F(x) (38)
which is to be solved on the interval
0<x<1 (39)
with the boundary conditions
u(0) =u(l) =0 (40)

e As we did for the case of the linear BVP, we will approximately
solve this equation using O(h?) finite difference techniques. As

usual we introduce a uniform finite difference mesh:

ri=(G-1h j=1,2,---N h=(N-1"1 (41

17

e Then, using the standard O(h?) approximations to the first and

second derivatives

us(ay) = S OW) (42
. _2 . .
tpalm;) = 2];g?*“f L o) (43)

the discretized version of (38-40) is

Uir] — 2U; + Ujq Ui —ui—1]? .
s+ (W) [T | Hsin(yy) — By =0;
j=2...N—1 (44)
U1 = 0 (45)
uy = 0 (46)

Note that we have cast the discrete equations in the canonical

form f(u) =0

e In order to apply Newton's method to the algebraic equations (45-

46), we must compute the Jacobian matrix elements of the system.

e We first observe that due to the “nearest-neighbor” couplings of
the unknowns u; via the approximations (42-43), the Jacobian

matrix is tridiagonal in this case.

18

e For the interior grid points, j = 2... N, corresponding to rows

2...N of the matrix, we have the following non-zero Jacobian

elements:
2 Ujr1 — Uj—1 2
Ji i = 3t 2u, o7 + cos(u;) (47)
Jj -1 = %— (us)” Uj+12;QUj_1 (48)
Tjgn = g ()] (49)

e For the boundary points, 7 =1 and j = NN, corresponding to the

first and last row, respectively, of J, we have

Ji1 =1 (50)

Jia = 0 (51)
and

Iy = 1 (52)

Jyn-1 = 0 (53)

19

e Note that these last expressions correspond to the “trivial” equa-

tions

Ji = uw=0 (54)

fN = UN:O (55)

which have associated residuals

= " (56)

v = (57)

e Observe that if we initialize u§0> = 0 and u§3> = 0, then we will
automatically have 5u§n> = 5u§3> = 0, which will yield u@ =0

(n)

and uy’ = 0 as desired.

e This is an example of the general procedure we have seen previ-
ously for imposing Dirichlet conditions; namely the conditions are
implemented as “trivial” (linear) equations (but it is, of course,

absolutely crucial to implement them properly in this fashion!)

20

e Jesting procedure: We adopt the same technique used for the
linear BVP case—we specify u(x), then compute the function
F(x) that is required to satisfy (38); F'(z) is then supplied as
input to the code, and we ensure that as h — 0 we observe second
order convergence of the computed finite difference solution u(x)

to the continuum solution u(x).
e Example: Taking

u(z) = sin(4rx) = sin(wx) (58)

F(r) = g + (uu,)® + sin(u) (59)

= —w?sin(wz) + w?sin®(wr) cos*(wx) + sin(sin(wz))

e We note that due to the nonlinearity of the system, we will actually
find multiple solutions, depending on how we initialize the Newton

iteration; this is illustrated with the on-line code nlbvpid.

21

3. Determining Good Initial Guesses: Continuation

e |t is often the case that we will want to solve nonlinear equations

of the form

N(x;p) =0 (60)

where we have adopted the notation IN(---) to emphasize that
we are dealing with a nonlinear system. Here x = (z1,25...1,)

is, as previously, a vector of unknowns, with x = x* a solution

of (60).

The quantity p in (60) is another vector, of length m, which
enumerates any additional parameters (generally adjustable) that
enter into the problem; these could include: coupling constants,

rate constants, “perturbation” amplitudes etc.

The nonlinearity of any particular system of the form (60) may
make it very difficult to compute x* without a good initial estimate

0)

x(:in such cases, the technique of continuation often provides

the means to generate such an estimate.

22

e Continuation: The basic idea underlying continuation is to “sneak
up” on the solution by introducing an additional parameter, € (the
continuation parameter), so that by continuously varying € from 0

to 1 (by convention), we vary from:

1. A problem that we know how to solve, or for which we already

have a solution.
to

2. The problem of interest.

23

e Schematically we can sketch the following picture:

"Solution space”

e Note that we thus consider a family of problems
Ne(x;p) =0 (61)
with corresponding solutions

Xe = X, (62)

24

e The efficacy of continuation generally depends on two crucial

points:

1. No(x;p) has a known or easily calculable root at x.

2. Can often choose A€ judiciously (i.e. sufficiently small) so that
*

Xe—Ae

is a “good enough” initial estimate for

N.(x;p) =0

25

e Again, schematically, we have

where we note that we may have to adjust (adapt) Ae as the

continuation proceeds.

26

Continuation: Summary and Comments

e Solve sequence of problems with € = 0, €9, €3...1 using previous

solution as initial estimate for each ¢ # 0.
e Will generally have to tailor idea on a case-by-case basis.

e Can often identify € with one of the p; (intrinsic problem parame-

ters) per se.

e The first problem, Ny(x,p) = 0, can frequently be chosen to
be linear, and therefore “easy” to solve, modulo sensitivity/poor

conditioning.

e For time-dependent problems, time evolution often provides “nat-
ural” continuation; € — ¢, and we can use x*(t — At) as the initial

estimate x(")(¢).

27

