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Outline

 Reminder: why we need AMR, and properties of the 
solutions that dictate the particular “flavor” of AMR that 
is adequate

 Berger & Oliger style AMR

 ideal for hyperbolic wavelike equations, and certain classes of 
problems in GR

 extensions for coupled hyperbolic/elliptic systems

 example: critical phenomena in gravitational collapse

 PAMR/AMRD

 infrastructure for implementing B&O AMR on clusters (using 
MPI)



AMR

 Adaptive Mesh Refinement is a technique to make the solution of discrete 
PDEs more efficient for certain classes of problem

 there is a wide range of relevant length scales in the problem, yet the smallest 
length scales are relatively isolated and not volume filling

 not known a-priori where the small length scales will develop, or it will be too 
difficult/cumbersome to construct a non-uniform mesh to efficiently resolve the 
small length scales

 computationally too expensive to solve the problem on a single uniform mesh

 AMR allows for solution of such classes of problems by covering the domain 
with a mesh hierarchy, where high resolution meshes are only added where 
needed to resolve small length scale features

 NOTE: AMR is not a technique to increase the accuracy of a solution; in fact, the 
AMR solution can never be more accurate than a unigrid solution with resolution 
corresponding to that of the finest AMR mesh

 furthermore, AMR generically creates unwanted high-frequency solution 
components (“noise”) at refinement boundaries, and though this can be controlled 
and made small, it is usually quite challenging to get very high accuracy solutions 
with AMR 

 Think of AMR as a tool to get an answer to a computationally challenging problem 
in the first place; worry about the nth digit later 



Why would AMR be beneficial in GR?
 In most astrophysical scenarios where GR is important and numerical 

solution is needed, in particular binary compact object mergers and 
gravitational collapse, there is a clean hierarchy of a modest range of metric 
length scales that need to be resolved

 compact object radius near field zone (10’s of gravitational radii) far field zone (100’s 
gravitational radii)

 in the strong-field regime small length-scales are isolated (one or two 
compact objects) and not volume filling

 however not always the case in GR, e.g. generic cosmological singularities

 in the strong-field regime temporal scales are commensurate with spatial 
scales; i.e. rapid temporal variation of the metric is typically confined to 
correspondingly small spatial length scales

 the equations are non-linear, and in many cases we will not a-priori know 
where/when refinement will be needed

 maximum causal speed of propagation (1 !)

 in the weak-field regime gravitational wave propagation is the feature of 
interest

 this will be volume filling, and though the temporal scale for variations is always the same,  
the spatial scales will reflect the relevant scales of the source at the time of emission



Implications for an AMR algorithm
 The preceding properties suggest

 it is not important to have sophisticated grid structures that can efficiently track 
features with complicated shapes; rather simple “aligned box-in-box” type strategies 
will be adequate

 it is however important for the algorithm to provide a mechanism to automatically 
generated the hierarchy as evolution proceeds (i.e. “adaptive”!)  

 it is important to use an algorithm that maintains the same CFL factor everywhere in 
the domain; i.e. need time-subcycling

 AMR by itself, regardless of how sophisticated the algorithm, will not help in tracking 
gravitational wave emission out to large radii with high accuracy … other technology 
will be needed to overcome this if it becomes an issue (though in a binary black hole 
merger the shortest GW wavelength ~ 5 gravitational radii --- not too small):

 changing the spatial coordinates to more efficiently represent the wave structure; e.g. 
spherical polar coordinates, as the angular structure in the wave will not change by much 
far from the source, and could efficiently be represented with a relatively small set of 
multipoles

 changing the slicing to be asympotically null, to “quickly” propagate the waves to large 
radii from the source

 In all then, a simplified version of the original Berger and Oliger AMR algorithm (JCP 53, 
1984) is ideal for our purposes 

 though some modifications needed if elliptic equations are solved during evolution



Berger and Oliger AMR
 (simplified and extended) Berger and Oliger AMR, as implemented in 

AMRD [Pretorius & Choptuik, JCP 218,2006]

 computational domain covered by a hierarchy of independent uniform 
rectangular meshes, where higher resolution child meshes are aligned 
with and entirely contained within coarser resolution parent meshes

 original algorithm allowed for child meshes to be rotated relative to the 
parent mesh

mesh hierarchy on 

computational domain
memory map of grids in hierarchy



Berger and Oliger AMR

 recursive time stepping algorithm, so refinements occur in space and 
time (example in a few slides)

 a single unigrid time step is taken on a parent level before t (temporal 
refinement ratio) unigrid time steps are taken on the child level

 this ordering is crucial to set boundary conditions for interior equations, 
in particular the elliptics

 though alternative strategies are possible for purely hyperbolic 
systems with explicit time integration, or certain classes of linear 
elliptic PDEs driven by conserved sources [Lehner et al, CQG 23 
(2006) S421-S446]

 allows the AMR technology to be implemented independently of the 
particulars or details of the numerics used to solve them, and 
conversely shields the user from AMR implementation details

 after t steps on the child grid, when the parent and child are in sync again, 
solution from the child region is injected into the overlapping region of the 
parent level, so that the most accurate solution available at a point is 
propagated to all levels of the hierarchy containing that point

 gives near-O(N) (optimal) solution of the PDEs



Berger and Oliger AMR

 hierarchy construction driven by truncation error (TE) estimates

 the B&O proposal to compute this was to periodically make a 2:1 
(say) coarsened version of a level in the hierarchy, evolve the two 
meshes independently for a short time (typically 1 coarse level time 
step), then a la Richardson, subtract the two solutions to give the 
TE estimate

 here, use a “self-shadow” hierarchy to obviate the need to duplicate 
levels

 due to the recursive nature of the algorithm, just before the fine-to-
coarse level injection phase, information to compute TE estimates is 
naturally available

 to make this work, simply need to “boot-strap” the procedure by 
requiring that the coarsest level always be fully refined

 negligible additional cost … just choose mesh parameters so that the 
first refined level is the desired “coarsest” level



Berger and Oliger AMR

 need to alter the algorithm to incorporate elliptic PDEs

 for hyperbolic equations, a poorly resolved interior region of a coarse level 
will not adversely affect the solution on the parts of the level that are locally 
of the finest resolution, as the “junk” from the under-resolved region does 
not have more than 1 time step to propagate to the exterior before it is 
replaced with finer grid solutions

 the above does not hold for elliptic equations. To deal with elliptics, in a 
nutshell, modify the algorithm as follows:

 when descending the tree in the recursive time-stepping algorithm, 
evolve hyperbolics one step, using an extrapolated solution of the 
variables satisfied by elliptic equations

 getting stable extrapolation is a bit tricky

 when ascending the tree, post injection, solve the elliptics over the 
entire sub-hierarchy that is in sync with the given coarse level  



B&O AMR Example
time

2 Levels

sp= t= 2:1

Initial 
hierarchy



B&O AMR Example
time

2 Levels

sp= t= 2:1

• evolve hyperbolics
on level 1

• extrapolate elliptics
on level 1 from past 
time levels

Level 1
time step



B&O AMR Example
time

2 Levels

sp= t= 2:1

Level 2
time step

• evolve hyperbolics
on level 2 using 
interpolated 
boundary conditions

• solve elliptics on 
level 2 using 
extrapolated 
boundary conditions



B&O AMR Example
time

NOTE: at this moment 
we have all the 

information we need to 
compute a truncation 
error estimate for the 

solution at level 2

2 Levels

sp= t= 2:1

Level 2
time step

• evolve hyperbolics
on level 2 using 
interpolated 
boundary conditions 

• solve elliptics on 
level 2 using 
extrapolated 
boundary conditions



B&O AMR Example
time

2 Levels

sp= t= 2:1

Inject from 
level 2 to 1

• re-solve elliptics
over the levels 2 & 1



B&O AMR Example
time

3 Levels

sp= t= 2:1

Regrid



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 1

• extrapolate elliptics
on level 1 from past 
time levels

Level 1
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 2 using 
interpolated 
boundary conditions 

• extrapolate elliptics
on level 2 from past 
times levels

Level 2
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 3 using 
interpolated 
boundary conditions 

• solve elliptics on 
level 3 using 
extrapolated 
boundary conditions

Level 3
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 3 using 
interpolated 
boundary conditions 

• solve elliptics on 
level 3 using 
extrapolated 
boundary conditions

Level 3
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

• re-solve elliptics
over the levels 3 & 2, 
using extrapolated 
boundary conditions

Inject from 
level 3 to 2



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 2 using 
interpolated 
boundary conditions 

• extrapolate elliptics
on level 2 from past 
times levels

Level 2
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

Inject from 
level 2 to 1



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 3 using 
interpolated 
boundary conditions 

• solve elliptics on 
level 3 using 
extrapolated 
boundary conditions

Level 3
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

• evolve hyperbolics
on level 3 using 
interpolated 
boundary conditions 

• solve elliptics on 
level 3 using 
extrapolated 
boundary conditions

Level 3
time step



B&O AMR Example
time

3 Levels

sp= t= 2:1

Inject from 
level 3 to 2 

to 1

• re-solve elliptics
over the levels 3, 2 
and 1



Optimistically, what kind of speedup can we expect?

 Imagine

 d+1 dimensional evolution

 the coarsest level has Nd points

 2:1 spatial and temporal refinement ratio

 L levels of refinement, with l=1 the coarsest level, 
and l=L the finest 

 take N steps on the coarsest level; hence will need 
N2(l-1) on the level l

 linear filling factor of ½

 the total run-time is proportional to the total 
number of grid points in space and time (i.e. an 
optimal evolution scheme is used), and the 
overhead in the AMR algorithm is negligible

 compare to a unigrid run at the resolution of the 
finest AMR level
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PAMR/AMRD
 PAMR (parallel adaptive mesh refinement) 

manages distributed B&O style grid hierarchies 

 AMRD (adaptive mesh refinement driver) 
implements the just-described version of B&O 
AMR, utilizing PAMR for hierarchy management

 User codes designed as (in-principle) standalone 
unigrid/serial numerical solvers, and supply AMRD 
with a series of “hook functions” to incorporate 
them into the B&O algorithm 

PAMR

AMRD
user code 1

user code 2

user code N

. . .

 Reasons for this separation of functionality

 from the point of view of a user writing a code to numerically solve a particular system of PDEs, 
AMR and parallel distribution are largely extraneous details

 all the user should be aware of is the possibility that the code could be run in a 
parallel/adaptive environment, meaning grid boundaries could either be at the physical 
boundaries of the problem, or interior to the domain

 in the latter case the user leaves the boundaries alone

 The AMR driver does not need to know the details of how grids will be distributed in parallel, nor 
what equations the user will be solving on those grids

 PAMR handles the non-local aspects of parallel grid distribution, and does not care what the 
underlying programs will do with the grids  



PAMR
• Takes care of most parallel grid distribution issues

– support for 1,2 and 3D grids, with or without periodic boundaries

– support for interwoven AMR/multigrid hierarchies

– simple base application program interface (API)

• PAMR_compose_hierarchy() : regrid function

• PAMR_sync() : synchronize data across ghost zones

• PAMR_inject() : fine-to-coarse level injection

• PAMR_interp() : coarse-to-fine level interpolation

– a complete set of data structure management API's, so that it can be 
called from fortran programs 

– current version only supports vertex centered arrays; support for cell-
centered arrays in the works (pretty much done, thanks to Branson 
Stephens)



AMRD

• Built on top of PAMR, hence “parallel ready”

• Implements a Berger and Oliger AMR algorithm, modified to support 
integrated solution of elliptic equations

• Provides a standard full approximation storage (FAS) adaptive 
multigrid algorithm

• User supplies a set of “hook functions” that are called by AMRD to 
perform the problem specific numerics

• Berger and Colella algorithm for conservative hyrdodynamics in the 
works (pretty much done, again thanks to Branson)



A few final remarks
• For the Einstein equations, time taken to evaluate expressions dominates 

over other tasks, which helps guide coding priorities

• 'locality' of the data less of an issue in load-balancing a parallel code (strategies 
designed to guarantee locality, such as space filling curves, may even have a 
negative impact on the performance)

• algorithmic tasks (truncation error estimation, regridding, interpolation, injection, 
etc.) are essentially “free”

• Solving elliptic equations solved using FAS multigrid is optimal and fast

• at worst a constant factor of 2-3 times slower per equation compared to a typical 
hyperbolic equation

• for example, 2D axisymetric gravitational collapse code solves 4 (3) hyperbolic 
equations and 3 (4) elliptic equations per time step; profiling indicated roughly 
25-45% of the time is spent solving hyperbolics, 50-70% solving elliptics, with 
the remainder (usually ~ 5-10%) spent on miscellaneous functions in a typical 
simulation

• Code, including reference manuals and a couple of examples, can be 
downloaded from Matt Choptuik’s web-page (google “Matt Choptuik”, or 
see links from my web-page)


